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Abstract

The goal of a gage repeatability and reproducibility (R&R) study is to determine how process
variables and variability in the measurement process contribute to the observed variation in a measured
product property. In an ANOVA for analyzing R&R data, it is assumed that the random effects (such
as part-to-part variation) represent a random sample from a normal distribution. This, however, will
not be the case in many applications, for example, when the random effects are sampled from a finite
population of effects, such as sampling from a finite batch of available parts. In this paper, we examine
the power of hypothesis tests in these R&R studies when sampling random effects from finite
populations in a mixed effects two-factor factorial design. Populations of random effects are simulated
from four finite distributions (two symmetric, two skewed), as well as from a normal distribution, for
varying random effect population sizes, numbers of measurements per part, sampling fractions,
interaction variances, and the error variances. The simulation results indicate that the power of F-tests
is generally larger when random effects in an R&R study were sampled from any of the finite
populations than under the traditional assumption that the random effects are normally distributed.
However, exceptions may occur when the number of sampled effects is small, i.e., the sampling
fraction (SF) is small. When the SF is large, the power is always larger when random effects are
sampled from a finite distribution than under the normal distribution assumption. Thus, the SF can
influence the power of hypothesis tests and ANOVA conclusions in a gage R&R study.

Keywords: Power, repeatability, reproducibility, sampling fraction, two-factor factorial design, variance
components.

1. Introduction

One goal of manufacturing and process industries is continual improvement of a process and the
resulting product quality. Through estimation and subsequent reduction of sources of process
variation, this goal can be achieved. Using data from a designed experiment in a gage R&R study is a
common method for performing tests of significance and providing estimates for sources of variation
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due to product or process variation as well as variation in the measurement process. That is, total
variation is a combination of product or process variation and measurement error. A primary
component of measurement error could be due to the capability of gages where gages are the
measuring devices used to take measurements in a process. An improperly functioning gage will lead
to less precise measurements of the true product properties which, in turn, may cloud assessment of
the natural product variation.

For this research, a measurement system is defined as the gages and the procedure used to take
measurements. A gage study can help identify areas of improvement in the measurement process and
to ensure process signals are not obscured by noise introduced by the measurement gage. A gage
repeatability and reproducibility (R&R) study can be designed to (i) estimate the total variability
inherent in the measurement process; (ii) provide information on the magnitude and component
sources of measurement error; (iii) estimate the closeness of the measurements to a target or true value;
and (iv) determine the adequacy of the gage for use in the measurement process (Montgomery 2013).
A good gage R&R study can be used to estimate the variability of the measurement process which can
then be used to separate the actual process variability from the measured variability. Ultimately, the
goal is to reduce the variability of the measurement process so that the difference between process
variability and total variability is negligible.

The precision of a gage is denoted by the variance component 0'; which can be separated into

age
two components: repeatability and reproducibility. Reproducibility is the variability that results from
using the measurement system (same gages) to make measurements under different operating

conditions of normal use (e.g., different operators, different times or shifts, etc.). Reproducibility,

2
repro?®

denoted with variance component o is the long-term variability that captures the changes in

operating conditions. Repeatability, denoted by o

wepear» 18 the variability in the measurement system.
Repeatability is interpreted as the short-term variability that occurs under identical operating
conditions. Both repeatability and reproducibility variance components can be estimated using a
designed experiment where the potential sources of variation are changed systematically.

One of the most commonly-used gage R&R studies has a two-factor factorial structure. The
protocol for conducting this study is the following: Take a sample of b items and a sample of a
operating conditions. Then, for each of the b x a operating conditions, take n measurements on each
item using the same gage. All other factors are held constant. In this research, we will adopt the
commonly-used terminology that refers to the sampled items generically as ‘parts’ and the sampled
operating conditions as ‘operators’.

The following is an example of a gage R&R study found in Montgomery (2013, 2017) from a
R&R study conducted by Houf and Berman (1988). In this experiment, a random sample of 5 =10
parts are taken. Each part was measured n =3 times by a =3 three operators where a ‘part’ is a
power module for an induction motor starter, the ‘operators’ are inspectors, and the recorded
measurements are on thermal impedance (in degrees C per wattx100). The study produced the
following data
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Part Inspector 1 Inspector 2 Inspector 3
1 37 38 37 41 41 40 41 42 41
2 42 41 43 42 42 42 43 42 43
3 30 31 31 31 31 31 29 30 28
4 42 43 42 43 43 43 42 42 42
5 28 30 29 29 30 29 31 29 29
6 42 42 43 45 45 45 44 46 45
7 25 26 27 28 28 30 29 27 27
8 40 40 40 43 42 42 43 43 41
9 25 25 25 27 29 28 26 26 26
10 35 34 34 35 35 34 35 34 35

For a review of gage R&R studies, see Montgomery et al. (1993a, b), Borror et al. (1997),
Vardeman and VanValkenburg (1999), and Burdick et al. (2003, 2005a, b).

1.1. Mixed effect model
When designing an R&R study like this, the researcher must consider the suitability of the data
in relation to a statistical analysis and the factors that are to be studied so that statistically valid
conclusions can be drawn. Data from a factorial design (like in this R&R study) are typically analyzed
using a multifactor ANOV A model associated with a random or a mixed effects model. ANOVA can
be used to test for differences in fixed effects and to estimate variance components in models with
random effects. In this research, the linear mixed effects model for response ) can be written as:
Ve = HFT+ 0 +(1B); + &y, ey
where g is a baseline mean, 7, is the i" fixed effect of factor A, and p; is the j™ random effect
of factor B, respectively. The (73), effect is the interaction effect for the combination of the i"™ level

of factor A and ;" level of factor B, and &y 18 a normal N(0,0?%) random error for the k"
observation from the (i, j)" levels of factors A and B. For example, in the inspector/part impedance
gage R&R study, A is the inspector factor with fixed zeffects, B is the random part factor with
variance component o, AxB is the random interaction with variance component o, ,, and &

represents a measurement error collected under identical operator/part conditions.
In the ANOVA, three F-tests are performed which correspond to the following null and alternative
hypotheses for fixed operator (7) effects and random part (£) and interaction (zf8) effects:

H, :7,=0 forall i H, : 7, # 0 for some i
H,:0,=0 H :0,>0
H,:0,,=0 H :0,,>0

For the operator and part impedance data, an ANOVA produced the following results:
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Source of Variation Sumof  Degrees of Mean F-statistic ~ p-value
Squares Freedom Squares
Across Inspectors (/) 39.2667 2 19.6333 7.28 0.0048
Part-to-part (P ) 3935.9556 9 437.3284 162.27 < 0.0001
Part/Operator Interaction (/*P) 48.5111 18 2.6951 5.27 0.0001
Measurement Error (M) 30.6667 60 0.5111
Total 4054.4 89

with variance component estimates &, = 48.29, &; ,=0.73 and &;, =0.51, and estimates of the
baseline mean /2 = 35.8 and fixed inspector effects 7,=—0.9, 7,=0.67, and 7, = 0.23. Recall: for a

mixed effects model, the mean square for the interaction is used in the denominator of the F-tests or
operators and parts.

1.2. Model assumptions

Like any statistical procedure, there are assumption when using ANOVA to analyze data from a
factorial experiment in a gage R&R study. One fundamental assumption involves normality of errors.
In context, consider another example. Suppose a manufacturer suspects that the batches of raw
material furnished by the supplier differ significantly in calcium content, and there are a large number
of batches currently in the warehouse. Five of these are randomly selected for study from the
population of available warechouse batches. It is typically assumed that the batch population size is
large relative to the number of sampled batches to the extent that the population is treated as infinite,
and, in particular, normally distributed, in the ANOVA (Graybill 1961, Searle 1971, Sahai and Ojeda
2005, Searle et al. 2006). In many cases, this will not be the truth. For example, if there are only 50
batches of raw material available and five batches were selected, then the population of batches in this
study is finite and is not large relative to the number sampled. It is natural to ask what is the effect on
an ANOVA if the researcher uses 5 of 50 batches (10%)? How does sampling from this finite
population of batches affect the hypothesis tests for variance components. Specifically, what happens
if we do not include a finite population correction in an ANOVA and just assume the sample comes
from a normal distribution? These same questions can be asked of the data from the thermal impedance
R&R study. Specifically, how large was the population of parts from which the sample of 10 parts
was selected? What is the effect on the ANOVA F-tests and associated p-values if a finite population
correction is ignored?

