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Abstract

Calibration weighting is the formulation of calibration constraints with respect to a given distance
measure to obtain expression of calibration weights in order to improve the efficiency of the study
variable. In this paper, the effect of multi-parametric calibration weightings on the precision of
estimators of mean under the stratified random sampling is examined. The results showed that at the
same optimum conditions, calibration estimators with more parametric auxiliary information are more
precise and highly efficient than calibration estimators with less parametric auxiliary information.

Keywords: Calibration constraints, calibration weights, large sample approximation, highly efficient,
optimum conditions, percentage relative efficiency.

1. Introduction

Calibration estimation is a method that uses auxiliary variable(s) to adjust the original design
weights to improve the precision of survey estimates of population or subpopulation parameters. The
process of adjustment is called calibration (Deville and Sarndal 1992).

In calibration estimation theory, calibration weights are chosen to minimize a given distance
measure (or loss function) while satisfying constraints related auxiliary variable information. The
calibration constraint(s) provide(s) additional information which help to increase the efficiency of the
estimation of the population parameter(s) of interest. Calibration estimators in sampling theory often
used population information of the auxiliary variable such as the total, mean and variance to formulate
the constraint(s). The aim is to obtain optimum calibration weights that would improve the precision
of survey estimates of the population parameter(s) of interest.

The formulation of the calibration constraints with respect to a given distance measure to obtain
expression of calibration weights in order to improve the efficiency of the study variable is called
calibration weighting. Deville and Sarndal (1992) introduced the concept of calibration estimation in
survey sampling. They used both univariate and multivariate auxiliary information to derive
weighting system (calibration weights) with the aid of a distance measure and a set of calibration
equations (calibration constraints). They noted that for every distance measure there is a corresponding
set of calibrated weights and a calibration estimator. Hence, the efficiency of the resulting calibration
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estimator depends on the strength of the formulated calibration constraints. Many authors have defined
some modified calibration estimators in survey sampling using univariate auxiliary information
(univariate calibration weightings). A few key references include (Singh et al. 1998, Kim et al. 2007,
Koyuncu and Kadilar 2013, Clement et al. 2014, 2015, Clement and Enang 2015a, 2017, Clement
2015, 2017a,2017b and Enang and Clement 2020).

Equally, many authors have used multivariate auxiliary information (multivariate calibration
weightings), to propose improved calibration estimators. Work in this aspect include (Rao et al. 2012,
Clement and Enang 2015b) among others. Multivariate calibration weightings is the use of the same
parameter of two or more auxiliary variables in formulating calibration constraints.

In the progression to improve calibration estimation, Tracy et al. (2003) introduced the concept
of multi-parametric calibration weightings in calibration estimation. Multi-parametric calibration
weightings is the formulation of calibration constraints with respect to a given distance measure to
obtain expression of calibration weights using information from two or more parameters of the same
auxiliary variable. Work in this aspect include (Tracy et al. 2003, Koyuncu and Kadilar 2014, 2016,
and Clement 2018).

Tracy et al. (2003) proposed improved calibration estimator of population mean using two
parameters (mean and variance) of the same auxiliary variable to formulate calibration constraints.
Koyuncu and Kadilar (2016) advocated a modification to the Tracy et al. (2003) calibration estimator
by introducing new constraints involving three parameters (mean, variance and a combination of the
design and calibration weights) of the same auxiliary variable and proposed a more efficient
calibration estimator than the Tracy et al. (2003) calibration estimator.

It has been observed that the use of parameters of the same auxiliary variable to formulate
calibration constraints gives more precise and efficient calibration estimators than the use of different
auxiliary variables or different parameters of different auxiliary variables. In the present study, a new
improved calibration estimator of population mean is proposed under new calibration constraints using
auxiliary information of four parameters (mean, variance, coefficient of kurtosis and a combination of
the design and calibration weights) of the same auxiliary variable. The choice is obvious; coefficient
of Kurtosis and its functions are unaffected by extreme values or the presence of outliers. Further, it
always has strong correlation with other population parameters like the mean and variance.

