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Abstract 

In this paper, we present a new three-parameter alpha power transformation of Lomax distribution 

(APTLx). Some statistical properties of the APTLx distribution are obtained including moments, 

quantiles, entropy, order statistics, and stress-strength analysis and its explicit expressions are derived. 

Maximum likelihood estimation method is used to estimate the parameters of the distribution. The 

goodness-of-fit of the proposed model show that the new distribution performs favorably when 

compare with existing distributions. The application of APTLx distribution is emphasized using a real-

life data. 

______________________________ 
Keywords: Alpha power family, probability weighted moments, stochastic ordering, order statistics, MLE. 

 

1. Introduction 

Lifetime data plays an important role in a wide range of applications such as medicine, 

engineering, biological science, and public health. Statistical distributions are used to model the life 

of an item in order to study its important properties. The most popular traditional distributions often 

not able to characterize and predict most of the interesting data sets. The newly generated families 

have been broadly studied in several areas as well as yield more flexibility in applications. Generated 

family of continuous distribution is a new improvement for creating and extending the usual classical 

distributions. Zografos and Balakrishnan (2009) suggested a gamma generated (gamma-G) family 

using gamma distribution. Its cumulative distribution function (cdf) is defined as 
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Cordeiro and de Castro (2011) proposed a Kumaraswamy generalized (Kw-G) family of 

distribution. The cdf of Kw-G distribution is defined as follows: 

     1 1 ;   for ,  > 0.
ba

KW GF x G x a b     (2) 

The Lomax distribution, also known as Pareto type II distribution was proposed by Lomax in 

1954. It is most commonly used for analyzing business failure life time data, actuarial science, medical 
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and biological sciences, lifetime and reliability modelling. Hassan and Al-Ghamdi (2009) mentioned 

that it used for reliability modelling and life testing. Bryson (1974) had suggested the use of this 

distribution as an alternative to the exponential distribution when the data are heavy-tailed. Atkinson 

and Harrison (1978) used it for modelling the business failure data. Corbellini et al. (2007) used it to 

model firm size.  Lomax distribution is used as the basis of several generalizations, e.g., Ghitany and 

Al-Awadhi (2001) used Lomax distribution as a mixing distribution for the Poisson parameter and 

derived a discrete Poisson-Lomax distribution.  

A random variable X  has the Lomax distribution with two parameters   and   if it has cdf 

given by 

    1 1 ;   for  > 0,
x

F x x
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
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    (3) 

where 0   and 0   are the shape and scale parameters, respectively. The corresponding 

probability density function (pdf) is 
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In the literature, some extensions of the Lomax distribution are available such as follows: 

Marshall-Olkin extended-Lomax distribution by Ghitany et al. (2007), Kumaraswamy-Generalized 

Lomax distribution by Shams (2013), Gumbel-Lomax distribution by Tahir et al. (2016), Exponential 

Lomax distribution by El-Bassiouny (2015), half-logistic Lomax distribution by Anwar (2018) and 

power Lomax distribution by El-Houssainy (2016). 

The alpha power transformation (APT) is proposed by Mahadavi and Kundu (2015) in the paper 

“A new method of generating distribution with an application to exponential distribution”. 

The cdf of APT is given by 
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The corresponding pdf is 
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Based on APT, many new distributions are like alpha power Weibull distribution by Nassar et al. 

(2017), denoted by APW with 0,  0,  0.      Its cdf is expressed as 
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Malik and Ahmad (2017) introduced two-parameter alpha power Rayleigh distribution (APR), 

with 0,  0    if its cdf is given by 
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Hassan and Elgarhy (2019) presented a three-parameter alpha power transformed power Lindley 

distribution (APTPL) with 0,  0,  0      if its cdf is 
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Some other distributions are available such as alpha power inverted exponential by Unal et al. 

(2018), Alpha power transformed Fr�́chet by Nasiru et al. (2019), alpha-power transformed Lindley 

by Dey et al (2018). 

