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Abstract

This research aims to investigate appropriate methods for handling missing data during analysis,
which is one of the most challenging tasks for statistical inference. Our motivation is to replace a
missing response value in a central composite design (CCD) and its effect on each particular part
(factorial, center and axial) in which the value is missing. Statistical software packages generally set
listwise deletion as the default method for dealing with missing data, while imputation methods are
also widely used. Hence, we compared listwise deletion and mean and regression imputation. Four
test functions were used to examine all possible cases of a single missing response in a CCD with two
factors. The performances of the methods for handling a missing response value in each of the three
parts of the CCD (factorial, center, or axial) were compared in terms of their optimal responses with
complete data by using mean-squared error and correlation coefficient values. Regression imputation
and listwise deletion provided similar results for handling the missing value in each of the CCD parts
(factorial, center, and axial) and were both superior to mean imputation.

Keywords: Response surface methodology, factorial points, center points, axial points.

Introduction

The central composite design (CCD) is the most popular and widely used design for estimating
the second-order response surface method (RSM) introduced by Box and Wilson (1951). CCD is
applied to determine the operating variables’ optimized values by fitting a second-order model (Kumar
et al., 2009). This design is an optimization technique widely used in many fields, such as chemistry,
environmental studies, and engineering (Azami et al. 2013; Gano et al. 2015; Momen et al. 2016;
Farzadkia et al. 2018; Bagheri et al. 2019) because of the advantage of optimizing multifactor
problems with the optimal number of experimental runs.

Missing observations in real-world experiments are not uncommon, even in a well-planned
experiment or a well-controlled study. The problem of missing data can significantly affect the
statistical power reduction and produce biased estimates, thereby leading to invalid conclusions
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(Graham 2009; Ayilara et al. 2019). Most often, listwise deletion (or complete case analysis) is the
default method for dealing with missing data in almost all statistical software packages (Briggs et al.
2003), and it may or may not be a bad choice depending on the cause and how many data items are
missing (Newman, 2014). Several studies have shown that for specific analyses of a particular dataset,
subpopulation analysis can lead to results that diverge from those obtained through listwise deletion
(Graubard and Korn 1996; Roth 1994; Roth et al. 1999). Many studies involve missing data, and
listwise or pairwise deletion is most often used to handle the missing data when they comprise less
than 5% of the total (Rubin 1987; Schafer 1997). Likewise, Bengtsson et al. (2021) who claim that
listwise deletion performs best for MCAR data and when the proportion of missingness is not too high.
The major disadvantage of listwise deletion is that it regularly removes a large proportion of the
sample, thereby leading to loss of the statistical power of the particular test being used (Allison 2001).
Listwise deletion works well when the data are missing completely at random (MCAR), which rarely
happens in reality (Nakai and Weiming 2011). Meanwhile, missing at random (MAR) allows the
probability of missingness to depend on observed variables, which means that multiple imputation and
maximum likelihood (ML) methods have a major advantage over listwise deletion in reducing bias.
Unfortunately, most researchers do not know that listwise deletion may be less biased than multiple
imputation or ML when data are missing on variables in regression analysis under certain
circumstances (Allison 2001). Another common approach used to handle the missing values is
imputation, which replaces missing values with substituted ones, thereby leading to more accurate
analysis. Several imputation methods for imputing the missing values have been used (Engels and
Diehr 2003; Saunders et al. 2006; Junger and De Leon 2015) such as mean, regression, hot-deck, K-
nearest neighbor, etc.

Even though listwise deletion is the default method for dealing with missing data in most statistical
software packages, the effect of using it to handle missing values in CCDs has not yet been clarified.
Therefore, we examined the impact of a single missing response value in the various parts of the CCD
(factorial, center, axial) and handling it using three methods (mean, regression, and listwise deletion).
Whereas the first two methods impute the missing value, listwise deletion deletes it, after which CCD
is performed with the rest of the dataset. After that, the performances of the three methods in each part
of the CCD were compared.

The rest of the paper is organized as follows. The RSM, which is the basic concept of CCD, and
the three methods for handling missing values are presented in Section 2. Next, details of a simulation
study used to investigate the performances of the three methods are reported in Section 3. After that,
the results of the simulation study and a discussion are covered in Section 4. Finally, conclusions and
recommendations are presented in Section 5.

