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Abstract 

The goal of a gage repeatability and reproducibility (R&R) study is to determine how process 

variables and variability in the measurement process contribute to the observed variation in a measured 

product property. In an ANOVA for analyzing R&R data, it is assumed that the random effects (such 

as part-to-part variation) represent a random sample from a normal distribution. This, however, will 

not be the case in many applications, for example, when the random effects are sampled from a finite 

population of effects, such as sampling from a finite batch of available parts. In this paper, we examine 

the power of hypothesis tests in these R&R studies when sampling random effects from finite 

populations in a mixed effects two-factor factorial design. Populations of random effects are simulated 

from four finite distributions (two symmetric, two skewed), as well as from a normal distribution, for 

varying random effect population sizes, numbers of measurements per part, sampling fractions, 

interaction variances, and the error variances. The simulation results indicate that the power of F-tests 

is generally larger when random effects in an R&R study were sampled from any of the finite 

populations than under the traditional assumption that the random effects are normally distributed. 

However, exceptions may occur when the number of sampled effects is small, i.e., the sampling 

fraction (SF) is small. When the SF is large, the power is always larger when random effects are 

sampled from a finite distribution than under the normal distribution assumption. Thus, the SF can 

influence the power of hypothesis tests and ANOVA conclusions in a gage R&R study. 

______________________________ 
Keywords: Power, repeatability, reproducibility, sampling fraction, two-factor factorial design, variance 

components. 

 

1. Introduction 

One goal of manufacturing and process industries is continual improvement of a process and the 

resulting product quality. Through estimation and subsequent reduction of sources of process 

variation, this goal can be achieved. Using data from a designed experiment in a gage R&R study is a 

common method for performing tests of significance and providing estimates for sources of variation 
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due to product or process variation as well as variation in the measurement process. That is, total 

variation is a combination of product or process variation and measurement error. A primary 

component of measurement error could be due to the capability of gages where gages are the 

measuring devices used to take measurements in a process. An improperly functioning gage will lead 

to less precise measurements of the true product properties which, in turn, may cloud assessment of 

the natural product variation. 

For this research, a measurement system is defined as the gages and the procedure used to take 

measurements. A gage study can help identify areas of improvement in the measurement process and 

to ensure process signals are not obscured by noise introduced by the measurement gage. A gage 

repeatability and reproducibility (R&R) study can be designed to (i) estimate the total variability 

inherent in the measurement process; (ii) provide information on the magnitude and component 

sources of measurement error; (iii) estimate the closeness of the measurements to a target or true value; 

and (iv) determine the adequacy of the gage for use in the measurement process (Montgomery 2013). 

A good gage R&R study can be used to estimate the variability of the measurement process which can 

then be used to separate the actual process variability from the measured variability. Ultimately, the 

goal is to reduce the variability of the measurement process so that the difference between process 

variability and total variability is negligible. 

The precision of a gage is denoted by the variance component 2
gage  which can be separated into 

two components: repeatability and reproducibility. Reproducibility is the variability that results from 

using the measurement system (same gages) to make measurements under different operating 

conditions of normal use (e.g., different operators, different times or shifts, etc.). Reproducibility, 

denoted with variance component 2 ,repro  is the long-term variability that captures the changes in 

operating conditions. Repeatability, denoted by 2 ,repeat  is the variability in the measurement system. 

Repeatability is interpreted as the short-term variability that occurs under identical operating 

conditions. Both repeatability and reproducibility variance components can be estimated using a 

designed experiment where the potential sources of variation are changed systematically. 

One of the most commonly-used gage R&R studies has a two-factor factorial structure. The 

protocol for conducting this study is the following: Take a sample of b  items and a sample of a

operating conditions. Then, for each of the b a  operating conditions, take n  measurements on each 

item using the same gage. All other factors are held constant. In this research, we will adopt the 

commonly-used terminology that refers to the sampled items generically as ‘parts’ and the sampled 

operating conditions as ‘operators’. 

The following is an example of a gage R&R study found in Montgomery (2013, 2017) from a 

R&R study conducted by Houf and Berman (1988). In this experiment, a random sample of 10b  

parts are taken. Each part was measured 3n  times by 3a  three operators where a ‘part’ is a 

power module for an induction motor starter, the ‘operators’ are inspectors, and the recorded 

measurements are on thermal impedance (in degrees C per watt×100).  The study produced the 

following data 
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Part Inspector 1  Inspector 2  Inspector 3 

1 37 38 37  41 41 40  41 42 41 

2 42 41 43  42 42 42  43 42 43 

3 30 31 31  31 31 31  29 30 28 

4 42 43 42  43 43 43  42 42 42 

5 28 30 29  29 30 29  31 29 29 

6 42 42 43  45 45 45  44 46 45 

7 25 26 27  28 28 30  29 27 27 

8 40 40 40  43 42 42  43 43 41 

9 25 25 25  27 29 28  26 26 26 

10 35 34 34  35 35 34  35 34 35 

 

For a review of gage R&R studies, see Montgomery et al. (1993a, b), Borror et al. (1997), 

Vardeman and VanValkenburg (1999), and Burdick et al. (2003, 2005a, b). 

 
1.1. Mixed effect model 

When designing an R&R study like this, the researcher must consider the suitability of the data 

in relation to a statistical analysis and the factors that are to be studied so that statistically valid 

conclusions can be drawn. Data from a factorial design (like in this R&R study) are typically analyzed 

using a multifactor ANOVA model associated with a random or a mixed effects model. ANOVA can 

be used to test for differences in fixed effects and to estimate variance components in models with 

random effects. In this research, the linear mixed effects model for response y can be written as: 

( ) ,ijk i j ij ijky                                  (1) 

where   is a baseline mean, i  is the thi  fixed effect of factor A, and j  is the thj  random effect 

of factor B, respectively.  The ( )ij  effect is the interaction effect for the combination of the thi  level 

of factor A and thj  level of factor B, and ijk  is a normal 2(0, )N   random error for the thk

observation from the th( , )i j  levels of factors A and B. For example, in the inspector/part impedance 

gage R&R study, A is the inspector factor with fixed i effects, B is the random part factor with 

variance component 2 ,P  A×B is the random interaction with variance component 2 ,I P   and   

represents a measurement error collected under identical operator/part conditions. 