The aim of this paper is to propose and study a new lifetime model called alpha power Lomax 

(APTLx) distribution based on APT. The new distribution is very flexible in the sense that it can be 

skewed depending upon the special choices of the parameters. This paper is organized as follows: In 

Section 2, we introduced the APTLx distribution and presented some illustrations. In Section 3, we 

studied some of its structural properties including quantile function, moments, moment generating 

function, entropy, order statistics, and stress strength parameter. In Section 4, we discussed the 

maximum likelihood estimates (MLEs) of the model parameter. In Section 5, the analysis of real data 

sets was illustrated the potentiality of the new model. In Section 6, we concluded the study. 

 

2. APTLx Distribution 

 The random variable X  is said to follow the three-parameter APTLx distribution with the shape 

parameter 0   and scale parameter 0,   if the cdf of X  is given by: 
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The corresponding pdf of APTLx distribution is 
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The hazard rate function of APTLx distribution is given by 
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The survival function of APTLx distribution is given by 
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The reversed hazard rate function of APTLx distribution is given by 
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Figures 1 and 2 displays the graph of pdf of APTLx distribution which is right skewed and the hazard 

rate function. They can be increasing and decreasing. 

 

 
 

Figure 1 The pdf and hazard function plot of APTLx distribution for 2, 9    and different 

values of   
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Figure 2 The pdf and hazard function plot of the APTLx distribution for 15   and 

different values of   and   

 

2. Statistical Properties 

In this section, some statistical properties of the APTLx distribution are derived for the case when

,  otherwise the distribution reduces to the Lomax model. 

2.1. Quantile function 

The quantile function plays an important role when simulating random variates from a statistical 

distribution. Using (8), the APTLx distribution can be simulated by 
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where U  follows the uniform distribution. The thp  quantile function of APTLx distribution is  
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The median of APTLx distribution is 
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2.2. Method of moments 

The thr  moment and the moment generating function of the APTLx distribution are provided 

here. Using the series representation given as follows 
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The thr  moment of the random variable X  having APTLx distribution is obtained as follows 
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The first moment and mean of APTLx distribution is obtained as follows 
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The thr  incomplete moment of the random variable X   having APTLx distribution is obtained 

as follows  
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The first incomplete moment of APTLx distribution is obtained as follows 

  
   

 1
0

.
log log

. 2, 1
1 !

k

t
k

t B k
k

  
  








     

 (22) 

The moment generating function of APTLx distribution is obtained as follows 
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Using the (18) and the series representation, 
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2.3. Lorenz curve and Bonferroni curve 

The Bonferroni and Lorenz curves are important in economics, reliability, demography, 

insurance, and medicine. The Lorenz curve,   ,LO x  and Bonferroni curve,   ,BO x  are defined by  
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By using (10) and (25), we get 
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2.4. Probability weighted moments 

The probability weighted moments (PWMs), denoted by ,r s  for a random variable X, is defined 

as follows 
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2.5. Mean residual life time and mean inactivity time 

The mean residual life time of APTLx distribution is given by 
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The mean inactivity time is defined by  
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By using (10) and (22), 
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2.6. Stochastic ordering 

Ordering of distributions, particularly among lifetime distributions plays an important role in the 

statistical literature. Specifically, we consider stochastic orders, the hazard rate, the mean residual life, 

and the likelihood ratio order for two independent APTLx random variables under a restricted 

parameter space. It may be recalled that if a family has a likelihood ratio ordering, it has the monotone 

likelihood ratio property. This implies that there exists a uniformly most powerful test for any one-

sided hypothesis when the other parameters are known. 

