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Abstract

In this paper, we consider a bulk service queuing model with a fixed bulk size and a single
permanent server. An additional server is kept on hold and is allowed to serve when the queue length
exceeds certain threshold value. The model is analyzed using embedded Markov chain. A comparison
of the performance of the model with the following models have also been made — (i) two-server bulk
service model, (ii) bulk service model with two independent queues corresponding to two servers and
(iii) a single-server bulk service model with double service capacity of the server.
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1. Introduction

Bulk queues are common phenomena in real life. These are observed in telecommunication,
transportation, production, airline scheduling, elevators, restaurants, etc. The first bulk service model
was studied by Bailey (1954). Over the past few decades, much study has been carried out on bulk
service systems, see, for example, Neuts (1967), Jaiswal (1960), Holman et al. (1981), Chaudhry and
Templeton (1981), Abolnikov and Dshalalow (1992), Chaudhry and Gupta (1999), Gupta and
Goswami (2002), Krishnamoorthy and Ushakumari (2000), Chaudhry and Chang (2004), Banerjee
et al. (2014), Banerjee et al. (2015), to name a few. These authors have, however, studied single
server bulk queue models.

The two-server bulk service model was introduced by Arora (1964). He studied a queuing system
with two servers with single queue, the maximum serving capacities of the servers are different and
the service rates of the servers are also different. He considered that the customers are arriving in a
Poisson manner and exponential distribution for the distribution of service time for the servers. In his
queuing model if any of the server is in idle state then it starts service as soon as it gets at least one
customer to serve. He analyzed the model using differential equations and Laplace transformations.
The results of Arora (1964) were generalized to the case of multiple servers by Ghare (1968), using
standard generating functions and Laplace transform methods. Much later, Ghimre et al. (2017)
studied a multiple server model where the server capacity is variable and it depends on the number
of customer available in the system. The service rate of any of the servers depends on the number
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customers are being served by the server. In their queuing model all the servers in a similar manner,
all the servers have equal maximum serving capacity and if any of the servers is in idle state then it
starts service as soon as it gets at least one customer to serve. After these contributions, the area was
not much explored.

In this paper, we consider a two-server bulk service model, where one of the servers is a
permanent one while the other is kept on hold and allowed to function when the queue length exceeds
certain threshold value and the permanent server is busy. It is assumed that the service capacity of
both the servers are equal. The model is analyzed using embedded Markov chain technique. The
model has been compared in terms of the performance measures with other comparable queuing
models, like (a) the two-server bulk service model where the servers are working in parallel, (b) two
independent single-server bulk service models, where an arriving customer randomly joins a queue,
and (c) a single-server bulk service model with double capacity of the server. A new performance
measure, namely, average number of customers served per unit time, has been introduced. The
models have also been compared in terms of the expected expenditure for running the service centre.
The paper is organized as follows. Section 2 discusses the model and its analysis is described in
Section 3. Section 4 computes the performance measures of the model for different sets of values of
the model parameters. In Section 5, the comparable models are analyzed using embedded Markov
chain technique, and a numerical comparison of the performance measures of all the models are
carried out. In Section 6, we have briefly discussed about the outcome of the study. Section 7 is the
conclusion part, where we have explained the usefulness of the study along with the further scope of
the study.

2. The Model and its Assumptions

We consider a M /M?” /1 queuing model with a difference. Apart from the permanent server,
which we shall call server 1, there is a temporary server — server 2 - kept on hold, and is called for
service whenever the queue length reaches a certain specified threshold value, say g and server 1 is
busy. The temporary server is called back when the queue falls below the threshold value. Server 1
follows the general bulk service rule, that is, when it finds at least b customers waiting in the line it
starts service with the first 5 customers in the queue. Customers wait in a single queue, and when
server 2 comes into action, the two servers work in parallel, each serving b customers at a time.

The assumptions governing the model are as follows:

1) Customers arrive one at a time in a Poisson fashion with mean arrival rate A.

2) Each server serves b customers at a time.

3) The service time distribution of each server is exponential with mean service rate K4, and

these are independent of one another.

4) The system is of infinite buffer.

5) The queue discipline is FIFO.

6) A<2bu.

The threshold of the queue length that brings server 2 into action is g.

3. Analysis of the Model
To analyze the model, let us define Y,(¢) as the state of the servers at time point ¢, where
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Y, (¥) = 0, if both the servers are idle, Y,(r) = 1, if server 1 is busy and server 2 is idle, ¥,(¢) = 2,
if server 1 is idle and server 2 is busy, ¥ (¢) = 3, if both the servers are busy.

We shall consider that the transitions due to service completion and customer arrival only affect
the number of busy servers. Hence, a transition will depend on the number of customers waiting in
the queue.

