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Abstract 

This research aims to investigate appropriate methods for handling missing data during analysis, 

which is one of the most challenging tasks for statistical inference. Our motivation is to replace a 

missing response value in a central composite design (CCD) and its effect on each particular part 

(factorial, center and axial) in which the value is missing. Statistical software packages generally set 

listwise deletion as the default method for dealing with missing data, while imputation methods are 

also widely used. Hence, we compared listwise deletion and mean and regression imputation. Four 

test functions were used to examine all possible cases of a single missing response in a CCD with two 

factors. The performances of the methods for handling a missing response value in each of the three 

parts of the CCD (factorial, center, or axial) were compared in terms of their optimal responses with 

complete data by using mean-squared error and correlation coefficient values. Regression imputation 

and listwise deletion provided similar results for handling the missing value in each of the CCD parts 

(factorial, center, and axial) and were both superior to mean imputation. 

______________________________ 

Keywords: Response surface methodology, factorial points, center points, axial points. 

Introduction 

The central composite design (CCD) is the most popular and widely used design for estimating 

the second-order response surface method (RSM) introduced by Box and Wilson (1951). CCD is 

applied to determine the operating variables’ optimized values by fitting a second-order model (Kumar 

et al., 2009). This design is an optimization technique widely used in many fields, such as chemistry, 

environmental studies, and engineering (Azami et al. 2013; Gano et al. 2015; Momen et al. 2016; 

Farzadkia et al. 2018; Bagheri et al. 2019) because of the advantage of optimizing multifactor 

problems with the optimal number of experimental runs. 

Missing observations in real-world experiments are not uncommon, even in a well-planned 

experiment or a well-controlled study. The problem of missing data can significantly affect the 

statistical power reduction and produce biased estimates, thereby leading to invalid conclusions 
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(Graham 2009; Ayilara et al. 2019). Most often, listwise deletion (or complete case analysis) is the 

default method for dealing with missing data in almost all statistical software packages (Briggs et al. 

2003), and it may or may not be a bad choice depending on the cause and how many data items are 

missing (Newman, 2014). Several studies have shown that for specific analyses of a particular dataset, 

subpopulation analysis can lead to results that diverge from those obtained through listwise deletion 

(Graubard and Korn 1996; Roth 1994; Roth et al. 1999). Many studies involve missing data, and 

listwise or pairwise deletion is most often used to handle the missing data when they comprise less 

than 5% of the total (Rubin 1987; Schafer 1997). Likewise, Bengtsson et al. (2021) who claim that 

listwise deletion performs best for MCAR data and when the proportion of missingness is not too high. 

The major disadvantage of listwise deletion is that it regularly removes a large proportion of the 

sample, thereby leading to loss of the statistical power of the particular test being used (Allison 2001). 

Listwise deletion works well when the data are missing completely at random (MCAR), which rarely 

happens in reality (Nakai and Weiming 2011). Meanwhile, missing at random (MAR) allows the 

probability of missingness to depend on observed variables, which means that multiple imputation and 

maximum likelihood (ML) methods have a major advantage over listwise deletion in reducing bias. 

Unfortunately, most researchers do not know that listwise deletion may be less biased than multiple 

imputation or ML when data are missing on variables in regression analysis under certain 

circumstances (Allison 2001). Another common approach used to handle the missing values is 

imputation, which replaces missing values with substituted ones, thereby leading to more accurate 

analysis. Several imputation methods for imputing the missing values have been used (Engels and 

Diehr 2003; Saunders et al. 2006; Junger and De Leon 2015) such as mean, regression, hot-deck, K-

nearest neighbor, etc. 

Even though listwise deletion is the default method for dealing with missing data in most statistical 

software packages, the effect of using it to handle missing values in CCDs has not yet been clarified. 

Therefore, we examined the impact of a single missing response value in the various parts of the CCD 

(factorial, center, axial) and handling it using three methods (mean, regression, and listwise deletion). 

Whereas the first two methods impute the missing value, listwise deletion deletes it, after which CCD 

is performed with the rest of the dataset. After that, the performances of the three methods in each part 

of the CCD were compared. 

The rest of the paper is organized as follows. The RSM, which is the basic concept of CCD, and 

the three methods for handling missing values are presented in Section 2. Next, details of a simulation 

study used to investigate the performances of the three methods are reported in Section 3. After that, 

the results of the simulation study and a discussion are covered in Section 4. Finally, conclusions and 

recommendations are presented in Section 5. 

