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Abstract 

In  this paper,  we  consider  a  bulk  service queuing  model  with  a  fixed bulk  size  and  a  single 

permanent server. An additional server is kept on hold and is allowed to serve when the queue length 

exceeds certain threshold value. The model is analyzed using embedded Markov chain. A comparison 

of the performance of the model with the following models have also been made – (i) two-server bulk 

service model, (ii) bulk service model with two independent queues corresponding to two servers and 

(iii) a single-server bulk service model with double service capacity of the server. 

______________________________ 
Keywords: Bulk service queue, two servers, permanent server, temporary server. 

 

1. Introduction 

Bulk queues  are  common phenomena  in  real  life.  These  are observed  in  telecommunication, 

transportation, production, airline scheduling, elevators, restaurants, etc. The first bulk service model 

was studied by Bailey (1954). Over the past few decades, much study has been carried out on bulk 

service systems, see, for example, Neuts (1967), Jaiswal (1960), Holman et al. (1981), Chaudhry and 

Templeton  (1981),  Abolnikov  and  Dshalalow  (1992),  Chaudhry  and  Gupta (1999),  Gupta  and 

Goswami (2002), Krishnamoorthy and Ushakumari (2000), Chaudhry and Chang (2004), Banerjee 

et  al.  (2014), Banerjee et  al.  (2015),  to name a  few. These authors have,  however,  studied  single 

server bulk queue models. 

The two-server bulk service model was introduced by Arora (1964). He studied a queuing system 

with two servers with single queue, the maximum serving capacities of the servers are different and 

the service rates of the servers are also different. He considered that the customers are arriving in a 

Poisson manner and exponential distribution for the distribution of service time for the servers. In his 

queuing model if any of the server is in idle state then it starts service as soon as it gets at least one 

customer to serve. He analyzed the model using differential equations and Laplace transformations.  

The results of Arora (1964) were generalized to the case of multiple servers by Ghare (1968), using 

standard  generating  functions  and  Laplace  transform  methods.  Much  later,  Ghimre  et  al.  (2017) 

studied a multiple server model where the server capacity is variable and it depends on the number 

of customer available in the system. The service rate of any of the servers depends on the number 
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customers are being served by the server. In their queuing model all the servers in a similar manner, 

all the servers have equal maximum serving capacity and if any of the servers is in idle state then it 

starts service as soon as it gets at least one customer to serve. After these contributions, the area was 

not much explored.  

In  this  paper,  we  consider  a  two-server  bulk  service  model,  where  one  of  the  servers  is  a 

permanent one while the other is kept on hold and allowed to function when the queue length exceeds 

certain threshold value and the permanent server is busy. It is assumed that the service capacity of 

both  the  servers are equal. The  model  is analyzed using embedded Markov chain  technique. The 

model  has been compared  in  terms of  the  performance  measures  with other  comparable queuing 

models, like (a) the two-server bulk service model where the servers are working in parallel, (b) two 

independent single-server bulk service models, where an arriving customer randomly joins a queue, 

and (c) a single-server bulk service model with double capacity of the server. A new performance 

measure,  namely,  average  number  of  customers  served  per  unit  time,  has  been  introduced.  The 

models have also been compared in terms of the expected expenditure for running the service centre. 

The paper  is organized as  follows. Section 2 discusses  the model and  its analysis  is described  in 

Section 3. Section 4 computes the performance measures of the model for different sets of values of 

the model parameters. In Section 5, the comparable models are analyzed using embedded Markov 

chain  technique,  and  a  numerical  comparison of  the  performance  measures of  all  the  models  are 

carried out. In Section 6, we have briefly discussed about the outcome of the study. Section 7 is the 

conclusion part, where we have explained the usefulness of the study along with the further scope of 

the study. 

 

2. The Model and its Assumptions 

We consider a  / /1bM M queuing model with a difference. Apart  from  the permanent server, 

which we shall call server 1, there is a temporary server – server 2 - kept on hold, and is called for 

service whenever the queue length reaches a certain specified threshold value, say  q  and server 1 is 

busy.  The temporary server is called back when the queue falls below the threshold value. Server 1 

follows the general bulk service rule, that is, when it finds at least  b  customers waiting in the line it 

starts service with the first  b  customers in the queue. Customers wait in a single queue, and when 

server 2 comes into action, the two servers work in parallel, each serving  b  customers at a time. 

The assumptions governing the model are as follows:  

1) Customers arrive one at a time in a Poisson fashion with mean arrival rate  .  

2) Each server serves  b  customers at a time. 

3) The service time distribution of each server is exponential with mean service rate  ,µ  and 

these are independent of one another. 

4) The system is of infinite buffer. 

5) The queue discipline is FIFO. 

6) 2 .b   

The threshold of the queue length that brings server 2 into action is  .q  

 

3. Analysis of the Model 

To analyze the model, let us define  1( )Y t  as the state of the servers at time point  ,t  where   
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1( )Y t = 0, if both the servers are idle,  1( )Y t = 1, if server 1 is busy and server 2 is idle,  1( )Y t = 2, 

if server 1 is idle and server 2 is busy,  1( )Y t = 3, if both the servers are busy. 

We shall consider that the transitions due to service completion and customer arrival only affect 

the number of busy servers. Hence, a transition will depend on the number of customers waiting in 

the queue.  

Let  2 ( )Y t  denotes the queue length at time point  .t  Then,   1 2( ) ( ), ( )Y t Y t Y t  is a semi-Markov 

process. We attempt to obtain the steady state distribution of  1( ),Y t  which will help to compute the 

performance measures of the system. 