2. Methodology and Framework
2.1. RSM

Originally, RSM was developed for experimental model responses (Box and Draper, 1987) and
then adapted for numerical experiment modeling. The primary idea is to fit a model for the response
variable and explore various settings for the explanatory variables of interest. One of these is
maximizing (or minimizing) the mean value of the response variable. In general, the relationship
between the response variable of interest and the independent variables is unknown and usually
approximated by applying a low-degree polynomial model of the form (Myers and Montgomery,
2002). The first step in RSM is to find a suitable approximation for the true relationship. If curvature
is detected near the optimum of the first-order model (suggesting poor model fitting), points are added
to obtain a second-order model. CCD is the most popular choice for fitting a second-order model in
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RSM. It can fit a second-order prediction equation for the response where the quadratic terms model

the curvature of the true response function. Different types of response surfaces are shown in Figure
1.
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Figure 1 The different types of response surfaces: (a) maximum, (b) minimum, and (c) saddle

If a maximum or minimum exists inside the factor region, then RSM can estimate it. A second-
order model can be formulated as

k k
y:ﬂ0+zlgixi+Zﬂﬁxi2+zzlglyxix_,'+‘9a (D
=1 i=1 i<j

where y ~ N(Xf,0°I) and & ~ N(0,57°T).

2.2.CCD

CCDs, the most commonly used models for RSM (Myers and Montgomery 2002) can be
efficiently constructed with a second-order model. This design contains a factorial or fractional
factorial design with center points augmented with a group of star points (axial points) that allow
estimation of the curvature. CCD consists of 2* factorial runs (coded as the usual + notation) with 2*
2" axial runs (+,0,0, ...,0), (0,£2,0, ...,0), ..., (0,0, ...,%c) and center runs ( n, replicates,
(0,0, ...,0), where the axial point is determined by using « = (the number of factorial runs)"* for 2°

factorial design o =1.414. The total number of experiments (N) performed for a CCD is determined

when the factorial design is full: i.e., N =2"+2k +n, points. The CCD for two factors with five

center points is provided in Table 1.

The four important steps in executing a CCD are: (1) perform statistically designed experiments.
(2) estimate the coefficients. (3) predict the optimal response. (4) check the model's adequacy. After
the parameters of the second-order model have been estimated by the ordinary least-squares method,
the optimal design point in terms of the coded variables can be written as (Anderson et al. 2009)

1.
Xapt = —EB 1b, (2)
ﬂAI :Bn :BAlz/z ,élk/Z
where b = ’6.)2 and B = '312'/2 ézz ﬂz,f/2 '

Bk Blk/z BZk/z Bkk
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Table 1 The layout of a CCD for two factors with five center points.

Coded Variables Response
X X5 Vi

-1 -1 »

1 -1 Y,

-1 1 Vs

1 1 Ya

0 0 Vs

0 0 Yo

0 0 Y1

0 0 Vs

0 0 Yo
—1.414 0 Yo
1.414 0 Y
0 —1.414 i

0 1.414 Vs

Meanwhile, the predicted response at the optimal design point is given by

A 5 1,

y()pt = ﬁO +5X0ptb (3)
which is converted back in terms of the true variables.

Incomplete data increases the risk of weakening the inference validity and, in the real world, data
are often incomplete. For a single missing point in a CCD, the part in which the design point is missing
must be considered: (1) a factorial or fractional factorial design, (2) center points, and (3) a group of
star points (axial points). Table 2 provides the possible cases for a single missing response value in a
CCD with two factors.

Table 2 The possible cases for a single missing response value in a CCD with two factors

Factorial Center Axial

Case F1 F2 F3 F4 Cl cC2 C3 C4 G5 Al A2 A3 A4
LM N Y Ya Vs Vs Yo s W Yo Yoo Yoo i3
2y M Vs Ya Vs Vs Yo W Yo Yu Y Wi
3w Y2 M Ya Vs Vs Yo Vs W Yo Yu Y Wi
4y Y2 Vs o M Vs Ve Yoo Vs W Yo Yu Y Wi
5 Y2 Vs Yo M Yo Yoo Vs W Yo Yu Y Wi
6 N Vs Ya Vs = M Yo s W Yo Yu Y Wi
T n N Vs Ya s Ve My y Yo Yn Y Wi
8 »n N Vs Ya Vs Vs Yo o M ) Yo Yu Y Wi
9 »n Y2 Vs Vs Vs Ve Vi X% M Yo Yu Y Wi
10y Y2 Vs Ya Vs Vs Yoo Vs W M Yu Yy I
S Y2 Vs Ya Vs Vs Yoo Vs W Yo M Yoo M3
12y N Vs Ya Vs Ve Yo s W Yo In M s