Let Y,(7) denotes the queue length at time point ¢. Then, Y(¢) = (Y] ),Y, (t)) is a semi-Markov

process. We attempt to obtain the steady state distribution of Y(¢), which will help to compute the
performance measures of the system.
Let {¢,} be the sequence of epochs at which service completion of any server occurs or any

server starts working from idle state due arrival of customer. Then, ¥ =Y(z) is the embedded

Markov chain defined on the state space
S:{(O,yz) 1y, € (O,l,...,b—l)} u{(l,yz) Y, € (O,l,...,q—l)} u{(2,y2) 1y, €
(0.1....6=1)}U{(3.3,) 13, €(0.1,2,3,..)}.
Writing P(i, j) = P[Y,, = j|Y, =i], where j=(j,,j,) and i=(i,,i,) the transition probabilities
are given by
P(i,j)=1, if i =0,i,<b and j, =1,j, =0,
=p~ 2 (1-p), ifi=Li,<b,j =0,,<j,<b or i=2,,<b,j =0,i,<j,<b,
=p~? (1-p), ifi=1i,<qand j =Li,<j, <q-b,
=pi™, if i =1,i,<q and j, =3,/, =q-b,
=ph, if i, =2,i, <band j, =3,/,=0,
=%p{'f"ﬂ (1-p,), if i, =3,i,<b and j, =2,i, < j, <b, or i, =3,i, <q and
Ji=Li, <), <q,

l Jo+b—iy

=3h (1-p,),if i =3,i, <q and j, =3,i, < j,+b<q,

=p>"2 (1-py), if i, =3,i,20,j,=3 and j,+b>gq,

where

and p, = A

A 1
A+ A+2u M

p:

(See Appendix)

Theorem 3.1. The embedded Markov chain {Y,} is ergodic.

Proof: Let us define a one-to-one onto function f:S— N, the set of natural numbers, such that
f(x,y) < f(3,q) forall x<3,y<gq and f(3,q+k+l)—f(3,q+k) =1 forall £ €{0,1,2,...}.
Let f(x,y) = 4y+(x+l), when y<b,
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f(x,y) :4b+2(y—b)+xT+1, when g > y>(b—1),

f(x,y)= 4b+2(q—b)+(y—q+1), when y>g-—1.

If S betherange of f, we can define a (dummy) Markov chain {X .} over § " with transition
probabilities P'(i’, j") = P(f' ("), ' (j)).

This Markov chain is aperiodic since for sufficiently large value of i’ (when queue is sufficiently
large) P'(i',i") >0 for some i'. Now, we shall show that {X,} is ergodic, which will imply that the
embedded Markov chain {Y,} is also ergodic. To do so, we use the method suggested by Pakes
(1969).

Define y, = E(X,

n+l
or fi)=(Lk) or £ @)=2.h). If f7(@)=@k)then 7, = E(X,
infinite number of terms. Now we will consider this situation only.

Let i<2q+3b+1, (here f(3,q+b)=2g+3b+1)then k <g+b. Then,

= (j=0)Pij))+ Y, (j-i)P(i,))=sum +sum,,

- X, |X, =i), which is a sum of finite number of terms when f~'(i) = (0,k)

-X, |X,=i) is a sum of

n+l

jef(3.0):1<q+b jef(30)I2q+b
where > (j—i)P(i,j)=sum and > (j—i)P(i,j)=sum,.
Jjef(3.0)I<q+b jef(3.0)dzq+b

Here, sum, is the sum of a finite number of terms, while sum, is the sum of an infinite number

of terms. Further,

sum, <Y (2b+q+l—3)pll+b7k (l—pl) <o (as D, lpll<oo).
I2g+b 12q+b

Thus, sum, also has a finite value, so that y, <oo, where i<2g+3b+1. When i>2g+3b+1,
we have k>g+b. In this situation, if X, =/ and X, =i, then (j—i)=(/—k) where,

n

S D=6k and £7()) =G0, Therefore, 7= X (1=k)p™ ™ (1-py) =-F b
I>k—b - D1

By Pakes (1969), it follows that {X} is ergodic if limy, is negative. Now, since, A <2bu, we

have [1 L —b] < 0. Hence, limy, is negative. Thus, by the theorem, {X, }, and therefore {Y,}, is
_pl i—00

ergodic.

3.1. Stationary distribution of {¥n}
To obtain the stationary distribution of {Y }, we first find the stationary distribution of {X,}

using north-west corner truncation method suggested by Seneta (1968) and Wolf (1980). Consider a
special sequence of transition probability matrix (TPM) {P.

infinite TPM of {X,}, as follows:
P, (i, j)=0, ifi,j2m+l,
P, (i, N=p@E,0)+ X p@,j), ifi<m+1and j=0,

j'>m

,m >0}, constructed from the original

2, 7)) =p@,Jj), if i<m+1 and O0< j<m+1.
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Then, P, has exactly one stationary distribution, #™, and it converges to @ (cf. Wolf 1980).

