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Abstract
In this paper, we present a new three-parameter alpha power transformation of Lomax distribution
(APTLx). Some statistical properties of the APTLx distribution are obtained including moments,
quantiles, entropy, order statistics, and stress-strength analysis and its explicit expressions are derived.
Maximum likelihood estimation method is used to estimate the parameters of the distribution. The
goodness-of-fit of the proposed model show that the new distribution performs favorably when
compare with existing distributions. The application of APTLx distribution is emphasized using a real-
life data.
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1. Introduction

Lifetime data plays an important role in a wide range of applications such as medicine,
engineering, biological science, and public health. Statistical distributions are used to model the life
of an item in order to study its important properties. The most popular traditional distributions often
not able to characterize and predict most of the interesting data sets. The newly generated families
have been broadly studied in several areas as well as yield more flexibility in applications. Generated
family of continuous distribution is a new improvement for creating and extending the usual classical
distributions. Zografos and Balakrishnan (2009) suggested a gamma generated (gamma-G) family
using gamma distribution. Its cumulative distribution function (cdf) is defined as

| ~log(1-G(x))
Fu(x)=— x*"e ™ dx; for & > 0. (1)
(%) !

Cordeiro and de Castro (2011) proposed a Kumaraswamy generalized (Kw-G) family of

distribution. The cdf of Kw-G distribution is defined as follows:

b
Fey_g (x)=1- {1 - G(x)”} ; fora,b>0. 2)

The Lomax distribution, also known as Pareto type II distribution was proposed by Lomax in
1954. It is most commonly used for analyzing business failure life time data, actuarial science, medical
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and biological sciences, lifetime and reliability modelling. Hassan and Al-Ghamdi (2009) mentioned
that it used for reliability modelling and life testing. Bryson (1974) had suggested the use of this
distribution as an alternative to the exponential distribution when the data are heavy-tailed. Atkinson
and Harrison (1978) used it for modelling the business failure data. Corbellini et al. (2007) used it to
model firm size. Lomax distribution is used as the basis of several generalizations, e.g., Ghitany and
Al-Awadhi (2001) used Lomax distribution as a mixing distribution for the Poisson parameter and
derived a discrete Poisson-Lomax distribution.

A random variable X has the Lomax distribution with two parameters £ and A if it has cdf
given by

4
F(x)zl—{l+%} ; forx >0, (3)

where >0 and A>0 are the shape and scale parameters, respectively. The corresponding

probability density function (pdf) is

ﬂ X —(B+1)
f(x)=/1{1+/1} ; forx>0, >0, 1>0. “)

In the literature, some extensions of the Lomax distribution are available such as follows:
Marshall-Olkin extended-Lomax distribution by Ghitany et al. (2007), Kumaraswamy-Generalized
Lomax distribution by Shams (2013), Gumbel-Lomax distribution by Tahir et al. (2016), Exponential
Lomax distribution by El-Bassiouny (2015), half-logistic Lomax distribution by Anwar (2018) and
power Lomax distribution by El-Houssainy (2016).

The alpha power transformation (APT) is proposed by Mahadavi and Kundu (2015) in the paper
“A new method of generating distribution with an application to exponential distribution”.

The cdf of APT is given by

F(x)

a ‘-1 .
; ifa>0, a=l
Fopr (X;a) = a-1 ®)

F(x); ifa=1.

The corresponding pdf'is

loga Fx)
— f(x)a; ifa>0, a+1
farr (@) =4 a-1 /)

f(x); ifa=1.
Based on APT, many new distributions are like alpha power Weibull distribution by Nassar et al.
(2017), denoted by APW with 4 >0, a > 0, f > 0. Its cdf is expressed as

b
l(l—al" § j; ifa>0, a#l
FAPW (x’a)z l_a

l—e+”

(6)

(7)
ifa=1.

