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Abstract 

Calibration weighting is the formulation of calibration constraints with respect to a given distance 

measure to obtain expression of calibration weights in order to improve the efficiency of the study 

variable. In this paper, the effect of multi-parametric calibration weightings on the precision of 

estimators of mean under the stratified random sampling is examined. The results showed that at the 

same optimum conditions, calibration estimators with more parametric auxiliary information are more 

precise and highly efficient than calibration estimators with less parametric auxiliary information. 

______________________________ 

Keywords:  Calibration constraints, calibration weights, large sample approximation, highly efficient, 
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1. Introduction 

Calibration estimation is a method that uses auxiliary variable(s) to adjust the original design 

weights to improve the precision of survey estimates of population or subpopulation parameters. The 

process of adjustment is called calibration (Deville and Sarndal 1992).    

In calibration estimation theory, calibration weights are chosen to minimize a given distance 

measure (or loss function) while satisfying constraints related auxiliary variable information. The 

calibration constraint(s) provide(s) additional information which help to increase the efficiency of the 

estimation of the population parameter(s) of interest. Calibration estimators in sampling theory often 

used population information of the auxiliary variable such as the total, mean and variance to formulate 

the constraint(s). The aim is to obtain optimum calibration weights that would improve the precision 

of survey estimates of the population parameter(s) of interest.  

The formulation of the calibration constraints with respect to a given distance measure to obtain 

expression of calibration weights in order to improve the efficiency of the study variable is called 

calibration weighting. Deville and Sarndal (1992) introduced the concept of calibration estimation in 

survey sampling.  They used both univariate and multivariate auxiliary information to derive 

weighting system (calibration weights) with the aid of a distance measure and a set of calibration 

equations (calibration constraints). They noted that for every distance measure there is a corresponding 

set of calibrated weights and a calibration estimator. Hence, the efficiency of the resulting calibration 
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estimator depends on the strength of the formulated calibration constraints. Many authors have defined 

some modified calibration estimators in survey sampling using univariate auxiliary information 

(univariate calibration weightings). A few key references include (Singh et al. 1998, Kim et al. 2007, 

Koyuncu and Kadilar 2013, Clement et al. 2014, 2015, Clement and Enang 2015a, 2017, Clement 

2015, 2017a, 2017b and Enang and Clement 2020). 

Equally, many authors have used multivariate auxiliary information (multivariate calibration 

weightings), to propose improved calibration estimators.  Work in this aspect include (Rao et al. 2012, 

Clement and Enang 2015b) among others.  Multivariate calibration weightings is the use of the same 

parameter of two or more auxiliary variables in formulating calibration constraints. 

In the progression to improve calibration estimation, Tracy et al. (2003) introduced the concept 

of multi-parametric calibration weightings in calibration estimation. Multi-parametric calibration 

weightings is the formulation of calibration constraints with respect to a given distance measure to 

obtain expression of calibration weights using information from two or more parameters of the same 

auxiliary variable. Work in this aspect include (Tracy et al. 2003, Koyuncu and Kadilar 2014, 2016, 

and Clement 2018). 

Tracy et al. (2003) proposed improved calibration estimator of population mean using two 

parameters (mean and variance) of the same auxiliary variable to formulate calibration constraints. 

Koyuncu and Kadilar (2016) advocated a modification to the Tracy et al. (2003) calibration estimator 

by introducing new constraints involving three parameters (mean, variance and a combination of the 

design and calibration weights) of the same auxiliary variable and proposed a more efficient 

calibration estimator than the Tracy et al. (2003) calibration estimator. 

It has been observed that the use of parameters of the same auxiliary variable to formulate 

calibration constraints gives more precise and efficient calibration estimators than the use of different 

auxiliary variables or different parameters of different auxiliary variables. In the present study, a new 

improved calibration estimator of population mean is proposed under new calibration constraints using 

auxiliary information of four parameters (mean, variance, coefficient of kurtosis and a combination of 

the design and calibration weights) of the same auxiliary variable. The choice is obvious; coefficient 

of Kurtosis and its functions are unaffected by extreme values or the presence of outliers. Further, it 

always has strong correlation with other population parameters like the mean and variance.   