In the ANOVA, three F-tests are performed which correspond to the following null and alternative 

hypotheses for fixed operator ( )  effects and random part ( )  and interaction ( )  effects: 

 0 : 0iH   for all i  1 : 0iH   for some i   

  2
0 : 0PH    2

1 : 0PH   

  2
0 : 0 I PH    2

1 : 0 I PH   

For the operator and part impedance data, an ANOVA produced the following results: 
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Source of Variation Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F-statistic p-value 

Across Inspectors (I)     39.2667 2   19.6333     7.28    0.0048 

Part-to-part (P ) 3935.9556 9 437.3284 162.27 < 0.0001 

Part/Operator Interaction (I×P)    48.5111 18 2.6951     5.27    0.0001 

Measurement Error (M )    30.6667 60     0.5111   

Total  4054.4 89    

 

with variance component estimates 2ˆ 48.29,P  2ˆ 0.73I P    and 2ˆ 0.51,M   and estimates of the 

baseline mean ˆ 35.8  and fixed inspector effects 1 0.9,   1 0.67,   and 3 0.23.   Recall: for a 

mixed effects model, the mean square for the interaction is used in the denominator of the F-tests or 

operators and parts. 

 

1.2. Model assumptions 

Like any statistical procedure, there are assumption when using ANOVA to analyze data from a 

factorial experiment in a gage R&R study. One fundamental assumption involves normality of errors. 

In context, consider another example. Suppose a manufacturer suspects that the batches of raw 

material furnished by the supplier differ significantly in calcium content, and there are a large number 

of batches currently in the warehouse. Five of these are randomly selected for study from the 

population of available warehouse batches. It is typically assumed that the batch population size is 

large relative to the number of sampled batches to the extent that the population is treated as infinite, 

and, in particular, normally distributed, in the ANOVA (Graybill 1961, Searle 1971, Sahai and Ojeda 

2005, Searle et al. 2006).  In many cases, this will not be the truth.  For example, if there are only 50 

batches of raw material available and five batches were selected, then the population of batches in this 

study is finite and is not large relative to the number sampled. It is natural to ask what is the effect on 

an ANOVA if the researcher uses 5 of 50 batches (10%)? How does sampling from this finite 

population of batches affect the hypothesis tests for variance components.  Specifically, what happens 

if we do not include a finite population correction in an ANOVA and just assume the sample comes 

from a normal distribution? These same questions can be asked of the data from the thermal impedance 

R&R study. Specifically, how large was the population of parts from which the sample of 10 parts 

was selected?  What is the effect on the ANOVA F-tests and associated p-values if a finite population 

correction is ignored? 

Many researchers have studied variance component estimation.  Bennett and Franklin (1954), 

Cornfield and Tukey (1956), and Tukey (1956) studied variance component estimation for balanced 

designs under the assumptions of independence and normality, and obtained formulas for estimating 

variance components. Estimation for unbalanced designs was considered in Tukey (1957) and Searle 

(1961).  Subsequently, Hartley (1967) developed a general procedure for determining the numerical 

values of the coefficients in formulas for expected mean squares (EMS) in random and mixed effects 

models for one-way and two-way classifications with unequal replicates when sampling from normal 

populations of random effects. It was useful to obtain closed-form EMS formulas with numerical 

coefficients which can then be used to give the variance and covariance formulas for mean squares, 

and associated ANOVA F-tests. 

Various researchers have also studied the effect of finite population sampling in variance 

component models. When sampling effects from a finite population, a finite population correction 

(FPC) would be needed when estimating variance components. Gaylor and Hartwell (1969) 
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considered a single unified procedure for obtaining the EMS for finite population sampling for multi-

stage nested designs for both balanced and unbalanced random sampling from finite and infinite 

populations (e.g., normal) for each design factor classification. Searle and Fawcett (1970) studied the 

EMS in variance component models with random effects which are assumed to be sampled from finite 

populations. They developed rules for converting expectations under infinite population models for 

random effects to expectations under finite population models for random effects. In addition, the rules 

can be applied to balanced and unbalanced designs, and used for nested and crossed-factor 

classifications when it is assumed the population of levels of each factor are finite. What is curious is 

that they also assumed that the population of error terms was also finite which differs from the tradition 

linear models assumption of random normal errors. When sampling from a finite population, the 

variance components in EMS formulas assuming infinite population or continuous distribution 

sampling are simply replaced with variance components adjusted with a finite population correction 

(FPC). Simmachan et al. (2012) determined the EMS for a one-way ANOVA model assuming 

sampling from a finite population of effects and with normally distributed errors. An early and 

thorough review of sampling from finite populations can be found in the textbook by Bennett and 

Franklin (1954). Unfortunately, despite this early research on sampling from finite populations, no 

discussion that addresses this issue can be found in recent published statistical literature, as well as in 

current textbooks in experimental design and linear models. And, specifically, there does not appear 

that recent discussion exists that is related to gage R&R studies with finite population sampling in 

engineering and industrial applications. 

In this research, Section 2 contains the sampling methodology for the simulation study, and the 

results of this research are presented in Section 3. A discussion appears in Section 4 and conclusions 

are summarized in Section 5. 

 

2.  Materials and Methods 

In this section we will introduce methodology related to incorporating finite population 

corrections into analyses that are part of a gage R&R simulation study. 

 

2.1.  Finite population corrections 

A population represents all objects or individuals of interest. For example, a population could the 

available batches of raw materials, machines in a factory, or patients in a hospital.  In terms of size, 

populations can be classified as either finite or infinite. In this research, each part sampled from a 

population of interest has a corresponding model effect. If the model effects result from sampling a 

continuous random variable, then we say we have a sample from an “infinite” population, such as a 

normal distribution. However, if the model effects result from randomly sampling without replacement 

from a population of N  effects, then we say we have a sample from a “finite” population. 

In an introductory statistics course, 2( ) /Var y n  is given as the variance of the sample mean 

where 2  is the population or distribution variance, n is the sample size, and it assumed that simple 

random sampling was used to collect the response ( )y  values. This formula is correct if a random 

sample is taken from an infinite population or a continuous distribution, and is appropriate to use when 

sampling from a very large population of size N  for which the sampling fraction SF /n N  is 

negligible. However, it often occurs that samples are taken from finite populations which are not large 

and /n N  is not small enough to be ignored. In these cases, variance formulas have to be adjusted by 

a factor ( )N n N  known as the finite population correction or FPC. For additional information on 

the use of FPCs when sampling from finite populations, see Kish (1965), Hedayat and Sinha (1991), 
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Levy and Lemeshow (1991), and Lohr (2010).  Thus, for a simple random sample (SRS) taken from 

a finite population without replacement, the variance of the sample mean y  is 

 
2 2 2

( ) FPC 1SRS

N n n
Var y

n N n N n

     
       

   
               (2) 

with standard error s.e.( ) ( ).SRS SRSy Var y  

If the sampling fraction (SF) is small, then the FPC will be close to 1 (FPC 1), in which case 

including a finite population size N   has essentially little to no effect on the variance of SRSy  in (2). 