Many researchers have studied variance component estimation. Bennett and Franklin (1954),
Cornfield and Tukey (1956), and Tukey (1956) studied variance component estimation for balanced
designs under the assumptions of independence and normality, and obtained formulas for estimating
variance components. Estimation for unbalanced designs was considered in Tukey (1957) and Searle
(1961). Subsequently, Hartley (1967) developed a general procedure for determining the numerical
values of the coefficients in formulas for expected mean squares (EMS) in random and mixed effects
models for one-way and two-way classifications with unequal replicates when sampling from normal
populations of random effects. It was useful to obtain closed-form EMS formulas with numerical
coefficients which can then be used to give the variance and covariance formulas for mean squares,
and associated ANOVA F-tests.

Various researchers have also studied the effect of finite population sampling in variance
component models. When sampling effects from a finite population, a finite population correction
(FPC) would be needed when estimating variance components. Gaylor and Hartwell (1969)
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considered a single unified procedure for obtaining the EMS for finite population sampling for multi-
stage nested designs for both balanced and unbalanced random sampling from finite and infinite
populations (e.g., normal) for each design factor classification. Searle and Fawcett (1970) studied the
EMS in variance component models with random effects which are assumed to be sampled from finite
populations. They developed rules for converting expectations under infinite population models for
random effects to expectations under finite population models for random effects. In addition, the rules
can be applied to balanced and unbalanced designs, and used for nested and crossed-factor
classifications when it is assumed the population of levels of each factor are finite. What is curious is
that they also assumed that the population of error terms was also finite which differs from the tradition
linear models assumption of random normal errors. When sampling from a finite population, the
variance components in EMS formulas assuming infinite population or continuous distribution
sampling are simply replaced with variance components adjusted with a finite population correction
(FPC). Simmachan et al. (2012) determined the EMS for a one-way ANOVA model assuming
sampling from a finite population of effects and with normally distributed errors. An early and
thorough review of sampling from finite populations can be found in the textbook by Bennett and
Franklin (1954). Unfortunately, despite this early research on sampling from finite populations, no
discussion that addresses this issue can be found in recent published statistical literature, as well as in
current textbooks in experimental design and linear models. And, specifically, there does not appear
that recent discussion exists that is related to gage R&R studies with finite population sampling in
engineering and industrial applications.

In this research, Section 2 contains the sampling methodology for the simulation study, and the
results of this research are presented in Section 3. A discussion appears in Section 4 and conclusions
are summarized in Section 5.

2. Materials and Methods
In this section we will introduce methodology related to incorporating finite population
corrections into analyses that are part of a gage R&R simulation study.

2.1. Finite population corrections

A population represents all objects or individuals of interest. For example, a population could the
available batches of raw materials, machines in a factory, or patients in a hospital. In terms of size,
populations can be classified as either finite or infinite. In this research, each part sampled from a
population of interest has a corresponding model effect. If the model effects result from sampling a
continuous random variable, then we say we have a sample from an “infinite” population, such as a
normal distribution. However, if the model effects result from randomly sampling without replacement
from a population of N effects, then we say we have a sample from a “finite” population.

In an introductory statistics course, Var(y)=c"/n is given as the variance of the sample mean

where o is the population or distribution variance, n is the sample size, and it assumed that simple
random sampling was used to collect the response (y) values. This formula is correct if a random
sample is taken from an infinite population or a continuous distribution, and is appropriate to use when
sampling from a very large population of size N for which the sampling fraction SF=n/N is
negligible. However, it often occurs that samples are taken from finite populations which are not large
and n/ N is not small enough to be ignored. In these cases, variance formulas have to be adjusted by
a factor (N —n)/N known as the finite population correction or FPC. For additional information on

the use of FPCs when sampling from finite populations, see Kish (1965), Hedayat and Sinha (1991),
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Levy and Lemeshow (1991), and Lohr (2010). Thus, for a simple random sample (SRS) taken from
a finite population without replacement, the variance of the sample mean y is

Var(y g )=FPCx %:(N—nja_zz [l_lja_z @)

N )n N)n
with standard error s.e.(Vg,) = Var(Vgg)-

If the sampling fraction (SF) is small, then the FPC will be close to 1 (FPC~1), in which case
including a finite population size N has essentially little to no effect on the variance of yg ¢ in (2).

In practice, it has been suggested that the FPC can be ignored when the sampling fraction does not
exceed 5% while others propose the FPC can be ignored if it is as high as 10% (Cochran 1977).
Consequently, it will be useful to know what is the impact of ignoring the FPCs when using ANOVA
methods in a gage R&R study with random effects.

In this research, we examine the impact on ANOVA due to random sampling £, effects from a
finite population for model (1) and the FPC is ignored. Population sizes and types of random effects
are varied for different types of finite populations and for a varying sampling fraction. Moreover, we
will compare the power of ANOVA F-tests when the random effects are sampled from a finite
population to effects that are randomly sampling from a normal distribution.

2.2. Methodology and scope of the gage R&R simulation study

Distributions for four finite populations of random parts are considered. These distributions are a
discrete uniform distribution (UNI) and three discrete triangular distributions which are defined as
symmetric (SYM), extreme skewed right (ESR), and moderate skewed right (MSR). Simple random
sampling without replacement will be used to sample model effects from these finite part populations.
Finite populations of effects for part factor B will be denoted by G,. This research will be restricted
to two-factor factorial designs in the balanced (or equal replications) case as considered in Searle and
Fawcett (1970).

Finite populations of random effects in the computer simulation will be generated for the
following scenarios:

* For factor A, a=2 or a=4 are the number of fixed operator effects.

* For factor B, finite population sizes N, =20 and N, =60 parts are considered.

* The sampling fractions of parts [Ni] from the finite population of parts were restricted to 10%,
B
20% and 50% of N,. For N, =60, a sampling fraction of 5% was also considered.
» For each AXB operator/part combination is n =2, 3, or 4 gage measurements.
¢ Let G, be the (unscaled) finite population of N, random f, part effects.
N, -1 to N, —1.
2
Thus, the possible values of g, are {~9.5, -8.5, ..., =0.5, 0.5, ..., 8.5, 9.5} for N,=20and {-29.5,
—28.5,...,70.5,0.5, ..., 28.5, 29.5} for N, =60.

2. For the SYM, ESR, and MSR distributions, Table 1 contains a summary of the population of
N, (unscaled) S, effect values and their frequencies.

—_—

. For the UNI distribution, the N, effectsin G, are uniformly spaced from —
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3.Let (5, 5,,...B,) beaSRS of size b selected from the N, valuesin G, and (7,,7,,...,7,) are
a fixed effects. A SRS of interaction (rﬂ)lj effects (i=1,...,a, j=1,....b) is selected from a discrete
uniform distribution G, with mean 0 and o7, = ko, for k=0, 0.5,1and 2, 0,=0,0.5,1 and 2.
By definition, if k=0 then (z8), =0 forall i, .

These finite populations are centered so that each has mean 0. In the simulation, these effects will
be scaled so that each population will have a variance that matches one considered for a normal
Tzﬁ be the variances of the scaled effects in finite G, and G,
populations, respectively. In the simulation study, MATLAB version 2017 was employed for the
computation with 50,000 iterations taken for each simulated gage R&R data scenario.

distribution of effects. Let o and o

We assume that the random error ¢, ~ N (0,6%) in model (1). This differs from Searle and
Fawcett (1970) who assumed the ¢, were from finite populations. We assume the random error is
normal because the response is quantitative and not deterministic. That is, even if the same study
design is replicated, the data that is collected will naturally vary due to uncontrollable random variation
in experimental conditions (such as small changes in temperature, handling of materials, etc.). This
is a critical distinction between our study and prior research which did not allow for variation due to
the measurement process.