 

2. Basic Definitions and Notations 

Consider a finite population  1 2, , , NU U U U   of size .N  Let X  and Y  denote the auxiliary 

and study variables taking values iX and ,iY  respectively on the thi unit  1,2, ,iU i N  of the 

population. It is assumed that  , 0,i ix y   (since survey variables are generally non-negative) and 

information on the population mean ( )X  of the auxiliary variable X  is known. Let a sample of size 

n  be drawn by simple random sampling without replacement (SRSWOR) based on which we obtain 

the means ( )x  and ( )y  for the auxiliary variable X  and the study variable .Y  

Let the population (  1 2, , , NU U U U   of size ( N )) be divided into H  strata with hN  units in 

the thh  stratum from which a simple random sample of size hn  is taken without replacement. The 

total population size be 
1

H

h
hN N



   and the sample size 
1

,
H

h
h

n n


   respectively. Associated with the 

thi  element of the thh  stratum are hiy  and hix  with 0hix   being the covariate; where hiy  is the y  
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value of the thi  element in stratum ,h  and hix  is the x  value of the thi  element in stratum ,h

1,2, ,h H   and  1,2, ., hi N   

For the thh  stratum, let h
h

N
W

N
  be the stratum weights and h

h

h

n
f

N
  the sample fraction. Let 

the thh  stratum means of the study variable Y  and auxiliary variable ,X  
1 1

;
h hN

hi hi
h

n

i
h

ih h

y x
y x

n n 

 
  

 


be the unbiased estimator of the population mean, 
1 1

;
hhN N

hi hi
h h

ih hi

y x
XY

N N 

 
  

 
  of Y  and X  

respectively, based on hn  observations.  

 
22

1

1
,

1

h

i

N

hx hi hi
ih

S x X
N 

 

   

22

1

1
,

1

hN

hy h h
ih

Y
N

yS


 

  

1h
st

H

h hy yW


   

  
1

1
,

1

h

i

N

hx y hi hi h h
ih

S x X y Y
N 

  

     

1

1

1

h

i j

N

hx x hi hi hj hj
ih

S x X x X
N 

  

   

and ,
1

.
H

i st h
h

hix xW


   Let 
1

1
,

h

h hi

h

n

i

x x
n 

    
22

1

1
,

1

hn

hx hi h
ih

S x x
n 

 

  

1

1
,

h

h hi

h

n

i

y y
n 

   

 
22

1

1

1

hn

hy hi h
ih

S y y
n 

 

  denote the sample means and variances for the auxiliary variable and study 

variable, respectively. 

 

3. Review of Some Existing Estimators 

This section gives a summary of some existing estimators under the stratified random sampling 

design with their variance expressions that would be considered for modifications in the study. 

 

3.1. Regression estimator 

The conventional regression estimator of population mean in stratified random sampling design 

is defined by Cochran (1977) as 

  1 ,st sty b X x     (1) 

where 
1h

st

H

h hy yW


   and 
1h

st

H

h hx xw


   are the Horvitz-Thompson-type estimators, 1

2

1

H

h h h

H

h h
h

h

w

b

w

x y

x









 

is the regression coefficient and hw  are design weights. In calibration estimation, this estimator is 

modified as: 

 * * *
1 10 ,st hy B    (2) 
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where 
1h

st

H

h hy yW


  and 
1h

st

H

h hx xw


   are the Horvitz-Thompson-type calibration estimators,

*

* 1

* 2

1

H

h h h
h

h H

h h
h

w

B

w

x y

x









 is the regression coefficient, *

hw  are calibration weights and  *
10

1

.
H

h h h
h

Xw x


   

 

3.2. Koyuncu and Kadilar estimator 

Koyuncu and Kadilar (2016) considered the following calibration estimator in stratified random 

sampling: 

 
1

1 .Ωh h

H

h

y


   (3) 

Using the chi-square loss functions of the form, 

  
 

2

1

Ω
,Ω .