Malik and Ahmad (2017) introduced two-parameter alpha power Rayleigh distribution (APR),
with a >0, >0 ifits cdfis given by
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- . ifa>0, a#l
Fop(xa)= l-a (8)

e *0 if o =1.
Hassan and Elgarhy (2019) presented a three-parameter alpha power transformed power Lindley
distribution (APTPL) with >0, o >0, >0 ifits cdfis
e’ {Hﬁ}

6+1

F o (v:) = “T; ifa>0, a1 ©)

1-e*’ {1+9xﬁ} if o =1.
0+1

Some other distributions are available such as alpha power inverted exponential by Unal et al.
(2018), Alpha power transformed Fréchet by Nasiru et al. (2019), alpha-power transformed Lindley
by Dey et al (2018).

The aim of this paper is to propose and study a new lifetime model called alpha power Lomax
(APTLx) distribution based on APT. The new distribution is very flexible in the sense that it can be
skewed depending upon the special choices of the parameters. This paper is organized as follows: In
Section 2, we introduced the APTLx distribution and presented some illustrations. In Section 3, we
studied some of its structural properties including quantile function, moments, moment generating
function, entropy, order statistics, and stress strength parameter. In Section 4, we discussed the
maximum likelihood estimates (MLEs) of the model parameter. In Section 5, the analysis of real data
sets was illustrated the potentiality of the new model. In Section 6, we concluded the study.

2. APTLx Distribution
The random variable X is said to follow the three-parameter APTLx distribution with the shape
parameter § >0 and scale parameter A >0, ifthe cdf of X is given by:

[7)

a .
= —— ifa>0, a#1 10
(x) 1 it a> # (10)

X -8
1—(1-1—) ; ifa=1
A

The corresponding pdf of APTLx distribution is

F

APTLx

A
-(p+1) 1| 1+2
! )
Fapre (X) = aog—?[g(l+flj Ja ( Yo ifa>0, azl (11)
=(B+1)
Bl x , .
T 1+z ; ifa=1.

The hazard rate function of APTLx distribution is given by
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-5
s(, Yo [
loga ﬂ,(l + ﬂ) o
hAPTLx(x)z 3 ; ifa>0, a#l
[1—[L+*j ]
A
a-a
B oo
A+x° if x=1.
The survival function of APTLx distribution is given by
-5
14X
1 [L+lj
SAPTLx(x): a-a | s ifa>0, a#l
a —_—

5]} e

The reversed hazard rate function of APTLx distribution is given by
o P

ogal A(1:5)"" P_@+7] ]
oga| > +Z a

P :
1—[14—;) B 1

-(4+1)

B 1+3
A0

(LT
1—(1+)
A

ifa>0, a#1

T 4PTLx (x) =

ifa=1.

(12)

(13)

(14

Figures 1 and 2 displays the graph of pdf of APTLx distribution which is right skewed and the hazard

rate function. They can be increasing and decreasing.

007 — a=8,p=2A=9
a=12 p=2,A=9
0.06 — g=22 f=2,A=9
— a=26f=2,A=9
_ 005 — a=42p=24=9| | L
* — X
= L a=8,f=21=9 |
0.04 4
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003 - a=26,f=2,A=9
a=42,$=2,4=9
002 4 T T T T T T 002 T T T T T —
0 2 4 6 8 0 12 " 0 2 4 ] 8 12 "
X X

Figure 1 The pdf and hazard function plot of APTLx distribution for f=2,14=9 and different

values of «
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0.16 4

0024

Figure 2 The pdf and hazard function plot of the APTLx distribution for =15 and
different values of 4 and S

2. Statistical Properties

In this section, some statistical properties of the APTLx distribution are derived for the case when
a, otherwise the distribution reduces to the Lomax model.
2.1. Quantile function

The quantile function plays an important role when simulating random variates from a statistical
distribution. Using (8), the APTLx distribution can be simulated by

1
log(e/(U(a—1)+1))) #
log
where U follows the uniform distribution. The p" quantile function of APTLx distribution is
1
log(a/(p(a-1)+1))) #
loga
The median of APTLx distribution is
1
log(2a/(a-1))) #
Xp5 = i((logd) - A (17)

2.2. Method of moments
The " moment and the moment generating function of the APTLx distribution are provided
here. Using the series representation given as follows

© (=] Kk
aW:Z%_ (18)

k=0

The " moment of the random variable X having APTLx distribution is obtained as follows
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-(p+ 11+ 7
e

lr l o [ k
u = a(_‘ig“)y OED gl 1, (pk+ )1 (19)