The power of ANOVA F-tests in a gage R&R study will depend on the magnitude of the
measurement error variance. Thus, we allow & to vary in the simulation as a multiple of the part
population variance o,. We consider o = Ro, with R=0.25,0.5, and 1. Because the power of a
test is the probability of rejecting the null hypothesis when it is false, the power for each of the three
F-tests can be estimated from the proportions of 50,000 simulation cases for which that null hypothesis

was rejected.
In the normal distribution case, each F-statistic follows a non-central F-distribution with the

same degrees of freedom as the central F' but with a non-zero non-centrality parameter 4 (Hocking
1984, Muller and Stewart 2006, Khuri 2010). For the finite populations, however, the distribution
of the F-statistic is unknown. Thus, to assess the power of a hypothesis test assuming normality
(even if that assumption is violated), a traditional ANOVA is still performed in the simulation. This
can provide information regarding the robustness of ANOVA F-tests when sampling from finite
distributions. Specifically, in the simulation power study, we compare the power when sampling S,

effects from a finite distribution with mean 0 and variance (0';) to the power when sampling
B, ~1IDN(0, o-j ). The steps of the simulation power study are:

Step 1: For each finite distribution G, of N parts defined in the scope of the study, take SRSs of
bp, effects from G, and SRSs of axb(zf3), effects from G,. Samples are taken without

replacement.

Step 2: Sample n gage measurements &, € N (0,67) for each axb factor combination.
Step 3: Generate n responses for the mixed model y, = u+7,+ B, +(78), + &, according to
the conditions set for the 7, fixed operator effects and the random S, part and (zf), interaction

effects.
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Step 4: For each simulated data set of axbxn simulated responses, calculate the ANOVA F-
statistics (F, = MS,/MS,,, F, =MS,/MS ,,, and F,, = MS,, /MSE) for the three hypothesis tests,
and determine if each null hypothesis would be rejected at nominal level « = 0.05.

Step 5: Repeat Steps 1 to 4 for 50,000 iterations.
Step 6: Estimate the power for each F-test. Each power estimate is the proportion of the 50,000

AB>

tests for which the null hypothesis was correctly rejected.
Step 7: Repeat Steps 1 to 6, but instead take a SRS of effects S, ~ N(0, 0';) and a SRS of effects

(Tﬂ)ij - N(an-rzﬁ)
Step 8: Compare the power of each test at Step 6 to the power of the same tests when sampling

from normally distributed random effects at Step 7 having the same variance as those in G, and G,,.

This provides an assessment of non-normal data sampled from finite populations on ANOVA
conclusions. Specifically, assess if each null hypothesis is rejected more often, less often, or rejected
at nearly the same rates when the normality assumption is violated.

3. Results

The simulation results of the power of ANOVA F-tests for each of the four finite distributions
(UNI, SYM, ESR and MSR) are compared to each other and to the textbook case when the random
effects are sampled from a normal population. We considered the relation between the power for
different finite part population sizes (N,), the number of gage measurements (7), the number of

randomly selected parts b with o, the interaction variance component (afﬁ), and the coefficient

multiplier r of the random error variance (o).

The simulation study results are summarized in Tables 2 to 5. These tables list the estimated
power of the F-tests for the a fixed operator effects, the » random part effects, and the ab random
interaction AxB effects. The random part effects are sampled from a UNI, SYM, ESR or MSR finite
population and the axb random interaction effects are sampled from a UNI population. Random
effects were also studied when sampling from a normal distribution.

The power results are shown in Tables 2 and 3 when b =2, 4, and 10 part effects are sampled
(i.e., for SF = 0.10, 0.20, and 0.50 for N, =20) with a=2 and 4 fixed operator effects, four
interaction variances o, = ko, (k=0,0.5, 1 and 2), and three random error variance o” = Ro, (R
=0.25, 0.5, and 1). Each table validates some results that we know should happen theoretically. That
is, for each distribution from which the S, are sampled, the power of F-tests for H, :0'; =0 versus
H, :0,>0:

(R1) increases as the number of gage measurements (n) increases from 2 to 4,

(R2) decreases when gage measurement variability o increases as the R multiplier for 62
increases from 0.25 to 1.

(R3) increases as the /3, sampling fraction SF of parts increases, and

(R4) decreases as interaction variability O'fﬂ increases from 0 to 20'; .

(R5) For the interaction o=, results R1-R4 also apply to the power of F-tests for the H, : O'fﬁ =0

L2
versus H, 10, >.0
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Results (R1)-(R5) observed for a population of N, =20 parts also hold in Tables 4 and 5 for a
population of N, =60 parts. For the fixed operator effects (Factor A), the power of the F-tests for
fixed effects when (z78), ~ N(0, Ufﬂ) are, in general, larger than or very close to the power of the F-
tests when (78); ~ G,5(0,07,).

The important results and new research knowledge, however, are uncovered in the comparisons
of the powers across distributions. Within Tables 6 to 9, we summarize the power of F-tests for o
for fixed 7, -values with respect to the best and the worst distributions where U = Uniform distribution,

N = Normal distribution, D = all other finite (discrete) distributions. The ~ symbol is used when

powers are very close across all distributions, and the “-” sign means the powers of all distributions
are close to 1.

Tables (6a) and (6b) correspond to fixed operator effects (z,,7,) = (-=1,1), when a=2 and
N, =20. It can be seen that

 the uniform (UNI) distribution has highest power when k=0 while the normal (N)
distribution has the lowest. Note when & =0, all (z53), = 0. Thus, the F-test is equivalent to using
the mean squared for measurement error as the denominator of each F-test instead of the interaction
mean square.

* when b =2 parts and multiplier £ =0.5, 1, 2 (where a; = karzﬁ ), the power for all distributions
are similar.

o for k=1and 2, and b =4 and 10 parts, the powers associated with the four finite distributions
are similar, but are all less than the power assuming a normal (N) distribution.

Tables (7a) and (7b) correspond to fixed operator effects (r,7,,7,,7,) = (1,—1,1,—1), when
a=4 and N, =20. The results indicate

* the uniform (UNI) distribution has the highest power when k& =0 and 0.5, while the normal (N)
distribution has the lowest.

« for k=1, powers across all five distributions are similar for » =2. However, for =4 or 10,
the uniform (UNI) distribution has the highest power and the normal (N) distribution has the lowest
power.

« for k =2, the normal (N) distribution has the highest power for b =4, but is worst for 5 =10.

Tables (8a) and (8b) correspond to fixed operator effects (z,,7,) = (-1,1), when a=2 and
N, =60. The results indicate

s for k=0, the uniform (UNI) distribution is best and the normal (N) distribution is worst for
b=3,6,and 12.

e for k=1 or2 and b= 6, 12,and 30, the normal (N) distribution has the highest power and all
the finite distributions have lowest power for five of the six cases. The normal (N) distribution is the
worst in the other case.

e for k£ =0.5, no clear pattern is observed for =3 or 6. However, for =12 and 30, the
uniform (UNI) distribution has the highest power while the normal (N) distribution has the lowest
power.

Tables (9a) and (9b) correspond to fixed operator effects (z,,7,,7;,7,) = (1,—1,1,—1), when

a=4and N, =60. The results indicate
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+ the uniform (UNI) distribution is best and the normal (N) distribution is worst for the majority
of cases.

* Powers are similar for all five distributions for three cases with & is small and b islarge.

* the only one case when the normal (N) distribution has the highest poweris b =3 and £ =2.

4. Discussion

From Tables 6 to 9, it can be seen that the pattern of the results in these tables are similar when we
change n or R. Thus, the patterns do not depend on n or R. These results show that, when
(7,,7,) = (=1,1), the powers when sampling parts from a finite population will be greater than for the
normal distribution when &k =0, and the normal distribution has highest power when &k and b are
large. For k=05, 1, or 2 and & is small, all of distributions are similar. For
(z,,7,,7;,7,) = (1,—11,—1), the powers in a gage R&R study with a finite population are the best when
k=0,0.50r k is small and b is large, while the normal distribution has highest power when £ is
large and b is small.

