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Abstract 

This paper is concerned with a new extension to Polya-Aeppli distribution called as size-biased 

Polya-Aeppli distribution (SBPAD). This SBPAD consists of two parameters and these are estimated 

by method of proportion of one’th cell (MPOC), method of moments (MM) including the estimating 

equations and maximum likelihood estimation (MLE). The expressions of its moment and probability 

generating functions have also been derived giving the relationship between mean and variance of 

SBPAD. At the end, the applications of the distribution to various four sets of data have also been 

added and found that the distribution describes the pattern of the data satisfactorily well. 

______________________________ 
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1.  Introduction  

Size-biased distributions are important distributions which provide a special approach for the 

problems where the gathered observations in the survey fall in the non-experimental, non- replicated, 

and nonrandom categories as well as the varying probability for the items to be included, always 

known as weighted distributions. It was first introduced by Fisher (1934) to model ascertainment 

bias, and later by Rao (1965) in a situation where distributions consider the observations from a 

sample recorded with unequal probability, such as from probability proportional to size (PPS) 

designs. During last few decades a number of papers have been derived and proposed during a period 

of time utilizing the concept of weighted and size-biased distributions and their applications in 

various fields. Recently, the various kinds of applications have been shown by different authors in 

different fields like engineering, medical, forestry, agriculture and social science (Adhikari and 

Srivastava (2014), Priti and Singh (2015), Ducey and Gove (2015), Shanker and Shukla (2017), 

Rather et al. (2018), Sium and Shanker (2018), Yadav and Kumar (2018), Beghriche and Zeghdoudi 

(2019).  

 The objective of the present paper is to derive a new extension to Polya-Aeppli distribution 

called as size biased Polya-Aeppli distribution (SBPAD). Section 2 provides the SBPAD and its 
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method of estimation of parameters. Section 3 deals with derivation of moment generating and 

probability generating function. At the end, the applications of the distribution have been added. 

 

2.  Size Biased Polya-Aeppli Distribution 

Polya-Aeppli distribution arises in a model formed by supposing that the objects (which are to 

be counted) occur in groups, the number of groups follows a Poisson distribution with parameter 

while the number of objects per group has the geometric distribution with parameter .p  

 This distribution is defined by 
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Let X  be a random variable following a probability distribution with parameter  such that 

 , , 0,1,2,..., 0.P X k k     Suppose the sample units are being taken from the distribution with 

probability proportional to size of unequal items. Then the corresponding size-biased distribution can 

be defined by its probability mass function        1P X k w k . P X k , E w k           where 

 w k  is a non-negative weight function and  E w k    is called the mean of the original. 

Then, SBPAD is derived from original distribution as given in (1) 
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After re-arranging the terms and some algebraic mathematical manipulation in (2) which may be 

expressed as  
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Equation (3) shall be declared the probability mass function of SBPAD because
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Substituting 1,2,3,...,k   in (3), successively, we have  
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 and so on. 

Whose sum      1 2 3 ...P X P X P X       is equal to one. It indicates that (3) is a 

probability mass function of SBPAD. 
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2.  Method of Estimation of SBPAD 

2.1. Method of proportion of one’th cell  

SBPAD consists of two parameters   and p  and these are estimated by equating the observed 

proportion of one’th cell  1P  of the model and mean value to its theoretical values, which are given 

below: 
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where 1,N N  and 1m  are first cell frequency, total frequency and mean value of observed frequency 

distribution.   
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logarithm to the base .e  Substituting this value of   in (5), we have the estimating equation of value 
,q  
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Using method of iteration from (6), the estimate of p  can be determined using R statistical 

package (R Core team 2018). Then,   can be estimated from the relationship            
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2.2. Method of moments 

SBPAD consists of two parameters   and p  and these are estimated by equating the observed 

mean and variance of the model to their theoretical values, which are given below: 
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where 1m  and 2m  are observed mean and variance of the actual data which have been derived from 

either moment generating function or probability generating function. These derivations have been 

given in Section 3. 

From (7), the value of p  is 
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 Substituting this value of p  in (8), we have the 

estimating equation of value   in the following quadratic equation of   as 

 2 0,A B C                        (9) 
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where 1 21 ,A m m    2
2 12 4 2 ,B m m   2

2 12 4 2 ,C m m    here B C.  From (9), the estimate 

of   can be determined using R statistical package (R Core team 2018).  