Let  { }nt  be  the sequence of epochs at which service completion of any server occurs or any 

server  starts  working  from  idle  state  due  arrival  of  customer.  Then,  ( )n nY Y t   is  the  embedded 

Markov chain defined on the state space  

           2 2 2 2 2 2    0, :  0,1, , 1 1, :  0,1, , 1 { 2, :   S y y b y y q y y         

      2 2  0,1, , 1 } 3, :  0,1,2,3,.. .b y y     

Writing    1  , [ | ],n nP P Y Y  i j j i   where   1 2  ,j jj   and  1 2,i i i   the  transition probabilities 

are given by 

 , 1,P i j     if   1 20,i i b   and  1 21, 0,j j   

   2 2 1 ,j ip p    if  1 2 1 2 21, , 0,i i b j i j b       or   1 2 1 2 22, , 0, ,i i b j i j b      

   2 2 1 ,j b ip p      if  1 21,i i q   and  1 2 21, ,j i j q b     

  2 ,q ip      if  1 21,i i q   and  1 23, ,j j q b    

  2 ,b ip      if  1 22,i i b  and  1 23, 0,j j   

   2 2

1 1

1
1 ,

2
j ip p    if  1 23,i i b   and  1 2 22, ,j i j b    or  1 23,i i q   and   

    1 2 21, ,j i j q    

   2 2

1 1

1
1 ,

2

j b ip p   if  1 23,i i q   and  1 2 23, ,j i j b q     

   2 2
1 11 ,j b ip p     if  1 2 13, 0, 3i i j    and  2 ,j b q   

where 

p


 



 and  1 .

2
p



 



                

 (1) 

(See Appendix) 

 

Theorem 3.1. The embedded Markov chain { }nY  is ergodic.  

 

Proof: Let us define a one-to-one onto  function  :   ,f S N   the set of natural numbers, such that 

     , 3,f x y f q  for all  3,x y q   and     3, 1 – 3, 1f q k f q k     for all  {0,1,2,...}.k   

Let      , 4 1 ,f x y y x    when      ,y b  
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          
1

,  4    2 , 
2

x
f x y b y b


     when       1 ,q y b    

     ( , ) 4 2 1 ,f x y b q b y q       when    1.y q   

If  *S  be the range of   ,f   we can define a (dummy) Markov chain { }nX  over  *S  with transition 

probabilities  1 1( , ) ( ( ), ( )).P i j P f i f j       

This Markov chain is aperiodic since for sufficiently large value of   i  (when queue is sufficiently 

large)  ( , ) 0P i i     for some  .i  Now, we shall show that { }nX  is ergodic, which will imply that the 

embedded Markov  chain  { }nY   is  also  ergodic. To do  so,  we  use  the  method  suggested  by  Pakes 

(1969). 

Define  1(  | ),i n n nE X X X i     which is a sum of finite number of terms when  1( ) (0, )f i k   

or
 

1 ( ) (1, )f i k    or  1( ) (2, ).f i k    If  1 ( ) (3, )f i k  then  1(  | )i n n nE X X X i      is  a  sum  of 

infinite number of terms. Now we will consider this situation only. 

Let     2 3 1,i q b    (here   3, 2 3 1f q b q b    ) then  .k q b   Then,  

 
   

 
    1 2

3, : 3, :

  ,   ,   ,i
j f l l q b j f l l q b

j i P i j j i P i j sum sum
     

        

where  
 

    1
3, :

,
j f l l q b

j i P i j sum
  

    and 
 

    2
3, :

  ,   .
j f l l q b

j i P i j sum
  

   

Here,  1sum  is the sum of a finite number of terms, while  2sum  is the sum of an infinite number 

of terms. Further, 

   2 1 12 3 1  l b k

l q b

sum b q l p p 

 

       (as  1     l

l q b

l p
 

 ). 

Thus,  2sum  also has a finite value, so that    ,i   where     2 3 1.i q b    When  2 3 1,i q b    

we  have  .k q b    In  this  situation,  if  1nX j    and    ,nX i   then        j i l k     where,  

1( ) (3, )f i k   and  1( ) (3, ).f j l   Therefore,       1
1 1

1

1     .
1

l b k
i

l k b

p
l k p p b

p
  

 

    


  

By Pakes (1969), it follows that { }nX  is ergodic if   lim i
i




 is negative.  Now, since,  2 ,bµ   we 

have  1

1

0.
1

p
b

p

 
  

 
 Hence,  lim i

i



 is negative. Thus, by the theorem, { },nX  and therefore { },nY  is 

ergodic. 

 

3.1. Stationary distribution of {Yn} 

To obtain the stationary distribution of  { },nY  we first find the stationary distribution of  { }nX  

using north-west corner truncation method suggested by Seneta (1968) and Wolf (1980). Consider a 

special sequence of transition probability matrix (TPM)  { , 0},mP m   constructed from the original 

infinite TPM of { },nX  as follows: 

 ,    0,mP i j       if  , 1,i j m    

    ( , 0)( , ) ( , ),
m

m
j

P pi j ii p j


     if  1i m   and  0,j                                                     

( , )   ( , ), mp i j p i j                  if   1i m    and  0 1.j m    
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Then,  mP  has exactly one stationary distribution,  ,mπ  and it converges to  π  (cf. Wolf 1980). 

Define   ( )( ) mk  as the steady state probability of state “ k ” taking “ m ” as the order of the truncated 

TPM. 

Let  1
1 2(( ,) ).f ik i   Then,  ( )

1 2 1 2lim ( , ) ( , ),m

m
i i i i


  where  1 2( , )i i  denotes the original steady 

state probability of state  1 2( , )i i  of the embedded Markov chain { }.nY  

The unconditional expected waiting times under different states of the system are given in Table 

1. 
 