Next, we graphically summarize in Figures 1 and 2, the power of tests for 0'; part variation for

the case when the interaction variance, afﬁ = O'Z. Figure 1 contains plots of the power of the F-test

2
for o, when N,

For R=10.25, 0.5, and 1, plots in (1a), (1b), and (1¢) are for the symmetric distributions and plots in
(1d), (1e) and (1f) are for the finite skewed distributions. Subplots are separated vertically into three
levels of part factor B and horizontally into two levels of operator factor A with 2, 3 and 4 gage
measurements. Figure 2 (like Figure 1) contains plots of the power of the F-test for factor B but with

=20 with various choices of a,b,n for operators, parts, and gage measurements.

N, =60. The patterns appearing in the plots in Figures 1 and 2 visually summarize the numerical

results in Tables 2 to 5, but with » =3 added. These figures visually support all tabular results for
N, =20 and N, =60.

5. Conclusions

The purpose of this research was to examine the possible impact in ANOV A when the effects are
sampled from finite populations in a mixed-effects two-factor factorial design in a gage R&R study.
Specifically, the primary goal was to compare the powers of the ANOVA F-tests when the random
part effects are sampled from finite and from normal populations. Although the results of Section 3
support the expectations that power will increase as the number of gage measurements increases, the
simulation also quantifies the magnitude of the change in power under the different scenarios. It also
showed that as the coefficient of the variance of random effects increases, the powers of the F-tests
gradually decrease.

For (z3), that are randomly selected from a finite uniform distribution, the power of the F-tests

for the interaction variance Gfﬁ is greater when sampling from a finite population than from the normal

distribution when k£ =0 or k is small and b is large, while the power is highest when sampling from

the normal distribution when & is large and b is small. For the examples in this research, we
discovered that the sampling fraction SF and multiplier £ can impact the power of the F-tests in a gage

R&R study. When the SF is large and & is small, the power is greater when sampling from a finite
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distribution than from the normal distribution, while if & is large, the power when sampling from a
normal distribution is greater than when sampling from a finite distribution.

UNI, SYM and N distributions ESR, MSR and N distributions
1 1
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ﬁ’
R=0.25,0.5,and 1



Chawanee Suphirat et al. 697

UNI, SYM and N distributions ESR, MSR and N distributions
1 1
0.9 1 0.9f ]
08 1 0.8F d

w07t ] w07t 1

2 2

o 0.6F 1 o 0.6F ]

£ £

%5 0.5f 1 %5 0.5f 1

Boaf 1 8o4f 1

204 go.

& o3l ] & o3l
e 5 R=.25 e R=.25

[
0.2f —&— UNI 1 0.2r b=3 ——8— ESR 1
8 b ='3 " - === s'Mm ° _‘,.. sty -=%-- mR
0.1F s eenemnens Infinito(N) | 4 0.1F sessmmesssesemeens Infinite(N) | 9
0 . . L . L L 0 . . L . L L
22 23 24 4,2 4,3 4.4 22 23 24 4,2 4,3 4.4
1 1
0.9 1 0.9f ]
08 1 0.8F d

w07t ] w07t 1

2 2

o 0.6F 1 o 0.6F ]

£ £

%5 0.5f 1 %5 0.5f 1

Boaf 1 8o4f 1

204 go.

=] =]

o 03r b=8 rR=5 | o 03r b=6 R=5
0.2F —— UNI 1 0.2F ———f— ESR 1

b=3 - === sWM g b=.3 " - = -- umsr
0.1F L ¢ s eenemnens Infinito(N) | 4 0.1F sessmmesssesemeens Infinite(N) | 9

0 . . L . L L 0 . . L . L L

22 23 24 4,2 4,3 4.4 22 23 24 4,2 4,3 4.4

(a,n) (a,n)
(2¢)

1 1 T T T L ¢ &
0.9 1 0.9f ]
08 1 0.8F d

w07t ] w07t 1

2 2

o 0.6F 1 o 0.6F ]

£ £

%5 0.5f 1 %5 0.5f 1

o4l 1 Boaf ]

204 go.

E 3 1 E 0.3f 1
03 b=6 R=1 Bea R=1
0.2 &""""‘“"""'” —— N . 0.2f gumpsd —e— sk .

b=3 - === sYM b=3 - =9 - - usR
01t b cosvmnsssieenssmns Infinito(N) | 0.1F e sosnmsniaennnnnss Infinite(N) | 4
0 . . L . L L 0 . . L . L L
22 23 24 4,2 4,3 4.4 22 23 24 3,2 3,3 3.4 42

. - ¢

(2¢) (29

. - :

Figure 2 The comparison of the power of tests for factor B which contain the symmetric and skewed
distributions at each level of SF (SF =0.05, 0.10, 0.20 and 0.50) with N, =60, o7, = o, and for

R =0.25,0.5,and 1



698 Thailand Statistician, 2022; 20(3): 686-709

Table 1 The frequencies of unscaled S, values define the discrete triangular and the values of H

make the means of the distributions equal zero
The population of N, =20 N, =60

B, values SYM ESR MSR SYM ESR MSR
1-H 1 4 2
2-H
3-H
4-H
5-H
6-H
7-H
8-H
9-H
10-H
11-H
12-H
13-H
14-H

H 4.5 3.5 39 7.5 179/30 6.3

&)
N
N

— N W R B~ W
—_ = NN W W N
—_— = N WA B~ W
D W W A VLY 9N L B W W
D W W W W A B 0 i NN
NN W W W Wk NI I WM

N

Consequently, under conditions related to the sampling fraction SF, the number of gage
measurements 7, the distribution of random part effects (discrete or normal), the size of the

measurement error ¢, the size of the interaction variance O'fﬁ, and the finite population variances
0';, can influence conclusions regarding hypothesis testing when using ANOVA. In practical

applications, we should consider whether or not it can be assumed that a normal population is
appropriate when sampling random effects.

Finally, all of the results for the random effects in the mixed model R&R study can also be applied
to a random effects study in which the operators are also considered random effects sampled from a

finite population. That is, we can apply the results for testing H : 0; =0 against H, : 0'; > 0 because
the mean square for the interaction is also used for testing a random operator effects (i.e., H,: o> =0

against H,: 0. >0).
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Table 2 The powers of F-test for fixed (z,,7,) = (-11), for f, ~ G,(0,0}), (z8); ~ G 4(0,07,), and
for B, ~ N(O,a;), (@), ~ N(O,Gfﬁ) with &° :RO';, where N, =20