 

2.3. Method of maximum likelihood  

Consider a sample consisting of n  observations of the random variable X  with probability mass 

function given in (3) above. The likelihood function can be written as   
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where L  is the likelihood function, R  is the largest observed value of , kk n  is the sample frequency 

of and  
1

R

i
  denote the product over n  non-zero observations. 

Taking the logarithm of L  given in (10), differentiating with respect to   and p  in turn and 

setting the derivatives equal to zero gives the estimating equations. We have 
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Maximum likelihood estimates when they exist may be found by solving the system of (11) and 

(12) by employing a trial and error technique by which covariance is greatly accelerated (Sampford 

1955). 

 

3.  Derivation of Moment Generating and Probability Generating Function             

3.1. Moment generating function of SBPAD 

The moment generating function  kM t  is usually defined as     ,tk
kM t E e  t  being real 

numbers, then for SBPAD, it is defined as 
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The equation (13) reduces after some algebraic manipulation to the simplified form as    
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3.2. Probability generating function of SBPAD 

The probability generating function  G s  is usually defined as     ,kG s E s s  being real 

numbers, then for SBPAD, it is defined as  
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The equation (15) reduces after some algebraic manipulation to the simplified form as  
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The mean and variance of SBPAD can be determined either from (14) or (16). Let us choose the 

Equation (14). Differentiating Equation (14) with respect to t  and substituting 0,t 
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    we have mean of SBPAD  
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Differentiating Equation (14) with respect to t  two times and substituting 0,t   and by the 

given equation, we have the variance of SBPAD 
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Equation (18) provides the variance of SBPAD in simplified form as  
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Differentiating Equation (16) with respect to s two times and substituting 1s ,  and by the given 

equation, we have the variance of SBPAD 
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Equation (20) provides the variance of SBPAD in simplified form as  
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From both moment and probability generating functions, the same expressions of mean and 

variance of SBPAD have been obtained. 

 

3.3. Relationship between mean and variance of SBPAD 

We derived that the mean and variance of SBPAD as given in (17) and (19) respectively. In fact, 

we want to know that mean is larger than the variance. If it is possible, let us assume that 2 1m m  

i.e., 
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Replacing 1 as ,p q  it indicates that 
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2 2 ,p p q pq    

2 (1 ) (1 ),p q p    

i.e. 22 (1 ) 1,p p    which is impossible. It indicates that mean in SBPAD is larger rather than the 

variance. 

 

4.  The Applications 

In order to illustrate the practical applications of results obtained here, we consider four various 

sets of data taken from play groups-Eugene, spring playground D and playground A relating to the 

size distribution of freely-forming small groups at public places which were reported by James (1953) 

and Coleman and James (1961). The other sets of data were related to the number of counts of sites 

with particulars Immungold and number of snowshoe hares captured over 7 years reported by 

Matthews and Appleton (1993) and Keith and Meslow (1968). 

Table 1 presents the observed and expected distribution of play groups-Eugene, Spring 

Playground D of 510 frequencies. It is important to understand that (1 ) /p q   provides the 

average of the playgroups-Eugene, spring playground D while ̂  gives the average number of clusters 

per groups-Eugene, spring playground D giving q̂  as the average number of individuals per spring 

playground D. It indicates that the higher values of   and lower values of q  provide higher average 

of the Spring Playground D. The estimates of parameters p  and   in MPOC, MM and MLE methods 

of estimation are found to be 0.1000, 0.0800, 0.0850 and 0.2679, 0.3090, 0.3100, respectively. These 

estimates of the parameters involved in the distribution are almost found to be equal. Once the 

estimates of these parameters are obtained, the expected frequencies are easily calculated. The best 

fitting of the distribution has been given by MLE followed by MM and MPOC method of estimation 

as revealed through the 2  values at two degrees of freedom. It seems that the distribution provides 

the pattern of the data satisfactorily well.  