2. Basic Definitions and Notations
Consider a finite population U =(U,,U,,...,U, ) of size N. Let X and Y denote the auxiliary

and study variables taking values X, and Y,, respectively on the ™ unit U ; (i =L2,..,N ) of the
population. It is assumed that (x[, y[)z 0, (since survey variables are generally non-negative) and

information on the population mean (X) of the auxiliary variable X is known. Let a sample of size
n be drawn by simple random sampling without replacement (SRSWOR) based on which we obtain
the means (X) and (y) for the auxiliary variable X and the study variable Y.

Let the population (U = (U,,U,,...,U, ) of size (N )) be divided into H strata with N, units in

the 4™ stratum from which a simple random sample of size n, is taken without replacement. The

H H
total population size be N = ZN , and the sample size n = Znh, respectively. Associated with the
h=1 h=1

i" element of the A" stratum are y,, and x,, with x,, >0 being the covariate; where y,, is the y
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value of the i" element in stratum 4, and x,, is the x value of the i" element in stratum A,

h=12,...,H and i=12,...,N,

N,
For the A" stratum, let W, = 5 be the stratum weights and f, _V the sample fraction. Let
h

. . . = S Vhi = i
the 4" stratum means of the study variable ¥ and auxiliary variable X, (J’h i X = lJ
i=1 nh i=1 nh

Ny _ N, )
be the unbiased estimator of the population mean, (17,, =Z%;Xh =z%) of ¥ and X

respectively, based on n, observations.

1 & = 1 &
S/?x, = N, _l;(xhi_X/n‘)Z’ Shzy :ﬁi:] (yh 1) s Y Z yh

h

Ny,

Ny, _ _ — —
Shy = ﬁz(xhi _Xhi)(yh -7, )’ th,x,. = ﬁZ(xhi _Xhi)(xhj _th)

n L=l n L=l

H n, n n
— — _ 1 & 1 - 2 .
and Xist = Zthhi' Let X, = _zxms Sfx = Z(xm - x,, s Vi = _2 Vi
h=1 hoi=1 h -1 i=1 ny, izl
S; = ! (¥ = )2 denote the sample means and variances for the auxiliary variable and study
) n, -1 i=1

variable, respectively.

3. Review of Some Existing Estimators
This section gives a summary of some existing estimators under the stratified random sampling
design with their variance expressions that would be considered for modifications in the study.

3.1. Regression estimator
The conventional regression estimator of population mean in stratified random sampling design
is defined by Cochran (1977) as

4 =7, +b(X-%,). (1)
iwf)_/

H H
where y, = ZW,,)_/,, and X, = Zthh are the Horvitz-Thompson-type estimators, b =2=———

H
h=1 =1
Z WX,

h=1
is the regression coefficient and w, are design weights. In calibration estimation, this estimator is

modified as:
¢1* = y.:t + B;ﬂlo’ (2)
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H H
where ¥, =ZVVh)_/h and X, = Z:wh)_c,1 are the Horvitz-Thompson-type calibration estimators,
h=1 h=1

H *
z W, X, Y, H
B; = ”:111— is the regression coefficient, WZ are calibration weights and x,, = Z WZ ()? 2 =X, )
Z w, X, il
h=1

3.2. Koyuncu and Kadilar estimator

Koyuncu and Kadilar (2016) considered the following calibration estimator in stratified random
sampling:

H
#=2. Q.5 (3)
h=1
Using the chi-square loss functions of the form,
u(Q, -W,Y
L(,QM)=Z( %) 4)
= W0,
Subject to the calibration constraints defined by
H H _
zghfh =ZVV/1Xh7 (%)
h=1 h=1
H H
thSi\f = ZVVhShzx’ (6)
h=1 h=1
H H
2Q,=2W, )
h=1 h=1

The calibration weights are obtained as
Q, =W, +W,0, (ﬂ’lfh-}_ﬂ?six*_;t})' ()
Substituting (8) in (5), (6) and (7), respectively and solving the resulting system of equations gives

the values of the lambdas. On substituting the lambdas in (8) and the resulting equation in (3), Koyuncu
and Kadilar (2016) obtained their calibration regression estimator as:

$ =V, + Bty + By, )