The first moment and mean of APTLx distribution is obtained as follows

A(1 '
. ap oga)kz(;( 105!0() B[2,(Bk+p)-1] (20)

The " incomplete moment of the random variable X having APTLx distribution is obtained

as follows
-p
r f -(B+1) 1+ 1+§
wr(t):-[xrf(x)dx:jxr bﬂ(ﬁ[l+%j Ja[ ( ] ] i,

o a-1{ 4

o) = “ﬁw log“ z( log“) B [r+1,(Bk+pB)-r] @1)

The first incomplete moment of APTLx dlstrlbution is obtained as follows

0= LB § CVET s gy )

The moment generating function of APTLx distribution is obtained as follows

loge | B “(p+1) [1{1%]77
M (t)=E(e")= je"f(x)dx J.” 0 [ (1+£] ]a dx. (23)

a-1{ 1 A
Using the (18) and the series representation, e = Z—_', we get
= J:
a,B loga t A (~loga) k
M ( ZZ 73[]“ (BE+B)-J]. (24)

kO/O

2.3. Lorenz curve and Bonferroni curve
The Bonferroni and Lorenz curves are important in economics, reliability, demography,

insurance, and medicine. The Lorenz curve, LO(x). and Bonferroni curve, BO(x), are defined by

0(x)="* ((;)) and BO(x)zIézE)(ci).

By using (20) and (22), we get
a’ﬂﬂ loga Z( log )"

LO(x)= = K
(x) = aﬁi(loga)z( log )

a-1 = k!

LO(x)= (;‘;( lokg'“) B.[2,(Bk+ B) 1]) (;‘;( lokg'“) B[2,(Bk+ ) 1]]. 25)

B [2.(pk+)-1]

B[Z,(ﬁk+ﬂ)—l],
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By using (10) and (25), we get

(- 12( log“) B.[2,(Bk+p) 1}{
B

L

-1
= log“) B[2,(Bk+f) 1]]

BO(x)= (26)

2.4. Probability weighted moments
The probability weighted moments (PWMs), denoted by 7, , for a random variable X, is defined

as follows
Z,, =E(x’f(x)F(x)s)=I x"f(x)F(x) dx
_ﬂ §
s 1—[1%] J
5 L toga( g, XY [1'(“1) J a -1
_.([x a_l[ﬁ/{(lﬁ-ﬂ) Ja 2_1 dx,
ﬁr"":(a TR i Z( )5+ m( ] (;] (m+1) E:(’g“) —B[r+1,(Bi+p)-r]. (27)

2.5. Mean residual life time and mean inactivity time

The mean residual life time of APTLx distribution is given by

m (t)=E(X—-t|X>t)= #S(flt)( )—t, t>0 where u=y,
By using (13) and (22),
aﬂ;tlogaz( 10;0{)" B [2,(,6’k+/5’)—1]
m, (t)= = [1.[1 EJ—/J] -1,
a-a
a-1
wa—-1)—apllog aii(—log'a)k B [2,(Bk+p)-1]
m,(t)= = ~t. (28)
{1{1%) ﬂ}
a-a

The mean inactivity time is defined by

t//x(t):E(X—tX<t):t—(i;E:)).

By using (10) and (22),
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ablloga

£ (~log)"
4

a-1 5

v, ()=t~

B,[2.(Bk+p)-1]

)

o

-1

a-1

v, (6)=t-

a&ilogai(_lok#)kﬁ [2,(/5’k+/5’)—1]

5]

a -1

2.6. Stochastic ordering
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29)

Ordering of distributions, particularly among lifetime distributions plays an important role in the
statistical literature. Specifically, we consider stochastic orders, the hazard rate, the mean residual life,
and the likelihood ratio order for two independent APTLx random variables under a restricted
parameter space. It may be recalled that if a family has a likelihood ratio ordering, it has the monotone
likelihood ratio property. This implies that there exists a uniformly most powerful test for any one-

sided hypothesis when the other parameters are known.