Designs o, =0 o, =.50, o, =0, ol =20,
SF (a,b,n) Factor Dist R R R
> .25 5 1 25 .5 1 .25 .5 1 25 5 1
d00 (2,2,2) B N 199 149 111 101 .094 .087 .086 .079 .076 .071 .070 .067
UNI 207 154 112 104 .096 .089 .084 .082 .077 .072 .070 .068
SYM 204 151 113 100 .095 .086 .082 .082 .078 .069 .069 .068
ESR 207 146 112 101 .095 .087 .085 .079 .077 .070 .069 .067
MSR 205 151 110 102 .094 .086 .084 .082 .077 .070 .066 .067
A B~ N 246 177 124 113 104 .090 .091 .085 .078 .072 .071 .070
B, ~G, 246 178 124 110 101 .092 .089 .083 .079 .072 .071 .068
AB N .049 .052 .051 281 .185 .124 407 283 .184 540 .407 279
G, 052 .050 .051 .291 .187 .119 419 291 .187 .553 416 .290
(2,2,3) B N 239 175 133 103 .099 .090 .083 .083 .081 .072 .069 .067
UNI 251 183 138 103 .101 .089 .084 .080 .079 .070 .071 .068
SYM 249 181 137 103 102 .092 .083 .082 .080 .069 .070 .070
ESR 245 177 133 103 .098 .092 .084 .081 .078 .070 .071 .068
MSR 246 177 132 105 101 .090 .084 .082 .080 .071 .070 .070
A B~ N 299 212 154 115 109 .099 .091 .088 .086 .073 .075 .070
B, ~G, 305 215 155 112 109 .096 .088 .083 .083 .071 .071 .070
AB N 051 .050 .051 407 .284 185 .540 411 282 .655 .539 411
G, .049  .049 .051 420 289 185 555 422 293 674 556 422
(2,2,4) B N 270 202 150 105 .103 .095 .083 .084 .080 .071 .071 .071
UNI 286 208 .154 107 .103 .096 .086 .086 .081 .072 .071 .069
SYM 275 207 153 106 .102 .093 .084 .084 .079 .071 .071 .068
ESR 274202 150 105 .101 .096 .085 .084 .081 .071 .069 .069
MSR 280 205 150 106 .101 .097 .084 .085 .078 .071 .070 .070
A B~ N 342249 178 121 117 105 .090 .088 .084 .074 .073 .072
B, ~G, 344 244 176 113 110 .103 .089 .089 .085 .072 .072 .070
AB N 051 .050 .050 479 347 231 .608 482 349 710 .608 .481
G, 049 .050 .050 494 361 235 .620 493 358 720 .620 .493
200 (242 B N 687 489 313 266 .234 188 .177 .161 .141 115 .112 .103
UNI 745 530 326 260 230 191 168 .156 .141 .111 110 .104
SYM 722509 320 256 224 186 .168  .157 .140 .112 .108 .107
ESR 718 513319 257 227 189 167 157 141 112 109 .106
MSR 716 511 316 .257 227 183 167 157 139 115 .113  .105
A B;~N 950 754 490 413 363 289 265 241 207 .164 159 .148
B, ~G, 950 757 490 390 344 281 245 226 .205 151 149 .140
AB N 051 .049 .051 526 325 192 724 523 325 867 723  .520
G, .050 .049 .050 .540 333 191 .748 541 330 .887 .749 .540
(24.3) B N 784 .605 413 280 .253 218 .177 .170 153 .117 .116 .109
UNI 843 659 439 272 248 214 170 164 152 115 114 110
SYM 822 .640 428 268 248 216 .171 .164 152 115 110 .109
ESR 813 .633 429 270 247 215 173 164 153 .114 110 .107
MSR 811 .633 424 265 246 214 174 164 148 .117 .113 .108
A B, ~N 991 89 642 437 395 336 270 256 230 .167 .164 .154
B, ~G, 990 886 .649 411 373 323 249 239 220 .153 155 .146
AB N .049 .050 .051 .714 509 307 .860 .708 .509 .942 858 .709
G, 051 .049 .049 735 524 316 .880 .739 521 951 877 738
(2,/4.4) B N 837 .685 490 288 264 235 180 .171 .163 .118 .116 .112
UNI 892 743 525 277 259 230 170 166 .159 .116 .113  .112
SYM 875 724 513 276 259 228 171 166 .159 115 115 .110
ESR 868 717 .508 276 255 228 171 .168 .161 .116 .115 .111
MSR 869 714 513 275 256 226 173 167 156 .119 .114 111
A B;~N 998 951 756 448 411 364 274 262 243 170 .164 .160
B, ~G, 998 949 753 416 392 346 250 242 228 158 153 147
AB N .050 .050 .050 .803 .624 405 910 .803 .619 .964 911 .801
G .051 .050 .050 .825 .645 419 926 .826 .646 .970 926 .827

L7/3
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Table 2 (Continued)
Designs =0 0y =50, 0y=0; oy =20,
SF ( ab n) Factor Dist R R R R
> 25 5 1 25 5 1 25 5 1 25 5 1

50 0 (2,10,2) B N 990 932 746 658 583 464 419 386 .329 237 221 207
UNI 999 975 799 694 604 476 410 377 315 222 211 .192
SYM 998 966 790 .684 600 476 413 374 318 223 212 195
ESR 998 965 782 683 .600 475 406 373 320 224 210 .198
MSR 998 962 786 .680 .600 472 412 373 318 224 212 194
A B~ N 1 1 977 945 902 806 .756 715 .632 491 468 430
B, ~G, 1 1 977 952 903 803 751 .703 .629 468 453 413
AB N .050 .051 .050 .872 .623 347 977 872 .623 997 978 873
G, 049 052 .051 .898 .643 351 985 895 .640 999 985 .896
2,103) B N 998 975 872 686 629 541 437 411 363 245 234 219
UNI 1 997 930 .720 .661 555 420 399 354 225 219 205
SYM 1 993 916 716 .649 554 419 396 352 222 215 208
ESR 1 992 914 715 653 557 422 394 353 230 .220 .207
MSR 1 991 913 710 .656 550 424 397 353 227 219 210
A B~ N 1 1 998 957 929 869 771 742 681 501 484 460
B, ~G, 1 1 998 965 939 870 .766 732 .676 474 458 436
AB N 051 .051 .050 969 843 574 997 969 .844 1 997 969
G, 053 .049 051 980 .868 591 999 980 .870 1 998 980
(2,10,4) B N 999 990 934 694 656 579 442 421 386 247 236 222
UNI 1 999 976 746 .690 .601 430 411 373 228 221 213
SYM 1 998 966 731 .684 600 428 407 374 228 223 209
ESR 1 998 965 735 682 597 427 409 372 230 220 214
MSR 1 998 962 727 677 598 432 410 371 228 221 212
A B~ N 1 1 1 963 943 898 778 758 711 505 491 470
B, ~G, 1 1 1 971 952 903 776 753 704 478 464 448
AB N 051 .049 .049 989 925 723 999 989 .926 1 999  .990
G 049 050 .051 994 944 749 999 994 947 1 1 994
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Table 3 The powers of F-test for fixed (z,,7,,7;,7,) =(1,-1,1,—-1), for ,B, ~G, (0,0';),
(#B); ~ G40, ofﬂ ), and for B, ~ N(O, 0'; ), (7B, ~ N(0, O'fﬂ) with o* = Ro;,, where N, =20

Designs 05=0 0y =50 05=0; 0y =20,
Factor Dist R R R R
(a,b,n) 25 5 1 25 5 1 25 5 1 25 5 1
10 (4,2,2) B N 617 .500 364 327 297 251 233 218 .195 159 151 .144
UNI .660 528 393 342 306 261 232 218 .196 .155 .148 .143

SYM .654 522 381 331 300 .256 .236 215 195 156 .148 .142
ESR .636 517 380 333 300 254 225 217 194 154 149 .140
MSR .646 513 379 328 298 255 230 215 195 157 .148 .140

A p;~ N 831 .565 332 279 240 191 173 161 .144 116 .114 .105
B~ Gy, 835 565 330 261 .232 190 .167 .158 .140 .115 111 .107

AB N .050 .051 .050 520 322 .187 726 .521 322 866 724 522

G, .050 .051 .051 540 326 .187 .747 539 333 882 .745 .538

(4,2,3) B N 684 569 445 336 313 280 .238 227 210 .158 153 .146
UNI 720 611 474 350 331 290 239 226 209 155 151 .147

SYM 721 .603 471 343 325 288 236 225 205 156 .154 .147
ESR 702 585 459 344 321 286 .233 226 210 .156 .150 .145
MSR 710 594 459 342 319 283 238 226 .208 .153 .152 .142

A p;~ N 939 731 460 292 263 219 .180 .168 .157 .115 .114 .109
B~ Gy, 941 726 461 277 252 215 174 169 153 114 112 .110

AB N .051 .051 .049 715 508 311 .860 .716 .506 941 863 .713

G, .049 .051 .049 735 524 314 875 733 525 951 877 .732

(4,2,4) B N 719 618 498 341 328 292 241 234 219 162 159 148
UNI 759 660 534 360 340 308 241 230 218 154 155 .150

SYM 7159 652 521 347 328 300 238 229 215 153 153 .149
ESR 740 .636 513 348 330 299 239 231 217 156 151 .149
MSR 751 645 519 348 331 299 237 227 217 154 151 .145

A p;~ N 979 833 568 299 275 235 181 174 162 117 117 .109
B~ G, 979 832 567 286 268 230 .176 .168 .158 113 .117 .110