13y b2 Vs Y4 Vs Ve Vi W Yo Yoo Vo M
v, are observed data; A is the missing value.
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2.3. Missing data mechanisms

Descriptions of missing data mechanisms were first introduced by Rubin (1976), MCAR when
the probability of missing is equal for all cases, MAR when the probability of missing is equal only
within groups defined in the observed data, and missing not at random (MNAR) when the probability
of missing varies for unknown reasons.

2.4. Methods for handling missing values

Imputation is used to replace missing values with substituted ones, thereby leading to a more
efficient statistical analysis. An appropriate imputation method for missing data in a CCD depends on
which part contains the missing values (factorial, center, axial)). Listwise deletion can be used for a
single missing response value in the various CCD design points (factorial, center, axial). The following
three methods were used for handling a single missing response value in a CCD.
2.4.1. Mean imputation

As per its name, mean imputation creates a replacement value for the missing value from the mean
of the available cases. This method is easy to use but reduces variability in the data, leading to
underestimating the standard deviation and variance. The missing response value at can be calculated
by using Mean Imputation as follows:

2V,

Vo =% where k€ j={1,2,3,...,13}. (4)

2.4.2. Regression imputation
This is used to predict the missing value in a variable by using a regression model. In other words,
the available information for complete and incomplete cases is used to predict the missing value for a
specific variable. The fitted value is then used to impute the missing value. Ostertagova (2012)
described how a polynomial regression model can be useful when the relationship between two
variables is curvilinear. Therefore, regression imputation can be applied to impute the missing
response value in a CCD by using an estimated regression model of the second-order using the
ordinary least-squares method. A suitable polynomial regression model with k& =2 predictor variables
of the second-order is
k k
Y=L+ D BX A+ BX DD Bxx, +E, %)
i=1 i=1 i<j

where y ~ N(Xf,0°I) and £~N(0,6°T). The estimation of the missing response value is

calculated as follows

2 2

ﬁRg,(k) =b,+ Zb,.x,. + Z:bﬁx,.2 + ZZb,.jx,.x_,..

i=1 i=1 i<j

2.4.3. Listwise deletion
Listwise deletion (or complete case analysis) is the default method for dealing with missing data

in almost all statistical software packages (Briggs et al. 2003). Quite simply, cases with missing data
on the variable of interest are deleted; e.g., for a missing response value at design point F1
corresponding to, the data point for F1 is deleted from the dataset and CCD is performed in four steps
by using the rest of the dataset. The process to perform CCD by using the handling method by listwise
deletion is illustrated in Figure 2.
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Factorial Center Axial Obtaiped Op,timal
design points
Perform
FI | F2 | F3 | F4 | Cl | €2 | C3 | C4 | C5 | Al | A2 | A3 | A4
CCD L4

My I n | 2 | s [ Y | Y [ ¥ | Yo | Yo| Pu| Y| s Obtained optimal

Y, are observed data; M is the missing value. fesponse

Figure 2 The process to perform CCD by using the handling method by listwise deletion

2.5. The performance metrics
Two performance metrics were used to verify the efficiency of the three methods for handling

missing values in a CCD: the mean-squared error (MSE) and correlation (r) respectively defined as

n

~ 2
(= o) : :
Z o) o nz yopt(i)ynpt(i) - Z yopt(i) z ynpt(i)

MSE == = - -
n N N
\/[nz yozpt(i) _(z yopt(i)) :H:nz yozpr(i) _(z yopt(i)) :|

is the optimal response of the complete data at iteration i, j/opt(l.) is the optimal

LR

where Yopi(i)

response with the data handling method at iteration 7, and » is the number of iteration.