H
where y,, :ZWh)_/h is the Horvitz-Thompson-type estimator; B,, and B,, are coefficients of
h=1

regression and are given by
TyyTy3 — 7157
_722°13 12723
B, =222 B,

_ Tl T Tt
1h 2 - 2
Tnlyn — T Thln —Tn

H H H H
_ —2 _ 4 _ — = _ — 2
where 7, = zwhxh 5Ty = zwhsh)ﬂ T3 = zwhthth = thxhshx’
=1 =1 =1 =1

H

H H _
Ty = thsix)_zh,,uw = ZW,, (Xh =X, ), Moy = ZW,, (S,i —S;X) (See Koyuncu and Kadilar (2016) for
h=1 h=1

h=1

detail).
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4. Proposed Estimator
This paper considers a new calibration estimator of population mean in stratified random sampling

design as
el *
&= W, %, (10)
h=1
where W, are calibration weights, using the chi-square loss functions

w3 )

h=1 VVth

and subject to the following calibration constraints

DT = WX, (12)

>

iWh*Six :iWhS;i- (13)
2 By (%) = 2 W, By (). (14)

iw:im. (15)

The Lagrange function is given by

Q- i(_W)zabwr;ZWX}uﬁiM%—im%}

= WO,

_2/1; |:ZW182I1 ZWBzh }_Zi:[i%*_i%} (16)

Minimizing the chi-square loss functions (11) subject to the calibration constraints ((12), (13),
(14), (15)) gives the calibration weights for stratified random sampling as follows

*

W; =W,+W,0, (21*)_Ch+ﬂ‘z*ij+ﬂfjﬂ2h (x)+l:). (17)
Substituting (17) into (12), (13), (14), and (15), respectively gives the following system of equations
O-ll 0-12 0-13 O-14 ﬁ'l* ILLIO
o, 0, O, O ol
21 22 23 24 22* — 20 ) (18)
0-31 0-32 0-33 0-34 23 /uSO
Oy Oy Oph» Oy ﬂ: yom

Solving the system of equations in (18) for A" ’s gives

. (22, -0:0,) (20, 0.0,) - (90— 0.0,) (22 — 0102,

e (20— 0.0,) (0 —0.0,) (23 — 019, ’

i- (205 — 2.0, ) (9,0, _2(05(07)_((p2(p3 ~ o) (2 —%%)’
(2205 —0,05) = (05 - 0.0 ) (2 - 019,)

i (20 = 0.0, ) (0205 — 0,0, ) — (00, — 030, ) (05 —¢4¢8),

(2205 =0.0,) —(03 —0.0,) (23 — 0.9,
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o _ (00 -00.)(00, - 0:0,) - (020~ 9,0, )93 - 0.0,)
(0.0 = 0:0) = (0 — 0.0 ) (0 — 010,

4

where
_ _ _ _
D =0y =01 Hyys Py = 0,013 =003, P3 =034y =01y, Py =0 =00y,
_ _ _ 2 2 _
@s = 0,01, = 0,0y, Pg =030, —0,,0y, @, =0,;=0,0y, @ =0,,—0,0, and ¢, =04,

and

Vi o ) "
011 = ZI/V;,thhza 022 = ZVVthS;:x’ 0-33 = zmQhﬂzzh ()C), 7044 =ZVV:1Q/1
=1 =1 =1 =
" ., ) B " _ " ,
Oy =ZW/1thhshx:013 = ththhﬂzh (x), Oy = ththw O = thQhthﬂM (x),
=1 =1 =1 =1

H H i _ Pii
Oy = hZ::‘VVthS,i, Oy = ;Wthﬂzh (x), Hyo = ;WL (Xh —X, ): Hyy = ZVVh (Shzx _ij )7

=)
H
Hyy = ZVVh [Bzh (x) =By, (x):l and g, =0.
=)

Substituting the A" s in (16) and the resulting equation in (10) while setting, 0, =1, gives the proposed

calibration regression estimator of population mean in stratified random sampling as follows

$=y,+ Bl*hlulo + B;h:uzo + B:h/um (19)