 

2. Methodology and Framework 

2.1. RSM 

Originally, RSM was developed for experimental model responses (Box and Draper, 1987) and 

then adapted for numerical experiment modeling. The primary idea is to fit a model for the response 

variable and explore various settings for the explanatory variables of interest. One of these is 

maximizing (or minimizing) the mean value of the response variable. In general, the relationship 

between the response variable of interest and the independent variables is unknown and usually 

approximated by applying a low-degree polynomial model of the form (Myers and Montgomery, 

2002). The first step in RSM is to find a suitable approximation for the true relationship. If curvature 

is detected near the optimum of the first-order model (suggesting poor model fitting), points are added 

to obtain a second-order model. CCD is the most popular choice for fitting a second-order model in 
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RSM. It can fit a second-order prediction equation for the response where the quadratic terms model 

the curvature of the true response function. Different types of response surfaces are shown in Figure 

1. 

 

 

 

 

  

 

 

                                (a)                                                 (b)                                                (c) 

Figure 1 The different types of response surfaces: (a) maximum, (b) minimum, and (c) saddle 

 

If a maximum or minimum exists inside the factor region, then RSM can estimate it. A second-

order model can be formulated as 
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where 2( , )y N   I X  and 
2(0, ).N  I  

 

2.2. CCD 

CCDs, the most commonly used models for RSM (Myers and Montgomery 2002) can be 

efficiently constructed with a second-order model. This design contains a factorial or fractional 

factorial design with center points augmented with a group of star points (axial points) that allow 

estimation of the curvature. CCD consists of 2k  factorial runs (coded as the usual ± notation) with 2k

2k  axial runs  ,0,0,  ,0 ,   0, ,0,  ,0 ,  …,  0,0,  ,    and center runs ( cn replicates,

(0,0,  ,0),  where the axial point is determined by using  = (the number of factorial runs)1/4 for 22

factorial design 1.414.   The total number of experiments ( )N  performed for a CCD is determined 

when the factorial design is full: i.e., 2 2k
cN k n    points. The CCD for two factors with five 

center points is provided in Table 1. 

The four important steps in executing a CCD are: (1) perform statistically designed experiments. 

(2) estimate the coefficients. (3) predict the optimal response. (4) check the model's adequacy. After 

the parameters of the second-order model have been estimated by the ordinary least-squares method, 

the optimal design point in terms of the coded variables can be written as (Anderson et al. 2009) 
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Table 1 The layout of a CCD for two factors with five center points. 

Coded Variables Response 

1x  2x  jy  

−1 −1 1y  

1 −1 2y  

−1 1 3y  

1 1 4y  

0 0 5y  

0 0 6y  

0 0 7y  

0 0 8y  

0 0 9y  

        −1.414 0 10y  

           1.414 0 11y  

0 −1.414 12y  

0 1.414 13y  

 

Meanwhile, the predicted response at the optimal design point is given by 

0

1ˆˆ
2

opt opty    x b                                                                  (3) 

which is converted back in terms of the true variables. 

Incomplete data increases the risk of weakening the inference validity and, in the real world, data 

are often incomplete. For a single missing point in a CCD, the part in which the design point is missing 

must be considered: (1) a factorial or fractional factorial design, (2) center points, and (3) a group of 

star points (axial points). Table 2 provides the possible cases for a single missing response value in a 

CCD with two factors. 

 

Table 2 The possible cases for a single missing response value in a CCD with two factors 