If X and Y are independent random variables with cdfs F, and F,

said to be smaller than Y in the
stochastic order (X <, Y) if Fy (x)>

(x
)

F,
>

hazard rate order (X <, Y) if A,

e mean residual life order (X <Y

—mrl

S (x)
1y (%)

likelihood ratio order (X <, Y) if

( ) for all x,
( ) for all x,
if m, ( )Zmy (x) for all x,

decreases in x.

, respectively, then X is

The following method is well known for establishing stochastic ordering of distributions. Let
Y~ APTLx(ogl B4 ), and Y ~ APTLx(az,ﬂz,ﬂz) then the likelihood ratio is

)]

logm 131[1+j (ﬂlﬂ) a
a-1 AL 4 1
Sx(x) _
fY (x) - 1 - 1+ &
loga, | B[, x Al " [E] J
a-1 4L 4 ’
-4,
-(5+) 1] H% ]
(a, —1)loge, 'ﬁ;[l+;j e, [ J J
= N
(5, +1) [1 1+ J
(0(1—1)10goc2 ’%(1+ZJ a, [ /12]
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Taking the log of both sides, we get

YA
(a, —1)loge, [Zl[brz](ﬂw) al[l[ujl] J

(30)

=log(a, —1)+log(loga, )+log B +log 4, —( 5, +1)log(1+%}+

-5,
1—[1+%j log o, —10g(a1 —1)—10g(10ga2)—10g,82 +log 4, +

_ﬁz
(,6’2+1)10g[1+%]— 1—[1+%J loga,,

2 2

fX ()C)_ ﬂ2+1 _ ﬂ1+1 + ﬂl logal _ ﬂz 1Oga2 (31)

d

—log— = .

dx = fy(x) x x LA G
i (o a(g)™ o)

Nowif o, =a, =a, B,=8,=3,6,=6,=6 and A > 1, then dlog{fX(x)}SO = X<,
dx fy(x)

Y

andhence X<, Y, X<, Y, X< Y, and X <, Y.

mrl —st

2.7. Rényi entropy
The entropy of the random variable X measures the variation of uncertainty. The Rényi entropy
is defined as

RE, (v)=ilog{? f(x)Y dx}, v>0,v#1

Rényi entropy of the APTLx distribution is given below:

- ~(p+1)
1 loga| B x
RE()= 1 ey ] a—l(ﬂ(”zj J“

—p
(X
1 [1+/1]

dx

v aloga B RS 2 (—loga)* 1
REX(V)—I_V{Iog( o ]+10g,8 logl}+l_vlog{i; x (v(ﬁk+ﬁ+l)—1} (32)

2.8. Stress strength parameter
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The stress strength parameter, R :P(X <X 2) in the lifetime model, describes the lifetime
component which has a random stress X, that is subjected to a random strength X,. Let X, and X,
be two independent random variables, X, ~ APTLx(e, f3,4) and X, ~ APTLx(a,,3,,) then the

stress strength parameter, say R, is defined as follows:
R= '[fl (x)F, (x)dx
0

By using (10) and (11), we get

R=

S loga, T (l+ xj-(ﬁ1+1) al[l_(l+;)_ﬁ1] [1*(‘&]7@}

A —1)(ey-1) 2

0

By using (18), R can be simplified to
aBloge, & (-loga,) = (—loga,)” ( 1 j
R=—"" ! a - . (33
(al—l)(az—l); k! ng! (B +Bk+pm) \ B +pBk )

2.9. Order statistics
Let X,,X,,....,X, be random sample, and let X, , denotes that i™ order statistic, then the pdf

of X, is given by

fer @)= iy PO = F )

We can rewrite the above equation as follows

Jin (X)ZWF(x)k_l f(x)(l_F(x))n_k-

Substituting (10) and (11), we can write

1 a['f['%)’”]_l

- oga( A, ") [ a['{'*%)*ﬂ] »
f;c:n(-x)_B(k,n—k+1) a—1 [ag—l[,i(“_,J ]a } 1— z__=

By using the binomial expansion, we obtain

k=1

Jo ()= B(loga) ki (=1) 7 [ k_I][n_k](“ij(M a— (“ﬂ s

B(k,n—k+1)/1(a_1)" J=0=0 « j

(34

3. Parameter Estimation
The population parameters of the APTPL distribution can be estimated using maximum
likelihood, least squares, and weighted least squares methods of estimation.