AB N .050 .053 .050 .803 .621 411 913 .804 .622 964 910 .805

G, 051 .049 051 820 .639 419 923 822 641 971 922 823

20 (442) B N 947 874 740 681 .623 540 498 470 413 320 311 282
UNI 979 930 .803 744 683 582 529 496 431 316 302 276

SYM 973 911 781 710 .660 .562 511 477 420 318 302 277
ESR 965 903 777 711 661 563 513 483 428 311 303 275
MSR 968 904 773 700 .650 .559 510 476 423 308 301 275

A p;~ N 1 998 921 850 776 .640 585 .537 461 336 319 288
B~ G, 1 998 921 854 773 637 567 519 448 315 295 277

AB N .050 .050 .051 .848 589 323 970 .847 584 997 970 .848

G, 050 .049 051 872 .601 .322 981 875 .603 998 981 .873

(4,4,3) B N 970 925 826 .695 662 592 515 492 450 325 318 .300
UNI 990 964 891 763 721 .649 546 514 474 321 305 296

SYM 986 954 869 735 695 .628 527 506 460 316 .308 .290
ESR 982 947 861 732 .693 .623 .527 502 463 317 310 .293
MSR 985 948 861 726 685 .620 .522 499 459 318 311 .293

A p;~ N 1 1 986 874 828 726 .605 569 .509 341 328 310

B, ~G 1 1 987 879 823 722 577 551 490 321 305 .293

AB N .049 .050 .052 966 .832 553 996 .964 .829 1 996 967

G, .050 .050 .050 977 855 .572 998 978  .857 1 998 978

(4,4,4) B N 980 .949 874 708 .678 .625 519 497 470 334 317 307

UNI 994 979 927 772 741 683 549 526 492 322 312 298
SYM 992 972 915 746 714 .661 532 516 482 317 311 301
ESR 989 968 904 740 710 .658 .533 517 485 318 313 298
MSR 991 968 904 735 704 .653 528 513 476 317 313 301

A p;~ N 1 1 998 887 .851 773 615 585 537 349 333 317
B, ~G 1 1 998 896 .851 768 589 564 519 320 312 298

AB N 051 .051 .049 988 920 .714 999 989 921 1 999 988
G 050 .048 .052 993 939 734 999 995 943 1 1 993

B
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Table 3 (Continued)

Designs o, =0 o, =.50, o, =0, ol =20,
Factor Dist R R R R

(a.b,1) 25 5 1 25 5 1 25 5 1 25 5 1
.50 (4,10,2) B N 1 998 982 968 946 896 .866 .836 .773 .637 .611 .567
UNI 1 1 998 995 988 955 931 902 838 .671 .638 .584
SYM 1 1 996 991 979 940 919 887 .822 .659 .632 .582
ESR 1 1 995 990 978 937 915 886 .823 .664 .632 583
MSR 1 1 995 990 976 937 911 883 817 .659 .633 .580
A B, ~ N 1 1 1 1 1 994 988 980 951 .846 .824 .777
B, ~G, 1 1 1 1 1 995 992 984 954 851 .825 775
AB N .050 .050 .050 997 926 .625 1 997 925 1 1 997
G, 049 052 .049 999 944 636 1 999 943 1 1 999
(4,10,3) B N 1 1 99 975 963 932 875 .855 814 .643 .630 .595
UNI 1 1 1 997 993 978 941 924 879 .679 .659 .620
SYM 1 1 999 994 988 968 926 909 .868 .674 .652 .612
ESR 1 1 999 993 986 967 922 905 863 .671 .655 .615
MSR 1 1 999 992 986 964 923 901 859 668 .649 .617
A B, ~ N 1 1 1 1 1 999 991 985 971 .854 838 .807
B, ~G, 1 1 1 1 1 999 995 989 976 .857 .841 .804

AB N .050 .050 .049 1 995 .898 1 1 995 1 1 1

G, .049 .050 .050 1 998 916 1 1 998 1 1 1
(4,10,4) B N 1 1 998 975 968 947 879 864 B35 .649 .636 .612
UNI 1 1 1 998 996 987 945 930 902 .686 .669 .640
SYM 1 1 1 996 991 979 932 919 888 .674 .658 .630
ESR 1 1 1 993 989 978 930 917 .883 .673 .662 .632
MSR 1 1 1 993 989 976 925 913 881 .675 .662 .634
A B, ~ N 1 1 1 1 1 999 992 989 978 856 .845 825
B, ~G, 1 1 1 1 1 1 995 992 983 861 .849 .826

AB N .050 .050 .051 1 999 973 1 1 1 1 1 1

G .053  .049 .051 1 1 985 1 1 1 1 1 1

i1/3
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Table 4 The powers of F-test for fixed (z,,7,) = (-11), for f, ~ G,(0,0}), (z8); ~ G 4(0,07,), and

for B, ~ N(0,0}), (1), ~ N(0,0,,) with 6° = Ro,, where N, =60

Designs 0,=0 oy =50, Oy =0 0y =20,
SF (a,b,n) Factor Dist R R R R
7 25 5 1 25 5 1 25 5 1 25 5 1
05 (232) B N 470 323 208 179 160 .136 .128 .121 .108 .091 .091 .086
UNI 503 338 211 179 161 135 125 119 109 .092 .088 .087
SYM 489 328 211 178 161 .134 127 120 .110 .095 .088 .088
ESR 488 335 210 179 162 136 127 120 .107 .093 .092 .086
MSR 486 329 212 177 160 137 124 120 .107 .094 .090 .086
A B, ~N 704 471 288 245 216 .179 .168 .156 .139 .112 .109 .106
p,~G, 708 472 290 236 210 .174 156 .149 .134 111 .106 .103
AB N .049 053 .050 413 261 157 593 414 259 752 593 413
G, .050 .048 .051 426 261 157 614 424 263 767 613 424
(2,3.3) B N 567 409 269 185 174 151 133 124 115 096 .090 .090
UNI 609 429 279 184 173 149 127 124 119 097 .094 .091
SYM 588 422 275 185 171 150 128 127 115 .096 .092 .088
ESR 594 419 275 184 171 151 125 124 117 .097 .094 .093
MSR 588 420 274 183 173 151 126 126 .114 093 .095 .089
A B, ~N .88 .607 .39 258 239 205 .170 .161 .150 .118 111 .106
p,~G, 839 605 388 248 227 .194 159 155 147 .113 110 .105
AB N .050 .049 .050 .590 409 249 747 591 405 856 749 589
G, .048 050 .051 610 421 258 768 .604 418 871 764 .604
(2,3.4) B N 637 472 323 194 179 163 133 125 118 .094 .093 .090
UNI 675 504 338 190 179 159 131 125 120 .094 .091 .091
SYM .658 489 330 .188 .178 160 .130 .122 117 .096 .092 .092
ESR 656 490 329 190 174 161 129 124 120 .093 .094 .091
MSR 652 488 330 187 178 160 .128 125 119 .096 .094 .092
A B, ~N 907 .706 471 268 246 219 .171 .163 .155 116 .116 .112
p,~G, 909 710 472 254 237 209 .164 158 149 .111 .109 .106
AB N .051 051 .051 678 .509 328 814 .683 503 .899 812 .679
G, 050 .049 .049 696 521 339 827 699 522 909 .832 .700
A0 (2,6,2) B N .893 729 497 423 366 288 264 238 210 .162 .152 .142
UNI 935 780 520 420 365 290 252 236 206 .153 .148 .139
SYM 922 757 511 419 368 288 250 236 204 151 150 .137
ESR 920 760 517 418 366 290 252 232 203 153 147 139
MSR 915 756 511 421 362 289 251 231 205 .154 148 .140
A B,~N 1 971 791 695 618 507 460 427 366 279 267 243
B, ~G, 1 972 788 687 611 498 441 410 355 259 250 234
AB N .050 .051 .052 .687 442 249 876 .694 440 963 876 .687
G, .050 .048 .051 709 452 245 894 705 448 972 895 .703
(2,6,3) B N 947 843 636 442 404 337 272 255 229 161 155 148
UNI 975 888 .677 448 402 338 259 250 226 .157 151 146
SYM 963 869 .662 439 397 334 262 246 223 155 151 147
ESR 959 870 669 441 400 335 260 245 222 154 151 145
MSR 956 860 660 441 402 335 258 245 223 154 151 147
A B,~N 1 996 921 728 678 583 474 446 405 285 274 259
B, ~G, 1 996 919 714 660 569 451 428 391 266 258 244
AB N .050 .048 .049 862 .658 412 958 863 .662 .991 959 .862
G, .050 .050 .050 .881 .682 418 968 879 .678 993 968 .88l
(2,6,4) B N 970 893 729 456 424 366 277 260 240 .161 156 .153
UNI 987 937 779 455 427 365 264 252 233 157 154 148
SYM 981 921 756 456 417 364 266 254 234 154 155 149
ESR 978 920 762 452 419 366 262 257 232 157 154 149
MSR 975 914 759 450 418 364 263 251 235 156 152 149
A B, ~ N 1 1 969 745 695 624 484 459 427 286 275 267
B, ~G, 1 1 969 733 690  .608 456 443 407 265 262 249
AB N .051 049 .051 924 777 538 981 925 779 996 980 .922
G .050 .049 .050 936 .798 557 984 939 801 .997 985 936