In practice, it has been suggested that the FPC can be ignored when the sampling fraction does not 

exceed 5% while others propose the FPC can be ignored if it is as high as 10% (Cochran 1977). 

Consequently, it will be useful to know what is the impact of ignoring the FPCs when using ANOVA 

methods in a gage R&R study with random effects. 

In this research, we examine the impact on ANOVA due to random sampling i  effects from a 

finite population for model (1) and the FPC is ignored. Population sizes and types of random effects 

are varied for different types of finite populations and for a varying sampling fraction. Moreover, we 

will compare the power of ANOVA F-tests when the random effects are sampled from a finite 

population to effects that are randomly sampling from a normal distribution. 

 

2.2. Methodology and scope of the gage R&R simulation study 

Distributions for four finite populations of random parts are considered. These distributions are a 

discrete uniform distribution (UNI) and three discrete triangular distributions which are defined as 

symmetric (SYM), extreme skewed right (ESR), and moderate skewed right (MSR). Simple random 

sampling without replacement will be used to sample model effects from these finite part populations. 

Finite populations of effects for part factor B will be denoted by .G  This research will be restricted 

to two-factor factorial designs in the balanced (or equal replications) case as considered in Searle and 

Fawcett (1970). 

Finite populations of random effects in the computer simulation will be generated for the 

following scenarios: 

•  For factor A, 2a  or 4a  are the number of fixed operator effects. 

•  For factor B, finite population sizes 20BN   and 60BN   parts are considered. 

•  The sampling fractions of parts 
 
 
 B

b

N
 from the finite population of parts were restricted to 10%,    

    20% and 50% of .BN  For 60,BN   a sampling fraction of 5% was also considered. 

•  For each A×B operator/part combination is n = 2, 3, or 4 gage measurements. 

•  Let G  be the (unscaled) finite population of BN  random j  part effects. 

1. For the UNI distribution, the BN  effects in G  are uniformly spaced from 
1

2


 BN

  to 
1

.
2

BN 
  

Thus, the possible values of j  are {−9.5, −8.5, ..., −0.5, 0.5, ..., 8.5, 9.5} for 20BN  and {−29.5, 

−28.5, ..., −0.5, 0.5, ..., 28.5, 29.5} for 60.BN   

2. For the SYM, ESR, and MSR distributions, Table 1 contains a summary of the population of 

BN  (unscaled) j  effect values and their frequencies. 
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3. Let 1 2( , ,..., )b    be a SRS of size b  selected from the BN  values in G
and 1 2( , ,..., )a    are 

a  fixed effects. A SRS of interaction ( )ij effects ( 1,..., , 1,..., ) i a j b  is selected from a discrete 

uniform distribution G  with mean 0 and 2 2k    for 0, 0.5, 1 and 2,k   2
 = 0, 0.5, 1 and 2. 

By definition, if 0k  then ( ) 0ij  for all , .i j  

These finite populations are centered so that each has mean 0. In the simulation, these effects will 

be scaled so that each population will have a variance that matches one considered for a normal 

distribution of effects.  Let 2
  and 2

   be the variances of the scaled effects in finite ,G  and G

populations, respectively. In the simulation study, MATLAB version 2017 was employed for the 

computation with 50,000 iterations taken for each simulated gage R&R data scenario. 

We assume that the random error 2(0, )ijk N   in model (1). This differs from Searle and 

Fawcett (1970) who assumed the ijk  were from finite populations.  We assume the random error is 

normal because the response is quantitative and not deterministic.  That is, even if the same study 

design is replicated, the data that is collected will naturally vary due to uncontrollable random variation 

in experimental conditions (such as small changes in temperature, handling of materials, etc.).  This 

is a critical distinction between our study and prior research which did not allow for variation due to 

the measurement process. 

The power of ANOVA F-tests in a gage R&R study will depend on the magnitude of the 

measurement error variance. Thus, we allow 2 to vary in the simulation as a multiple of the part 

population variance 2 .   We consider 2 2R    with R = 0.25, 0.5, and 1.  Because the power of a 

test is the probability of rejecting the null hypothesis when it is false, the power for each of the three 

F-tests can be estimated from the proportions of 50,000 simulation cases for which that null hypothesis 

was rejected. 
In the normal distribution case, each F-statistic follows a non-central F-distribution with the 

same degrees of freedom as the central F  but with a non-zero non-centrality parameter   (Hocking 

1984, Muller and Stewart 2006, Khuri 2010).  For the finite populations, however, the distribution 

of the F-statistic is unknown.  Thus, to assess the power of a hypothesis test assuming normality 

(even if that assumption is violated), a traditional ANOVA is still performed in the simulation.  This 

can provide information regarding the robustness of ANOVA F-tests when sampling from finite 

distributions.  Specifically, in the simulation power study, we compare the power when sampling j

effects from a finite distribution with mean 0 and variance 2( )  to the power when sampling 

2IID (0, ).j N    The steps of the simulation power study are: 

Step 1: For each finite distribution G  of  N  parts defined in the scope of the study, take SRSs of 

jb  effects from G  and SRSs of ( )ija b   effects from .G   Samples are taken without 

replacement. 

Step 2: Sample n  gage measurements 2(0, )ijk N   for each a b  factor combination. 

Step 3: Generate n  responses for the mixed model ( )ijk i j ij ijky           according to 

the conditions set for the i  fixed operator effects and the random j  part and ( )ij  interaction 

effects. 
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Step 4: For each simulated data set of a b n   simulated responses, calculate the ANOVA F- 

statistics ( , , and )A A AB B B AB AB ABF MS MS F MS MS F MS MSE    for the three hypothesis tests, 

and determine if each null hypothesis would be rejected at nominal level 0.05.   

Step 5: Repeat Steps 1 to 4 for 50,000 iterations. 

Step 6: Estimate the power for each F-test. Each power estimate is the proportion of the 50,000 

tests for which the null hypothesis was correctly rejected. 

Step 7: Repeat Steps 1 to 6, but instead take a SRS of effects 2(0, )j N    and a SRS of effects 

2( ) (0, ).ij N    

Step 8: Compare the power of each test at Step 6 to the power of the same tests when sampling 

from normally distributed random effects at Step 7 having the same variance as those in G
 and .G   

This provides an assessment of non-normal data sampled from finite populations on ANOVA 

conclusions. Specifically, assess if each null hypothesis is rejected more often, less often, or rejected 

at nearly the same rates when the normality assumption is violated. 