3. Simulation Study
3.1. Test functions

Four test functions from Wongoutong et al. (2017) were used in the simulation to compare the
efficiencies of the three methods (mean and regression imputation, and listwise deletion) for handling
a single missing value from one of the three parts of a CCD. The four test functions are defined as
follows:

Fi(x,x) ==(x +x, —11)* = (x, +x,° = 7)" ;x,,x, €[-2,2],
£, (x,,x,) = 4x —2.1x4+lx6+xx —4x.> +4x," :x €[-1,0.5],x, €[0,1],
2 1 2 1 1 3 1 172 2 2 1 2
fi(x,x,)=1431-7.81x, —13.3x, +0.0551x12 +0.0401x22 -0.0lxx,; x, € [50,120],x2 IS [150, 200],

X.x,)=—-2—0.01(x, —x2)> —(1—x)=2(2=x,)* = Tsin| 2L |sin Txxy
f;l( 12 2) ( 2 l) ( l) ( 2) 2 10

j x e [24]x €[1.3].

The first three test functions are minimized and the last is maximized. The characteristics of the
four test functions with minimum and maximum points and true optimum responses are summarized
in Table 3. Moreover, the response of the four test functions is illustrated in Figure 3.

Table 3 Characteristics of the test functions

) True Optimal Point ~ True Optimal Response
Test Function

X, X, Y
/i —0.270 —0.920 —181.600
J2 —0.092 0.713 -1.032
/5 86.900 176.670 -83.220

J4 3.200 2.100 6.510
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The random generators associated with the corresponding four test functions ( f;,i=1,2,3,4)

were & ~ N(0,0.1%), & ~ N(0,0.0lz), & ~N(0,]), andg, ~ N(0,0.05%), where the variances of the

random generators were specified by considering the corresponding ranges of the independent
variables in each test function. These can be restricted in different ranges, so the range of independent
variables corresponds to f;,i =1,2,3,4. Therefore, the simulated response was evaluated at a specific

point for each test function.

(a) (b) (c) (d)
Figure 3 The response surfaces of test functions (a) f;, (b) f5, (c) f;, and (d) f,

3.2. The RSM with CCD simulation study

In the simulation study, the four stochastic test functions based on CCD were set with a missing
response value and 100 trials using each of the three methods for dealing with missing values (mean
and regression imputation, and listwise deletion). For f| to f,, L; is the low level and H; the high

level of x, in the ;"
Ula,.b], for i=1,2; j=1,2,..,100.

1. For analyzing the factorial design in the CCD, L(-) and H(+) are the low and high levels of

replication of a simulation experiment generated by using uniform generator

the natural variables, respectively, while C, is the center point in a 22 factorial design, where Cl.j is
given by (L, +H; )/2 for i=1,2; j=12,...,100. Subsequently, 100 trials of the CCD were
performed using L; and H; for the two factors in each of the test functions ( f, to f,).

2. In each trial, complete data were obtained using the stationary points of the two factors and the
optimal response for each test function ( f, to f,) by using RSM with CCD simulation.

3. For each test function ( f; to f,), a single missing point was set in all possible 13 positions in
the CCD by using L; and H,. For example, CCD was set as j =1 and the RSM with CCD was
conducted with each L; and H . Afterward, a single missing point was set in all possible 13 positions

in the CCD.

4. The three data handling methods (mean and regression imputation, and listwise deletion) were
used to deal with the missing value. The MSE and correlation values of the optimal responses with
complete and treated data were used to measure the performances of the three data handling methods.

After the three methods had been applied, RSM with CCD was conducted to obtain the stationary
points of the two factors and the optimal response of each test function ( f, to f, ). The R programming

language version 4.0.3 was used to perform all of the analyses. A flow chart of experimental study
steps is shown in Figure 4.
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For each test function of RSM with CCD simulation ( f; to f,)

v

Forj=0;SetL,;,H and L, ., H,, .

T

Perform j=j+1 trials

Set a single missing point at all possible 13 positions in the CCD by following L; and Hy;: Missing
value point 1 =1, 2, 3,..., 13, with missing each point handled by MI, Rgl, or LW.

v

{ | }
Missing value Missing value Missing value
point 1 =1 point [ =2 point 1 =13
MI Rgl MI Rl MI Rgl
Lw LW LW
| | [
Calculate the MSEs of Calculate the MSEs of Calculate the MSEs of

the optimal responses
with complete and
treated data.

the optimal responses
with complete and
treated data.

the optimal responses
with complete and
treated data.

=100

Yes

Calculate the mean of the MSEs of optimal responses
with complete and treated data via the three methods
for each point (1=1, 2,..., 13).