Table 1 The unconditional expected waiting times under different states of the system 

State  Waiting time   Unconditional expected waiting time 

1 20,i i b    2( )A b i   2( ) /A b i   

1 21,i i q    1 2min( , ( ))T A q i   2(1 / )[1 ]q ip   

1 22,i i b    1 2min( , ( ))T A b i   2(1 / )[1 ]b ip   

1 23, {0,1,2,...}i i    1 2min( , )T T   1/2  

 

In Table 1,   ( ) ( , )A n gamma n  (sum of “ n ” independent  exp( ) ), and   exp( ),iT    1,2.i   

 

3.2. Steady state distribution of the semi-Markov process Y(t)  

Let       1 2
1 2 ,  

lim [ ,  ] .
i it

P Y t i i v


    Then   
 

        

1 2 1 2 1 2 ,,   ,   ,
,   ,

mm m

k li i i i k l
v M i i M k l     will 

converge to   1 2,  i iv  as    ,m   where  ,k lM  is the unconditional expected waiting time at state  ( , ).k l

We obtain the values of   1 2,  i iv  by numerical computation (performing a finite sum for very large 

values of “ m ”). 

 

3.3. Performance measures 

Along with the usual performance measures like average queue length, average waiting time in 

queue, probability of busy period of server 1 and server 2 here we have introduced a new performance 

measure, namely average number of customers served per unit time: 

(i) Average queue length is 
 

 
 

1 2

1 2

2,  
,

, 
m

i i
i i S

v i


  

(ii) Average waiting time in queue is   Average queue length /  (By Little’s formula), 

(iii) Probability that server 1 is busy: 

 
 

 
 

1 2 11 2

1 2

11 1 {( , ): 1,3},  
,

    1  ,3     ,
m

i i ii i
i i S

P P Y v I 


     

Probability that the server 2 is busy: 

 
 

 
 

1 2 11 2
1 2

12 1 {( , ): 2,3},  
,

     2,3       ,
m

i i ii i
i i S

P P Y v I 


     

(iv) To get the average number of customers served per unit time by the system, we proceed as 

follows. Let  1( )N t  be a number of service completions by server 1 in  (0, ],t  and  2 ( )N t  be a number 

of service completions by server 2 in  (0, ].t  As   1N t  and   2N t  are both increasing in “ t ”, 
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( )lim , 1,2.i
t

tN i


     

In  the  steady  state,  the  average  number  of  service  completions  in  unit  time  by  thi   server  is 

 
lim .

i

t

N t

t
 Therefore, in steady state, the average number of customers served in unit time by the 

thi  server is 
 

lim .
i

t

N t
b

t
  Hence, in steady state, the average number of customer served per unit 

time is 
   1 2

lim .
t

N t N t
b

t


  Now,  

 

t 1

1
h(  server is bus  limy) ,

iN t

jj

i
t

P i
T

P
t




 


  

where  jT  is the service time of server  , 1, 2.j j   

For large value of “ t ”, the total busy period of  thi  server is approximately given by 
 t

1

iN

j
j

T

 . 

This is the total time taken by the  thi  server to complete   iN t  services. Hence, 

 

   

 
 

 

 

 
 1

1
11lim lim   lim   lim   lim  

i ii

i

N t N tN t
j jj ji iii

t t t N t ti i
i

T TN
P

t N tT

t N t t N t t

 

    

      
                    


 

  

     
 1

  lim   .
i

t

N t

t 

 
   

 
 

Since by strong law of large number, we can say that 

 

 
1 1

lim ,

iN t

ii

t
i

T

N t 






 as  exp( ),jT    1,2.j   

Thus, 
 

1lim     .i

i
t

N t
P

t



    In  steady  state,  we  therefore  obtain  the  average  number  of  customers 

served in unit time by the system as 

   
 1 2

11 12lim       .
t

N t N t
b b P P

t





      

 

4. Computation 

Consider  500m   in north-west corner truncation. It is noted that for higher values of “ m ”, the 

values of performance measures do not change up to the  th6 place of decimal. Tables 2 and 3 give 

the performance  measures  for different  sets of  values of  the  system parameters and  the  threshold  

“ q ”. 
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Table 2 Performance measures of the model for some sets of values of the model parameters  

when  2q b  

 

 

 
µ 

 

b 

2q b  

11P   12P  

Av. no. of  
customers  

served  
per unit time 

Av. waiting  

time 

Av. queue  

length 

4.5  0.5  5  0.97048029  0.829520  4.5  4.9735  22.38062 

4  0.5  5  0.93541071  0.664589  4  2.1557  8.622634 

3.5  0.5  5  0.89272424  0.507276  3.5  1.3193  4.617509 

3  0.5  5  0.83922155  0.360778  3  0.9567  2.878086 

4.5  0.33  8  0.95446569  0.733034  4.5  4.1375  18.61892 

4  0.33  8  0.91989116  0.580109  4  2.3576  9.430495 

3.5  0.33  8  0.87729253  0.435207  3.5  1.6525  5.783895 

3  0.33  8  0.82321514  0.301785  3  1.3056  3.916705 

4.5  0.25  10  0.97296219  0.827019  4.499  9.1488  41.16968 

4  0.25  10  0.94045906  0.659541  4  4.0283  16.11337 

3.5  0.25  10  0.90030427  0.499696  3.5  2.5240  8.834105 

3  0.25  10  0.76619231  0.433808  3  1.8844  5.653127 

 
Table 3 Performance measures of the model for some sets of values of the model parameters  

when  3q b  

 

 

 
µ 

 

b 

3q b  

11P   12P  

Av. no. of  

customers  
served  

per unit time 

Av. waiting  
time 

Av. queue  
length 

4.5  0.5  5  0.988424  0.811576  4.5  5.875967  26.44185 

4  0.5  5  0.970825  0.629175  4  3.057840  12.23136 

3.5  0.5  5  0.943609  0.456391  3.5  2.189074  7.661758 

3  0.5  5  0.900878  0.299122  3  1.747526  5.242579 

4.5  0.33  8  0.981580  0.705920  4.5  5.519939  24.83972 

4  0.33  8  0.962451  0.537549  4  3.721832  14.88733 

3.5  0.33  8  0.932721  0.379779  3.5  2.942220  10.29777 

3  0.33  8  0.885972  0.239028  3  2.438167  7.314501 

4.5  0.25  10  0.990125  0.809848  4.5  10.98840  49.44781 

4  0.25  10  0.974629  0.625371  4  5.879704  23.51882 

3.5  0.25  10  0.949830  0.450170  3.5  4.314797  15.10179 

3  0.25  10  0.909431  0.290569  3  3.505507  10.51652 
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It may be noted  from Tables 2 and 3  that  in  the steady-state situation  the average number of 

customers served per unit time comes out to be equal to the average number of arrivals per unit time. 