Sakthivel Kandaswamy Maruthan et al.

3.1. Maximum likelihood estimation (MLE)

679

Let X,,X,,...,X, be random samples from the APTLx distribution with unknown parameters

a, B, A4 then the likelihood function is given by

oga)'(BY Al el a7
L(a,ﬂ,ﬂ)= z a | 1+7 .

a-1

Taking log on both sides we get the log likelihood function,
I(a, B, A) =log(L(x,a,5,1))

i=1

n n 7ﬂ
—nlog(1 g1j+nlogﬂ nlog A — ,B+1)Zlog£l+);ij+nloga—2(l+f{j loga.
i=1

(35)

Therefore, to obtain the MLEs of «, f and A, we find the first order partial derivatives of (35) with

respect to the parameters and equate them to zero;

n X =B
I+
ﬂ_n(a—l—aloga)Jrﬁ_;( ,1) o

oa a(a-l)loga  « a
s
8,8 E_Zl g(1+ ] Zlog(1+ ](HZ’] loga =0
i=1
(B+1)
o _ B, (A+x,
7 ﬁ+1)z 1+ . Z /M) loga =0

(36)

(37

(3%)

Then, the maximum likelihood estimations of the parameters a,4 and £ can be obtained by solving

system of (36)-(38). Fisher information 1,-/ matrix for APTLx distribution given by

Iy Ly Iy
I=\1, I, I\
Ly Iy Iy
0’ logL 0’ log L 0’ log L
Iy =E|- | =E| - |1 =E| - 2 |
oa op oA

0’ logL 0’ logL 0’ logL
]122121:E[_ }’]132131:E|:_ dyn =1, =E| - ’

Oa 04

o*logL -na(a-1)(loga) -n(a-1-aloga)(a+2aloga-1-loga) n 4
. _

oa® (a(a-1)loga) a

2 U 7 ’
e CIICCIE
i=1
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6210gL_ n (g4 C xil:j’(1+xi)+(2’+xi):|
oz l); [A(A+x)]
AT B () () B (2 ) (B 1) 27

P [2(2+x)]

n -5
X. X.
I+-—| log|l+—
& logL Z[ Aj Og( A]

oadf a

0’ logL :_ﬁi(l_’_xijﬁl x, (A-1)
da 0l as A AP )

o*logL i X
opor  F\A(A+x)
Zn: A [ﬂ x(A+x)" log(A+x)+(A+x)"" .xl} -fx (A )%71 A7 log A

_ =l (}fﬁﬂ )2

>

So, we obtain the asymptotic 100(1—a)% confidence intervals of the unknown parameters can

be easily obtained for o, and A as given in equation below
aela-z,|I ad+z, Inl},
2 2

L 2 2

Ae ﬂ:—za 13'31,/i+za I'l},
2 @

33
2

. a . o
where z, is the > quantile of the standard normal distribution.
2

3.2. Least squares and weighted least squares estimator

Let X,,X,,...,X, be arandom sample of size n from APTLx distribution and X ,,, X

H>=7(2)2 27 (n)

denotes the order statistics. Then,

i _i(n—i+1)
E(F(X(,.)))— p and V(F(Xm))_m.

1) Least squares estimator

We obtain the estimators by minimizing i[F (X (i))—E(F (X
i=1

2
m)ﬂ , with respect to the

unknown parameters. The least squares estimators of the APTLx distribution are obtained by
minimizing following quantity with respectto «, # and A,
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e j LN (39)

2) Weighted least squares estimator
The weighted least squares estimator of APTLx distribution can be obtained by minimizing the

following i w, [F (Xm ) - E(F (Xm ))T , with respect to unknown parameters, where
i=1

_ (n+1)2(n+2)i
i V(F(Xm)) i(n—i+1)

Which implies that,

[17(”%)]_1 ; v (n+1) (n+2) a(]i(%]]—l ;

z 1 a
2

[:1V(F(X([))) a-1  n+l| S i(n—i+l) a-1 n+1
(40)