Case 
Factorial Center Axial 

F1 F2 F3 F4 C1 C2 C3 C4 C5 A1 A2 A3 A4 

1 M  2y  
3y  

4y  
5y  

6y  
7y  

8y  
9y  

10y  
11y

 
12y  

13y
 2 1y  M  3y  

4y  
5y  

6y  
7y  

8y  
9y  

10y  
11y

 
12y  

13y
 3 1y  

2y  M  4y  
5y  

6y  
7y  

8y  
9y  

10y  
11y

 
12y  

13y
 4 1y  

2y  
3y  M  5y  

6y  
7y  

8y  
9y  

10y  
11y

 
12y  

13y
 5 1y  

2y  
3y  

4y  M  6y  
7y  

8y  
9y  

10y  
11y

 
12y  

13y
 6 1y  

2y  
3y  

4y  
5y  M  7y  

8y  
9y  

10y  
11y

 
12y  

13y
 7 1y  

2y  
3y  

4y  
5y  

6y  M

y  
8y  

9y  
10y  

11y
 

12y  
13y

 8 1y  
2y  

3y  
4y  

5y  
6y  

7y  M  9y  
10y  

11y
 

12y  
13y

 9 1y  
2y  

3y  
4y  

5y  
6y  

7y  
8y  M  10y  

11y
 

12y  
13y

 10 1y  
2y  

3y  
4y  

5y  
6y  

7y  
8y  

9y  M  11y
 

12y  
13y

 11 1y  
2y  

3y  
4y  

5y  
6y  

7y  
8y  

9y  
10y  M  12y  

13y
 12 1y  

2y  
3y  

4y  
5y  

6y  
7y  

8y  
9y  

10y  
11y

 
M  13y

 13 1y  
2y  

3y  
4y  

5y  
6y  

7y  
8y  

9y  
10y  

11y
 

12y  M  

ijy  are observed data; M  is the missing value. 
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2.3. Missing data mechanisms 

Descriptions of missing data mechanisms were first introduced by Rubin (1976), MCAR when 

the probability of missing is equal for all cases, MAR when the probability of missing is equal only 

within groups defined in the observed data, and missing not at random (MNAR) when the probability 

of missing varies for unknown reasons. 

 

2.4. Methods for handling missing values 

Imputation is used to replace missing values with substituted ones, thereby leading to a more 

efficient statistical analysis. An appropriate imputation method for missing data in a CCD depends on 

which part contains the missing values (factorial, center, axial)). Listwise deletion can be used for a 

single missing response value in the various CCD design points (factorial, center, axial). The following 

three methods were used for handling a single missing response value in a CCD. 

2.4.1. Mean imputation 

As per its name, mean imputation creates a replacement value for the missing value from the mean 

of the available cases. This method is easy to use but reduces variability in the data, leading to 

underestimating the standard deviation and variance. The missing response value at can be calculated 

by using Mean Imputation as follows: 

( ) ,
12

ˆ
j

j k

MI k

y

y  



 where  .1, 2,3,...,13k j                                      (4) 

2.4.2. Regression imputation 
This is used to predict the missing value in a variable by using a regression model. In other words, 

the available information for complete and incomplete cases is used to predict the missing value for a 
specific variable. The fitted value is then used to impute the missing value. Ostertagová (2012) 
described how a polynomial regression model can be useful when the relationship between two 
variables is curvilinear. Therefore, regression imputation can be applied to impute the missing 
response value in a CCD by using an estimated regression model of the second-order using the 

ordinary least-squares method. A suitable polynomial regression model with 2k   predictor variables 
of the second-order is 
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1 1

,
k k

i i ii i ij i j
i i i j

y x x x x    
  

                      (5) 

where 2( , )y N   I X  and 
2(0, ).N  I  The estimation of the missing response value is 

calculated as follows 
2 2

2
( ) 0

1 1

ˆ .RgI k i i ii i ij i j
i i i j

y b b x b x b x x
  

       

2.4.3. Listwise deletion 

Listwise deletion (or complete case analysis) is the default method for dealing with missing data 

in almost all statistical software packages (Briggs et al. 2003). Quite simply, cases with missing data 

on the variable of interest are deleted; e.g., for a missing response value at design point F1 

corresponding to, the data point for F1 is deleted from the dataset and CCD is performed in four steps 

by using the rest of the dataset. The process to perform CCD by using the handling method by listwise 

deletion is illustrated in Figure 2. 
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Factorial Center Axial 

F1 F2 F3 F4 C1 C2 C3 C4 C5 A1 A2 A3 A4 
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11y
 

12y
 

13y
 

ijy  are observed data; M  is the missing value. 
 

Figure 2 The process to perform CCD by using the handling method by listwise deletion 

 

2.5. The performance metrics 

Two performance metrics were used to verify the efficiency of the three methods for handling 

missing values in a CCD: the mean-squared error (MSE) and correlation ( )r respectively defined as 
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where ( )opt iy  is the optimal response of the complete data at iteration ,i  ( )
ˆ
opt iy  is the optimal 

response with the data handling method at iteration ,i and n  is the number of iteration. 