This led to Theorem 4.2 which shows that the above is true whatever be system parameters. 

 

Theorem 4.1. For the queuing model considered, the average number of customers served per unit 

time equals the average number of arrivals per unit time. 

 

Proof: Define   
i

j
 is time to return to the state “ j ” from state “ j ” for the  thi  time. Assume that the 

system starts  from  the  state  “(0,0)”. Since “(0,0)”  is a positive  recurrent  state,  in  the  steady  state 

situation, the system will return to state “(0,0)” after a finite time with probability 1. Therefore,  0,0
,i

1(1)i n  are independently and identically distributed random variables with finite expectation say, 

.  

Let 
     0,0 0,0

1

.
n

n i
i

 


   Then, 
  0,0

 n   as    .n   Now let, the number of customer served by 

time 
  0,0

  0, n
   

 be denoted by 
   0,0

,nD   and the number of customers arriving during this interval 

be  
  0,0

.nB   
 

 Then, it is obvious that 
     0,0 0,0

.n nD B        
   

 So, the number of customer served 

per unit time is 

   
  

   
  

0,0 0,0

0,0 0,0
lim lim .

n n

n n
n n

D B 

  
   

As the arrival process is Poisson, we have 
       0,0 0,0

1

.
n

n i
i

B B 


  Then, 

   
  

  
 

  
 

  0,0 0,0 0,00,0

11

0,0 0,0 0,0

1 1

/
lim   lim lim ,

/

nn

n i ii ii

n nn n n
in ii i

B B n E BB

n

  

 



  

 

   
        
 
 



 
  

by  strong  law  of  large  numbers.  Now,           0,0 0,0 0,0 0,0
[ |   ,i i i iE B E E B E                   

 

therefore, 

   
  

0,0

0,0
lim   .

n

n
n

B  



   Hence, the average number of customers served per unit time by 

the system is  .  

 

Remark: In this theorem, we have not used any specific characteristics of the mentioned queuing 

system. Thus, the above theorem also holds in general for any queuing system, where the system is 

in the steady state or is in equilibrium. 

 

5. Comparison with Other Models 

In this section, we compare the model in Section 3 with other models, like the  / / 2bM M  model, 

two  independent  / /1bM M  models  with  arriving  customer  randomly  joining  a  queue,  and  the 
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/ /1bM M  model with high service capacity of the single server. To facilitate comparability, we first 

analyze the models using the embedded Markov chain technique. 

 

5.1. M / M b/2 model 

Here we make the usual assumptions that govern an  / / 2bM M  queuing model. Defining  1( )Y t  

and  2 ( )Y t  as before, where  1( )Y t  takes the value 0, 1 or 2 according as both the servers are idle, one 

server is idle and both the servers are busy, respectively, we have  that   1 2( ) ( ), ( )Y t Y t Y t  is a semi-

Markov process.  

Defining { }nt  to be the sequence of epochs at which service completion of any server occurs or 

any server starts working from idle state due to a new arrival, and  ( )n nY Y t  is the embedded Markov 

chain with state space 

             1   0,1, 2 / 0 0,1, , ,1   1 0,1, , 1S b b              

the transition probabilities are obtained as 

 , 1,P i j       if  1 20,i i b   and  1 21, 0,j j   

                2 2 1 ,j ip p    if  1 1,i   if  2i b  and  1 2 20, ,j i j b    

               2 ,b ip       if  1 1,i   if  2i b  and  1 22, 0,j j       

                2 2
1 11 ,j ip p    if  1 2,i   if  2i b  and  1 2 21, ,j i j b    

                2 2
1 11 ,j b ip p    if  1 2,i  if  2 1 2 20, 2, max(0, ),i j j i b           

where    1, [ | ],n nP P Y Y  i j j i   j =( j1, j2)  and i = (i1, i2), and   1p  and  p  are given by (1) (See 

Appendix). 

 

Theorem 5.1.1. The embedded Markov chain { }nY  is ergodic under the assumption 2 .bµ   

 

Proof: Consider a function  2:  f R R  such that 

   , 3 1 ,f x y y x    when     y b  

 ( , )   2 1,f x y y b    when    ( 1).y b   

If  **S  be the range of  ,f  we can define a (dummy) Markov chain { }nX  over  **S  with transition 

probabilities  1 1( , ) ( ( ), ( )).P i j P f i f j        This  Markov  chain  is  aperiodic  since  for  sufficiently 

large value of “ i ” (when queue is sufficiently large)  ( , ) 0P i i     for some  .i  Now, we shall show 

that { }nX  is ergodic, which will imply that the embedded Markov chain { }nY  is also ergodic. To do 

so, we use the method suggested by Pakes (1969). 

Define  1(  | ),i n n nE X X X i     which is a sum of finite number of terms when  1 ( ) (0, )f i k   

or
 

1( ) (1, ).f i k   If  1( ) (2, )f i k    then  1(  | )i n n nE X X X i      is  a  sum  of  infinite  number  of 

terms. Now we will consider this situation only. 