 

3. Results 

The simulation results of the power of ANOVA F-tests for each of the four finite distributions 

(UNI, SYM, ESR and MSR) are compared to each other and to the textbook case when the random 

effects are sampled from a normal population. We considered the relation between the power for 

different finite part population sizes ( ),BN  the number of gage measurements ( ),n  the number of 

randomly selected parts b  with 2 ,  the interaction variance component 2( ),  and the coefficient 

multiplier R  of the random error variance 2( ).  

The simulation study results are summarized in Tables 2 to 5. These tables list the estimated 

power of the F-tests for the a  fixed operator effects, the b  random part effects, and the ab  random 

interaction AB effects. The random part effects are sampled from a UNI, SYM, ESR or MSR finite 

population and the a b  random interaction effects are sampled from a UNI population. Random 

effects were also studied when sampling from a normal distribution. 

The power results are shown in Tables 2 and 3 when b = 2, 4, and 10 part effects are sampled 

(i.e., for SF = 0.10, 0.20, and 0.50 for 20BN  ) with 2a   and 4 fixed operator effects, four 

interaction variances 2 2k    ( k = 0, 0.5, 1 and 2), and three random error variance 2 2R    (R  

= 0.25, 0.5, and 1). Each table validates some results that we know should happen theoretically. That 

is, for each distribution from which the j  are sampled, the power of F-tests for 2
0 : 0H    versus 

2
1 : 0 :H    

(R1) increases as the number of gage measurements ( )n  increases from 2 to 4, 

(R2) decreases when gage measurement variability 2  increases as the R  multiplier for 2


increases from 0.25 to 1. 

(R3) increases as the j  sampling fraction SF of parts increases, and 

(R4) decreases as interaction variability 2
  increases from 0 to 22  . 

(R5) For the interaction 2 ,  results R1-R4 also apply to the power of F-tests for the 2
0 : 0H    

versus 2
1 : .0H    
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Results (R1)-(R5) observed for a population of 20BN   parts also hold in Tables 4 and 5 for a 

population of 60BN   parts. For the fixed operator effects (Factor A), the power of the F-tests for 

fixed effects when 2( ) (0, )ij N    are, in general, larger than or very close to the power of the F-

tests when 2( ) (0, ).ij G    

The important results and new research knowledge, however, are uncovered in the comparisons 

of the powers across distributions. Within Tables 6 to 9, we summarize the power of F-tests for 2

for fixed i -values with respect to the best and the worst distributions where U = Uniform distribution, 

N = Normal distribution, D = all other finite (discrete) distributions. The   symbol is used when 

powers are very close across all distributions, and the  “-”  sign means the powers of all distributions 

are close to 1. 

Tables (6a) and (6b) correspond to fixed operator effects 1 2( , ) ( 1,1)    , when 2a   and 

20.BN   It can be seen that 

• the uniform (UNI) distribution has highest power when 0k   while the normal (N) 

distribution has the lowest. Note when 0,k   all ( ) 0.ij   Thus, the F-test is equivalent to using 

the mean squared for measurement error as the denominator of each F-test instead of the interaction 

mean square. 

• when 2b   parts and multiplier k =0.5, 1, 2 (where 2 2k   ), the power for all distributions 

are similar. 

• for k = 1 and 2, and 4b   and 10 parts, the powers associated with the four finite distributions 

are similar, but are all less than the power assuming a normal (N) distribution. 

Tables (7a) and (7b) correspond to fixed operator effects 1 2 3 4( , , , ) (1, 1,1, 1),        when 

4a   and 20.BN   The results indicate 

• the uniform (UNI) distribution has the highest power when k = 0     and 0.5, while the normal (N) 

distribution has the lowest. 

• for 1,k   powers across all five distributions are similar for 2.b   However, for 4b   or 10, 

the uniform (UNI) distribution has the highest power and the normal (N) distribution has the lowest 

power. 

• for 2,k   the normal (N) distribution has the highest power for 4,b   but is worst for 10.b   

Tables (8a) and (8b) correspond to fixed operator effects 1 2( , ) ( 1,1),     when 2a   and 

60.BN   The results indicate 

• for 0,k   the uniform (UNI) distribution is best and the normal (N) distribution is worst for 

b = 3, 6, and 12. 

• for 1k   or 2 and b = 6, 12, and 30, the normal (N) distribution has the highest power and all 

the finite distributions have lowest power for five of the six cases. The normal (N) distribution is the 

worst in the other case. 

• for 0.5,k   no clear pattern is observed for b = 3 or 6. However, for 12b   and 30, the 

uniform (UNI) distribution has the highest power while the normal (N) distribution has the lowest 

power. 

Tables (9a) and (9b) correspond to fixed operator effects 1 2 3 4( , , , ) (1, 1,1, 1),        when 

4a  and 60.BN   The results indicate 
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• the uniform (UNI) distribution is best and the normal (N) distribution is worst for the majority 

of cases. 

• Powers are similar for all five distributions for three cases with k  is small and b  is large. 

• the only one case when the normal (N) distribution has the highest power is 3b    and 2.k   

 

4. Discussion 

From Tables 6 to 9, it can be seen that the pattern of the results in these tables are similar when we 

change n  or .R  Thus, the patterns do not depend on n  or .R  These results show that, when 

1 2( , ) ( 1,1),     the powers when sampling parts from a finite population will be greater than for the 

normal distribution when 0,k   and the normal distribution has highest power when k  and b  are 

large. For k =0.5, 1, or 2 and b  is small, all of distributions are similar. For 

1 2 3 4( , , , ) (1, 1,1, 1),        the powers in a gage R&R study with a finite population are the best when 

k = 0, 0.5 or k  is small and b  is large, while the normal distribution has highest power when k  is 

large and b  is small. 

Next, we graphically summarize in Figures 1 and 2, the power of tests for 2
  part variation for 

the case when the interaction variance, 2 2 .     Figure 1 contains plots of the power of the F-test 

for 2
  when 20BN   with various choices of , ,a b n  for operators, parts, and gage measurements. 

For R = 0.25, 0.5, and 1, plots in (1a), (1b), and (1c) are for the symmetric distributions and plots in 

(1d), (1e) and (1f) are for the finite skewed distributions. Subplots are separated vertically into three 

levels of part factor B and horizontally into two levels of operator factor A with 2, 3 and 4 gage 

measurements. Figure 2 (like Figure 1) contains plots of the power of the F-test for factor B but with 

60.BN   The patterns appearing in the plots in Figures 1 and 2 visually summarize the numerical 

results in Tables 2 to 5, but with 3n   added. These figures visually support all tabular results for 

20BN   and 60.BN   

 

5. Conclusions 

The purpose of this research was to examine the possible impact in ANOVA when the effects are 

sampled from finite populations in a mixed-effects two-factor factorial design in a gage R&R study. 