 
Table 1 Distribution of observed and expected number of Play groups-Eugene,                         

Spring Playground D of 510 frequencies 

Group  
size 

Observed  
frequency 

Expected frequency 
MPOC MM MLE 

1 316 316.00 315.82 313.17 
2 141 139.40 142.35 142.07 
3 44 41.53 40.50 42.04 
4 5 7.49 9.17 10.09 
5 4 5.58 2.16 2.63 

Total 510 510 510 510 
  Estimates of parameters 

p  0.1000 0.0800 0.0850 
  0.2679 0.3090 0.3100 

2  1.4404 0.9690 0.9207 

d.f. 2 2 2 
 

Table 2 reveals the observed and expected distribution of play groups-Eugene, spring playground 

A of 497 frequencies. It is to be noted that (1 ) /p q 

 

provides the average of the play groups-
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Eugene, spring playground A while ̂  gives the average number of clusters per groups-Eugene, 

spring playground A giving q̂  as the average number of individuals per spring playground A. It 

indicates that the higher values of   and lower values of q  provide higher average of the spring 

playground A. The estimates of parameters p  and   in MPOC, MM and MLE methods of estimation 

are found to be 0.1000, 0.0800, 0.1030 and 0.2743, 0.3287, 0.2760, respectively. These estimates of 

the parameters involved in the distribution are approximately estimated to be equal. Once the 

estimates of these parameters are obtained, the expected frequencies are easily computed. For 

applying a 2  test of goodness of fit, some last cells are grouped together. The best fitting of the 

distribution has been given by MLE followed by MPOC and MM method of estimation as revealed 

through the 2  values at one degree of freedom. It seems that the distribution describes the pattern 

of the data satisfactorily well.  

 

Table 2 Distribution of observed and expected number of Play groups-Eugene,  

Spring Playground A of 497 frequencies 

Group  
size 

Observed  
frequency 

Expected frequency 
MPOC MM MLE 

1 306 306.00 302.82 303.44 
2 132 136.74 140.04 137.63 
3 47 41.17 41.64 42.17 
4 10 13.09 12.50 13.76 
5 2    

Total 497 497 497 497 
  Estimates of parameters 

p  0.1000 0.0800 0.1030 
  0.2743 0.3287 0.2760 

2  1.0806 1.2316 1.0302 

d.f. 1 1 1 
 

Table 3 provides the observed and expected number of counts of sites with particulars 

Immungold data of 198 frequencies which was given by Matthews and Appleton (1993). It is 

important to advocate that (1 ) /p q 

 

provides the average of the counts of sites with particulars 

Immungold data while ̂  gives the average number of clusters per counts of sites with particulars 

Immungold data giving q̂  as the average number of individuals per counts of sites. It indicates that 

the higher values of   and lower values of q  provide higher average of the counts. The estimates of 

parameters p  and   in MPOC, MM and MLE methods of estimation are found to be 0.1500, 0.2200, 

0.2210 and 0.1591, 0.0090, 0.0090, respectively. These estimates of the parameters involved in the 

distribution are somehow varying but taken to be approximately equal. Once the estimates of these 

parameters are obtained, the expected frequencies are easily found. For applying a 2  test of 

goodness of fit, some last cells are grouped together. The best fitting of the distribution has been 

given by MLE followed by MM and MPOC method of estimation as revealed through the 2  values 

at one degree of freedom. It seems that the distribution describes the pattern of the data satisfactorily 

well. 
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Table 3 Distribution of observed and expected number of counts of sites with particulars 

Immungold data 

Group  
size 

Observed  
frequency 

Expected frequency 
MPOC MM MLE 

1 122 122.00 119.37 119.08 
2 50 52.50 53.37 53.38 
3 18 16.92 17.94 17.98 
4 4 6.58 7.32 7.56 
5 4    

Total 198 198 198 198 
  Estimates of parameters 

p  0.2000 0.2200 0.2210 
  0.0379 0.0091 0.0090 

2  0.4944 0.3341 0.3112 

d.f. 1 1 1 
 

Table 4 describes the distribution of observed and expected number of snowshoe hares captured 

over 7 years of 261 frequencies which was given by Keith and Meslow (1968). It is to be revealed 

that (1 ) /p q   provides the average of the number of snowshoe hares captured over 7 years while 