Let     4 1,i b   (here,     2, 2 4 1f b b  ) then  2 .k b  Then,  

 
   

 
    1 2

2, : 2 2, : 2

  ,   ,   ,i
j f l l b j f l l b

j i P i j j i P i j sum sum
   

         
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where 
 

    1
2, : 2

,
j f l l b

j i P i j sum
 

    and 
 

    2
2, : 2

  ,   .
j f l l b

j i P i j sum
 

   Here,  1sum  is the sum of 

a finite number of terms, while  2sum  is the sum of an infinite number of terms. Further, 

 2
2 1 1

4

  1  j b

j b

sum jp p



     (as  1     l

l q b

l p
 

 ). 

Thus,  2sum  also has a finite value, so that    ,i   where     4 1.i b   When  4 1,i b   we have  2 .k b  

In  this  situation,  if  1nX j    and    ,nX i   then  ( )   ( )j i l k     where  1( ) (2, )f i k    and 

1( ) (2, ).f j l   Therefore,       1
1 1

1

1     .
1

l b k
i

l k b

p
l k p p b

p
  

 

    


  

By Pakes (1969), it follows that { }nX  is ergodic if  lim i
i




 is negative. Now, since  2 ,bµ   we 

have  1

1

0.
1

p
b

p

 
  

 
 Hence,  lim i

i



 is negative. Thus, by the theorem,  { }nX  and therefore { }nY  is 

ergodic. 

 

Table 4 The unconditional expected waiting time for different states  

State  Waiting time   Unconditional expected waiting time 

1 20,i i b    2( )A b i   2( ) /b i   

1 21,i i b    1 2min( , ( ))T A b i   2(1 / )[1 ]b ip   

1 22, {0,1,2,...}i i    1 2min( , )T T   1/2  

 

Here,  ( ) ( , )A n gamma n (sum of “ n ” independent  exp( ) ), and   exp( ),iT    1,2.i   The 

steady state distribution of  ( )Y t  and the measures of performance of the model are obtained as before.  

 

5.2. Bulk service model with two independent queues 

Here we consider two separate queues for the two servers. Both the servers perform with usual 

bulk service mechanism with fixed bulk size “ b ”. We assume that an arriving customer randomly 

joins a queue. As both the systems are identical, we first analyze a single server model, i.e.,  / /1bM M

with usual assumptions. 

Defining  ( , )X t   a  semi Markov process, where  ( )X t   stands  for number of customers  in  the 

system at time “ t ”, we have considered embedded Markov chain  { }nX  over the time epochs where 

nt be  the  thn   epoch at which system size changes and  ( ).n nX X t  According  to Bakuli and Pal 

(2017), this chain is ergodic when    .bµ   Transition probabilities are obtained as, 

 ( , ) 1,P i j   if  0 i b   and  1,j i   

   ( , ) / 2 ,P i j µ     if  i b  and  1,j i         

   ( , ) 2  / 2 ,P i j µ µ    if  i b  and  ,j i b   

  ( , ) 0,P i j                        otherwise.                      

We have used north-west corner truncation method as before to obtain steady state distribution 

of the Markov chain { }.nX  
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Table 5 The unconditional expected waiting time for the different states 

State  Waiting time   Unconditional expected waiting time 

i b   exp( / 2)   2 /   

i b   min(exp( / 2), exp( ))    2 /( 2 )   

 

The steady state distribution of  ( )X t  and the measures of performance of the model are obtained 

as follows:   lim ,j
t

P X t j v


     then  m m m
j j j i iiv M M     will converge to  ,jv  where  iM  is 

expected unconditional waiting time at state “ i ”, “ m ” is the order of the truncated probability matrix 

and    1 2, , .,m m m m
m    π  be the stationary distribution of the truncated probability matrix of order 

“ m ”. 

Performance measures: 

(i) Average queue length =  
1

0

2 lim
b

m m
j jj b

m j

jv j b v



 

   
    

    
   

(ii) Average queue length in queue =   Average queue length /  (by Little’s formula). 

 

5.3. Single-server bulk service model with double capacity 

Here we have considered a single-server bulk service model with double capacity, i.e., the server 

capacity is “ 2b ”. Server follows general bulk service rule. The assumptions are usual. Model has 

been  analyzed  as  a  single-server  model  analyzed  in  the  previous  section.  We  have  considered  a 

similar Markov process  ( , )X t  and obtained steady state distribution as it is obtained in the previous 

section. Derivations of  the  performance  measures  are  bit  different  here  because  the  model  in  the 

previous section is a two-server two queue model and this is a single-server queue model. 

Performance measures: 

(i) Average queue length =  
2 1

2
0

lim
b

m m
j jj b

m j

jv j b v



 

 
  

 
  , 

(ii) Average queue length in queue =   Average queue length /  (by Little’s formula). 

 

5.4. Computations of performance measures for different bulk service models 

We have considered  500,m   we checked that if we take higher value of “ m ” the values are 

not changing up to 6-th decimal places. In following two tables we have considered different values 

of system parameters. 
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Table 6 Performance measures of different bulk service models for some sets of values of  

the model parameters 

 

 

 
  

 

b 
General two-server 

bulk service model 

Two-server model 

with two parallel 

queues 

Single-server model 

with double capacity 

      Av. 

waiting 

time 

Av. 

queue 

length 

Av. 

waiting 

time 

Av. queue 

length 

Av. 

waiting 

time 

Av. 

queue 

length 

4.5  0.5  5  4.344  19.549  11.173  50.278  10.313  46.411 

4  0.5  5  1.543  6.170  5.304  21.218  4.969  19.878 

3.5  0.5  5  0.739  2.587  3.471  12.149  3.325  11.638 

3  0.5  5  0.434  1.301  2.691  8.0716  2.657  7.9715 

4.5  0.33  8  3.185  14.334  9.841  44.286  9.384  42.231 

4  0.33  8  1.441  5.764  6.021  24.084  5.811  23.245 

3.5  0.33  8  0.798  2.796  4.472  15.651  4.386  15.353 

3  0.33  8  0.549  1.649  3.803  11.409  3.806  11.418 

4.5  0.25  10  7.858  35.363  20.627  92.823  19.090  85.906 

4  0.25  10  2.768  11.073  9.939  39.756  9.602  38.410 

3.5  0.25  10  1.334  4.669  6.651  23.277  6.505  22.770 

3  0.25  10  0.813  2.439  5.314  15.943  5.282  15.848 

 