3.3. Monte Carlo simulation for APTLx distribution

In this section, we perform a simulation study to assess the performance and examine the mean
estimate, average bias, root mean square error of the maximum likelihood estimators and obtained the
confidence interval for each parameter. We study the performance of MLE of the APTLx distribution
by conducting various simulations for different sample sizes and different parameter values. Quantile
function is used to generate random data from the APTLx distribution. The simulation study is
repeated for N =1000 times each with sample size n =20,50,75,100 and parameter values, case I:

(=03,4=02,2=0.8) and case II: («=1.5,4=1.6,4=0.4). Five quantities are computed in

this simulation study,

~ N ~
a) Mean estimate of the MLE 4 of the parameter ¢ =, f,4 which is %2191,

i=1
~ N ~
b) Average bias of the MLE 4 of the parameter ¢ = &, f,4 which is %Z(& -9),
i=1

¢) Root mean squared error (RMSE) of the MLE 9 of the parameter 9= a, f,A4 which is

Ly @-9

d) Coverage probability (CP) of 95% confidence intervals of the parameter $=¢, 3,4, i.e.,
the percentage of intervals that contain the true value of parameter 9.

e) Average width (AW) of 95% confidence intervals of the parameter 9=, 3, 1.

Table 1 presents the average bias, RMSE, CP and AW values of the parameters «, 5,1 for
different sample sizes. From the results, we can verify that as the sample size n increases, the RMSEs
decay toward zero. The average biases for the parameter ¢ are all positive and slightly larger for
small to moderate sample sizes but tend to get smaller as the sample size n increases. We also observe
that for all the parametric values, the biases decrease as the sample size n increases. Also, the table
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shows that the coverage probabilities of the confidence intervals are quite close to the nominal level
of 95% and that the average confidence widths decrease as the sample size increases. Hence the ML
estimates of APTLx distribution are consistent and efficient.

Table 1 Monte Carlo simulation results: average bias, RMSE, CP and AW
Case I: (a =03,=02,4A= 0.8) Case II: (a =15=16,1= 0.4)

Mean AB RMSE CP AW  Mean AB RMSE CP AW

a 25 22904 19904 5.8283 0.879 37.9046 3.9189 24189 10.2275 0.753 64.8764
50 1.7892 1.4892 5.6869 0.836 24.4469 3.7302 2.2302 8.0649 0.748 49.7192

75 1.0736 0.7736 2.8841 0.857 12.0661 3.4364 1.9364 7.3856 0.732 42.0305

100 0.9528 0.6528 2.2517 0.890 9.4323 3.0993 1.5993 6.0635 0.704 37.1034

£ 25 02333 0.0333 0.1077 0.929 0.4909 0.6683 0.0683 0.5988 0.982 1.9935
50 0.2122 0.0122 0.0817 0.921 0.3569 0.5948 —0.0052 0.2812 0.970 0.9152

75 0.2108 0.0108 0.0739 0.946 0.3078 0.5649 —0.0351 0.1666 0.969 0.6809

100 0.2112 0.0112 0.0671 0.944 0.2703 0.5545 -0.0455 0.1482 0.962 0.6130

A 25 1.0180 0.2180 1.0263 0.873 4.1924 0.9357 0.5357 2.1877 0.968 8.3538
50 0.8707 0.0707 0.6613 0.902 2.5161 0.6541 0.2541 0.8533 0.956 3.3671

75 0.8003 0.0003 0.4675 0.922 1.9218 0.5964 0.1964 0.4906 0.963 2.4774

100 0.7852 —0.0148 0.3974 0.928 1.6512 0.5911 0.1911 0.4649 0.949 2.1337

Parameter n

4. Applications

In this section, we consider a data used by Lee and Wang (2003) in their paper corresponding to
the remission times of a random sample of the 128 patients who are affected by bladder cancer. The
data are as follows:

0.08,2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,
3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70,
5.17,7.28,9.74, 14.76,26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,
10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62,
10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25,
17.14,79.05,1.35,2.87,5.62,7.87,11.64, 17.36, 1.40, 3.02,4.34,5.71, 7.93, 11.79, 18.10, 1.46, 4.40,
5.85,8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28,
2.02,3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