If X  and Y  are independent random variables with cdfs XF  and ,YF  respectively, then X  is 

said to be smaller than Y  in the 

 stochastic order  stX Y  if    X YF x F x for all ,x  

 hazard rate order  hrX Y  if    X Yh x h x  for all ,x  

 mean residual life order  mrlX Y  if    X Ym x m x  for all ,x  

 likelihood ratio order  lrX Y  if 
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The following method is well known for establishing stochastic ordering of distributions. Let 

 1 1 1, , ,Y APTLx     and  2 2 2, ,Y APTLx     then the likelihood ratio is  
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Taking the log of both sides, we get 
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Now if 1 2 1 2 1 2, ,               and 1 2   then 
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and hence , , ,lr hr mrlX Y X Y X Y    and .stX Y  

 

2.7. R�́nyi entropy 

The entropy of the random variable X measures the variation of uncertainty. The R�́nyi entropy 

is defined as 
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Rényi entropy of the APTLx distribution is given below: 
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2.8. Stress strength parameter 
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The stress strength parameter,  1 2R XP X   in the lifetime model, describes the lifetime 

component which has a random stress 1X  that is subjected to a random strength 2.X  Let 1X and 2X  

be two independent random variables,  1 1 1~ , ,X APTLx    and  2 2 2~ , ,X APTLx     then the 

stress strength parameter, say ,R  is defined as follows: 
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By using (10) and (11), we get 
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By using (18), R  can be simplified to 
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2.9. Order statistics 

 Let 1 2, ,..., nX X X  be random sample, and let :k nX  denotes that thi  order statistic, then the pdf 

of :k nX  is given by 
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We can rewrite the above equation as follows 
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Substituting (10) and (11), we can write 
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By using the binomial expansion, we obtain 
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 (34) 

 

3. Parameter Estimation 

The population parameters of the APTPL distribution can be estimated using maximum 

likelihood, least squares, and weighted least squares methods of estimation. 
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3.1. Maximum likelihood estimation (MLE) 

Let 1 2, ,..., nX X X  be random samples from the APTLx distribution with unknown parameters 

, ,    then the likelihood function is given by 
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Taking log on both sides we get the log likelihood function, 
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  (35) 

Therefore, to obtain the MLEs of ,   and ,  we find the first order partial derivatives of (35) with 

respect to the parameters and equate them to zero;  
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   (38) 

Then, the maximum likelihood estimations of the parameters ,   and   can be obtained by solving 

system of (36)-(38). Fisher information ijI  matrix for APTLx distribution given by 
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So, we obtain the asymptotic  100 1 %  confidence intervals of the unknown parameters can 

be easily obtained for ,   and   as given in equation below 
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where 
2

z  is the 
2


quantile of the standard normal distribution. 

3.2. Least squares and weighted least squares estimator 

Let 1 2, ,..., nX X X  be a random sample of size n  from APTLx distribution and (1) (2) ( ), ,..., nX X X

denotes the order statistics. Then, 
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1) Least squares estimator 

We obtain the estimators by minimizing     
2

( ) ( )
1

,
n

i i
i

F X E F X


 
   with respect to the 

unknown parameters. The least squares estimators of the APTLx distribution are obtained by 

minimizing following quantity with respect to ,   and ,  
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2) Weighted least squares estimator 

The weighted least squares estimator of APTLx distribution can be obtained by minimizing the 

following     
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  (40) 

 

3.3. Monte Carlo simulation for APTLx distribution 

In this section, we perform a simulation study to assess the performance and examine the mean 

estimate, average bias, root mean square error of the maximum likelihood estimators and obtained the 

confidence interval for each parameter. We study the performance of MLE of the APTLx distribution 

by conducting various simulations for different sample sizes and different parameter values. Quantile 

function is used to generate random data from the APTLx distribution. The simulation study is 

repeated for N =1000 times each with sample size 20,50,75,100n   and parameter values, case I:

 0.3, 0.2, 0.8      and case II:  1.5, 1.6, 0.4 .      Five quantities are computed in 

this simulation study, 

a) Mean estimate of the MLE ̂  of the parameter , ,     which is 
1

1 ˆ ,
N

i
iN



  

b) Average bias of the MLE ̂  of the parameter , ,     which is 
1

1 ˆ( ),
N

i
iN

 


  

c) Root mean squared error (RMSE) of the MLE ̂  of the parameter , ,     which is 

2

1

1 ˆ( ) ,
N

i
iN

 


  

d) Coverage probability (CP) of 95% confidence intervals of the parameter , , ,     i.e.,  

the percentage of intervals that contain the true value of parameter .  

e) Average width (AW) of 95% confidence intervals of the parameter , , .     