Calculate the correlations between the optimal responses
with complete and treated data via the three methods for
each point (1=1, 2,..., 13).

Figure 4 A flowchart of the steps to evaluate the performance of the three methods. MI, mean
imputation; Rgl, regression imputation; LW, listwise deletion

4. Results and Discussion

4.1. The optimal responses with complete and treated data via the three methods

The performances of the three methods for handling missing values were assessed by comparing
their optimal response values with that obtained with complete data. Four test functions were used for
the CCD with a single missing point of 13 possible patterns with 100 trials in each. After that, the
optimal responses with complete and treated data via the three methods were compared for each case.

The results with complete data in the CCD are summarized in Table 4. For example, for f,, the mean

optimal factors of x, and x, were —0.356 and —0.958 while the mean and standard deviation (SD) of

the optimum response were —181.623 and 2.987, respectively. Besides, it was found that the lower
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confidence limit (LCL) was —182.215, and the upper confidence limit (UCL) was —179.030 for the
95% confidence interval of the optimal response mean from complete data. Meanwhile, the same trend
was evident for f, to f,.

Table 4 The results for the CCD with complete data

. The Mean for the The Mean and SD of 95% CI of the Mean
Test function . .
X, X, the Optimal Response Optimal Response
A —0.356 —0.958 —180.623 (2.987) [-182.215,-179.030]
£ -0.117 0.706 -0.996 (0.063) [-1.012, -0.980]
£ 86.877 176.582 -83.186 (0.665) [-83.753, -82.619]
/s 3.146 2.113 6.429 (0.085) [6.420, 6.497]

Note: The number in the parenthesis is the standard deviation of optimum response in compete data, CI,
confidence interval.

Table 5 reports the mean optimal responses for the three data handling methods for f, to f, and

each missing point case. Moreover, Figure 5 shows plots between the 95% confidence intervals (Cls)
of the mean optimal responses of the three methods for f, to f, and each missing point case. For
example, for f, (Figure 5(a)), the 95% CI of the mean optimal response had an LCL of -182.215 and
a UCL of —179.030, while the mean optimal responses after using listwise deletion, and regression
and mean imputation to handle the missing point at F1 were —183.278, —183.278, and —174.327,
respectively, none of which were within the 95% CI of the mean optimal response with complete data.
For the missing point at F2, the mean optimal responses after applying listwise deletion, and regression
and mean imputation were —180.385, —180.385, and —181.866, respectively. This time, those of
listwise deletion and regression imputation were within the 95% CI of the mean optimal response from
complete data whereas that with mean imputation was not. This trend was also apparent for missing
points at F3 and F4, C1-C5, and A1-A4. Figure 5(a)-(d) clearly shows that both listwise deletion and
regression imputation attained similar results for the mean optimal response values for all 13 missing
point positions (F1-F4, C1-C5, and A1-A4) of f, to f,.

The percentages of the mean optimal responses for data handling by each method included within
the 95% CI of the mean optimal response with complete data in each part of the CCD for f, to f, are
summarized in Table 6. It can clearly be seen that the results for listwise deletion and regression
imputation for handling a missing point in all three parts of the CCD were similar. For example, in the
center part of f;, 100% of the optimal responses after data handling by listwise deletion and regression
imputation and 0% using mean imputation were within the 95% CI of the mean optimal response with
complete data. In the partial factorial of f,, 75% of the optimal responses for both listwise deletion
and regression imputation and 0% for mean imputation were within the 95% CI of the mean optimal
response with complete data. In the axial of f;, 50% of the optimal responses for both listwise deletion
and regression imputation and 0% for mean imputation were within the 95% CI of the mean optimal
response with complete data. Overall, 76.92%, 76.92%, and 0% of the mean optimal responses in the

factorial part by listwise deletion, and regression and mean imputation, respectively, were within the
95% CI of the mean optimal response with complete data.
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Table 5 The results with 100 trials of handling a single missing design point in the CCD using the
three methods for four test functions