Define (k)™ as the steady state probability of state “ k ” taking “m ™ as the order of the truncated
TPM.

Let /' (k)= (i,,i,). Then, limn(i,i,)™ =mn(i,i,), where n(i,i,) denotes the original steady
state probability of state (i;,7,) of the embedded Markov chain {Y }.

The unconditional expected waiting times under different states of the system are given in Table

Table 1 The unconditional expected waiting times under different states of the system

State Waiting time Unconditional expected waiting time
h=0,0, <b A(b-1iy) A(b—iy)/ 2

h=Li<q min(7,, A(g=i,)) (/@)1= p* "]

h=2.5, <b min(T,, A(b—i,)) (1 w)[1-p"™"]

i =3,i,€{0,1,2,...} min(7,,T) 1/2u

In Table 1, A(n)~ gamma(A,n) (sumof“n” independent exp(A)), and T, ~exp(u), i=

3.2. Steady state distribution of the semi-Markov process Y(t)
. . . m - m ) .
Let EEEP[Y(I) = (ll,lz) 1= Vi) Then V((i,,zz) =M, /Z M, 7 (k l) will

11 lz

converge to Viiiy) 38 M= 0, where M, is the unconditional expected waiting time at state (k,/).

We obtain the values of Viviy) by numerical computation (performing a finite sum for very large

values of “m”

3.3. Performance measures
Along with the usual performance measures like average queue length, average waiting time in

queue, probability of busy period of server 1 and server 2 here we have introduced a new performance
measure, namely average number of customers served per unit time:

(i) Average queue length is | v((:)iz) xi,,
(ivsip)eS
(i1) Average waiting time in queue is (Average queue length)/ A (By Little’s formula),
(iii) Probability that server 1 is busy:
B :P[Y1:1’3]:( Z): V((,-’:L) L IIWSTEP
if iy JeS
Probability that the server 2 is busy:

B, =P[Y,=23]= ¥

x 1 ’
(ilyiz)ES (1 2) {(y i )i, =2,3}

(iv) To get the average number of customers served per unit time by the system, we proceed as
follows. Let N, (¢) be a number of service completions by server 1 in (0,¢], and N,(¢) be a number

of service completions by server 2 in (0,z]. As N, (¢) and N, (t) are both increasing in “¢ ”,
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lim N, (¢) =0, i=1,2.
t—o0

In the steady state, the average number of service completions in unit time by i" server is
N, (t
tim e (0)

>0 t

. Therefore, in steady state, the average number of customers served in unit time by the

i™ server is limNi—(t)

t—w t

N, (t)+ N, (1)

xb. Hence, in steady state, the average number of customer served per unit

time is lim

t—>o

xb. Now,

N, (f)T_

P, = P(i" server is busy) =lim ==~ |
[—0 t

where T is the service time of server j, j=1,2.

V(e
For large value of “#”, the total busy period of i"™ server is approximately given by T

J=1

This is the total time taken by the i server to complete N, (t) services. Hence,

Ni(1) Ni(7) Ni(1)
T, A N.(t T, N. (¢t
Pli:hij_l s tim 2 T im () =| lim 2Ty x| lim ()
t—o t t—o Ni(t) t>o t N;(t)—>w Ni(t) [
N, (t
:ix(limﬁj.
/u t—o t
ZN,(t)T |
Since by strong law of large number, we can say that 1imﬁ)' =—, as T, ~exp(u), j=12.
t—w© i t ,U

N, (¢ .
Thus, limﬁ = uxP,. In steady state, we therefore obtain the average number of customers

t—o t
served in unit time by the system as

i N, (t)+N, (1)

xb :,u><b><(f;1 +Plz)-
—>®
4. Computation

Consider m =500 in north-west corner truncation. It is noted that for higher values of “m ”, the
values of performance measures do not change up to the 6" place of decimal. Tables 2 and 3 give
the performance measures for different sets of values of the system parameters and the threshold
“ q 7’.
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Table 2 Performance measures of the model for some sets of values of the model parameters

when g =2b
q=2b

Av. no. of
1 TR P P customers Av. waiting Av. queue
" 2 served time length

per unit time
4.5 0.5 5 0.97048029  0.829520 4.5 4.9735 22.38062
4 0.5 5 0.93541071  0.664589 4 2.1557 8.622634
3.5 0.5 5 0.89272424  0.507276 3.5 1.3193 4.617509
3 0.5 5 0.83922155  0.360778 3 0.9567 2.878086
45 033 8 0.95446569  0.733034 4.5 4.1375 18.61892
4 033 8 091989116  0.580109 4 2.3576 9.430495
35 033 8 0.87729253  0.435207 3.5 1.6525 5.783895
3 033 8 0.82321514  0.301785 3 1.3056 3.916705
45 025 10 0.97296219  0.827019 4.499 9.1488 41.16968
4 025 10 0.94045906  0.659541 4 4.0283 16.11337
35 025 10 0.90030427  0.499696 3.5 2.5240 8.834105
3 025 10 0.76619231  0.433808 3 1.8844 5.653127