Table 1 presents the average bias, RMSE, CP and AW values of the parameters , ,    for 

different sample sizes. From the results, we can verify that as the sample size n  increases, the RMSEs 

decay toward zero. The average biases for the parameter   are all positive and slightly larger for 

small to moderate sample sizes but tend to get smaller as the sample size n  increases. We also observe 

that for all the parametric values, the biases decrease as the sample size n  increases. Also, the table 
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shows that the coverage probabilities of the confidence intervals are quite close to the nominal level 

of 95% and that the average confidence widths decrease as the sample size increases. Hence the ML 

estimates of APTLx distribution are consistent and efficient. 

 

Table 1 Monte Carlo simulation results: average bias, RMSE, CP and AW 

Parameter n  
Case I:  0.3, 0.2, 0.8      Case II:  1.5, 1.6, 0.4      

Mean AB RMSE CP AW Mean AB RMSE CP AW 

  25 

50 

75 

100 

2.2904 

1.7892 

1.0736 

0.9528 

1.9904 

1.4892 

0.7736 

0.6528 

5.8283 

5.6869 

2.8841 

2.2517 

0.879 

0.836 

0.857 

0.890 

37.9046 

24.4469 

12.0661 

9.4323 

3.9189 

3.7302 

3.4364 

3.0993 

2.4189 

2.2302 

1.9364 

1.5993 

10.2275 

8.0649 

7.3856 

6.0635 

0.753 

0.748 

0.732 

0.704 

64.8764 

49.7192 

42.0305 

37.1034 

  25 

50 

75 

100 

0.2333 

0.2122 

0.2108 

0.2112 

0.0333 

0.0122 

0.0108 

0.0112 

0.1077 

0.0817 

0.0739 

0.0671 

0.929 

0.921 

0.946 

0.944 

0.4909 

0.3569 

0.3078 

0.2703 

0.6683 

0.5948 

0.5649 

0.5545 

0.0683 

−0.0052 

−0.0351 

-0.0455 

0.5988 

0.2812 

0.1666 

0.1482 

0.982 

0.970 

0.969 

0.962 

1.9935 

0.9152 

0.6809 

0.6130 

  25 

50 

75 

100 

1.0180 

0.8707 

0.8003 

0.7852 

0.2180 

0.0707 

0.0003 

−0.0148 

1.0263 

0.6613 

0.4675 

0.3974 

0.873 

0.902 

0.922 

0.928 

4.1924 

2.5161 

1.9218 

1.6512 

0.9357 

0.6541 

0.5964 

0.5911 

0.5357 

0.2541 

0.1964 

0.1911 

2.1877 

0.8533 

0.4906 

0.4649 

0.968 

0.956 

0.963 

0.949 

8.3538 

3.3671 

2.4774 

2.1337 

 

4. Applications 

In this section, we consider a data used by Lee and Wang (2003) in their paper corresponding to 

the remission times of a random sample of the 128 patients who are affected by bladder cancer. The 

data are as follows:  

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 

3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 

5.17, 7.28, 9.74, 14.76,26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 

10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 

10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 

17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 

5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 

2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

We have fitted the alpha power transformed Lomax (APTLx) distribution to the data using MLE, 

and APTLx distribution is compared with Lomax, KW Lomax, exponential Lomax, G-Lomax, 

transmuted exponentiated Lomax, WLomax, extended Poisson Lomax. The model selection is carried 

out by using the AIC (Akaike information criterion), the BIC (Bayesian information criterion), the 

CAIC (consistent Akaike information criteria) and the HQIC (Hannan Quinn information criterion): 

 ˆ2log 2 ,AIC L q        ,ˆ2 log logBIC L q n    

 
 

,
2ˆ2log

1

qn
CAIC L

n q
  

 
      ,ˆ2 2 log logHQIC L q n    

where ˆ( )L   denotes the log-likelihood function evaluated at the MLEs, q  is the number of 

parameters, and n  is the sample size. Here,   denotes the parameters , , .     An iterative 

procedure is applied to solve the equations (36), (37) and (38) and we obtain, 
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ˆ ˆ ˆˆ( 28.5412, 2.873798, 8.271523).        The model with minimum AIC (or BIC, CAIC) 

values is chosen as the best model to fit the data. 