We have fitted the alpha power transformed Lomax (APTLX) distribution to the data using MLE,
and APTLx distribution is compared with Lomax, KW Lomax, exponential Lomax, G-Lomax,
transmuted exponentiated Lomax, WLomax, extended Poisson Lomax. The model selection is carried
out by using the AIC (Akaike information criterion), the BIC (Bayesian information criterion), the
CAIC (consistent Akaike information criteria) and the HQIC (Hannan Quinn information criterion):

AIC =-2log L(6)+2g, BIC =-2logL(8)+qlog(n).
_ A 2gn B R
CAIC =-2log L (0) +m, HQIC =-2L(6)+2glog(log(n)).
where L(é) denotes the log-likelihood function evaluated at the MLEs, ¢ is the number of
parameters, and n is the sample size. Here, € denotes the parameters 6 =a,, 1. An iterative

procedure is applied to solve the equations (36), (37) and (38) and we obtain,
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0= (& =28.5412, B =2.873798, A =8.271523). The model with minimum AIC (or BIC, CAIC)

values is chosen as the best model to fit the data.

Table 2 MLEs and the measures of AIC, BIC, HQIC, CAIC
Distribution Estimates  —log L AIC BIC HQIC CAIC
Lomax & =13.9384 413.84 831.68 837.38 833.99 831.78
A=121.023
KW Lomax a =0.3911 409.94 827.88 839.29 832.52 828.21

A=12.2973
a=1.5162
7=11.0323

=1.0644  414.97 835.94 844.49 839.42 836.13
=0.0800

0.0060
=4.7540  410.08 826.16 834.72 829.64 826.35
20.581
=1.5858
1.71418  410.43 828.86 840.27 833.51 829.19
0.05456

0.24401

P
7
y)
0=3.33911
WLomax & =0.25661  410.81 829.62 841.03 834.26 829.95

B

a

b

a

Exp.Lomax

G-Lomax

v ™ V[N > R
Il

TE-Lomax

=1.57945
2.42151

1.86389
2.07012  409.74 825.48 834.04 828.96 825.67

B=14276

34.8626
28.5412  409.39 824.78 833.34 828.26 824.97

A
&
B =2.87379
1=8.27152

Power Lomax

APTLx

From the Table 2, we conclude that the alpha power transformation of Lomax (APTLx)
distribution is best when compared to Lomax, KW Lomax, exponential Lomax (Exp.Lomax), G-
Lomax, transmuted exponential Lomax (TE- Lomax), WLomax and power Lomax distributions.

For an ordered sample, from APTL(e,f3,A), where the parameters o, 8 and A are unknown,

the Kolmogorov-Smirnov D , Cramér-von Mises W’

n’ n 2

Anderson and Darling 4’ tests statistics are

given as follows:

n n

D, =max( £~ F (x.d.5.A).F (x.d..4)- L),
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(lnF(xl.,d,/;,/i)—lnF(x,.,d,/;’,i)), (41)

w? :L+i(—2i"l—F(x. a,p /i)T.
" 12n 2n pee

i=1

Table 3 Test statistics for the goodness-of-fit tests

Distribution D, w? A
Lomax 0.096669 0.21258940 1.374568

KW Lomax 0.038908 0.02295290 0.159531
Exp.Lomax 0.076702 0.17967690 1.090800
G-Lomax 0.040639 0.02619050 0.180890
TE-Lomax 0.039910 0.03143840 0.227535
WLomax 0.041403 0.03829510 0.262735
Power Lomax 0.035055 0.01754725 0.120466
APTLx 0.028119 0.01339500 0.083468

Table 3 indicates that the test statistics D,. W’ and 4> have the smallest values for the data set

under alpha power transformation of Lomax distribution model with regard to the other models. The
APTLx distribution approximately provides an adequate fit for the data.

5. Conclusion

In this paper, a new three parameter distribution is proposed called APTLx distribution based on
alpha power transformation. The aim of this study is to bring more flexibility to the distribution.
Various mathematical properties such as moments, moment generating function, quantile function etc.
are discussed. The maximum likelihood estimation is used to estimate the model parameters. The
usefulness of the proposed model is illustrated by means of real-life data set consists 128 bladder
cancer patients, whereby it is shown that APTLx distribution gives a better fit than other competitive
models. We hope that the new model will be useful for wider application in several areas.
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