Table 3 Performance measures of the model for some sets of values of the model parameters

when g =3b
q=3b

Av. no. of
2 4 b P P customers Av. waiting Av. queue
! 2 served time length

per unit time
4.5 0.5 5 0.988424  0.811576 4.5 5.875967 26.44185
4 0.5 5 0.970825  0.629175 4 3.057840 12.23136
3.5 0.5 5 0.943609  0.456391 3.5 2.189074 7.661758
3 0.5 5 0.900878  0.299122 3 1.747526 5.242579
45 0.33 8 0.981580  0.705920 4.5 5.519939 24.83972
4 033 8 0.962451  0.537549 4 3.721832 14.88733
3.5 033 8 0.932721 0.379779 3.5 2.942220 10.29777
3 033 8 0.885972  0.239028 3 2.438167 7.314501
45 025 10 0.990125  0.809848 4.5 10.98840 49.44781
4 025 10 0.974629  0.625371 4 5.879704 23.51882
35 025 10 0.949830  0.450170 3.5 4.314797 15.10179
3 025 10 0.909431  0.290569 3 3.505507 10.51652
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It may be noted from Tables 2 and 3 that in the steady-state situation the average number of
customers served per unit time comes out to be equal to the average number of arrivals per unit time.
This led to Theorem 4.2 which shows that the above is true whatever be system parameters.

Theorem 4.1. For the queuing model considered, the average number of customers served per unit
time equals the average number of arrivals per unit time.

Proof: Define 7/ is time to return to the state * j from state < j ” for the /" time. Assume that the

system starts from the state “(0,0)”. Since “(0,0)” is a positive recurrent state, in the steady state

situation, the system will return to state “(0,0) after a finite time with probability 1. Therefore, r(o’o),

i=1(1)n are independently and identically distributed random variables with finite expectation say,
0.

Let )/,(1(0’0)) = ZT[((O’O)). Then, 75(0’0)) —o0 as n —>co. Now let, the number of customer served by
i=1

n n

time (0, y((o,o)) } be denoted by D ( }/«0’0)) ), and the number of customers arriving during this interval

be B(y((o’o)) ) Then, it is obvious that D(y&(o’o))) =B (y(n(o,o)) ) So, the number of customer served

D(y«o,o)))
per unit time is 11_1)2 y((o’o)) 211_{2 y((o,o))

n n

As the arrival process is Poisson, we have B( ;/,(1(0’0))) = ZB(T[((O’O)) ) Then,
i=1

B(yi(o’o)))_ - > a(") hm[ LB |/ . £[8(")]

n—»o0 7/5(0>0)) n—w Z:’eri(o’o) n—w |:Z;1:1Tl.(0’0) :| / n 6

by strong law of large numbers. Now, E [B(r,.(o’o) )] =E [E[B(z-[(o’o) )|z'.(0’0):| =E [/IT(O’O)] =04,

B( %(fo,o») o

therefore, 1imW 7 = A. Hence, the average number of customers served per unit time by
n—>0 i
7,

E

the system is A.

Remark: In this theorem, we have not used any specific characteristics of the mentioned queuing
system. Thus, the above theorem also holds in general for any queuing system, where the system is
in the steady state or is in equilibrium.

5. Comparison with Other Models
In this section, we compare the model in Section 3 with other models, like the M / M bra model,

two independent M /M /1 models with arriving customer randomly joining a queue, and the
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M/ M" /1 model with high service capacity of the single server. To facilitate comparability, we first
analyze the models using the embedded Markov chain technique.

5.1. M/ M ®/2 model
Here we make the usual assumptions that governan M / M ? /2 queuing model. Defining Y,(®)

and Y, (¢) as before, where Y,(¢) takes the value 0, 1 or 2 according as both the servers are idle, one
server is idle and both the servers are busy, respectively, we have that Y(¢) = (Y,(¢),Y,(¢)) is a semi-

Markov process.
Defining {¢,} to be the sequence of epochs at which service completion of any server occurs or

any server starts working from idle state due to a new arrival, and ¥, =Y (¢, ) is the embedded Markov

chain with state space
S, = {{0,1,2}><N}/{{0}x{N—{0,1,...,b—l}}u{l}x{N—{O,l,...,b—l}}},
the transition probabilities are obtained as
P(i, j)=1, if iy =0,i,<b and j, =1,/, =0,

=p~ ™ (1-p), ifi =1, ifi,<b and j, =0,i, < j, <b,

=p"", if i =1, if i, <b and j, =2, j, =0,

=p> 2 (1-p)), if iy =2, if i,<b and j, =14, < j, <b,

=p 7 (1= py), if i =2,if i, 20, /, =2, j, 2 max(0,, - b),
where P(i,j)=P[Y,,, =j|Y, =il, j=(j1,/») andi= (i1, i2), and p, and p are given by (1) (See
Appendix).