 

3. Simulation Study 

3.1. Test functions 

Four test functions from Wongoutong et al. (2017) were used in the simulation to compare the 

efficiencies of the three methods (mean and regression imputation, and listwise deletion) for handling 

a single missing value from one of the three parts of a CCD. The four test functions are defined as 

follows: 

 2 2 2 2
1 1 2 1 2 1 2 1 2( , ) ( 11) ( 7) ; , 2,2 ,f x x x x x x x x          

   2 4 6 2 4
2 1 2 1 1 1 1 2 2 2 1 2

1
( , ) 4 2.1 4 4 ; 1,0.5 , 0,1 ,

3
f x x x x x x x x x x x        

   2 2
3 1 2 1 2 1 2 1 2 1 2( , ) 1431 7.81 13.3 0.0551 0.0401 0.01 ; 50,120 , 150,200 ,f x x x x x x x x x x       

   2 2 2 1 1 2
4 1 2 2 1 1 2 1 2

7
( , ) 2 0.01( ) (1 ) 2(2 ) 7sin sin ; 2, 4 , 1,3 .

2 10

x x x
f x x x x x x x x

   
             

   
 

The first three test functions are minimized and the last is maximized. The characteristics of the 

four test functions with minimum and maximum points and true optimum responses are summarized 

in Table 3. Moreover, the response of the four test functions is illustrated in Figure 3. 

 

Table 3 Characteristics of the test functions 

Test Function 
True Optimal Point True Optimal Response 

1x  2x  y  

1f
  −0.270 −0.920 −181.600 

2f
 −0.092 0.713 -1.032 

3f
 86.900 176.670 -83.220 

4f
 3.200 2.100 6.510 

Perform 

CCD 

Obtained optimal 
design points 

Obtained optimal 
response 
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The random generators associated with the corresponding four test functions ( , 1,2,3,4if i  ) 

were 2
1 (0,0.1 ),N  2

2 (0,0.01 ),N  3 (0,1),N   and 2
4 (0,0.05 ),N   where the variances of the 

random generators were specified by considering the corresponding ranges of the independent 

variables in each test function. These can be restricted in different ranges, so the range of independent 

variables corresponds to , 1, 2,3, 4.if i   Therefore, the simulated response was evaluated at a specific 

point for each test function. 

 

 

 
   

                  (a)                                    (b)                                   (c)                                (d) 

Figure 3 The response surfaces of test functions (a) 1,f  (b) 2 ,f  (c) 3,f  and (d) 4f  

 

3.2. The RSM with CCD simulation study 

In the simulation study, the four stochastic test functions based on CCD were set with a missing 

response value and 100 trials using each of the three methods for dealing with missing values (mean 

and regression imputation, and listwise deletion). For 1f  to 4 ,f  ijL  is the low level and ijH  the high 

level of ix  in the thj  replication of a simulation experiment generated by using uniform generator 

[ , ],i iU a b  for 1, 2;i  1, 2,...,100.j   

1. For analyzing the factorial design in the CCD, ( )L   and ( )H  are the low and high levels of 

the natural variables, respectively, while ijC  is the center point in a 22 factorial design, where ijC  is 

given by ( ) 2ij ijL H  for 1, 2;i  1,2, ,100.j    Subsequently, 100 trials of the CCD were 

performed using ijL  and ijH  for the two factors in each of the test functions ( 1f  to 4f ). 

2. In each trial, complete data were obtained using the stationary points of the two factors and the 

optimal response for each test function ( 1f  to 4f ) by using RSM with CCD simulation. 

3. For each test function ( 1f  to 4f ), a single missing point was set in all possible 13 positions in 

the CCD by using ijL  and ijH . For example, CCD was set as 1j   and the RSM with CCD was 

conducted with each ijL  and ijH . Afterward, a single missing point was set in all possible 13 positions 

in the CCD.  

4. The three data handling methods (mean and regression imputation, and listwise deletion) were 

used to deal with the missing value. The MSE and correlation values of the optimal responses with 

complete and treated data were used to measure the performances of the three data handling methods.  

After the three methods had been applied, RSM with CCD was conducted to obtain the stationary 

points of the two factors and the optimal response of each test function ( 1f  to 4f ). The R programming 

language version 4.0.3 was used to perform all of the analyses. A flow chart of experimental study 

steps is shown in Figure 4. 
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Figure 4 A flowchart of the steps to evaluate the performance of the three methods. MI, mean 

imputation; RgI, regression imputation; LW, listwise deletion 

 

4. Results and Discussion 

4.1. The optimal responses with complete and treated data via the three methods 

The performances of the three methods for handling missing values were assessed by comparing 

their optimal response values with that obtained with complete data. Four test functions were used for 

the CCD with a single missing point of 13 possible patterns with 100 trials in each. After that, the 

optimal responses with complete and treated data via the three methods were compared for each case. 