Specifically, the primary goal was to compare the powers of the ANOVA F-tests when the random 

part effects are sampled from finite and from normal populations. Although the results of Section 3 

support the expectations that power will increase as the number of gage measurements increases, the 

simulation also quantifies the magnitude of the change in power under the different scenarios. It also 

showed that as the coefficient of the variance of random effects increases, the powers of the F-tests 

gradually decrease. 

For ( )ij that are randomly selected from a finite uniform distribution, the power of the F-tests 

for the interaction variance 2
  is greater when sampling from a finite population than from the normal 

distribution when 0k   or k  is small and b  is large, while the power is highest when sampling from 

the normal distribution when k is large and b is small. For the examples in this research, we 

discovered that the sampling fraction SF and multiplier k can impact the power of the F-tests in a gage 

R&R study. When the SF is large and k is small, the power is greater when sampling from a finite 
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distribution than from the normal distribution, while if k  is large, the power when sampling from a 

normal distribution is greater than when sampling from a finite distribution. 

 

 

UNI, SYM and N distributions  ESR, MSR and N distributions 

 

 

 

(1a)  (1d) 

 

 

 

(1b)  (1e) 

 

 

 

(1c)  (1f) 
 
Figure 1 The comparison of the power of tests for factor B which contain the symmetric and skewed 

distributions at each level of SF (SF = 0.10, 0.20 and 0.50) with 2 220, ,BN      and for  

R = 0.25, 0.5, and 1 
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UNI, SYM and N distributions  ESR, MSR and N distributions 

 

 

 

(2a)  (2d) 

 

 

 

(2b)  (2e) 

 

 

 

(2c)  (2f) 
 
Figure 2 The comparison of the power of tests for factor B which contain the symmetric and skewed 

distributions at each level of SF (SF = 0.05, 0.10, 0.20 and 0.50) with 2 260, ,BN      and for  

R  = 0.25, 0.5, and 1 
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Table 1 The frequencies of unscaled j  values define the discrete triangular and the values of H 

make the means of the distributions equal zero 

The population of 

j  values 
20BN   60BN   

SYM ESR MSR SYM ESR MSR 

1-H 1 4 2 2 7 4 

2-H 2 4 3 3 7 5 

3-H 3 3 4 3 6 6 

4-H 4 3 4 4 6 7 

5-H 4 2 3 5 5 7 

6-H 3 2 2 6 5 6 

7-H 2 1 1 7 4 5 

8-H 1 1 1 7 4 4 

9-H    6 3 3 

10-H    5 3 3 

11-H    4 3 3 

12-H    3 3 3 

13-H    3 2 2 

14-H    2 2 2 

H 4.5 3.5 3.9 7.5 179 30  6.3 

 
 

Consequently, under conditions related to the sampling fraction SF, the number of gage 

measurements ,n  the distribution of random part effects (discrete or normal), the size of the 

measurement error 2 ,  the size of the interaction variance 2 ,  and the finite population variances 

2 ,  can influence conclusions regarding hypothesis testing when using ANOVA. In practical 

applications, we should consider whether or not it can be assumed that a normal population is 

appropriate when sampling random effects. 

Finally, all of the results for the random effects in the mixed model R&R study can also be applied 

to a random effects study in which the operators are also considered random effects sampled from a 

finite population. That is, we can apply the results for testing 2
0 : 0H    against 2

1 : 0H    because 

the mean square for the interaction is also used for testing a random operator effects (i.e., 2
0 : 0H  

against 2
1 : 0H   ). 
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Table 2 The powers of F-test for fixed 1 2( , ) ( 1,1),    for 2 2(0, ), ( ) (0, ),j ijG G        and 

for 2 2(0, ), ( ) (0, )j ijN N       with 2 2 ,R    where 20BN   

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.10 (2,2,2) B N .199 .149 .111 .101 .094 .087 .086 .079 .076 .071 .070 .067 
   UNI .207 .154 .112 .104 .096 .089 .084 .082 .077 .072 .070 .068 
   SYM .204 .151 .113 .100 .095 .086 .082 .082 .078 .069 .069 .068 
   ESR .207 .146 .112 .101 .095 .087 .085 .079 .077 .070 .069 .067 
   MSR .205 .151 .110 .102 .094 .086 .084 .082 .077 .070 .066 .067 
  A j  N .246 .177 .124 .113 .104 .090 .091 .085 .078 .072 .071 .070 
   j G   .246 .178 .124 .110 .101 .092 .089 .083 .079 .072 .071 .068 

  AB N .049 .052 .051 .281 .185 .124 .407 .283 .184 .540 .407 .279 
   G  .052 .050 .051 .291 .187 .119 .419 .291 .187 .553 .416 .290 

 (2,2,3) B N .239 .175 .133 .103 .099 .090 .083 .083 .081 .072 .069 .067 
   UNI .251 .183 .138 .103 .101 .089 .084 .080 .079 .070 .071 .068 
   SYM .249 .181 .137 .103 .102 .092 .083 .082 .080 .069 .070 .070 
   ESR .245 .177 .133 .103 .098 .092 .084 .081 .078 .070 .071 .068 
   MSR .246 .177 .132 .105 .101 .090 .084 .082 .080 .071 .070 .070 

  A j  N .299 .212 .154 .115 .109 .099 .091 .088 .086 .073 .075 .070 
   j G   .305 .215 .155 .112 .109 .096 .088 .083 .083 .071 .071 .070 

  AB N .051 .050 .051 .407 .284 .185 .540 .411 .282 .655 .539 .411 
   G  .049 .049 .051 .420 .289 .185 .555 .422 .293 .674 .556 .422 

 (2,2,4) B N .270 .202 .150 .105 .103 .095 .083 .084 .080 .071 .071 .071 
   UNI .286 .208 .154 .107 .103 .096 .086 .086 .081 .072 .071 .069 
   SYM .275 .207 .153 .106 .102 .093 .084 .084 .079 .071 .071 .068 
   ESR .274 .202 .150 .105 .101 .096 .085 .084 .081 .071 .069 .069 
   MSR .280 .205 .150 .106 .101 .097 .084 .085 .078 .071 .070 .070 
  A j  N .342 .249 .178 .121 .117 .105 .090 .088 .084 .074 .073 .072 
   j G   .344 .244 .176 .113 .110 .103 .089 .089 .085 .072 .072 .070 

  AB N .051 .050 .050 .479 .347 .231 .608 .482 .349 .710 .608 .481 
   G  .049 .050 .050 .494 .361 .235 .620 .493 .358 .720 .620 .493 