Theorem 5.1.1. The embedded Markov chain {Y,} is ergodic under the assumption A < 2bp.

Proof: Consider a function f:R*— R such that
f(x,y) = 3y+(x+1), when y<b
f(x,») =(y+2b)+1, when y>(b-1).
If S be the range of f, we can define a (dummy) Markov chain {X,} over S* with transition

probabilities P'(i’, j') = P(f'(i"), £ '(j)). This Markov chain is aperiodic since for sufficiently

2l
1

large value of (when queue is sufficiently large) P'(i',i") >0 for some i". Now, we shall show
that {X } is ergodic, which will imply that the embedded Markov chain {Y} is also ergodic. To do
so, we use the method suggested by Pakes (1969).

Define y, = E(X,,, — X, |X, =), which is a sum of finite number of terms when f (i) = (0,k)

n+l

or f'())=(Lk). If f'(i)=(2,k) then y, = EX

terms. Now we will consider this situation only.
Let i<4b+1, (here, f(2,2b)=4b+1)then k <2b. Then,

o=, (j-i)P(@ij)+ D (j—i)P(i.j)=sum|+sum;,

jef(2l)i<2b jef(20)122b

- X, |X, =i) is a sum of infinite number of

n+l
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where ' (j—i)P(i,j)=sum{ and > (j—i)P(i,j)=sum}. Here, sumj is the sum of

je/'(z,l):l<2b js/'(Z,l):lZZb

a finite number of terms, while sum) is the sum of an infinite number of terms. Further,

sumy< Y jp’ (1= py) <o (as Y 1 p/<oo).

Jj=4b I2q+b

Thus, sum) also has a finite value, so that y, <co, where i<4b+1. When i > 4b+1, we have k > 2b.
In this situation, if X,,, =/ and X, =i, then (j—i)=(—-k) where f'(i)=(2,k) and

() =(2,]). Therefore, y, = Z (l—k)pl”b*" (1—p1)= Py

I>k-b 1- 1

By Pakes (1969), it follows that {X } is ergodic if limy, is negative. Now, since A <2bu, we

have (1 L —bJ< 0. Hence, limy, is negative. Thus, by the theorem, {X,} and therefore {Y } is
— pl =0

ergodic.

Table 4 The unconditional expected waiting time for different states

State Waiting time Unconditional expected waiting time
i =0,i,<b Ab-1i,) (b-i,)/4

i =1,i,<b min(7,, 4(b—14,))  (1/ w)[1-p"™"]

i =2,i,€{0,1,2,...} min(7},T) 1/2u

Here, A(n) ~ gamma(A,n)(sum of “n” independent exp(A)), and T, ~exp(u), i=12. The

steady state distribution of Y (¢) and the measures of performance of the model are obtained as before.

5.2. Bulk service model with two independent queues
Here we consider two separate queues for the two servers. Both the servers perform with usual
bulk service mechanism with fixed bulk size “b ”. We assume that an arriving customer randomly

joins a queue. As both the systems are identical, we first analyze a single server model, i.e., M /M" /1
with usual assumptions.
Defining (X,?) a semi Markov process, where X (¢) stands for number of customers in the

system at time “¢ ”, we have considered embedded Markov chain {X,} over the time epochs where
t, be the n™ epoch at which system size changes and X, = X(¢7). According to Bakuli and Pal
(2017), this chain is ergodic when A <bu. Transition probabilities are obtained as,

PG, j)=1, if0<i<b and j=i+],

P(i,j)=A/(A+2u), ifi2b and j=i+l,

P(i,j)=2,u/(/1+2,u), ifi2b and j=i-b,

P@,j)=0, otherwise.

We have used north-west corner truncation method as before to obtain steady state distribution
of the Markov chain {X,}.
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Table 5 The unconditional expected waiting time for the different states

State  Waiting time Unconditional expected waiting time
i<b exp(41/2) 2/4
i2b  min(exp(4/2),exp(u)) 2/(A+2u)

The steady state distribution of X (¢#) and the measures of performance of the model are obtained

follows: lim P| X (¢)=j |=v;, then V' =M ;! /> M, will to v;, where M, i
as follows: lim [ (1) j:l v;, then v; fuy /ZM, i will converge to v;, where M, is

TR INT

expected unconditional waiting time at state “i ”, “m ” is the order of the truncated probability matrix

and 7" = (ch” S TUy yeeees Ty ) be the stationary distribution of the truncated probability matrix of order

113 2

m .
Performance measures:

b1
(i) Average queue length = 2 x bm{ Zojv;” +3 o=V} H
iz

(i1) Average queue length in queue = (Average queue length)/ A (by Little’s formula).