The results with complete data in the CCD are summarized in Table 4. For example, for 1,f  the mean 

optimal factors of 1x  and 2x  were −0.356 and −0.958 while the mean and standard deviation (SD) of 

the optimum response were −181.623 and 2.987, respectively. Besides, it was found that the lower 

For j=0; Set 1 jL , 1jH and 2 jL , 2 jH . 

Perform j= j+1 trials 

Set a single missing point at all possible 13 positions in the CCD by following ijL  and ijH : Missing 

value point l =1, 2, 3,…, 13, with missing each point handled by MI, RgI, or LW. 

For each test function of RSM with CCD simulation ( 1f  to 4f ) 

Missing value 
point l = 1 

MI RgI 

LW 

Missing value 
point l = 2 

MI RgI 

LW 

Missing value 
point l = 13 

MI RgI 

LW … 

Calculate the MSEs of 
the optimal responses 

with complete and 
treated data. 

Calculate the MSEs of 
the optimal responses 

with complete and 
treated data.  

j= 100 
No 

Calculate the mean of the MSEs of optimal responses 
with complete and treated data via the three methods 

for each point (l = 1, 2,..., 13). 

Calculate the correlations between the optimal responses 
with complete and treated data via the three methods for 

each point (l = 1, 2,..., 13). 
 

Calculate the MSEs of 
the optimal responses 

with complete and 
treated data.  

Yes 
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confidence limit (LCL) was −182.215, and the upper confidence limit (UCL) was −179.030 for the 

95% confidence interval of the optimal response mean from complete data. Meanwhile, the same trend 

was evident for 2f  to 4.f  

 

Table 4 The results for the CCD with complete data 

Test function 
The Mean for the 

Optimal Factors 

The Mean and SD of 

the Optimal Response 

95% CI of the Mean 

Optimal Response 
1x  2x  

1f  −0.356 −0.958 −180.623 (2.987) [−182.215, −179.030] 

2f  −0.117 0.706 -0.996 (0.063) [−1.012, −0.980] 

3f  86.877 176.582 -83.186 (0.665) [−83.753, -82.619] 

4f  3.146 2.113 6.429 (0.085) [6.420, 6.497] 

Note: The number in the parenthesis is the standard deviation of optimum response in compete data, CI, 

confidence interval. 

 

Table 5 reports the mean optimal responses for the three data handling methods for 1f  to 4f  and 

each missing point case. Moreover, Figure 5 shows plots between the 95% confidence intervals (CIs) 

of the mean optimal responses of the three methods for 1f  to 4f  and each missing point case. For 

example, for 1f  (Figure 5(a)), the 95% CI of the mean optimal response had an LCL of -182.215 and 

a UCL of −179.030, while the mean optimal responses after using listwise deletion, and regression 

and mean imputation to handle the missing point at F1 were −183.278, −183.278, and −174.327, 

respectively, none of which were within the 95% CI of the mean optimal response with complete data. 

For the missing point at F2, the mean optimal responses after applying listwise deletion, and regression 

and mean imputation were −180.385, −180.385, and −181.866, respectively. This time, those of 

listwise deletion and regression imputation were within the 95% CI of the mean optimal response from 

complete data whereas that with mean imputation was not. This trend was also apparent for missing 

points at F3 and F4, C1-C5, and A1-A4. Figure 5(a)-(d) clearly shows that both listwise deletion and 

regression imputation attained similar results for the mean optimal response values for all 13 missing 

point positions (F1-F4, C1-C5, and A1-A4) of 1f  to 4 .f  

The percentages of the mean optimal responses for data handling by each method included within 

the 95% CI of the mean optimal response with complete data in each part of the CCD for 1f  to 4f  are 

summarized in Table 6. It can clearly be seen that the results for listwise deletion and regression 

imputation for handling a missing point in all three parts of the CCD were similar. For example, in the 

center part of 1 ,f  100% of the optimal responses after data handling by listwise deletion and regression 

imputation and 0% using mean imputation were within the 95% CI of the mean optimal response with 

complete data. In the partial factorial of 1 ,f  75% of the optimal responses for both listwise deletion 

and regression imputation and 0% for mean imputation were within the 95% CI of the mean optimal 

response with complete data. In the axial of 1 ,f  50% of the optimal responses for both listwise deletion 

and regression imputation and 0% for mean imputation were within the 95% CI of the mean optimal 

response with complete data. Overall, 76.92%, 76.92%, and 0% of the mean optimal responses in the 

factorial part by listwise deletion, and regression and mean imputation, respectively, were within the 