.20 (2,4,2) B N .687 .489 .313 .266 .234 .188 .177 .161 .141 .115 .112 .103 
   UNI .745 .530 .326 .260 .230 .191 .168 .156 .141 .111 .110 .104 
   SYM .722 .509 .320 .256 .224 .186 .168 .157 .140 .112 .108 .107 
   ESR .718 .513 .319 .257 .227 .189 .167 .157 .141 .112 .109 .106 
   MSR .716 .511 .316 .257 .227 .183 .167 .157 .139 .115 .113 .105 
  A j  N .950 .754 .490 .413 .363 .289 .265 .241 .207 .164 .159 .148 
   j G   .950 .757 .490 .390 .344 .281 .245 .226 .205 .151 .149 .140 

  AB N .051 .049 .051 .526 .325 .192 .724 .523 .325 .867 .723 .520 
   G  .050 .049 .050 .540 .333 .191 .748 .541 .330 .887 .749 .540 

 (2,4,3) B N .784 .605 .413 .280 .253 .218 .177 .170 .153 .117 .116 .109 
   UNI .843 .659 .439 .272 .248 .214 .170 .164 .152 .115 .114 .110 
   SYM .822 .640 .428 .268 .248 .216 .171 .164 .152 .115 .110 .109 
   ESR .813 .633 .429 .270 .247 .215 .173 .164 .153 .114 .110 .107 
   MSR .811 .633 .424 .265 .246 .214 .174 .164 .148 .117 .113 .108 
  A j  N .991 .889 .642 .437 .395 .336 .270 .256 .230 .167 .164 .154 
   j G   .990 .886 .649 .411 .373 .323 .249 .239 .220 .153 .155 .146 

  AB N .049 .050 .051 .714 .509 .307 .860 .708 .509 .942 .858 .709 
   G  .051 .049 .049 .735 .524 .316 .880 .739 .521 .951 .877 .738 

 (2,4,4) B N .837 .685 .490 .288 .264 .235 .180 .171 .163 .118 .116 .112 
   UNI .892 .743 .525 .277 .259 .230 .170 .166 .159 .116 .113 .112 
   SYM .875 .724 .513 .276 .259 .228 .171 .166 .159 .115 .115 .110 
   ESR .868 .717 .508 .276 .255 .228 .171 .168 .161 .116 .115 .111 
   MSR .869 .714 .513 .275 .256 .226 .173 .167 .156 .119 .114 .111 
  A j  N .998 .951 .756 .448 .411 .364 .274 .262 .243 .170 .164 .160 
   j G   .998 .949 .753 .416 .392 .346 .250 .242 .228 .158 .153 .147 

  AB N .050 .050 .050 .803 .624 .405 .910 .803 .619 .964 .911 .801 
   G  .051 .050 .050 .825 .645 .419 .926 .826 .646 .970 .926 .827 
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Table 2 (Continued) 

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.50 (2,10,2) B N .990 .932 .746 .658 .583 .464 .419 .386 .329 .237 .221 .207 
   UNI .999 .975 .799 .694 .604 .476 .410 .377 .315 .222 .211 .192 
   SYM .998 .966 .790 .684 .600 .476 .413 .374 .318 .223 .212 .195 
   ESR .998 .965 .782 .683 .600 .475 .406 .373 .320 .224 .210 .198 
   MSR .998 .962 .786 .680 .600 .472 .412 .373 .318 .224 .212 .194 
  A j  N 1 1 .977 .945 .902 .806 .756 .715 .632 .491 .468 .430 
   j G   1 1 .977 .952 .903 .803 .751 .703 .629 .468 .453 .413 

  AB N .050 .051 .050 .872 .623 .347 .977 .872 .623 .997 .978 .873 
   G  .049 .052 .051 .898 .643 .351 .985 .895 .640 .999 .985 .896 

 (2,10,3) B N .998 .975 .872 .686 .629 .541 .437 .411 .363 .245 .234 .219 
   UNI 1 .997 .930 .720 .661 .555 .420 .399 .354 .225 .219 .205 
   SYM 1 .993 .916 .716 .649 .554 .419 .396 .352 .222 .215 .208 
   ESR 1 .992 .914 .715 .653 .557 .422 .394 .353 .230 .220 .207 
   MSR 1 .991 .913 .710 .656 .550 .424 .397 .353 .227 .219 .210 

  A j  N 1 1 .998 .957 .929 .869 .771 .742 .681 .501 .484 .460 
   j G   1 1 .998 .965 .939 .870 .766 .732 .676 .474 .458 .436 

  AB N .051 .051 .050 .969 .843 .574 .997 .969 .844 1 .997 .969 
   G  .053 .049 .051 .980 .868 .591 .999 .980 .870 1 .998 .980 

 (2,10,4) B N .999 .990 .934 .694 .656 .579 .442 .421 .386 .247 .236 .222 
   UNI 1 .999 .976 .746 .690 .601 .430 .411 .373 .228 .221 .213 
   SYM 1 .998 .966 .731 .684 .600 .428 .407 .374 .228 .223 .209 
   ESR 1 .998 .965 .735 .682 .597 .427 .409 .372 .230 .220 .214 
   MSR 1 .998 .962 .727 .677 .598 .432 .410 .371 .228 .221 .212 
  A j  N 1 1 1 .963 .943 .898 .778 .758 .711 .505 .491 .470 
   j G   1 1 1 .971 .952 .903 .776 .753 .704 .478 .464 .448 

  AB N .051 .049 .049 .989 .925 .723 .999 .989 .926 1 .999 .990 
   G  .049 .050 .051 .994 .944 .749 .999 .994 .947 1 1 .994 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chawanee Suphirat et al. 701 

 

Table 3 The powers of F-test for fixed 1 2 3 4( , , , ) (1, 1,1, 1),        for 2(0, ),
j

G   

2( ) (0, ),ij G    and for 2 2(0, ), ( ) (0, )j ijN N       with 2 2 ,R    where 20BN   

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.10 (4,2,2) B N .617 .500 .364 .327 .297 .251 .233 .218 .195 .159 .151 .144 
   UNI .660 .528 .393 .342 .306 .261 .232 .218 .196 .155 .148 .143 
   SYM .654 .522 .381 .331 .300 .256 .236 .215 .195 .156 .148 .142 
   ESR .636 .517 .380 .333 .300 .254 .225 .217 .194 .154 .149 .140 
   MSR .646 .513 .379 .328 .298 .255 .230 .215 .195 .157 .148 .140 
  A j  N .831 .565 .332 .279 .240 .191 .173 .161 .144 .116 .114 .105 
   j G   .835 .565 .330 .261 .232 .190 .167 .158 .140 .115 .111 .107 