5.3. Single-server bulk service model with double capacity

Here we have considered a single-server bulk service model with double capacity, i.e., the server
capacity is “2b”. Server follows general bulk service rule. The assumptions are usual. Model has
been analyzed as a single-server model analyzed in the previous section. We have considered a
similar Markov process (X,7) and obtained steady state distribution as it is obtained in the previous
section. Derivations of the performance measures are bit different here because the model in the
previous section is a two-server two queue model and this is a single-server queue model.

Performance measures:

2b-1
(i) Average queue length = lim { Zo M+ jzzb( J —b)v?q ,
u

m—>o0

(i1) Average queue length in queue = (Average queue 1ength) /A (by Little’s formula).

5.4. Computations of performance measures for different bulk service models
We have considered m =500, we checked that if we take higher value of “m ” the values are

not changing up to 6-th decimal places. In following two tables we have considered different values
of system parameters.



Kuntal Bakuli and Manisha Pal 647

Table 6 Performance measures of different bulk service models for some sets of values of
the model parameters

Two-server model

p) U b General two-server with two parallel S%ngle—server moqel
bulk service model quees with double capacity
Av. Av. Av. Av. queue Av. Av.
waiting queue waiting length waiting queue
time length time time length

4.5 0.5 5 4.344 19.549 11.173 50.278 10.313 46.411
4 0.5 5 1.543 6.170 5.304 21.218 4.969 19.878
3.5 0.5 5 0.739 2.587 3.471 12.149 3.325 11.638
3 0.5 5 0.434 1.301 2.691 8.0716 2.657 7.9715
45 033 8 3.185 14.334 9.841 44.286 9.384 42.231
4 033 8 1.441 5.764 6.021 24.084 5.811 23.245
35 033 8 0.798 2.796 4.472 15.651 4.386 15.353
3 033 8 0.549 1.649 3.803 11.409 3.806 11.418
45 025 10 7.858 35.363 20.627 92.823 19.090 85.906
4 025 10 2.768 11.073 9.939 39.756 9.602 38.410
35 025 10 1.334 4.669 6.651 23.277 6.505 22.770
3 025 10 0.813 2.439 5.314 15.943 5.282 15.848

5.5. Comparison of expenditures towards running the systems

To run a system, the organization has to pay the servers and also spend money on the operation
of the service facilities being used. If the servers are permanent employees of the organization, each
server is paid a fixed salary, irrespective of whether or not he is in idle state. However, he may be
paid an incentive when he remains busy. On the other hand, if a server be appointed on temporary
basis, he may be paid as much as the permanent employee when he is called for service, and may be
paid a token amount when idle. Other costs associated with running the system are the costs of
operating the service facilities. To compare the four queuing models, we may consider the total cost
associated with running the system per unit time. For the purpose, we consider the following cost
structures for the models.
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Table 7 Cost structures for the models

General two- Single-server Two-server Single-server
Cost per unit time server bulk model with model with model with
service model additional server two queues  double capacity
Running cost of 200 200 200 400
each server
Cost paid to the 1,000 1,000 1,000 2,000
main server in busy
period
Cost paid to the 800 800 800 1,600
main server in idle
period
Cost paid to the _ 1,000 _ _
temporary server in
busy period
Cost paid to the _ 200 _ _
temporary server in
idle period
Table 8 The total expenditure per unit time
Model Expected Cost per unit time

General two-
server bulk
service model

(800+800)P(Y. = 0)+(1000+200+800)P(Y, =1)+2(1000+200)P(Y, =2)

Single-server
model with
additional
server

(800 +800)P(Y, = 0)+ (1000 +200+200)P(Y. =1)+ (1000 +200+800)P(Y, =2)
+2(1000+200)P(Y, = 3)

Two-server
model with
two queues

2x800P(X < b)+2(1000+200)P(X > b)

Single-server
model with
double
capacity

1600P(X < 2b)+(2000+400)P(X > 2b)
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Table 9 Expected expenditure for running the service system in the different queuing models