H
h h

h h
h h h

W
L W

W Q


   (4) 

Subject to the calibration constraints defined by 

 
1 1

,Ωh h h h

H H

h h

Wx X
 

   (5) 

 
1

2 2

1

,Ω
H

h hx

H

x
h

h
h

hs W S
 

   (6) 

 
1 1

Ω .
H H

h
h h

h

W


   (7) 

The calibration weights are obtained as 

  2
1 2 3Ω .h h h h h hxxW W Q s       (8) 

Substituting (8) in (5), (6) and (7), respectively and solving the resulting system of equations gives 

the values of the lambdas. On substituting the lambdas in (8) and the resulting equation in (3), Koyuncu 

and Kadilar (2016) obtained their calibration regression estimator as: 

 1 1 10 2 20Β Β ,st h hy      (9) 

where 
1h

st

H

h hy yW


   is the Horvitz-Thompson-type estimator; 1Β h  and 2Β h  are coefficients of 

regression and are given by 

22 13 12 23
1 2

11 22 12

Β ,h

   

  





 11 23 12 13

2 2
11 22 12

Β h

   

  





 

where 2 4
11 2

1
2

1

, ,
H

h
h

H

h h hx
h

w w sx 
 

   2
13 12

1 1

, ,
H H

h h h h h hx
h h

w wx x sy 
 

      

    2 2 2
23 10

1
2

1
0

1

, ,
H

h hx h h h h h hx h

H

hh h
x

H

w s w x S sX wy  
 

        (See Koyuncu and Kadilar (2016) for 

detail). 
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4.  Proposed Estimator 

This paper considers a new calibration estimator of population mean in stratified random sampling 

design as 

 *
2

1

,
H

h h
h

yW


  (10) 

where *
hW  are calibration weights, using the chi-square loss functions  

 
 

2*

*

1

, ,
H

h h

h h
h h h

W W
L W W

W Q


   

and subject to the following calibration constraints 

 
1 1

* .
H

h
h

h
h

H

h hW Wx X
 

   (12) 

 2

1

* 2

1

.
H

h hx h hx

H

h h

W s W S


   (13) 

    *
2 2

1 1

.
H H

h h h h
h h

W x W B x
 

   (14) 

 
1 1

* .
h

H

h

H

h hW W


   (15) 

The Lagrange function is given by 

 
 

2*

* * * * 2 2
1 2

1 1` 11

Ω 2 2
H H

h h

H H H
h h

h h h h h hx h hx
h h hh h

W W
W W W s W

W Q
x X S 

   

    
       

   
     

    * * * *
3 2 2 4

1 1 1 1

2 2
H H H H

h h h h h h
h h h h

W x W B x W W  
   

   
      

   
     (16) 

Minimizing the chi-square loss functions (11) subject to the calibration constraints ((12), (13), 

(14), (15)) gives the calibration weights for stratified random sampling as follows 

   * * * 2 * *
1 2 3 2 4 .h h h h h hx hW W W Q s xx          (17) 

Substituting (17) into (12), (13), (14), and (15), respectively gives the following system of equations 

 

*
1011 12 13 14 1

*
2021 22 23 24

*
31 32 33 34 30

*
41 42 43 44

2

3

404

.

    

    

    

    

    
    
     
    
    

        

 (18) 

Solving the system of equations in (18) for * ’s gives 

     
     

2
1 2 3 4 2 5 4 6 1 5 4 9 2 4 7*

1 2 2 2
2 5 4 6 5 4 8 2 4 7

,
              


         

    


   
 

     
    

2
1 5 4 9 2 6 5 7 2 3 1 7 5 4 8*

2 2 2
2 5 4 6 5 4 8 2 4 7

2 ,
              


         

    


   
 

     
    

2
1 5 4 9 2 5 4 6 1 2 3 4 5 4 8*

3 2 2 2
2 5 4 6 5 4 8 2 4 7

,
              


         

    

   
  
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       
    

2
1 2 3 4 1 5 4 9 2 6 5 7 2 4 7*

2 2 2
2 5 4 6 5 4 8 2

4

4 7

              