95% CI of the mean optimal response with complete data.  
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Table 5 The results with 100 trials of handling a single missing design point in the CCD using the 

three methods for four test functions 

Design 
Point Missing Value 

Methods 
Mean Optimal Response  

1f  2f  3f  4f  

F1 

LW −183.278 −1.048 −83.257* 6.445* 

RgI −183.278 −1.048 −83.257* 6.445* 

MI −174.327 −0.871 −98.853 6.524 

F2 

LW −180.385* −0.988* −83.196* 6.502 

RgI −180.385* −0.988* −83.196* 6.466* 

MI −181.866 −0.986* −82.743* 6.503 

F3 

LW −180.524* −1.003* −83.234* 6.451* 

RgI −180.524* −1.003* −83.234* 6.451* 

MI −179.417 −0.995* −82.404 6.453* 

F4 

LW −181.007* −0.967 −83.245* 6.470* 

RgI −181.007* −0.967 −83.245* 6.470* 

MI −164.100 −0.919 −95.271 6.319 

C1 

LW −180.644* −0.996* −83.221* 6.458* 

RgI −180.644* −0.996* −83.221* 6.458* 

MI −181.801 −0.907 −81.584 5.883 

C2 

LW −180.620* −0.996* −83.205* 6.459* 

RgI −180.620* −0.996* −83.205* 6.459* 

MI −181.725 −0.907 −81.566 5.821 

C3 

LW −180.623* −0.996* −83.239* 6.457* 

RgI −180.623* −0.996* −83.239* 6.457* 

MI −181.740 −0.907 −81.608 5.903 

C4 

LW −180.600* −0.996* −83.206* 6.459* 

RgI −180.600* −0.996* −83.205* 6.459* 

MI −181.761 −0.907 −81.575 5.894 

C5 

LW −180.643* −0.996* −83.211* 6.459* 

RgI −180.643* −0.996* −83.211* 6.459* 

MI −181.812 −0.907 −81.587 5.902 

A1 

LW −181.610 −1.004* −83.233* 6.462* 

RgI −181.610 −1.004* −83.233* 6.462* 

MI −174.110 −1.002* −81.967 6.531 

A2 

LW −181.513* −1.006* −83.257* 6.445* 

RgI −181.513* −1.006* −83.257* 6.445* 

MI −179.542           −1.025 −98.853 6.524 

A3 

LW −180.332* −1.071 −83.196* 6.502 

RgI −180.332* −1.071 −83.196* 6.466* 

MI −190.660 −0.951 −82.743* 6.503 

A4 

LW −178.113 −0.975 −83.234* 6.451* 

RgI −178.113 −0.975 −83.234* 6.451* 

MI −171.776 −0.864 −82.404 6.453* 

*The mean optimal response is within the 95% CI of the mean optimal response with complete data. MI, mean imputation; RgI, 

regression imputation; LW, listwise deletion. 
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The same results trend was apparent for 2f  to 4.f  These results support that listwise deletion and 

regression imputation had similar optimal response values for a single missing value in all three parts 

(factorial, center and axial) of the CCD and outperformed mean imputation in all cases. 

 

Table 6 The percentages of the mean optimal responses of each method in each part of the CCD 

included in the 95% CI of the mean optimal response with complete data for 1f  to 4f  

Part CCD 
Test Function 1 1( )f  Test Function 2 2( )f  Test Function 3 3( )f  Function 4 4( )f  

LW RgI MI LW RgI MI LW RgI MI LW RgI MI 

Factorial 75 75 0 50 50 50 100 100 25 75 100 25 

Center 100 100 0 100 100 0 100 100 0 100 100 0 

Axial 50 50 0 50 50 25 100 100 25 75 100 25 

Overall 76.92 76.92 0 69.23 69.23 23.08 100 100 15.38 84.62 100 15.38 

MI, mean imputation; RgI, regression imputation; LW, listwise deletion. 
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(d) 

Mean optimum response (LW) Mean optimum response (RgI) Mean optimum response (MI) 

 
…... 95% LCL of complete data 95% UCL of complete data 

 

Figure 5 The plots between 95% CI of the mean optimal response with complete data and mean 

optimal response by three methods for (a) 1 ,f  (b) 2 ,f  (c) 3f  and (d) 4f  in each part of the CCD. 