̂  gives the average number of clusters per number of times hares caught giving q̂  as the average 

number of individuals per hares caught. It indicates that the higher values of   and lower values of 

q  provide higher average of the average of the number of snowshoe hares captured over 7 years. The 

estimates of parameters p  and   in MPOC, MM and MLE method of estimation are found to be 

0.2000, 0.2200, 0.2210 and 0.0379, 0.0091, 0.0090 respectively. These estimates of the parameters 

involved in the distribution are somehow varying but considered to be approximately equal. Once the 

estimates of these parameters are obtained, the expected frequencies are easily found for applying a
2  test of goodness of fit, some last cells are grouped together. The best fitting of the distribution 

has been given by MLE followed by MPOC and MM method of estimation as revealed through the 
2  values at one degree of freedom. It seems that the distribution describes the pattern of the data 

satisfactorily well. 

 

Table 4 Distribution of observed and expected number of snowshoe hares captured over 7 years 

Group  
size 

Observed  
frequency 

Expected frequency 
MPOC MM MLE 

1 184 184.00 177.48 176.54 
2 55 58.31 62.31 62.73 
3 14 14.00 16.38 14.41 
4 4 4.69 4.83 7.32 
5 4    

Total 261 261 261 261 
  Estimates of parameters 

p  0.1500 0.1700 0.1720 
  0.0245 0.0130 0.0135 

2  2.5239 3.5234 1.3426 

d.f. 1 1 1 
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5.  Conclusions 

This paper presents an analytical model for describing the inherent variation through a new 

extension of size biased Polya-Aeppli distribution (SBPAD) under some simplified assumptions 

applicable to various four sets of data. The pattern of four sets of data can be summarized by two 

parameters in the distribution p  and   assuming the distribution to be SBPAD. It is important to 

understand that (1 ) /p q 

  

provides the average of the play groups-Eugene, spring playground D, 

play groups-Eugene, spring playground A, counts of sites with particulars Immungold data and the 

number of snowshoe hares captured over 7 years while ̂  gives the average number of clusters per 

groups-Eugene, spring playground D, play groups-Eugene, Spring Playground A, counts of sites with 

particulars Immungold data and the number of snowshoe hares captured over 7 years giving q̂ as the 

average number of individuals per spring playground D, play groups-Eugene, spring playground A, 

counts of sites with particulars Immungold data and the number of snowshoe hares captured over 7 

years. It indicates that the higher values of   and lower values of q  provide higher average of the 

spring playground D, Play groups-Eugene, spring playground A, counts of sites with particulars 

Immungold data and the number of snowshoe hares captured over 7 years. A satisfactory fit is 

achieved by MPOC, MM and MLE, the three methods of estimations of the parameters. Once the 

estimates of these parameters are obtained, the expected frequencies are easily obtained. The values 

of 2  do not approach significance at the respective degrees of freedom at 5% level of significance. 

This has been given by the graphical presentation between observed and expected frequencies in the 

four sets of data (Appendix). Thus, the observed and fitted distribution has almost the same shape. 

i.e, differences between the two curves are small and show no consistent features in the distribution. 

This is an acceptable fit for the derived SBPAD for four sets of data. It suggests that the distribution 

has successfully described the data. Thus, it may be useful in computing the various probabilities of 

Play group size, counts, snowshoe hares captured etc. of SBPAD.  

Further, research is required to explore the possibility of SBPAD as inflated at the point one i.e., 

a mixture of some part is attached to the risk exposed to the counts/group size and some are not 

exposed. Thus, it may be declared as an inflated SBPAD (new distribution) applicable to other kinds 

of data where the first cell of the observed data might be in the form of inflation with certain 

probability. It might be also possible to derive the expressions of asymptotic variances and co-

variances which might turn into the standard errors of the estimates of the parameters. 
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Appendices 

 

 
Figure 1 Distribution of observed and expected number of play groups-Eugene,                       

spring playground D of 510 frequencies 

 

 
Figure 2 Distribution of observed and expected number of play groups-Eugene,                       

spring playground A of 497 frequencies 
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Figure 3 Distribution of observed and expected number of counts of sites with particles Immungold 

data of 198 frequencies 

 

 
Figure 4 Distribution of observed and expected number of snowshoe hares captured over 7 years 
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