Point I\I/?lzzlliz Value Methods fi = Op;mal R 1, 1,
1 2 3 4

Lw ~183.278 ~1.048 —83.257* 6.445%

F1 Rel ~183.278 ~1.048 ~83.257* 6.445%
MI ~174.327 -0.871 -08.853 6.524

Lw —180.385* —0.988* —83.196* 6.502

e Rel —180.385* ~0.988* —83.196* 6.466*
MI ~181.866 ~0.986* —82.743* 6.503

Lw ~180.524* ~1.003* —83.234* 6.451*

3 Rel ~180.524* ~1.003* —83.234* 6.451*
MI ~179.417 ~0.995* ~82.404 6.453*

Lw ~181.007* ~0.967 —83.245% 6.470*

F4 Rel ~181.007* ~0.967 ~83.245+ 6.470*
MI ~164.100 -0.919 -95.271 6.319

LW —180.644* ~0.996* —83.221* 6.458%

cl Rel —180.644* ~0.996* —83.221* 6.458*
MI ~181.801 ~0.907 -81.584 5.883

Lw ~180.620* ~0.996* —83.205* 6.459%

I Rel ~180.620* ~0.996* ~83.205* 6.459%
MI ~181.725 ~0.907 ~81.566 5.821

Lw ~180.623* ~0.996* ~83.239* 6.457*

3 Rel —180.623* ~0.996* ~83.239* 6.457*
MI ~181.740 -0.907 ~81.608 5.903

LW —180.600* ~0.996* —83.206* 6.459%

C4 Rel ~180.600* ~0.996* ~83.205* 6.459%
MI ~181.761 ~0.907 ~81.575 5.894

Lw ~180.643* ~0.996* —83.211* 6.459%

cs Rel ~180.643* ~0.996* —83.211* 6.459%
MI ~181.812 -0.907 ~81.587 5.902

Lw —181.610 —1.004* —83.233* 6.462%

Al Rel ~181.610 ~1.004* —83.233* 6.462%
MI ~174.110 ~1.002* -81.967 6.531

Lw ~181.513* —1.006* —83.257* 6.445%

A2 Rel ~181.513* ~1.006* ~83.257* 6.445%
MI ~179.542 ~1.025 ~98.853 6.524

Lw ~180.332% ~1.071 —83.196* 6.502

A3 Rel ~180.332* -1.071 —83.196* 6.466*
MI ~190.660 -0.951 —82.743* 6.503

Lw ~178.113 ~0.975 —83.234* 6.451*

A4 Rel ~178.113 -0.975 ~83.234* 6.451*
MI ~171.776 ~0.864 ~82.404 6.453*

*The mean optimal response is within the 95% CI of the mean optimal response with complete data. MI, mean imputation; Rgl,
regression imputation; LW, listwise deletion.
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The same results trend was apparent for f, to f,. These results support that listwise deletion and

regression imputation had similar optimal response values for a single missing value in all three parts
(factorial, center and axial) of the CCD and outperformed mean imputation in all cases.

Table 6 The percentages of the mean optimal responses of each method in each part of the CCD

included in the 95% CI of the mean optimal response with complete data for f; to f,

Test Function 1 (f)) Test Function 2 (f,)  Test Function 3 (f;) Function 4 (f,)
Part CCD
Rgl MI LW Rgl MI LW Rgl MI LW Rgl MI
Factorial 75 75 0 50 50 50 100 100 25 75 100 25
Center 100 100 0 100 100 0 100 100 0 100 100 0
Axial 50 50 0 50 50 25 100 100 25 75 100 25
Overall 76.92 76.92 0 6923 6923 23.08 100 100 1538 84.62 100 1538
MI, mean imputation; Rgl, regression imputation; LW, listwise deletion.
-155
Y R R Y Y Y Ry S Y Ry ) ) R
e F2EEREELEE 255 255 235|525 % 255 255 255 255 255 25
165 - F1 F2 F3 FAm| CI1 C2 C3 C4 Cs Al A2 A3 A4
3 -170 A
g ]
8. 175 - u =
3 o A
e -180 1o S E a8t A P A AntiaStiabiner . oo Sh ..
-185 A
-190 u
-195 -
(a)
-0.80
s DR AR RAE BR R 2RE RSR 2R R REZ 2R 2R 25Z 257 23
o Flm| F2 F3 F4 Cl C2 C3 C4 C5 Al A2 A3 A4E
% -0.90 1 - [ [ ] ] ]
2. 095
g e "
P00 AL SA L SA A A ATk,
[
-1.05 1@ A
oA
-1.10 -
(b)
® Mean optimum response (LW) A Mean optimum response (Rgl) ¥ Mean optimum response (MI)

veeene 95% LCL of complete data ——95% UCL of complete data
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Response
%