H
where y, = ZWhJ_/h is the Horvitz-Thompson-type estimator Bj,,B,, and B;, are the coefficients of
h=1

regression and are given by
2
" 12 “14\%22%33 7 ¢23 24\*13%23 7 *f12¢23 34\ 12023 7 fizt
T[T (z’z’ z’)+r (71370 = T1a 703 ) + 7o (7157 rr)]

1h 2 2
(712 Tty )(T13723 T ) _(T13722 Tty )(T12T13 Tty )

>

2
. T |:T14 (Tmrzs Tl ) TTy (T11733 e ) T7y (T12T13 Ty )]

= 3 >
(712 - TIITZZ)(TISTB _le)_(TISTZZ _TIZTZS)(TIZTIS _711723)

E

2
. T [714 (7132-22 Tty ) T 7y (712713 Ty ) T 7y (7112-22 — T ):I

3n T 2 2
(le Ty )(7132-23 — T ) _(7132-22 Tty )(7122-13 - T”Z'23)

>

H H H H H
_ —2 _ 4 _ 2 _ — 2 _ -
where 7, = Zthh > Ty —Zthw Ty = ZWhﬂzh(X)s T, _ZVthhth’ T3 = ZthhﬁZh (x)a
= = = = P

H H H H
an :ZWh)_‘hJ_’h’ Ty = ZWhS;ZLx:BZh (x), Do :ZthfmJ_’w and 7,, = ZVVhﬂZh (x)yh
o= = ot =

5. Sample Design and Estimation
5.1. Estimation of variance

This section derives the estimator of variance for the Koyuncu and Kadilar (2016) calibration
estimator and the proposed calibration estimator using the large sample approximation (LASAP)
method. Let consider the following equations;
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e, :[_”:Y”J so that y, :Z,(l—i-ehy), e, :()_Ch):(Xh] so that X, :)?h(l—i-ehy),
h h
Shzx_S:x 2 2
e = 5| SO thats, =S, (1+e, ),
hx
By, (x)=B,, (x
e :[%] so that f3,, (x)zBZh (x)(l-i—ehﬂ),
E ehzy):7/hC;y’E(ehzx):7/hC;x’E(eZs):7/hCZs’E(eZﬂ):}/hChzﬂ’

(
E(ehyehx) =7 phyxchychx , E (ehyehs ) =7 physchy Cy» E(ehyehﬂ ) =7 phyﬂchychﬂ >
(

E ehxelm) = V1P O Ci» E(ehxehﬂ) = 7hphxﬂchxchﬂa E(ehsehﬂ ) = 7hphsﬂchsch,3:
X S; B,,(x 11

m, ==L0, ==L ¢ = 2 (%) and yh:(———j.
Y, h n, N,

The parameters are defined wherever they appear as follows:

v, is the sample stratum mean of the study variable.

Yh is the population stratum mean of the study variable.

X, is the sample stratum mean of the auxiliary variable.

X, is the population stratum mean of the auxiliary variable.
s, is the sample stratum variance of the auxiliary variable.
S2

hx

is the population stratum variance of the auxiliary variable.
B (x) is the sample coefficient of kurtosis of the auxiliary variable.

B,, (x) is the population coefficient of kurtosis of the auxiliary variable.

2
Chx

is the coefficient of variation of the auxiliary variable.

C ,i is the coefficient of variation of the auxiliary variable.

Py 18 the correlation coefficient between the auxiliary variable and the study variable.

P 18 the correlation coefficient between the mean and variance of the auxiliary variable.

Py 18 the correlation coefficient between the mean of the study variable and variance of the
auxiliary variable.

Pinp is the correlation coefficient between the mean and coefficient of kurtosis of the auxiliary
variable.

Pivp is the correlation coefficient between the mean of the study variable and coefficient of
kurtosis of the auxiliary variable.

Pisp is the correlation coefficient between the variance and coefficient of kurtosis of the auxiliary

variable.
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5.1.1. Regression estimator
Expressing (2) in terms of the e’s gives

th [ (l+em ) BZA_’hehx].