         

   

 




 
 

where 

1 12 10 11 20 ,      2 12 13 11 23 ,      3 13 10 11 30 ,      2
4 12 11 22      

5 12 14 11 24 ,      6 13 14 11 34 ,       2
7 13 11 33 ,      2

8 14 11 44      and 9 11 10    

and 

2
11

1

,h

H

h
h

hxW Q


  4
22

1

,
H

h h hx
h

W Q s


   2
33 2

1

,
H

h h h
h

W Q x 


 ,
1

44

H

h
h hW Q





 
1

2
12 13 2

1

, ,h h h hx h h h h

H H

h h

W Q s Qx xW x  
 

  
1

14 ,
H

h h h
h

xW Q


   2
23 2

1

,
H

h h hx h
h

W Q s x 


 

2
24

1

,h h h

H

h
xW Q s



   34 2
1

,
H

h h h
h

W Q x 


   
1

10 ,h h h

H

h

W xX


   2 2
20

1

,
H

h hx hx
h

W S s


   

   30 2 2
1

H

h h h
h

W B x x 


     and 40 0.   

Substituting the * s in (16) and the resulting equation in (10) while setting, 1,hQ   gives the proposed 

calibration regression estimator of population mean in stratified random sampling as follows 

 * * *
2 1 10 2 20 3 30st h h hy B B B        (19) 

where 
1h

st

H

h hy yW


   is the Horvitz-Thompson-type estimator * *
1 2,h hB B  and *

3hB are the coefficients of 

regression and are given by 

     

       

2
12 14 22 33 23 24 13 23 12 23 34 12 23 13 22*

1 2 2
12 11 22 13 23 12 13 22 12 23 12 13 11 23

,hB
              

             

      

    
  

     

     

2
12 14 13 23 12 33 24 11 33 13 34 12 13 11 23*

2 2 2
12 11 22 13 23 12 13 22 12 23 12 13 11 23

,hB
              

             

      

    
  

     
     

2
12 14 13 22 12 23 24 12 13 11 23 34 11 22 12*

3 2 2
12 11 22 13 23 12 13 22 12 23 12 13 11 23

,hB
              

             

      

    
  

where 2
11

1

,h h

H

h

W x


  4
22

1

,h hx

H

h

W s


 2
33 2

1

( ),
H

h h
h

W x 


  2
12

1

,h h h

H

h
xW x s



  13 2
1

,h h h

H

h

xW x 


   

1
14 ,h

h
h h

H

x yW


   2
23 2

1

,
H

h hx h
h

W s x 


   2

1
24 ,h h

h
x h

H

W s y


  and  34 2
1

.
H

h h h
h

W x y 


  

 

5. Sample Design and Estimation  

5.1. Estimation of variance 

This section derives the estimator of variance for the Koyuncu and Kadilar (2016) calibration 

estimator and the proposed calibration estimator using the large sample approximation (LASAP) 

method. Let consider the following equations;  
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h h
hy

h

y

Y

Y
e

 
  
 

 so that  1 ,h h hyy Y e   h h
hx

h

x

X

X
e

 
  
 

 so that  1 ,h h hyx X e   

2 2

2

hx hx
hs

hx

s S
e

S

 
  
 

 so that  2 2 1 ,hx hx hss S e    

   
 

2 2

2

Β

Β

h h

h

h

x x
e

x


 
   
 

 so that     2 2Β 1 ,h h hx x e     

       2 2 2 2 2 2 2 2, , , ,hy h hy hx h hx hs h hs h h hE e C E e C E e C E e C         

 hy hx h hyx hy hxE e e C C  ,   ,hy hs h hys hy hsE e e C C     ,hy h h hy hy hE e e C C      

  ,hx hs h hxs hx hsE e e C C       ,,hx h h hx hx h hs h h hs hs hE e e C C E e e C C           

 2
2, , hh hx

h h h

h h h

X B

Y Y

x
m

Y

S
     and 

1 1
.h

h hn N


 
  
 

 

The parameters are defined wherever they appear as follows: 

hy  is the sample stratum mean of the study variable. 

hY  is the population stratum mean of the study variable. 

hx  is the sample stratum mean of the auxiliary variable. 

hX  is the population stratum mean of the auxiliary variable. 