-95 A ]
100 "
(c)
7.0 1
L]

6.8
Q 6.6 1 o A
S g {ORLORLTRYD A CEA TR AN AR YA R.......
g 6.
% 6.2 .
[}
6.0 - .

]
5.8 1 " L]
5.6
ZR3Z 255232252 252252252232 252 252 2352252 23
F1 F2 F3 F4 Cl C2 C3 C4 Cs Al A2 A3 A4
(d)
® Mean optimum response (LW) A Mean optimum response (Rgl) ¥ Mean optimum response (MI)
veeene 95% LCL of complete data ——95% UCL of complete data

Figure S The plots between 95% CI of the mean optimal response with complete data and mean
optimal response by three methods for (a) f,, (b) f,, (c) f; and (d) f, in each part of the CCD.

4.2. The performances of the three methods for handling a missing value in the CCD
The performance results for the three methods are summarized for each part of the CCD (factorial,
center, and axial) in Table 7. For example, for £, the overall of mean and SD of the optimal response

with complete data were —180.623 and 2.987, respectively. Meanwhile, the means for the optimal
responses after handling the missing value in the CCD factorial part using mean and regression
imputation, and listwise deletion were —174.932, —181.299, and —181.299, respectively, and the SDs
were 45.667, 3.547, and 3.547, respectively. Thus, regression imputation and listwise deletion for a
missing value in the factorial part of the CCD outperformed the mean imputation method. Similarly,
in the axial part of the CCD, the overall mean optimal responses after imputing the missing value
using the mean, regression, and listwise deletion methods were —183.772, —180.392, and —180.392,
respectively, and the SDs were 31.056, 2.934, and 2.934, respectively. Once again, regression
imputation and listwise deletion outperformed mean imputation. For a missing value in the center part
of the CCD, the mean optimal responses of the mean and regression imputation, and listwise deletion
were —181.768, —180.626, and —180.626, respectively, and the SDs were 7.074, 2.993, and 2.993,
respectively. In this case, regression imputation and listwise deletion attained almost the same results
and outperformed mean imputation, thereby supporting the results in Tables 5 and 6.
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Table 7 The results of 100 trials of CCD with handled missing values by three methods

g Optimum Overall optimum response after handling the missing value
§ reisi(iﬁse é Factorial Center Axial
i Complete data: g (F1-F4) (C1-C5) (Al1-A4)
& Mean (SD) Mean SD Mean SD Mean SD
MI —174.932  45.667 -181.768 7.074  -183.772 31.056
fl _(12858672)3 Rgl —181.299  3.547* -180.626 2.993*  -180.392 2.934*
' LW  —181.299 3.547*% -180.626  2.993*  -180.392 2.934%*
MI —0.943 0.186 -0.907 0.110 -0.960  0.187
5 (_00096936) Rgl —1.002  0.089* -0.996  0.063* -1.014 0.100*
] LW —1.002  0.089* -0.996  0.063* -1.014 0.100*
83,186 MI —86.099  119.32 -81.584 2.524  —82.285  6.047
5 (0.665) Rgl —83.233  0.769* -83.216  0.689*  —83.207 0.716*
LW —83.233  0.769* -83.216  0.689*  —83.207 0.716*
6.459 MI 6.450 0.443 5.881 0.596 6.603 1.316
A (0.085) Rgl 6.458  0.092* 6.459  0.086* 6.501 0.139*
LW 6.458  0.092% 6.487  0.086* 6.501 0.139*

*The best performance in terms of SD. MI, mean imputation; Rgl, regression imputation; LW, listwise deletion.

The correlation and MSE values between the optimal response with complete data and those after
handling the missing value using the three methods for f, to f, in each part of CCD (factorial, center
or axial) are summarized in Table 8. The lower the MSE value of the MSE, the better the performance
of the imputation method, while the higher the correlation coefficient, the stronger the relationship
(ranging from 0 for no relationship to 1 for a perfectly predictable relationship). For f,, regression
imputation, listwise deletion, and mean imputation produced mean correlation values of 0.9302,
0.9302, and 0.2445 to handle the missing data point in the in factorial part; 0.8850, 0.8850, and 0.2467
for the axial part; and 0.9984, 0.9984, and 0.6962 for the center part, respectively. Thus, in all parts of
CCD, the performances of regression imputation and listwise deletion were similar with high
correlation values, and thus quite considerably outperformed mean imputation. The same trend was
found for f, to f,.