So that
(¢ -V ]=2w,[Ye,-BX,e, | (20)
Squaring both sides of (20) gives
(4 -FT =S wi[T2e, + B Riek ~2B)T, By, 0] @)
1

Taking expectation of both sides of (21) gives

T}[(ﬁf] = iWZYhZM |: +B m, C}u 2B, 7Py Ci Gy :| (22)
=

5.1.2. Koyuncu and Kadilar calibration estimator
Expressing (9) in terms of the e ’s gives

H — p—
¢ = ;Wh I:Yh (1 e, )_Bthhehx -B,,Se, :|

So that

|:¢2 :| th [Yehv Bth € BZhS}Lrehs] (23)
Squaring both sides of (23) gives
[¢* _)7:|z _ iw Ye, +B; X e +B;,S e —2Y,B, X e, e, —2V,B, Sie, e, )
’ = "|+2B,B,,X,Se, ¢,

Taking expectation of both sides of (24) gives

I}|:¢;:| _ iwj?hz}/h Chz) +B1hmh C/zzx +B§/102612 2B1/zmhp/zx} C/sz 2B2/19/zphsychychx A (25)
h=1 2B1hB2hm/16hphnC/sz
5.1.3. Proposed calibration estimator
Expressing (19) in terms of the e ’s gives
th I:Y (I+e,)— Ble, —B.,S,e, — B3hB2h eh[;’]
So that
|:¢3 :| th I:Yeh‘ B¢, —B,,S.e, — B3hB2h eh[;’] (26)
Squaring both sides of (26) gives
Yle; +B X e +By S, el +BiB], (x)e;, —2Y,X,B e, e,
. s &
|:¢3 _Y:I = Zwi _ZBZththehvehs _2B3thB2h ( )eh € +2B1hB2hXhShvehvehs . @D

+2Bth:h/?hB2h (x) € Cip t 2B2hB3hS2x 24 (x)ehsehﬂ
Taking expectation of both sides of (27) gives
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C, +Bm,C, +B3,0,C; +B;E,C,, —2mB,, p, C, C, —2B;,6,p, C, C,
V4= ZWh 27| =2B3,E By, (%) £, G Cop + 2B, B3,m, 0,0, C, Gy +2B1, By m, &, p, 5, Cs
+2B3,B3,0,&,0,,5C1.Cs
(28)

5.2. Optimality conditions

This section deduced the optimality conditions that would guarantee optimum performance of the
Koyuncu and Kadilar (2016) calibration estimator and the proposed calibration estimator on
satisfaction.

5.2.1. Regression estimator

ov| g
Setting @ =0 so that
Bh
B mh Chx mh phyx Chy Ch.r . (29)
The I}[gél*} in (22) is minimized when
. O
B, =2 (say). (30)
m/z hx

Substituting the value of B,  in (30) in (2), gives the regression calibration asymptotically

h,opt
optimum estimator (CAOE) for population mean in stratified random sampling as
* —_ p ch 2
B =5+ e (31)
m,C

hx

Similarly, substituting the value of B, ,  in (30) for B, in (22), gives the variance of regression

h,opt

calibration asymptotically optimum estimator (CAOE) ¢:{W (or minimum variance of ¢ ) as

V4, = S Wi 2Ck (1-p1, ) (32)
=

5.2.2. Koyuncu and Kadilar (2016) calibration estimator
v v
Setting [¢1] =0, [¢1]
6B1h 6 2h

Blhmhc +B2hm119hphxsc C

hx hx " hs

Blhmhahphmchxchs +B2/16/12 hs = thh)vc C

hy ~hs*

=0 so that

mh phyx Chy Ch.r > (3 3)
(34)
The I}[¢2¢1*] in (25) is minimized when

Co \ Piyx = Piys Pis
Bu = hm(hci, (l—h/yai:) b ), >

and
o (Pus = Puiu)
6,C, (1-2.)