General Single- Single-  Two-server Single-
two-server  server model  server model model with server
bulk with with two queues  model with
y) u b service additional additional double
model server, server, capacity

q=2b q=3b
Cost Cost Cost Cost Cost
4.50 0.50 5.00 2,320.00 2,217.71 2,206.95 2,320.00 2,378.46
4.00 0.50 5.00 2,240.00 2,038.75 2,017.51 2,240.00 2,357.51
3.50 0.50 5.00 2,160.00 1,864.37 1,833.83 2,160.00 2,337.24
3.00 0.50 5.00 2,080.00 1,696.47 1,659.47 2,080.00 2,317.75
450 0.33 8.00 2,275.00 2,114.82 2,098.55 2,275.00 2,378.44
4.00 0.33 8.00 2,200.00 1,948.07 1,922.53 2,200.00 2,366.04
3.50 0.33 8.00 2,125.00 1,786.12 1,752.87 2,125.00 2,354.10
3.00 0.33 8.00 2,050.00 1,631.07 1,593.42 2,050.00 2,342.70
450 0.25 10.00 2,320.00 2,216.20 2,205.90 2,320.00 2,388.67
4.00 0.25 10.00 2,240.00 2,035.72 2,015.22 2,240.00 2,377.85
3.50 0.25 10.00 2,160.00 1,859.82 1,830.10 2,160.00 2,367.37
3.00 0.25 10.00 2,080.00 1,740.28 1,654.34 2,080.00 2,357.37

From Table 9, it is evident that the use of a temporary server along with a permanent server
reduces the cost of operating the system as compared to the two-server bulk service model, two
independent bulk service models and a single-server model with double serving capacity of the
server. Thus, from the cost point of view the suggested model seems more cost effective than the
other models.

6. Discussion

In this paper, we have proposed a service mechanism for a two-server bulk service queuing
model and compare its performance with some comparable queuing models. We have used a
computational method based on semi-Markov process to obtain the performance measures. For
different values of system parameters, we have checked the average waiting time and average queue
length of the proposed model and compared with those of the other models. We find that the proposed
model performs better.

From the Figures 1 and 2 below, it is clear that only the two-server bulk service model M/M?/2
with general bulk service rule performs slightly better than our proposed model. However, with
respect to the considered cost structure, the operational cost of the M/M?/2 model is higher than the
proposed model. It is also noted that for the same operational cost, the two-server model with two
parallel queues does not perform better than any of the two-server models with single queue.
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7. Conclusions

We have used the semi-Markov process defined on two-dimensional state space to analyze a
two-server model, where both the servers have equal service rate. This method will be also applicable
for the systems where the two servers have different service rates. For any specified service
mechanism, the method can be applied, and can be extended to the system with multiple servers.
However, the only consideration for the applicability of the semi-Markov process is that the service
time of a server is exponential distribution.

In Subsection 5.5, we have considered the cost of operating a service system, which is of great
importance in real life. The operational cost helps the system designer to make a choice between
different models with desired level of performance.
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Appendix
Derivation of transition probabilities for the proposed two-server queuing model
Let A(n) denotes the sum of the inter-arrival times of n customers to the system. Then, A(n) is

the sum of n independent i.i.d. random variables each distributed as exp(1), and hence
A(n) ~ gamma(A,n). Further, it is independent of the service time 7, which is distributed as
exp(4).

In order to get the transition probabilities in a model, we have to primarily compute the following
two probabilities:
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Pt <1- (1 0 o o [ b

_ ©_x /I “Ax n-1 _ A !
_J'Oe! me (Ax) dx_(,1+#] ,

P[A(n)<r<A(n+1)]:P[A(n+1)>T]_p[A(n)>T]:( A M “ j

A+u A+u

A
A+2u

Let p=

)2 . Let us denote the service times of the permanent and temporary servers

Atu’

by I, and T,, respectively. The transition probabilities of the model are obtained as follows:

Casel: {=0and i, <b
In this case, the next state willbe j, =1 and j, =0 for sure. Then, P((l, 0),(0, iz)) =1; transition

t the other state is not possible.

Here unconditional waiting time at the state (0,i,) is the arrival time of (b—i,) customers or

sum of (b—i,) inter arrival time, i.e. A(b—1i,).

Case2: j, =1 and i, <b

If the next state is j, =0, j, <b;

P((O,jz),(l,iz)) = P[A(jz _iz) < 71 < A(]z _iz +1)] = pjriz (I-p).
If the next state is j, =1, j, € {0,L,...,g —b—1};
P((L, j,),(Liy)) = P[A(b+ j, —i,) < T, < A(b+ j, —i, + D] = p"* " (1- p).
If the next state is j, =3, j, =q—b;
P((3,g-b)[(Li,))=P[Alg-1,)<T)]=p*™".
Here transition from this state is occurring due to service completion of the server 1 or arrival of

(g —1i,) arrivals. So the unconditional waiting time is min (T1 ,A(g - iz)).