2
hxs  is the sample stratum variance of the auxiliary variable. 

2
hxS  is the population  stratum variance of the auxiliary variable. 

 2h x  is the sample coefficient of kurtosis of the auxiliary variable. 

 2Β h x  is the population coefficient of kurtosis of the auxiliary variable. 

2
hxC  is the coefficient of variation of the auxiliary variable. 

2
hyC  is the coefficient of variation of the auxiliary variable. 

hxy  is the correlation coefficient between the auxiliary variable and the study variable. 

hxs  is the correlation coefficient between the  mean and variance of the  auxiliary variable. 

hys  is the correlation coefficient between the mean of the study variable and variance of the 

auxiliary variable. 

hx  is the correlation coefficient between the mean and coefficient of  kurtosis of the auxiliary 

variable.  

hy  is the correlation coefficient between the mean of the study variable and coefficient of 

kurtosis of the auxiliary variable. 

hs  is the correlation coefficient between the variance and coefficient of kurtosis of the auxiliary 

variable. 
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5.1.1. Regression estimator 

Expressing (2) in terms of the e’s gives 

 * *
1

1

1 .
H

h h hy h h hx
h

w e BY X e


      

So that 

 * *
1 .h h hy h h hxY w e BY X e        (20) 

Squaring both sides of (20) gives 

 
2* 2 2 2 *2 2 2 *

1
1

Β 2Β ].
H

h h hy h h hx h h h hy hx
h

Y XY e e eY eXw


         (21) 

Taking expectation of both sides of (21) gives 

 * 2 2 2 *2 2 2 *
1

1

.ˆ Β 2Βh h h hy h h hx h h hxy hx hy

H

h

V w C m CY m C C  


          (22) 

 

5.1.2. Koyuncu and Kadilar calibration estimator 

Expressing (9) in terms of the e ’s gives 

 
1

* 2
2 1 21 Β Β .

H

h
h h hy h h hx h hx hsw e e SY eX



       

So that 

 * 2
2 1 2

1

Β .Βh h hy h h h h hx hs

H

h
xY XY w e e S e



         (23) 

Squaring both sides of (23) gives 

 

2 2 2 2 2 2 4 2 2
2 1 2 1 2* 2

2 2
1 1 2

Β Β 2 Β 2 Β
.

2Β Β

H
h hy h h hx h hx hs h h h hy hx h h hx hy hs

h
h h h h hx hx hs

e e S e Y e e Y S e e
Y w

Y X X

S e eX




 
 
 

   
  

 
       (24) 

Taking expectation of both sides of (24) gives 

 
2 2 2 2 2 2 2

1 2 1 2* 2 2
2

1 21

Β Β 2Β 2Β
ˆ .

2Β Β

hy h h hx h h hs h h hxy hx hy h h hsy hy hs

h h h

h h h h

H

h hxs hx hs

C m C C m C C C C
V w

m C
Y

C

   
 

 

   
   



 
 
  

   (25) 

 

5.1.3. Proposed calibration estimator 

Expressing (19) in terms of the e ’s gives 

 * * * 2 *
3 2 3 2

1
1(1 ) Β .h h hy h hx h hx hs h h

H

h
hYw e B e B S e B x e 



        

So that 

  * * * 2 *
3 1 2 3 2

1

Β .
H

h h hy h hx h hx hs h h h
h

Y w e B e S e x eY B B 


            (26) 

Squaring both sides of (26) gives 

 

 

 

   

2 2 *2 2 2 *2 4 2 *2 2 2 *
1 2 3 2 1

2* 2 * 2 * * * 2
3 2 3 2 1 2

* * * * 2
1 3 2 2 3

1

2

Β Β Β Β 2 Β

2Β 2Β Β 2Β Β

2Β Β Β 2Β Β Β

h hy h h hx h hx hs h h h h h h hy hx

h h h hx hy hs h h h hy h h h h hx hy hs

h h h h hx h h h hx

H

h hs h

h

e e S e x e Y e e

Y w S e e x e e S e

Y X X

Y Y e

x e

X

X e S x e e





 