2h

By, (say). (36)
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Substituting the value of B in(35) and B

and Kadilar (2016) calibration asymptotically optimum estimator (CAOE) for population mean in
stratified sampling as

in (36) for B, and B,, in (9), gives the Koyuncu

1h,opt 2h,0pt

Cp (Pix = PiPis) . Co(Piye = PP
m,C,, (l_phzxs) " 0,C,, (l_pixs)
in (35) and B in (36) for B,, and B,, in (25),

4=V, + Moo (37

Similarly, substituting the value of B,, ,

2h,opt
gives the variance of Koyuncu and Kadilar (2016) calibration asymptotically optimum estimator

(CAOE) ¢, ,, (or minimum variance of ¢,) as

- * g . 1+ 2p ’\'p VS’OU(S - pZVX - pZVS - pz\”s
Vo |= 2 WirYiCh, B e (38)
h=1 (1 - ph.xs )

5.2.3. Proposed calibration estimator

o] ole]_ ole]
a * — Y * - Y *

Setting =0, respectively, gives the following system of
1h 24 0B;,
equations
m/? I12x mhehphxschxchs mhéhphxﬁc C B:h mhpthC Chx
mh 9/1 phxs Chx Chs 92 C:v ah é:h phvﬂ Chs C B2h = eh phys Ch) Chs (39)
mhéghphxﬂ Chxchﬂ 0, §hphsﬂChsC iﬁ W B, ghphyﬂ Ch} Chﬂ
The ¥[¢; | in (28) is minimized when
c _phyx t P Prsp Piys T Pis Prsp Py ]
hy 2
. “PuspPrx = Phxs Piys ~ PrepPryp .
By, = = - — = =Bl (59). (40)
m,C,, |:1 + 2P P Prsp ~ Pis ~ Plopp — phsﬁ]
C _ph}v +phxvphxﬂphyﬂ +phxﬁphsﬂphyx_
hy
pmﬁph s~ PhspPuyp = Phxs Phyx
By, = - - = =B}, (s9), (41)
6,C,, |:1 + 204 PhuepPrsp ~ phxs phxﬂ phsﬁ]
and
ph)ﬂ + ph)c\‘phvﬂph}x + phxsphxﬂphys
hy
. ph)nph B~ PiepPiyx = Phsp Phys B
B, = - - - s (50). (42)

¢3Chﬂ |:1+2phxsphxﬁphsﬂ phxs phxﬂ phsﬁ:l

Substituting the value of B, o 10 (40); B}, o 0 (41) and B;, o 10 (42) for B,,, B, and B}, in

(19), gives the proposed calibration asymptotically optimum estimator (CAOE) for population mean
in stratified sampling as
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phyx + plvcﬂphsﬁ phys + phxs phsﬂphyﬂ
hy 2
_phsﬁphyx - phxsphys - phsﬂphxﬂ

* —
¢3,opt = yst lulO

m,C,, I:l +2p0,, PrepPrsp ~ phzxs - p}fxﬁ - plfsﬂ:|

_phys t PuepsPuspPux t Phs Picp Piyp ]
__p;xﬂphys _ph.xﬁphyﬁ _phxsphyx i
3 B > Ao
0,C,, |:1 + 2phxsphxﬂphsﬁ‘ ~ Pixs T Pip ~ phxﬂ:|

G,

1y

+

phyﬂ + phxsphsﬂphyx + phxsphxﬁphys

hy
’ _pixsphyﬂ - phxﬂphyx - phsﬁphys

& Chﬂ |:1 + thmphrﬂphsﬂ - p:xx - p}zucﬂ - p/iﬁ :|

. (43)

* * *

Similarly, substituting the value of B, ,, in(40); B,, , in(41)and B,, , in(42) for B,,, B},

and B;, in (28), gives the variance of the proposed calibration asymptotically optimum estimator

(CAOE) ¢, ,, (or minimum variance of #;) as

% |:¢3* » ] _ i WYy, C2 [l + bf;,npz :’_b;i,upl + b;in*pl - Q;bl*h,nplphxy - 2f;h,0ptlf7hﬁy - 2b3*/1,npl Prpy ' (44)
’ h=1 ) +2b1h,0ptb2h,0ptphxx + 2b1h,npzb3h,npzphxﬂ + 2b2h,0plb3h,np[ Phsp
where
[phyx + P PrspPuys t Pixs Phsp Pryp ] |:phys  PipPrspPyx T Pixs Pixp Py
_— _pliﬂphyx = P Prys ~ PhspPisp | __— _pixﬂphys = PhuspPrvp ~ Phxs Pinx
e [1 + 20 PuepPrsp — phzxs - Piﬂ - pf,yﬂ:| Coe |:1 + 200 PrepPrsp — Pim - p}fx/)’ - p/i/f] ’
[phyﬂ t Pes PhspPryx t Pixs Prep Prys ]
o PePis — PaasPrr — Pios P
3hopt

[1 + 20 PrpPrsp — ,0;; - Pﬁxﬁ - p;sﬂ :' .