 

4.2. The performances of the three methods for handling a missing value in the CCD 

The performance results for the three methods are summarized for each part of the CCD (factorial, 

center, and axial) in Table 7. For example, for 1 ,f  the overall of mean and SD of the optimal response 

with complete data were −180.623 and 2.987, respectively. Meanwhile, the means for the optimal 

responses after handling the missing value in the CCD factorial part using mean and regression 

imputation, and listwise deletion were −174.932, −181.299, and −181.299, respectively, and the SDs 

were 45.667, 3.547, and 3.547, respectively. Thus, regression imputation and listwise deletion for a 

missing value in the factorial part of the CCD outperformed the mean imputation method. Similarly, 

in the axial part of the CCD, the overall mean optimal responses after imputing the missing value 

using the mean, regression, and listwise deletion methods were −183.772, −180.392, and −180.392, 

respectively, and the SDs were 31.056, 2.934, and 2.934, respectively. Once again, regression 

imputation and listwise deletion outperformed mean imputation. For a missing value in the center part 

of the CCD, the mean optimal responses of the mean and regression imputation, and listwise deletion 

were −181.768, −180.626, and −180.626, respectively, and the SDs were 7.074, 2.993, and 2.993, 

respectively. In this case, regression imputation and listwise deletion attained almost the same results 

and outperformed mean imputation, thereby supporting the results in Tables 5 and 6. 
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Table 7 The results of 100 trials of CCD with handled missing values by three methods 

T
es

t 
fu

n
ct

io
n Optimum 

response 
with 

Complete data: 
Mean (SD) 

M
et

h
od

s 

Overall optimum response after handling the missing value 

Factorial 
(F1-F4) 

Center 
(C1-C5) 

Axial 
(A1-A4) 

Mean SD Mean SD Mean SD 

1f  −181.623 
(2.987) 

MI −174.932 45.667 -181.768 7.074 -183.772 31.056 

RgI −181.299 3.547* -180.626 2.993* -180.392 2.934* 

LW −181.299 3.547* -180.626 2.993* -180.392 2.934* 

2f  
−0.996 
(0.063) 

MI −0.943 0.186 -0.907 0.110 −0.960 0.187 

RgI −1.002 0.089* -0.996 0.063* −1.014 0.100* 

LW −1.002 0.089* -0.996 0.063* −1.014 0.100* 

3f  
−83.186 
(0.665) 

MI −86.099 119.32
3 

-81.584 2.524 −82.285 6.047 

RgI −83.233 0.769* -83.216 0.689* −83.207 0.716* 

LW −83.233 0.769* -83.216 0.689* −83.207 0.716* 

4f  
6.459 

(0.085) 

MI 6.450 0.443 5.881 0.596 6.603 1.316 

RgI 6.458 0.092* 6.459 0.086* 6.501 0.139* 

LW 6.458 0.092* 6.487 0.086* 6.501 0.139* 

*The best performance in terms of SD.  MI, mean imputation; RgI, regression imputation; LW, listwise deletion. 

 

The correlation and MSE values between the optimal response with complete data and those after 

handling the missing value using the three methods for 1f  to 4f  in each part of CCD (factorial, center 

or axial) are summarized in Table 8. The lower the MSE value of the MSE, the better the performance 

of the imputation method, while the higher the correlation coefficient, the stronger the relationship 

(ranging from 0 for no relationship to 1 for a perfectly predictable relationship). For 1,f  regression 

imputation, listwise deletion, and mean imputation produced mean correlation values of 0.9302, 

0.9302, and 0.2445 to handle the missing data point in the in factorial part; 0.8850, 0.8850, and 0.2467 

for the axial part; and 0.9984, 0.9984, and 0.6962 for the center part, respectively. Thus, in all parts of 

CCD, the performances of regression imputation and listwise deletion were similar with high 

correlation values, and thus quite considerably outperformed mean imputation. The same trend was 

found for 2f  to 4 .f  

When considering the mean of the MSE, regression imputation, listwise deletion, and mean 

imputation produced mean MSE values of 4.5779, 4.5779, and 38.7433 for a missing point with 1f  

in the factorial part of the CCD; 4.3387, 4.3387, and 60.3240 for the axial part; and 0.0293, 0.0293, 

and 30.4907 for the center part, respectively. Thus, in all three parts, regression imputation and listwise 

deletion achieved the lowest MSE values and quite considerably outperformed the mean method. The 

same trend was found for 2f  to 4.f  The correlation and MSE results are illustrated as bar charts in 