  AB N .050 .051 .050 .520 .322 .187 .726 .521 .322 .866 .724 .522 
   G  .050 .051 .051 .540 .326 .187 .747 .539 .333 .882 .745 .538 

 (4,2,3) B N .684 .569 .445 .336 .313 .280 .238 .227 .210 .158 .153 .146 
   UNI .720 .611 .474 .350 .331 .290 .239 .226 .209 .155 .151 .147 
   SYM .721 .603 .471 .343 .325 .288 .236 .225 .205 .156 .154 .147 
   ESR .702 .585 .459 .344 .321 .286 .233 .226 .210 .156 .150 .145 
   MSR .710 .594 .459 .342 .319 .283 .238 .226 .208 .153 .152 .142 

  A j  N .939 .731 .460 .292 .263 .219 .180 .168 .157 .115 .114 .109 
   j G   .941 .726 .461 .277 .252 .215 .174 .169 .153 .114 .112 .110 

  AB N .051 .051 .049 .715 .508 .311 .860 .716 .506 .941 .863 .713 
   G  .049 .051 .049 .735 .524 .314 .875 .733 .525 .951 .877 .732 

 (4,2,4) B N .719 .618 .498 .341 .328 .292 .241 .234 .219 .162 .159 .148 
   UNI .759 .660 .534 .360 .340 .308 .241 .230 .218 .154 .155 .150 
   SYM .759 .652 .521 .347 .328 .300 .238 .229 .215 .153 .153 .149 
   ESR .740 .636 .513 .348 .330 .299 .239 .231 .217 .156 .151 .149 
   MSR .751 .645 .519 .348 .331 .299 .237 .227 .217 .154 .151 .145 
  A j  N .979 .833 .568 .299 .275 .235 .181 .174 .162 .117 .117 .109 
   j G   .979 .832 .567 .286 .268 .230 .176 .168 .158 .113 .117 .110 

  AB N .050 .053 .050 .803 .621 .411 .913 .804 .622 .964 .910 .805 
   G  .051 .049 .051 .820 .639 .419 .923 .822 .641 .971 .922 .823 

.20 (4,4,2) B N .947 .874 .740 .681 .623 .540 .498 .470 .413 .320 .311 .282 
   UNI .979 .930 .803 .744 .683 .582 .529 .496 .431 .316 .302 .276 
   SYM .973 .911 .781 .710 .660 .562 .511 .477 .420 .318 .302 .277 
   ESR .965 .903 .777 .711 .661 .563 .513 .483 .428 .311 .303 .275 
   MSR .968 .904 .773 .700 .650 .559 .510 .476 .423 .308 .301 .275 
  A j  N 1 .998 .921 .850 .776 .640 .585 .537 .461 .336 .319 .288 
   j G   1 .998 .921 .854 .773 .637 .567 .519 .448 .315 .295 .277 

  AB N .050 .050 .051 .848 .589 .323 .970 .847 .584 .997 .970 .848 
   G  .050 .049 .051 .872 .601 .322 .981 .875 .603 .998 .981 .873 

 (4,4,3) B N .970 .925 .826 .695 .662 .592 .515 .492 .450 .325 .318 .300 
   UNI .990 .964 .891 .763 .721 .649 .546 .514 .474 .321 .305 .296 
   SYM .986 .954 .869 .735 .695 .628 .527 .506 .460 .316 .308 .290 
   ESR .982 .947 .861 .732 .693 .623 .527 .502 .463 .317 .310 .293 
   MSR .985 .948 .861 .726 .685 .620 .522 .499 .459 .318 .311 .293 
  A j  N 1 1 .986 .874 .828 .726 .605 .569 .509 .341 .328 .310 
   j G   1 1 .987 .879 .823 .722 .577 .551 .490 .321 .305 .293 

  AB N .049 .050 .052 .966 .832 .553 .996 .964 .829 1 .996 .967 
   G  .050 .050 .050 .977 .855 .572 .998 .978 .857 1 .998 .978 

 (4,4,4) B N .980 .949 .874 .708 .678 .625 .519 .497 .470 .334 .317 .307 
   UNI .994 .979 .927 .772 .741 .683 .549 .526 .492 .322 .312 .298 
   SYM .992 .972 .915 .746 .714 .661 .532 .516 .482 .317 .311 .301 
   ESR .989 .968 .904 .740 .710 .658 .533 .517 .485 .318 .313 .298 
   MSR .991 .968 .904 .735 .704 .653 .528 .513 .476 .317 .313 .301 
  A j  N 1 1 .998 .887 .851 .773 .615 .585 .537 .349 .333 .317 
   j G   1 1 .998 .896 .851 .768 .589 .564 .519 .320 .312 .298 

  AB N .051 .051 .049 .988 .920 .714 .999 .989 .921 1 .999 .988 
   G  .050 .048 .052 .993 .939 .734 .999 .995 .943 1 1 .993 
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Table 3 (Continued) 

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.50 (4,10,2) B N 1 .998 .982 .968 .946 .896 .866 .836 .773 .637 .611 .567 
   UNI 1 1 .998 .995 .988 .955 .931 .902 .838 .671 .638 .584 
   SYM 1 1 .996 .991 .979 .940 .919 .887 .822 .659 .632 .582 
   ESR 1 1 .995 .990 .978 .937 .915 .886 .823 .664 .632 .583 
   MSR 1 1 .995 .990 .976 .937 .911 .883 .817 .659 .633 .580 
  A j  N 1 1 1 1 1 .994 .988 .980 .951 .846 .824 .777 
   j G   1 1 1 1 1 .995 .992 .984 .954 .851 .825 .775 

  AB N .050 .050 .050 .997 .926 .625 1 .997 .925 1 1 .997 
   G  .049 .052 .049 .999 .944 .636 1 .999 .943 1 1 .999 

 (4,10,3) B N 1 1 .996 .975 .963 .932 .875 .855 .814 .643 .630 .595 
   UNI 1 1 1 .997 .993 .978 .941 .924 .879 .679 .659 .620 
   SYM 1 1 .999 .994 .988 .968 .926 .909 .868 .674 .652 .612 
   ESR 1 1 .999 .993 .986 .967 .922 .905 .863 .671 .655 .615 
   MSR 1 1 .999 .992 .986 .964 .923 .901 .859 .668 .649 .617 

  A j  N 1 1 1 1 1 .999 .991 .985 .971 .854 .838 .807 
   j G   1 1 1 1 1 .999 .995 .989 .976 .857 .841 .804 