5.5. Comparison of expenditures towards running the systems 

To run a system, the organization has to pay the servers and also spend money on the operation 

of the service facilities being used. If the servers are permanent employees of the organization, each 

server is paid a fixed salary, irrespective of whether or not he is in idle state. However, he may be 

paid an incentive when he remains busy. On the other hand, if a server be appointed on temporary 

basis, he may be paid as much as the permanent employee when he is called for service, and may be 

paid  a  token  amount  when  idle.  Other  costs  associated  with  running  the  system  are  the  costs  of 

operating the service facilities. To compare the four queuing models, we may consider the total cost 

associated with running the system per unit time. For the purpose, we consider the following cost 

structures for the models. 
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Table 7 Cost structures for the models 

Cost per unit time 

General two- 

server bulk 

service model 

Single-server 

model with 

additional server 

Two-server 

model with 

two queues 

Single-server 

model with 

double capacity 

Running cost of 

each server 

200  200  200  400 

Cost paid to the 

main server in busy 

period 

1,000  1,000  1,000  2,000 

Cost paid to the 

main server in idle 

period 

800  800  800  1,600 

Cost paid to the 

temporary server in 

busy period 

_  1,000  _  _ 

Cost paid to the 

temporary server in 

idle period 

_  200  _  _ 

 

Table 8 The total expenditure per unit time 

Model  Expected Cost per unit time 

General two- 

server bulk 

service model 

1 1 1(800 800) ( 0) (1000 200 800) ( 1) 2(1000 200) ( 2)P Y P Y P Y          

Single-server 

model with 

additional 

server 

1 1 1(800 800) ( 0) (1000 200 200) ( 1) (1000 200 800) ( 2)P Y P Y P Y         

12(1000 200) ( 3)P Y    

Two-server 

model with 

two queues 

2 800 ( ) 2(1000 200) ( )P X b P X b      

Single-server 

model with 

double 

capacity 

1600 ( 2 ) (2000 400) ( 2 )P X b P X b     
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Table 9 Expected expenditure for running the service system in the different queuing models  

   b 

General 

two-server 

bulk 

service 

model 

Single-

server model 

with 

additional 

server,

2q b   

Single-

server model 

with 

additional 

server, 

3q b  

Two-server 

model with 

two queues 

Single- 

server 

model with 

double 

capacity 

Cost  Cost  Cost  Cost  Cost 

4.50  0.50  5.00  2,320.00  2,217.71  2,206.95  2,320.00  2,378.46 

4.00  0.50  5.00  2,240.00  2,038.75  2,017.51  2,240.00  2,357.51 

3.50  0.50  5.00  2,160.00  1,864.37  1,833.83  2,160.00  2,337.24 

3.00  0.50  5.00  2,080.00  1,696.47  1,659.47  2,080.00  2,317.75 

4.50  0.33  8.00  2,275.00  2,114.82  2,098.55  2,275.00  2,378.44 

4.00  0.33  8.00  2,200.00  1,948.07  1,922.53  2,200.00  2,366.04 

3.50  0.33  8.00  2,125.00  1,786.12  1,752.87  2,125.00  2,354.10 

3.00  0.33  8.00  2,050.00  1,631.07  1,593.42  2,050.00  2,342.70 

4.50  0.25  10.00  2,320.00  2,216.20  2,205.90  2,320.00  2,388.67 

4.00  0.25  10.00  2,240.00  2,035.72  2,015.22  2,240.00  2,377.85 

3.50  0.25  10.00  2,160.00  1,859.82  1,830.10  2,160.00  2,367.37 

3.00  0.25  10.00  2,080.00  1,740.28  1,654.34  2,080.00  2,357.37 

 

From Table 9,  it  is evident  that  the use of a  temporary server along with a permanent  server 

reduces  the  cost  of  operating  the  system  as  compared  to  the  two-server  bulk  service  model,  two 

independent  bulk  service  models  and  a  single-server  model  with  double  serving  capacity  of  the 

server. Thus, from the cost point of view the suggested model seems more cost effective than the 

other models. 

 

6. Discussion 

In  this  paper,  we  have  proposed  a  service  mechanism  for  a  two-server  bulk  service  queuing 

model  and  compare  its  performance  with  some  comparable  queuing  models.  We  have  used  a 

computational  method  based  on  semi-Markov  process  to  obtain  the  performance  measures.  For 

different values of system parameters, we have checked the average waiting time and average queue 

length of the proposed model and compared with those of the other models. We find that the proposed 

model performs better. 

From the Figures 1 and 2 below, it is clear that only the two-server bulk service model M/Mb/2 

with  general  bulk  service  rule  performs  slightly  better  than  our  proposed  model.  However,  with 

respect to the considered cost structure, the operational cost of the M/Mb/2 model is higher than the 

proposed model. It is also noted that for the same operational cost, the two-server model with two 

parallel queues does not perform better than any of the two-server models with single queue.  
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Figure 1 Comparison of waiting time 

 

 

 
 

Figure 2 Comparison of queue length 

 

 

7. Conclusions 

We have used  the semi-Markov process defined on  two-dimensional state  space  to analyze a 

two-server model, where both the servers have equal service rate. This method will be also applicable 

for  the  systems  where  the  two  servers  have  different  service  rates.  For  any  specified  service 

mechanism,  the method can be applied, and can be extended  to  the system with multiple servers. 