   

 

 
 
 
 
  

     

 

 .      (27) 

Taking expectation of both sides of (27) gives 
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 

2 *2 2 2 *2 2 2 *2 2 2 * *
1 2 3 1 2

* 2 2 * * * * *
3 3 2 1 2 1 3

* *
2 3

Β Β Β ξ 2 Β 2Β

ˆ 2Β Β 2Β Β 2Β Β ξ

2Β Β θ

hy h h hx h h hs h h h h h hxy hy hx h h hsy hy hs

h h h h h h h y hy h h h h h hxs hx hs h h h h hx hx h

h h h h hs hs h

C m C C C m C C C C

V w x C C m C C m CY C

C C



   

 

   

      

 

    

    

 
 














1

H

h





  

  (28) 

 

5.2. Optimality conditions 

This section deduced the optimality conditions that would guarantee optimum performance of the 

Koyuncu and Kadilar (2016) calibration estimator and the proposed calibration estimator on 

satisfaction.  

 

5.2.1. Regression estimator 

Setting 

*
1

*

ˆ

Β
0

h

V   


  so that 

 * 2 2Β .h h hx h hyx hy hxm C m C C               (29) 

The *
1V̂     in (22) is minimized when 

  * *
,Β Β .

hyx hy

h h opt

h hx

C
say

m C


                (30) 

Substituting the value of *
,Βh opt  in (30) in (2), gives the regression calibration asymptotically 

optimum estimator (CAOE) for population mean in stratified random sampling as 

 *
1 10 .

hyx hy

st

h hx

C
y

m C


    (31) 

Similarly, substituting the value of *
,Βh opt  in (30) for *Βh  in (22), gives the variance of regression 

calibration asymptotically optimum estimator (CAOE) *
1,opt  (or minimum variance of *

1 ) as 

  * 2 2 2
1,

1

2ˆ 1 .
H

hopt h h hy hxy
h

YV w C  


     


 (32) 

 

5.2.2. Koyuncu and Kadilar (2016) calibration estimator 

Setting 
 1

1

ˆ

Β
0,

h

V 


  

 1

2

ˆ

Β
0

h

V 


  so that 

 2 2
1 2Β Β ,h h hx h h h hxs hx hs h hyx hy hxm C m C C m C C     (33) 

 2 2
1 2Β Β .h h h hxs hx hs h h hs h hys hy hsm C C C C C       (34) 

The *
2 1V̂      in (25) is minimized when 

 
 

 
 1 1 ,2

Β Β .
1

hy hyx hys hxs

h h opt

h hx hxs

C
say

m C

  




 


              (35) 

and 

 
 

 
 2 2 ,2

Β Β .
1

hy hys hyx hxs

h h opt

h hs hxs

C
say

C

  

 


 


             (36) 
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Substituting the value of   1 ,Β h opt  in (35) and 2 ,Β h opt  in (36) for  1Β h  and 2Β h  in (9), gives the Koyuncu 

and Kadilar (2016)  calibration asymptotically optimum estimator (CAOE) for population mean in 

stratified sampling as 

 
 

 
 

 
*
2 10 202 21 1

.
hy hyx hys hxs hy hys hyx hxs

st

h hx hxs h hs hxs

C C
y

m C C

     
  

  

 
  

 
 (37) 

Similarly, substituting the value of 1 ,Β h opt  in (35) and 2 ,Β h opt  in (36) for 1Β h  and 2Β h  in (25), 

gives the variance of Koyuncu and Kadilar (2016) calibration asymptotically optimum estimator 

(CAOE) 2,opt  (or minimum variance of 2 ) as 

 
 

2 2 2

* 2 2 2
2, 2

1

1 2
.