L1/3
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Table 4 (Continued)
Designs 5=0 oy =50, =0 oy =20
SF (a,b,n) Factor Dist R R R R
i 25 5 1 25 5 1 25 5 1 25 5 1
20 (2,12,2) B N 996 966 827 740 664 543 489 445 377 273 263 236
UNI 1 987 864 774 692 555 486 443 374 260 246 224
SYM 999 981 .849 764 682 546 483 442 378 258 251 226
ESR 999 981 854 768 687 .548 486 445 378 259 251 .230
MSR 998 978 850 .762 686 551 487 443 373 262 245 227
A B~ N 1 1 993 978 953 885 .844 804 .730 .578 .555 .519
B~ G, 1 1 994 982 956 .884 .845 804 730 .564 546 498
AB N 050 .049 050 920 .694 395 990 918 .691 999 990 919
G, .048 .050 .051 934 709 397 994 934 708 1 993 .936
(2,12,3) B N 1 991 927 763 713 .621 509 475 426 279 266 .249
UNI 1 998 961 805 .745 641 504 474 419 263 252 242
SYM 1 996 949 792 735 633 500 470 413 264 260 245
ESR 1 996 950 .796 .739 636 .503 471 419 262 257 240
MSR 1 995 948 794 737 635 504 467 416 266 257 241
A p;~ N 1 1 1 985 970 934 855 831 .783 .590 572 546
B~ G, 1 1 1 989 975 934 859 829 779 576 561 531
AB N 050 .052 .049 986 .894 642 999 986 .896 1 999 986
G, .046 .050 .050 991 911 .653 1 990 910 1 999  .990
(2,12,4) B N 1 997 967 781 739 666 517 489 447 278 271 263
UNI 1 1 987 823 776 694 509 487 441 267 261 251
SYM 1 999 981 806 .763 .683 .509 485 447 271 262 245
ESR 1 999 981 812 .767 .685 508 485 448 270 262 251
MSR 1 999 978 808 .765 .683 .507 483 447 271 262 251
A p;~ N 1 1 1 987 978 951 865 .846 .804 .594 580 .553
B~ G, 1 1 1 991 983 956 .866 .844 803 .584 568 .543
AB N 052 052 .049 996 957 .785 1 996 958 1 1 996
G, .053 .050 .050 997 969 .805 1 998 970 1 1 998
50 (2,302) B N 1 1 996 985 963 899 856 817 .725 544 519 462
UNI 1 1 999 997 984 925 885 839 746 546 510 458
SYM 1 1 999 995 982 922 882 .834 739 .543 517 .461
ESR 1 1 999 995 981 922 .88 .842 744 540 514 46l
MSR 1 1 999 995 981 920 .883 .837 .744 539 513 460
A B, ~ N 1 1 1 1 1 1 999 997 990 952 942 916
B~ Gy 1 1 1 1 1 1 999 998 992 956 945 918
AB N .050 .050 .050 999 958 .706 1 999 960 1 1 999
G, .050 .049 .049 1 968 716 1 1 968 1 1 1
(2,30,3) B N 1 1 1 989 978 943 873 842 782 554 532 498
UNI 1 1 1 998 993 969 903 .872 .810 .555 533 493
SYM 1 1 1 997 991 967 900 .865 .806 .555 531 .496
ESR 1 1 1 997 992 967 .897 870 .808 .551 .529 497
MSR 1 1 1 997 990 964 897 868 .805 .551 533 498
A B~ N 1 1 1 1 1 1 999 998 995 955 949 933
B~ Gy 1 1 1 1 1 1 1 999 996 958 952 936
AB N 049 .048 .048 1 997  .930 1 1 998 1 1 1
G, .051 .051 .051 1 999  .940 1 1 999 1 1 1
(2,30,4) B N 1 1 1 990 984 963 880 .855 813 .561 .544 520
UNI 1 1 1 999 997 984 913 887 .843 560 .541 512
SYM 1 1 1 998 995 981 905 .881 .838 .556 .539 513
ESR 1 1 1 998 995 981 909 884 838 .557 .541 512
MSR 1 1 1 997 994 982 905 .884 .839 555 539 514
A B~ N 1 1 1 1 1 1 999 999 997 958 953 941
B~ Gy 1 1 1 1 1 1 1 999 998 962 957 946
AB N .048 .049 .049 1 1 982 1 1 1 1 1 1
G, .050 .049 .050 1 1 988 1 1 1 1 1 1

B
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Table S The powers of F-test for fixed (z,,7,,7;,7,) =(1,-1,1,-1), for ,Bj ~ Gﬁ (0, o'é),
(#B); ~ G40, ofﬂ ), and for S, ~ N(0, (7;), (#B),; ~ N(O, Gfﬂ) with ¢* = RO';, where N, =60
Designs o, =0 ol =50, o, =0, ol =20,
SF Factor Dist R R R R
(ab,m) 25 5 1 25 5 1 25 5 1 25 5 1
05 (43,2 B N 860 749 598 530 484 411 382 357 316 246 240 218
UNI 887 793 635 567 516 437 395 364 323 244 228 212
SYM 878 775 618 554 502 423 383 359 319 238 230 .216
ESR 868 772 618 556 508 427 389 362 322 238 231 215
MSR 867 766 614 553 498 423 387 360 318 237 231 213
A p;~ N 999 956 729 .623 542 426 385 349 301 217 211 .190
B~ G, 999 956 728 .610 526 419 361 332 289 208 .199 .187
AB N 052  .051 .049 731 471 258 907 726 467 979 908 .725
G, .051 .050 .050 .748 483 260 925 751 477 985 925 747
4,3,3) B N 901 .821 .689 .548 520 461 395 375 344 252 243 226
UNI 922 857 735 587 547 485 400 .386 .350 .244 239 222
SYM 921 843 716 .568 533 469 396 373 345 238 232 221
ESR 912 835 714 569 540 480 397 379 345 241 235 224
MSR 908 .826 711 .567 535 475 394 375 342 241 236 223
A p;~ N 1 994 886 .660 595 501 401 372 332 224 217 202
B~ Gy, 1 995 888 .638 579 484 372 350 318 213 206 .195
AB N 049 .052 .049 900 .707 446 975 896 .707 995 976 .898
G, .051 .049 049 917 730 .456 983 916 .728 997 983 916
4,3,4) B N 924 859 750 .558 539 487 402 387 356 .249 244 238
UNI 944 889 .791 .601 573 515 408 .394 365 243 239 232
SYM 939 880 .778 581 547 503 395 384 362 242 240 226
ESR 931 869 772 581 553 511 404 388 365 .240 242 229
MSR 930 .867 .762 .579 549 509 399 383 364 .245 237 231
A p;~ N 1 999 956 .671 .625 544 404 386 350 .221 221 210
B~ Gy, 1 999 956 .657 .606 529 377 361 328 214 207 .200
AB N .051 .050 .050 .950 .826 .585 990 .950 .823 .999 990 .949
G, 049 .051 052 962 .845 .606 994 963 .849 999 993 963
.10 (4,6,2) B N 993 970 891 846 .800 .715 673 .637 575 447 425 393
UNI 998 987 936 .900 .857 .766 .724 .681 .601 .453 429 390
SYM 996 981 919 878 832 744 701 .658 .592 446 430 .392
ESR 995 978 919 879 838 744 708 .665 .594 451 429 398
MSR 995 974 909 871 829 743 703 .664 587 447 430 .394
A p;~ N 1 1 997 984 962 891 .850 .806 .723 .557 .535 491
B~ G, 1 1 996 989 968 .892 852 .808 .717 .543 518 468
AB N .051 .049 .050 959 758 442 997 956 .756 1 997 957
G, .049 .051 .050 971 779 447 999 970 777 1 999 970
(4,6,3) B N 997 986 946 .860 .833 773 .690 .662 .615 456 444 415
UNI 999 996 974 914 888 .828 .739 709 .653 461 449 415
SYM 999 992 964 889 860 .800 .716 .684 .635 446 439 412
ESR 998 991 962 896 .864 .807 720 .692 .644 457 444 420
MSR 998 990 958 886 .856 .799 717 .684 637 454 443 418
A p;~ N 1 1 1 990 979 942 864 834 776 569 548 516
B, ~G 1 1 1 994 982 945 868 837 775 549 530 496
AB N .050 .048 .050 .996 945 721 1 997 944 1 1 .996
G, 051 .049 .049 998 961 .736 1 998 960 1 1 998
(4,6,4) B N 999 993 970 .868 .846 .801 .694 .677 .637 .458 445 432
UNI 1 998 987 921 902 856 .740 718 .675 463 450 433
SYM 999 996 981 .897 877 832 721 .699 .661 455 444 423
ESR 999 995 978 898 878 837 736 .707 .668 461 453 426
MSR 999 994 975 892 873 828 719 702 .659 460 448 429
A p;~ N 1 1 1 992 984 962 873 851 .804 570 .556 531
B, ~G 1 1 1 996 989 965 876 .851 .804 556 .543 514
AB N 051 .050 .049 999 984 .861 1 999 984 1 1 999
G .048 .051 .050 1 992 884 1 1 991 1 1 1