6. Empirical Study

To judge the relative performances of the proposed calibration estimator over members of its class
in stratified sampling, the data set in Table 1 was considered. Two measuring criteria; variance and
percent relative efficiency (PRE) were used to compare the performance of each estimator.

The percent relative efficiency (PRE) of an estimator (say («) ) with respect to the conventional

regression estimator in stratified sampling (ﬂ*) is defined by

PRE[ a4 |= I;[[i% x100, V|4, |=3883.9883, V|4, | =3050.5208, and

V]4.,, |=24203462,
The percent relative efficiency of the conventional calibration regression estimator in stratified

random sampling (ﬁ*), Koyuncu and Kadilar (2016) calibration regression estimator in stratified
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sampling (¢; ) and the proposed calibration regression estimator in stratified random sampling (¢; )

with respect to ((4*) is presented in Table 2.
phsﬂ

Table 1 Data Statistics

Parameter Stratum 1 Stratum 2 Stratum 3
N, 52.0000 76.0000 82.0000
n, 15.0000 20.0000 28.0000
X 6.8130 10.1200 7.9670
h
}7/1 417.3300 503.3750 340.0000
S/zzx 15.9712 132.6600 38.4380
Shzy 74775.4670 259113.7000 65885.6000
S 1007.6547 5709.1629 1404.7100
7, 0.2308 0.1868 0.1307
o 0.7030 0.7380 0.8050
1yx
o 0.8020 0.7610 0.8260
s
Pip 0.8600 0.7640 0.7260
Do 0.7140 0.8120 0.7420
Pp 0.8200 0.8030 0.7820
Pup 0.8360 0.8460 0.8120

Table 2 Performance of estimators

Estimator Variance PRE (a, ¢ )
¢1* 3883.9883 100.0000
¢2 3050.5208 127.3221
¢3* 2420.3462 160.4724

Numerical results for the percent relative efficiency (PREs) in Table 2 reveals that the proposed

calibration estimator (¢: ) has 60 percent gains in efficiency while the Koyuncu and Kadilar (2016)
calibration estimator (@*) has 27 percent gains in efficiency; this shows that the proposed calibration
estimator (¢; ) is 33 percent more efficient than the Koyuncu and Kadilar (2016) calibration estimator

((Ig ) This means that in using our proposed calibration estimator (¢: ) (and by extension the new
calibration weights) one will have 33 percent efficiency gain over the Koyuncu and Kadilar (2016)
calibration estimator (@* ) This result proves the robustness of the newly introduced calibration

constraint.
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7. Conclusions

This study derives new calibration weights in stratified random sampling using information from
four parameters of the same auxiliary variable and proposes a more improved calibration estimator.
Theoretical variance expression under large sample approximation is derived for the proposed
estimator and the Koyuncu-Kadilar (2016) calibration estimator. Calibration asymptotic optimum
estimator (CAOE) and its approximate variance estimator are derived for the proposed calibration
estimator and the Koyuncu and Kadilar (2016) calibration estimator.

Numerical results showed that at the same optimum conditions the proposed estimator (¢3) is

highly efficient than the Koyuncu and Kadilar (2016) calibration estimator (¢:) and by extension the

Tracy et al. (2003) calibration estimator in stratified random sampling [since the Koyuncu and Kadilar

(2016) calibration estimator (@*) is always more efficient than the Tracy et al. (2003) calibration

estimator [see Koyuncu and Kadilar (2016) for detail]. It is observed that the new calibration estimator

(@ ) is very attractive and should be preferred in practice as it provides consistent and more precise

parameter estimates than existing calibration estimators in stratified random sampling.
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