However, the only consideration for the applicability of the semi-Markov process is that the service 

time of a server is exponential distribution.  

In Subsection 5.5, we have considered the cost of operating a service system, which is of great 

importance  in  real  life. The operational cost helps  the  system designer  to make a choice between 

different models with desired level of performance.  

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 w
ai

ti
ng

 t
im

e Single server model with
double capacity

Proposed Model

General two server bulk
service model

Two server model with
two parallel queues

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 q
ue

ue
 l

en
gt

h Proposed Model

General two server bulk
service model

Two server model with
two parallel queues

Single server model with
double capacity



Kuntal Bakuli and Manisha Pal  651 

 

References 

Abolnikov L, Dshalalow JH. On a multilevel controlled bulk queuing system Mx /G(r, R)/1. J Appl 

Math Stoch Anal. 1992; 5: 237-260. 

Arora KL. Two-server bulk-service queuing process.  Oper Res.1964; 12(2): 286-294. 
Bailey NTJ. A continuous treatment of a simple queue using generating functions. J Roy Stat Soc B 

Met. 1954; 16(2): 288-291. 
Banerjee A, Gupta U, Goswami V. Analysis of finite-buffer discrete-time batch-service queue with 

batch-size-dependent service. Comput Ind Eng. 2014; 75: 121-128. 

 Banerjee  A,  Gupta  U,  Chakravarthy  S.  Analysis  of  a  finite-buffer  bulk-service  queue  under 

Markovian arrival process with batch-size-dependent service. Comput Oper Res. 2015; 60: 138-

149. 

Bakuli K, Pal M. Bulk service queuing system with impatient customers: A computational approach. 
Thail Stat. 2017; 15(1): 1-10. 

Chaudhry  ML,  Templeton  JGC.  The  queuing  system  M/Gb/l  and  its  ramifications.  Eur  J  Oper 

Res.1981; 6(1): 56-60.  

Chaudhry  ML,  Gupta  UC.  Modelling  and  analysis  of  M/G(a,  b)/1/N  queue-a  simple  alternative 

approach. Queueing Syst.1999; 31: 95-100. 

Chaudhry ML, Chang SH. Analysis of the discrete-time bulk-service queue Geo/GY /1/N + B. Oper 

Res Lett. 2004; 32(4): 355-363. 

Ghare P. Multichannel queuing system with bulk service. Oper Res. 1968; 16: 189-192.  

Ghimre  S,  Ghimre  RP,  Thapa  GB,  Farnandes  S.  Multi-server  batch  service  queuing  model  with 

variable service rates. Int J Appl Math Stat Sci. 2017; 6(4): 43-54.  

Gupta UC, Goswami V. Performance analysis of finite buffer discrete-time queue with bulk service. 

Comput Oper Res. 2002; 29(1): 1331-1341. 

Holman D, Chaudhry M, Ghosal A.  Some results for the general bulk service queuing system. Aust 

Math Soc. 1981; 23(2): 161-179. 

Jaiswal NK. Bulk-service queuing problem. Oper Res. 1960; 8(1):139-143. 

Krishnamoorthy A, Ushakumari PV. A queuing system with single arrival bulk service and single 

departure. Math Comput Model. 2000; 31: 99-108. 

Neuts MF. A general class of bulk queues with Poisson input. Ann Math Stat. 1967; 38(3): 759-770.  

Pakes AG. Some conditions for ergodicity and recurrence of Markov chains. Oper Res. 1969; 17(6): 

1058-1061. 

Seneta E. Finite approximations to infinite non-negative matrices, II: refinements and applications. 

Proc Camb Phil Soc. 1968; 64: 465-470. 

Wolf D. Approximation of the invariant probability measure of an infinite stochastic matrix.  Adv 

Appl Prob. 1980; 12(3): 710-726. 

 

Appendix 

Derivation of transition probabilities for the proposed two-server queuing model 

Let  ( )A n  denotes the sum of the inter-arrival times of n customers to the system. Then,  ( )A n  is 

the  sum  of  n   independent  i.i.d.  random  variables  each  distributed  as  exp( ),   and  hence 

( ) ( , ).A n gamma n   Further,  it  is  independent  of  the  service  time  ,T   which  is  distributed  as 

exp( ).   

In order to get the transition probabilities in a model, we have to primarily compute the following 

two probabilities: 
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 Let us denote the service times of the permanent and temporary servers 

by  1T  and  2 ,T  respectively. The transition probabilities of the model are obtained as follows: 

 

Case 1:  1 0i   and  2i b  

In this case, the next state will be  1 1j   and  2 0j   for sure. Then,   2(1,0), (0, ) 1;P i   transition 

t  the other state is not possible. 

Here unconditional waiting time at the state  2(0, )i  is the arrival time of  2( )b i customers or 

sum of  2( )b i  inter arrival time, i.e.  2( ).A b i  

 

Case 2: 1 1i   and  2i b  

If the next state is  1 20, ;j j b   

    2 2

2 2 2 2 1 2 2(0, ), (1, ) ( ) ( 1) (1 ).j iP j i P A j i T A j i p p         

If the next state is  1 21, {0,1,..., 1};j j q b     

    2 2

2 2 2 2 1 2 2(1, ), (1, ) ( ) ( 1) (1 ).b j iP j i P A b j i T A b j i p p            

If the next state is  1 23, ;j j q b    

    2

2 2 1(3, ) | (1, ) ( ) ) .q iP q b i P A q i T p       

Here transition from this state is occurring due to service completion of the server 1 or arrival of 

2( )q i  arrivals. So the unconditional waiting time is   1 2min , ( ) .T A q i  

 

Case 3:  1 2i   and  2i b  

If next state is  1 20, ;j j b   

    2 2

2 2 2 2 2 2 2(0, ), (1, ) ( ) ( 1) (1 ).j iP j i P A j i T A j i p p         

If next state is  1 23, 0;j j   

    2

2 2 1(3,0) | (1, ) ( ) ) .q iP i P A q i T p      

Here transition from this state is occurring due to service completion of the server 2 or arrival of 

2( )b i arrivals. So the unconditional waiting time is   2 2min , ( ) .T A q i  

 

Case 4:  1 3i   and  2i b  

If the next state is  1 1j   and  2 2 ,i j q   
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   2 2 2 2 1 2 2 2 1 2 2(1, ) | (3, ) ( ) min( , ) ( 1),min( , ) ,P j i P A j i T T A j i T T T        

   2 2 1 2 2 2 1 2 1( ) min( , ) ( 1), min( , ) ,P A j i T T A j i T T T        

    2 2

2 2 1 2 2 2 1 1

1 1
( ) min( , ) ( 1) (1 ).