Case3: i =2 and i, <b
If next state is j, =0, j, <b;
P((0, /,),(1,i,)) = P[A(j, —i,) < T, < A(j, —i, +1)] = p" > (1= p).
If next state is j, =3, j, =0;
P((3,0)| (L)) = P[A(q—iz) < Tl)] =pi™.
Here transition from this state is occurring due to service completion of the server 2 or arrival of

(b—1,) arrivals. So the unconditional waiting time is min (T 5, A(g —1i, ))

Case4: i =3 and i, <b

If the next state is j, =1 and i, < j, <gq,
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P((L]z) | (37i2)) = P[A(Jz _iz) < mll’l(];,Tz) < A(]z _iz +l),min(T1,Tz) = Tz]a
= PA(j, ~i,) <min(T,.T,) < A(j, ~i, + D min(7,.T,) = T;],

1 o : o [
=5P[A(Jz—lz)<mln(Tl,7§)<A(Jz—lz +1)]:5Pilz *(I=p).
If the next state is j, =2 and i, < j, <b,
. . . . . . 1.
P((2.1)|Bii) = PLAG, i) < min(T, T,) < 4/, ~i, + Dmin(T, 1) =] =2 p/ (1= p)).
If the next state is j, =3 and j, +b<gq,

. . . . . . | P
P((3:]2)|(3:lz)):P[A(]2_lz+b)<mln(T1:Tz)<A(J2_lz+b+l)amln(TpTz):T1]:EP1h : h(l_p1)~

If next stateis j, =3 and j, +b2gq,
P((3,/,)|(3.0y)) = P[A(j, =i, +b) <min(T},T,) < A(j, —i, +b+1)] = p 2 (1-p).

Case5: j =3 and b<i, <gq

If the next state is (1, j,), where 7, < j, <gq,

. . . . . . 1.
P((L 1) B,iy)) = P[A(), — ) <min(T;, Ty) < A(j, =i, +1),mln(T1,7;)=Tz]=§P{“ *(1=p).

If the next state is (3, j,), where i, < j, +b < g, this is possible when 2b < ¢,

. . . . . . . . |
P((3:j2)|(3512)):P[A(j2+b_lz)<mln(7}:712)<A(j2+b_lz+1)7mln(TlaT2):]}]:Epllz ’ Z(l_pl)'

If the next state is (3, j,), where j, +b2>gq,
P((3,j2) \ (3,i2)) = P[A(j2 +b—i,) <min(7,,T,) < A(j, +b—1, +1)] =p/" (- p).

Case 6: i, =3 and ¢<i,
If the next state is (3, j,), then
P((3, /1) 1Gi1y)) = P[A(j, +b=iy) <min(T,,T) < A(j, +b~i, + D] = p* " (1= p)).
Here transition occurs only when a service completion happens, so that unconditional waiting time
is min(7;,T}).

Derivation of transition probabilities for M/M /2:
Casel: §=0and i, <b

Here the only possible transition can occur to state (1,0) owing to the arrival of (b—1,)
customers, which causes the queuing length to be reduced to zero and a service to be started. So,

P((I,O) | (0, iz)) =1. The unconditional waiting time at the state (0,i,) is, therefore, the arrival time

of (b—1i,) customers or sum of (b—i,) inter arrival times, i.e. A(b—1,).
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Case2: i =1 and i, <b

If the next state is j, =0,i, < j, <b (transition due to completion of service before arrival of (b-
i) customers),

P((O,jz) ‘ (l,iz)) = P[A(jz _iz) < TI < A(jz _iz +1)] = pjriZ (1 _p)-
If the next state is j, =1, j, €{0,1,...,g —b—1} (transition due to completion of service after arrival
of more than (b—i,) but less than (g —i,) customers),
P((L, j,) | (Liy)) = P[Ab+ j, —i,) <T, < A(b+ j, —i, + )] = p"* "= (1- p).
If the next state is j, =2, j, =q—Db,
P((2,9-0)| (i) = P[A(g—i) <T,]=p"™".

Case3: j =1 and b<i, <q
If the next state is j, =1, j, €{0,L,...,.q —b -1},
P((lajz) ‘ (laiz)) = P[A(b+j2 _iz) < T1 < A(b+j2 —1, +1)] = pmjriz (1-p).
If the next state is j, =2, j, =q—b,
P((2,4-b)|(Li,)) = P[A(g~i,) <T,]= p"".
Here transition from this state is occurring due to service completion of the server or arrival of
(g —1i,) arrivals. So unconditional waiting time would be min(7;, A(q —i,)).

Case4: {=2 and i, <gq
Ifnext state is j, =1, j, <q,
P((1,/,)1(2,i,)) = P[A(j, —iy) < min(T;,T,) < A(j, —i, +1)] = p/ > (1= p).
If next state is j, =2, j, 2 q—b,
P((2,j,)1(2,i)) = P[A(b+ j, —iy) <min(T,,T,) < A(b+ j, —i, +1)] = prTRE (1= p).

Case5: i, =2 and i, > ¢
Then the next state will be j, =2, j, 2¢g—b,
P((2,j)|(20y)) = P[A(b + j, i) <min(T;,Ty) < A(b+ j, —i, +D)] = p = (1= p)).
Here transition occurs only when a service completion happens, so that the unconditional waiting
time is min(7;,7,).