B
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Table 5 (Continued)
Designs o, =0 o, =.50,; =0, ol =20
SF ( b n) Factor Dist R R R R
> 25 5 1 25 5 1 25 5 1 25 5 1
20 (4,12,2) B N 1 1 994 986 972 937 914 890 .838 .707 .682 .631
UNI 1 1 999 997 992 971 954 935 883 741 711 .658
SYM 1 1 997 993 987 959 941 919 868 .725 .698 .652
ESR 1 1 997 994 987 961 944 921 871 .737 .705 .651
MSR 1 1 996 992 984 955 938 917 864 727 701 .652
A B~ N 1 1 1 1 1 999 998 994 981 918 901 .862
B, ~G, 1 1 1 1 1 999 999 995 984 924 905 .868
AB N .050 .050 .050 .999 959 .702 1 999 959 1 1 999
G, .050 .049 .051 1 969 .705 1 1 971 1 1 1
(4,12,3) B N 1 1 999 989 981 963 921 906 873 714 .700 .665
UNI 1 1 1 998 995 987 962 949 918 750 .730 .694
SYM 1 1 1 996 992 978 949 934 904 736 719 .682
ESR 1 1 1 996 992 980 952 939 907 .741 723 .689
MSR 1 1 999 995 990 976 947 935 905 737 720 .686
A B~ N 1 1 1 1 1 1 998 996 991 922 913 888
B, ~G, 1 1 1 1 1 1 999 998 993 929 916 .891
AB N .051 .049 .050 1 998 938 1 1 999 1 1 1
G, .049 .050 .050 1 999 952 1 1 999 1 1 1
(4,12,4) B N 1 1 1 990 985 973 926 914 891 717 .705 .684
UNI 1 1 1 999 997 992 965 956 .934 756 .739 .710
SYM 1 1 1 996 994 986 952 943 921 740 725 .699
ESR 1 1 1 996 993 986 954 945 922 745 731 .707
MSR 1 1 1 995 992 984 949 943 917 742 725 702
A B~ N 1 1 1 1 1 1 999 997 994 926 920 901
B, ~G, 1 1 1 1 1 1 999 998 996 931 921 .904
AB N .051 .050 .048 1 1 988 1 1 1 1 1 1
G, 047 .049 .050 1 1 993 1 1 1 1 1 1
50 (4,30,2) B N 1 1 1 1 1 1 999 998 993 962 953 931
UNI 1 1 1 1 1 1 1 1 999 985 978 .959
SYM 1 1 1 1 1 1 1 1 999 981 973 954
ESR 1 1 1 1 1 1 1 1 998 981 974 954
MSR 1 1 1 1 1 1 1 1 998 982 973 953
A B~ N 1 1 1 1 1 1 1 1 1 1 1 1
B, ~G 1 1 1 1 1 1 1 1 1 1 1 1
AB N .049 .051 .051 1 1 964 1 1 1 1 1 1
G, 049 .048 .051 1 1 972 1 1 1 1 1 1
(4,30,3) B N 1 1 1 1 1 1 999 999 997 965 .959 .945
UNI 1 1 1 1 1 1 1 1 1 987 982 973
SYM 1 1 1 1 1 1 1 1 999 983 979 .969
ESR 1 1 1 1 1 1 1 1 1 985 981 .968
MSR 1 1 1 1 1 1 1 1 999 982 979 .967
A B~ N 1 1 1 1 1 1 1 1 1 1 1 1
B, ~G 1 1 1 1 1 1 1 1 1 1 1 1
AB N .050 .049 .051 1 1 1 1 1 1 1 1 1
G, .050 .050 .051 1 1 1 1 1 1 1 1 1
(4,30,4) B N 1 1 1 1 1 1 999 999 998 967 962 953
UNI 1 1 1 1 1 1 1 1 1 987 984 978
SYM 1 1 1 1 1 1 1 1 1 985 981 974
ESR 1 1 1 1 1 1 1 1 1 985 983 976
MSR 1 1 1 1 1 1 1 1 1 984 980 973
A B~ N 1 1 1 1 1 1 1 1 1 1 1 1
B, ~G 1 1 1 1 1 1 1 1 1 1 1 1
AB N .049 .052 .051 1 1 1 1 1 1 1 1 1
G .049 .051 .050 1 1 1 1 1 1 1 1 1
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Table 6 The best and worst distribution of powers of F-test for (z,,7,) = (=L1) is fixed,

a=2,N, =20
k k
b5 1 2 b5 1 2
4 U N N N 4 N D D D
0 U U N N 0 N N D D

(6a) The best distribution (6b) The worst distribution

Table 7 The best and worst distribution of powers of F-test for (z,,7,,7,,7,) = (1,—-11,-1) is fixed,

a=4,N,=20
k k
b5 1 2 b5 1 2
2 U U =~ - 2 N N =~ =«
4 U U U N 4 N N N D
0 U U U U 0 N N N N

(7a) The best distribution (7b) The worst distribution

Table 8 The best and worst distribution of powers of F-test for (z,,7,) = (=11) is fixed,
a=2,N, =60, (S,,5,,S,) represents the best designs for n =2, 3 and 4

k k
b 0 5 1 2 b 0 1 2
3 U (=,~,N) ~ =~ 3 N (=5D) =~ =
6 U (»NorUNorU) N N 6 N ~ D D
12 U U N N 12 N N D D
30 = U U N 30 = N N D
(8a) The best distribution (8b) The worst distribution

Table 9 The best and worst distribution of powers of F-test for (z,,7,,7,,7,) = (1,—1,1,—1) is fixed,

a=4,N,=60
k k
b5 1 2 b5 1 2
3 U U U N 3 N N N D
6 U U U U 6 N N N -
2 - U U U 2 - N N N
30 - - U U 30 - - N N

(9a) The best distribution (9b) The worst distribution
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