1

H
hyx hys hxs hyx hys hxs

opt h h h hy
h hxs

V w Y C
     

 


    
       




 (38) 

 

5.2.3. Proposed calibration estimator 

Setting 

* * *
3 3 3

* * *
1 2 3

0, 0, 0,
Β Β Βh h h

v v v                
  

  

 respectively, gives the following system of 

equations 

 

2 2 *
1

2 2 *
2

2 2 *
3

ξ Β

Β

ξ

.

Β

h hx h h hxs hx hs h h hx hx h h h hyx hy hx

h h hxs hx hs h hs h h hs hs h h h hys hy hs

h h hx hx h h h hs hs h h h h h hy hy h

m C m C C m C C m C C

m C C C C C C C

m C C C C C C C

 

 

      

   

       

      

     
     

     
     

    

 (39) 

The *
3v   


 in (28) is minimized when 

  
2

* *
1 1 ,2 2 2

Β Β ,
1 2

hyx hx hs hys hxs hs hy

hy

hs hyx hxs hys hx hy

h h opt

h hx hxs hx hs hxs hx hs

C

say
m C

   

  

   

      

     

     

 

  


 
 

     

               (40) 

  
2

* *
2 2 ,2 2 2

Β Β ,
1 2

hys hxs hx hy hx hs hyx

hy

hx hys hs hy hxs hyx

h h opt

h hs hxs hx hs hxs hx hs

C

say
C

   

  

   

      

     

      

 

 
 

 
 

  

     

            (41) 

and 

  
2

* *
3 3 ,2 2 2

3

Β Β .
1 2

hy hxs hs hyx hxs hx hys

hy

hxs hy hx hyx hs hys

h h opt

h hxs hx hs hxs hx hs

C

say
C

  

  

    

      

     

      

 

  


    

 
 




 




            (42) 

Substituting the value of  *
1 ,Β h opt  in (40); *

2 ,Β h opt  in (41) and  *
3 ,Β h opt  in (42) for *

1Β ,h  *
2Β h  and *

3Β h  in 

(19), gives the proposed calibration asymptotically optimum estimator (CAOE) for population mean 

in stratified sampling as 
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2

*
3, 102 2 21 2

hyx hx hs hys hxs hs hy

hy

hs hyx hxs hys hs hx

opt st

h hx hxs hx hs hxs hx hs

C

y
m C

   

  

   

      

     
 

     

  

 
 
  

 
     

  

2

202 2 21 2

hys hx hs hyx hxs hx hy

hy

hx hys hs hy hxs hyx

h hs hxs hx hs hxs hx hs

C

C

   

  

   

      

     


      

 

 

 
 

  
     

 

2

302 2 2
.

1 2

hy hxs hs hyx hxs hx hys

hy

hxs hy hx hyx hs hys

h h hxs hx hs hxs hx hs

C

C

  

  

    

      

     


      

 
 
 

 

  


    




 (43) 

Similarly, substituting the value of *
1 ,Β h opt  in (40); *

2 ,Β h opt  in (41) and  *
3 ,Β h opt  in (42) for *

1Β ,h
*
2Β h

and *
3Β h  in (28), gives the variance of the proposed calibration asymptotically optimum estimator 

(CAOE) 3,opt  (or minimum variance of *
3 ) as 

*2 *2 *2 * * *
1 , 2 , 3 , 1 , 2 , 3 ,* 2 2

3, * * * * * *
1 , 2 , 1 , 3 ,

2

1 2 , 3 ,

1 2 2 2
ˆ

2
.

2 2

h opt h opt h opt h opt hxy h opt hsy h opt h y

opt h h hy

h opt h opt hxs h opt h opt hx h opt h op

H

th h

h

s

b b b b b b
V Yw C

b b b b b b



 

  
 

  

     


 
 
 

 
  




           (44) 

where 

2

*
1 , 2 2 2

,
1 2

hyx hx hs hys hxs hs hy

hs hyx hxs hys hs hx

h opt

hxs hx hs hxs hx hs

b

   

  

   

      

     

     

  

  

 

 
 

  






 

2

*
2 , 2 2 2

,
1 2

hys hx hs hyx hxs hx hy

hx hys hs hy hxs hyx

h opt

hxs hx hs hxs hx hs

b

   

  
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6. Empirical Study 

To judge the relative performances of the proposed calibration estimator over members of its class 

in stratified sampling, the data set in Table 1 was considered. Two measuring criteria; variance and 

percent relative efficiency (PRE) were used to compare the performance of each estimator. 