 

Table 2 MLEs and the measures of AIC, BIC, HQIC, CAIC 

Distribution Estimates log L  AIC BIC HQIC CAIC 

Lomax ̂ =13.9384 

̂ =121.023 

413.84 831.68 837.38 833.99 831.78 

KW Lomax ̂ =0.3911 

̂ =12.2973 

â =1.5162 

̂ =11.0323 

409.94 827.88 839.29 832.52 828.21 

Exp.Lomax ̂ =1.0644 

̂ =0.0800 

̂ =0.0060 

414.97 835.94 844.49 839.42 836.13 

G-Lomax ̂ =4.7540 

̂ =20.581 

â =1.5858 

410.08 826.16 834.72 829.64 826.35 

TE-Lomax ̂ =1.71418 

̂ =0.05456 

̂ =0.24401 

̂ =3.33911 

410.43 828.86 840.27 833.51 829.19 

WLomax ̂ =0.25661 

̂ =1.57945 

â =2.42151 

b̂ =1.86389 

410.81 829.62 841.03 834.26 829.95 

Power Lomax ̂ =2.07012 

̂ =1.4276 

̂ =34.8626 

409.74 825.48 834.04 828.96 825.67 

APTLx ̂ =28.5412 

̂ =2.87379 

̂ =8.27152 

409.39 824.78 833.34 828.26 824.97 

 

From the Table 2, we conclude that the alpha power transformation of Lomax (APTLx) 

distribution is best when compared to Lomax, KW Lomax, exponential Lomax (Exp.Lomax), G-

Lomax, transmuted exponential Lomax (TE- Lomax), WLomax and power Lomax distributions. 

For an ordered sample,  from ( , , ),APTL     where the parameters ,   and   are unknown, 

the Kolmogorov-Smirnov ,nD  Cramér-von Mises 2 ,nW  Anderson and Darling 2
nA  tests statistics are 

given as follows: 

    1ˆ ˆ ˆ ˆˆ ˆmax , , , , , , , ,n i i
i

i i
D F x F x

n n
     

 
   

 
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     2

1

2 1 ˆ ˆ ˆ ˆˆ ˆln , , , ln , , , ,
n

n i i
i

i
A n F x F x

n
     




                 (41) 

 
2

2

1

1 2 1 ˆ ˆˆ, , , .
12 2

n

n i
i

i
W F x

n n
  



 
   

 
  

 

Table 3 Test statistics for the goodness-of-fit tests 

Distribution nD  2
nW  2

nA  

Lomax 0.096669 0.21258940 1.374568 

KW Lomax 0.038908 0.02295290 0.159531 

Exp.Lomax 0.076702 0.17967690 1.090800 

G-Lomax 0.040639 0.02619050 0.180890 

TE-Lomax 0.039910 0.03143840 0.227535 

WLomax 0.041403 0.03829510 0.262735 

Power Lomax 0.035055 0.01754725 0.120466 

APTLx 0.028119 0.01339500 0.083468 

 

Table 3 indicates that the test statistics 2
,n nD W  and 2

nA  have the smallest values for the data set 

under alpha power transformation of Lomax distribution model with regard to the other models. The 

APTLx distribution approximately provides an adequate fit for the data. 

 

5. Conclusion 

In this paper, a new three parameter distribution is proposed called APTLx distribution based on 

alpha power transformation. The aim of this study is to bring more flexibility to the distribution. 

Various mathematical properties such as moments, moment generating function, quantile function etc. 

are discussed. The maximum likelihood estimation is used to estimate the model parameters. The 

usefulness of the proposed model is illustrated by means of real-life data set consists 128 bladder 

cancer patients, whereby it is shown that APTLx distribution gives a better fit than other competitive 

models. We hope that the new model will be useful for wider application in several areas. 
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