When considering the mean of the MSE, regression imputation, listwise deletion, and mean
imputation produced mean MSE values of 4.5779, 4.5779, and 38.7433 for a missing point with f,
in the factorial part of the CCD; 4.3387, 4.3387, and 60.3240 for the axial part; and 0.0293, 0.0293,
and 30.4907 for the center part, respectively. Thus, in all three parts, regression imputation and listwise
deletion achieved the lowest MSE values and quite considerably outperformed the mean method. The
same trend was found for f, to f,. The correlation and MSE results are illustrated as bar charts in
Figure 6(a)-(d) and Figure 7(a)-(d), respectively, and support that regression imputation and listwise
deletion provided similar performances and outperformed mean imputation.
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Table 8 The means of the correlation and MSE values for handling a missing data point in a CCD

for f to f,
Part of the Test Mean of Correlation Values Mean of MSE Values
CCD Function Rgl LW MI Rgl LW MI
fi 0.9302 0.9302 0.2445 4.5779 4.5779 38.7433
Factorial A 0.7954 0.7954 0.3250 0.0046 0.0046 0.0301
(F1-F4) f 0.7438 0.7440 0.2290 0.2889 0.2888 25.7361
fi 0.8183 0.8182 0.4321 0.0034 0.0057 0.3991
f 0.9984 0.9884 0.6962 0.0293 0.0293 30.4907
Center f 1.0000 1.0000 0.4791  5.84E-08  5.84E-08 0.0172
(C1-C5) £ 0.8337 0.8337 0.2612 0.1529 0.1529 8.4438
fi 0.9924 0.9924 0.1307  1.12E-04  1.12E-04 0.7114
f 0.8850 0.8850 0.2467 4.3387 4.3387 60.3240
Axial f 0.7558 0.7558 0.4141 0.0116 0.0116 0.0459
(Al-A4) £ 0.8166 0.8166 0.1397 0.1767 0.1768 24.3213
£ 0.6567 0.6567 0.3483 0.0171 0.0171 0.0915

MI, mean imputation; Rgl, regression imputation; LW, listwise deletion.
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Figure 6 Mean correlation values of the optimal responses with complete data and after
handling the missing response by using the three methods: (a) f,, (b) f,, (¢) f; and (d) f,.
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Figure 7 Mean MSEs of the optimal responses with complete data and after handling the missing
response by using the three methods: (a) f,, (b) f,,(c) f; and (d) f,.

5. Conclusions

The aim of the study was to compare the performance of listwise deletion with two imputation
methods to handle a missing response value in a CCD with two factors in one of the three CCD parts
(factorial, center, or axial). Methods for handling the missing value in the CCD for four test functions
using mean and regression imputation, and listwise deletion were compared in terms of MSE and
correlation coefficient values. One hundred simulation trials for each test function (f;;i=1,2,3,4)

were conducted by setting the difference between the low and high levels for the two factors and
handling the missing value in each part of the CCD (factorial, center, or axial) using the three methods.
Regression imputation and listwise deletion performed similarly in terms of the optimal response and
were notably superior to mean imputation. For handling missing data by using listwise deletion, the
single missing value is deleted from the data set. While regression imputation, the single missing value
is estimated by a second-order model from the rest data. Both listwise deletion and regression
imputation performed CCD by using the second-order model. According to Allison (2002), listwise
deletion may be less biased than multiple imputation or ML when data are missing in regression
analysis, and this corresponds with the results of Bengtsson et al. (2021), who claim that listwise
deletion performs best for MCAR data and when the proportion of missingness is not too high. Mostly,
listwise deletion gives valid inferences for MCAR data even when not using all available information
(Allison 2002). Regression imputation and listwise deletion provided similar results for handling the
missing value in each of the CCD parts (factorial, center, and axial) and were both superior to mean
imputation.

Hence, regression imputation and listwise deletion are both appropriate for handling a single
missing value in a CCD. Due to listwise deletion is usually the default method for dealing with missing
data in most statistical software packages and has significantly outperformed for missing data when
the proportion of missingness is not too high. Consequently, the listwise deletion method is plausible
for handling a single missing value in a CCD. Handling the missing values in a CCD with more than
two factors is planned for the future as an extension of this study.
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