2 2
j iP A j i T T A j i p p         

If the next state is  1 2j   and  2 2 ,i j b   

    2 2

2 2 2 2 1 2 2 2 1 2 1 1 1

1
(2, ) | (3, ) ( ) min( , ) ( 1),min( , ) (1 ).

2
j iP j i P A j i T T A j i T T T p p          

If the next state is  1 3j   and  2 ,j b q   

    2 2

2 2 2 2 1 2 2 2 1 2 1 1 1

1
(3, ) | (3, ) ( ) min( , ) ( 1),min( , ) (1 ).

2
j i bP j i P A j i b T T A j i b T T T p p           

 

If next state is  1 3j   and 2 ,j b q   

    2 2

2 2 2 2 1 2 2 2 1 1(3, ) | (3, ) ( ) min( , ) ( 1) (1 ).j i bP j i P A j i b T T A j i b p p            

 

Case 5:  1 3i   and  2b i q   

If the next state is  2(1, ),j  where  2 2 ,i j q   

    2 2

2 2 2 2 1 2 2 2 1 2 2 1 1

1
(1, ) | (3, ) ( ) min( , ) ( 1),min( , ) (1 ).

2
j iP j i P A j i T T A j i T T T p p          

If the next state is  2(3, ),j where  2 2 ,i j b q   this is possible when  2 ,b q  

    2 2

2 2 2 2 1 2 2 2 1 2 1 1 1

1
(3, ) | (3, ) ( ) min( , ) ( 1),min( , ) (1 ).

2
j b iP j i P A j b i T T A j b i T T T p p           

 

If the next state is  2(3, ),j  where  2 ,j b q   

    2 2

2 2 2 2 1 2 2 2 1 1(3, ) | (3, ) ( ) min( , ) ( 1) (1 ).j b iP j i P A j b i T T A j b i p p            

 

Case 6:  1 3i   and   2q i  

If the next state is  2(3, ),j then 

    2 2

2 2 2 2 1 2 2 2 1 1(3, ) | (3, ) ( ) min( , ) ( 1) (1 ).j b iP j i P A j b i T T A j b i p p            

Here transition occurs only when a service completion happens, so that unconditional waiting time 

is  1 2min( , ).T T  

 

Derivation of transition probabilities for M/M b/2: 

Case 1:   1 0i   and  2i b  

Here  the  only  possible  transition  can  occur  to  state  (1,0)  owing  to  the  arrival  of  2( )b i

customers, which causes the queuing length to be reduced to zero and a service to be started. So,  

 2(1,0) | (0, ) 1.P i   The unconditional waiting time at the state  2(0, )i is, therefore, the arrival time 

of  2( )b i  customers or sum of  2( )b i  inter arrival times, i.e. 2( ).A b i  
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Case 2:  1 1i   and  2i b  

If the next state is  1 2 20,j i j b    (transition due to completion of service before arrival of (b-

i2) customers), 

    2 2

2 2 2 2 1 2 2(0, ) | (1, ) ( ) ( 1) (1 ).j iP j i P A j i T A j i p p         

If the next state is  1 21, {0,1,..., 1}j j q b     (transition due to completion of service after arrival 

of more than  2( )b i  but less than  2( )q i customers), 

    2 2

2 2 2 2 1 2 2(1, ) | (1, ) ( ) ( 1) (1 ).b j iP j i P A b j i T A b j i p p            

If the next state is  1 22, ,j j q b    

    2

2 2 1(2, ) | (1, ) ( ) .q iP q b i P A q i T p       

 

Case 3:  1 1i   and  2b i q   

If the next state is  1 21, {0,1,..., 1},j j q b     

    2 2

2 2 2 2 1 2 2(1, ) | (1, ) ( ) ( 1) (1 ).b j iP j i P A b j i T A b j i p p            

If the next state is  1 22, ,j j q b    

    2

2 2 1(2, ) | (1, ) ( ) .q iP q b i P A q i T p       

Here  transition  from  this  state  is  occurring  due  to  service  completion  of  the  server  or  arrival  of 

2( )q i  arrivals. So unconditional waiting time would be  1 2min( , ( )).T A q i  

 

Case 4:   1 2i   and  2i q  

If next state is  1 21, ,j j q   

    2 2

2 2 2 2 1 2 2 2 1 1(1, ) | (2, ) ( ) min( , ) ( 1) (1 ).j iP j i P A j i T T A j i p p         

If next state is  1 22, ,j j q b    

    2 2

2 2 2 2 1 2 2 2 1 1(2, ) | (2, ) ( ) min( , ) ( 1) (1 ).b j iP j i P A b j i T T A b j i p p            

 

Case 5:  1 2i   and  2i q  

Then the next state will be  1 22, ,j j q b    

    2 2

2 2 2 2 1 2 2 2 1 1(2, ) | (2, ) ( ) min( , ) ( 1) (1 ).b j iP j i P A b j i T T A b j i p p            

Here transition occurs only when a service completion happens, so that  the unconditional waiting 

time is  1 2min( , ).T T  

 