Figure 6(a)-(d) and Figure 7(a)-(d), respectively, and support that regression imputation and listwise 

deletion provided similar performances and outperformed mean imputation. 
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Table 8 The means of the correlation and MSE values for handling a missing data point in a CCD 

for 
1f  to 4f  

Part of the 
CCD 

Test  
Function 

Mean of Correlation Values Mean of MSE Values 

RgI LW MI RgI LW MI 

Factorial 
(F1–F4)  

1f  0.9302 0.9302 0.2445 4.5779 4.5779 38.7433 

2f  0.7954 0.7954 0.3250 0.0046 0.0046 0.0301 

3f  0.7438 0.7440 0.2290 0.2889 0.2888 25.7361 

4f  0.8183 0.8182 0.4321 0.0034 0.0057 0.3991 

Center 
(C1–C5) 

1f  0.9984 0.9884 0.6962 0.0293 0.0293 30.4907 

2f  1.0000 1.0000 0.4791 5.84E-08 5.84E-08 0.0172 

3f  0.8337 0.8337 0.2612 0.1529 0.1529 8.4438 

4f  0.9924 0.9924 0.1307 1.12E-04 1.12E-04 0.7114 

Axial 
(A1–A4) 

1f  0.8850 0.8850 0.2467 4.3387 4.3387 60.3240 

2f  0.7558 0.7558 0.4141 0.0116 0.0116 0.0459 

3f  0.8166 0.8166 0.1397 0.1767 0.1768 24.3213 

4f  0.6567 0.6567 0.3483 0.0171 0.0171 0.0915 

MI, mean imputation; RgI, regression imputation; LW, listwise deletion. 

 

 

(a) Test function 1 (
1f ) 

 

(b) Test function 2 ( 2f ) 

 

 
(c) Test function 3 (

3f ) 

 

 
(d) Test function 4 (

4f ) 

 

Figure 6 Mean correlation values of the optimal responses with complete data and after 

handling the missing response by using the three methods: (a) 1 ,f  (b) 2 ,f  (c) 3f  and (d) 4.f   
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(a) Test function 1 ( 1f ) 

 
(b) Test function 2 ( 2f ) (c) Test function 3 ( 3f ) 

 
(d) Test function 4 ( 4f ) 

Figure 7 Mean MSEs of the optimal responses with complete data and after handling the missing 

response by using the three methods: (a) 1 ,f  (b) 2f , (c) 3f  and (d) 4.f  

 

5.    Conclusions 

The aim of the study was to compare the performance of listwise deletion with two imputation 

methods to handle a missing response value in a CCD with two factors in one of the three CCD parts 

(factorial, center, or axial). Methods for handling the missing value in the CCD for four test functions 

using mean and regression imputation, and listwise deletion were compared in terms of MSE and 

correlation coefficient values. One hundred simulation trials for each test function ( ; 1,2,3,4)if i   

were conducted by setting the difference between the low and high levels for the two factors and 

handling the missing value in each part of the CCD (factorial, center, or axial) using the three methods. 

Regression imputation and listwise deletion performed similarly in terms of the optimal response and 

were notably superior to mean imputation. For handling missing data by using listwise deletion, the 

single missing value is deleted from the data set. While regression imputation, the single missing value 

is estimated by a second-order model from the rest data. Both listwise deletion and regression 

imputation performed CCD by using the second-order model. According to Allison (2002), listwise 

deletion may be less biased than multiple imputation or ML when data are missing in regression 

analysis, and this corresponds with the results of Bengtsson et al. (2021), who claim that listwise 

deletion performs best for MCAR data and when the proportion of missingness is not too high. Mostly, 

listwise deletion gives valid inferences for MCAR data even when not using all available information 

(Allison 2002). Regression imputation and listwise deletion provided similar results for handling the 

missing value in each of the CCD parts (factorial, center, and axial) and were both superior to mean 

imputation. 

Hence, regression imputation and listwise deletion are both appropriate for handling a single 

missing value in a CCD. Due to listwise deletion is usually the default method for dealing with missing 

data in most statistical software packages and has significantly outperformed for missing data when 

the proportion of missingness is not too high. Consequently, the listwise deletion method is plausible 

for handling a single missing value in a CCD. Handling the missing values in a CCD with more than 

two factors is planned for the future as an extension of this study.   
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