The percent relative efficiency (PRE) of an estimator (say ( ) ) with respect to the conventional 

regression estimator in stratified sampling  *
1  is defined by 

 

*
1*

1

ˆ
, 100,

ˆ

V
PRE

V


 



        *
1,

ˆ 3883.9883,optV      *
2,

ˆ 3050.5208,optV      and

*
3,

ˆ 2420.3462.optV      

The percent relative efficiency of the conventional calibration regression estimator in stratified 

random sampling  *
1 ,  Koyuncu and Kadilar (2016) calibration regression estimator in stratified 



666                                                                   Thailand Statistician, 2022; 20(3): 655-668 

sampling  *
2  and the proposed calibration regression estimator in stratified random sampling  *

3  

with respect to  *
1  is presented in Table 2. 

hs  

 

Table 1 Data Statistics 

Parameter Stratum 1 Stratum 2 Stratum 3 

hN  52.0000 76.0000 82.0000 

hn  15.0000 20.0000 28.0000 

hX  6.8130 10.1200 7.9670 

hY  417.3300 503.3750 340.0000 

2
hxS  15.9712 132.6600 38.4380 

2
hyS  74775.4670 259113.7000 65885.6000 

hxyS  1007.6547 5709.1629 1404.7100 

h  0.2308 0.1868 0.1307 

hyx  0.7030 0.7380 0.8050 

hys  0.8020 0.7610 0.8260 

hy  0.8600 0.7640 0.7260 

hxs  0.7140 0.8120 0.7420 

hx  0.8200 0.8030 0.7820 

hs  0.8360 0.8460 0.8120 

 

Table 2 Performance of estimators 

Estimator Variance  1
*,PRE    

*
1  3883.9883 100.0000 

*
2  3050.5208 127.3221 

*
3  2420.3462 160.4724 

 

Numerical results for the percent relative efficiency (PREs) in Table 2 reveals that the proposed 

calibration estimator  *
3  has 60 percent gains in efficiency while the Koyuncu and Kadilar (2016) 

calibration estimator  *
2  has 27 percent gains in efficiency; this shows that the proposed calibration 

estimator  *
3  is 33 percent more efficient than the Koyuncu and Kadilar (2016) calibration estimator 

 *
2 .  This means that in using our proposed calibration estimator  *

3  (and by extension the new 

calibration weights) one will have 33 percent efficiency gain over the Koyuncu and Kadilar (2016) 

calibration estimator  *
2  This result proves the robustness of the newly introduced calibration 

constraint. 
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7.  Conclusions  

This study derives new calibration weights in stratified random sampling using information from 

four parameters of the same auxiliary variable and proposes a more improved calibration estimator. 

Theoretical variance expression under large sample approximation is derived for the proposed 

estimator and the Koyuncu-Kadilar (2016) calibration estimator. Calibration asymptotic optimum 

estimator (CAOE) and its approximate variance estimator are derived for the proposed calibration 

estimator and the Koyuncu and Kadilar (2016) calibration estimator. 

Numerical results showed that at the same optimum conditions the proposed estimator  *
3  is 

highly efficient than the Koyuncu and Kadilar (2016) calibration estimator  *
2  and by extension the 

Tracy et al. (2003) calibration estimator in stratified random sampling [since the Koyuncu and Kadilar 

(2016) calibration estimator  *
2  is always more efficient than the Tracy et al. (2003) calibration 

estimator [see Koyuncu and Kadilar (2016) for detail]. It is observed that the new calibration estimator

 *
3  is very attractive and should be preferred in practice as it provides consistent and more precise 

parameter estimates than existing calibration estimators in stratified random sampling. 
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