  AB N .050 .050 .049 1 .995 .898 1 1 .995 1 1 1 
   G  .049 .050 .050 1 .998 .916 1 1 .998 1 1 1 

 (4,10,4) B N 1 1 .998 .975 .968 .947 .879 .864 .835 .649 .636 .612 
   UNI 1 1 1 .998 .996 .987 .945 .930 .902 .686 .669 .640 
   SYM 1 1 1 .996 .991 .979 .932 .919 .888 .674 .658 .630 
   ESR 1 1 1 .993 .989 .978 .930 .917 .883 .673 .662 .632 
   MSR 1 1 1 .993 .989 .976 .925 .913 .881 .675 .662 .634 
  A j  N 1 1 1 1 1 .999 .992 .989 .978 .856 .845 .825 
   j G   1 1 1 1 1 1 .995 .992 .983 .861 .849 .826 

  AB N .050 .050 .051 1 .999 .973 1 1 1 1 1 1 
   G  .053 .049 .051 1 1 .985 1 1 1 1 1 1 
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Table 4 The powers of F-test for fixed 1 2( , ) ( 1,1),     for 2 2(0, ), ( ) (0, ),j ijG G        and 

for 2 2(0, ), ( ) (0, )j ijN N       with 2 2 ,R    where 60BN   

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.05 (2,3,2) B N .470 .323 .208 .179 .160 .136 .128 .121 .108 .091 .091 .086 
   UNI .503 .338 .211 .179 .161 .135 .125 .119 .109 .092 .088 .087 
   SYM .489 .328 .211 .178 .161 .134 .127 .120 .110 .095 .088 .088 
   ESR .488 .335 .210 .179 .162 .136 .127 .120 .107 .093 .092 .086 
   MSR .486 .329 .212 .177 .160 .137 .124 .120 .107 .094 .090 .086 
  A j  N .704 .471 .288 .245 .216 .179 .168 .156 .139 .112 .109 .106 
   j G   .708 .472 .290 .236 .210 .174 .156 .149 .134 .111 .106 .103 

  AB N .049 .053 .050 .413 .261 .157 .593 .414 .259 .752 .593 .413 
   G  .050 .048 .051 .426 .261 .157 .614 .424 .263 .767 .613 .424 

 (2,3,3) B N .567 .409 .269 .185 .174 .151 .133 .124 .115 .096 .090 .090 
   UNI .609 .429 .279 .184 .173 .149 .127 .124 .119 .097 .094 .091 
   SYM .588 .422 .275 .185 .171 .150 .128 .127 .115 .096 .092 .088 
   ESR .594 .419 .275 .184 .171 .151 .125 .124 .117 .097 .094 .093 
   MSR .588 .420 .274 .183 .173 .151 .126 .126 .114 .093 .095 .089 

  A j  N .838 .607 .390 .258 .239 .205 .170 .161 .150 .118 .111 .106 
   j G   .839 .605 .388 .248 .227 .194 .159 .155 .147 .113 .110 .105 

  AB N .050 .049 .050 .590 .409 .249 .747 .591 .405 .856 .749 .589 
   G  .048 .050 .051 .610 .421 .258 .768 .604 .418 .871 .764 .604 

 (2,3,4) B N .637 .472 .323 .194 .179 .163 .133 .125 .118 .094 .093 .090 
   UNI .675 .504 .338 .190 .179 .159 .131 .125 .120 .094 .091 .091 
   SYM .658 .489 .330 .188 .178 .160 .130 .122 .117 .096 .092 .092 
   ESR .656 .490 .329 .190 .174 .161 .129 .124 .120 .093 .094 .091 
   MSR .652 .488 .330 .187 .178 .160 .128 .125 .119 .096 .094 .092 
  A j  N .907 .706 .471 .268 .246 .219 .171 .163 .155 .116 .116 .112 
   j G   .909 .710 .472 .254 .237 .209 .164 .158 .149 .111 .109 .106 

  AB N .051 .051 .051 .678 .509 .328 .814 .683 .503 .899 .812 .679 
   G  .050 .049 .049 .696 .521 .339 .827 .699 .522 .909 .832 .700 

.10 (2,6,2) B N .893 .729 .497 .423 .366 .288 .264 .238 .210 .162 .152 .142 
   UNI .935 .780 .520 .420 .365 .290 .252 .236 .206 .153 .148 .139 
   SYM .922 .757 .511 .419 .368 .288 .250 .236 .204 .151 .150 .137 
   ESR .920 .760 .517 .418 .366 .290 .252 .232 .203 .153 .147 .139 
   MSR .915 .756 .511 .421 .362 .289 .251 .231 .205 .154 .148 .140 
  A j  N 1 .971 .791 .695 .618 .507 .460 .427 .366 .279 .267 .243 
   j G   1 .972 .788 .687 .611 .498 .441 .410 .355 .259 .250 .234 

  AB N .050 .051 .052 .687 .442 .249 .876 .694 .440 .963 .876 .687 
   G  .050 .048 .051 .709 .452 .245 .894 .705 .448 .972 .895 .703 

 (2,6,3) B N .947 .843 .636 .442 .404 .337 .272 .255 .229 .161 .155 .148 
   UNI .975 .888 .677 .448 .402 .338 .259 .250 .226 .157 .151 .146 
   SYM .963 .869 .662 .439 .397 .334 .262 .246 .223 .155 .151 .147 
   ESR .959 .870 .669 .441 .400 .335 .260 .245 .222 .154 .151 .145 
   MSR .956 .860 .660 .441 .402 .335 .258 .245 .223 .154 .151 .147 
  A j  N 1 .996 .921 .728 .678 .583 .474 .446 .405 .285 .274 .259 
   j G   1 .996 .919 .714 .660 .569 .451 .428 .391 .266 .258 .244 

  AB N .050 .048 .049 .862 .658 .412 .958 .863 .662 .991 .959 .862 
   G  .050 .050 .050 .881 .682 .418 .968 .879 .678 .993 .968 .881 

 (2,6,4) B N .970 .893 .729 .456 .424 .366 .277 .260 .240 .161 .156 .153 
   UNI .987 .937 .779 .455 .427 .365 .264 .252 .233 .157 .154 .148 
   SYM .981 .921 .756 .456 .417 .364 .266 .254 .234 .154 .155 .149 
   ESR .978 .920 .762 .452 .419 .366 .262 .257 .232 .157 .154 .149 
   MSR .975 .914 .759 .450 .418 .364 .263 .251 .235 .156 .152 .149 
  A j  N 1 1 .969 .745 .695 .624 .484 .459 .427 .286 .275 .267 
   j G   1 1 .969 .733 .690 .608 .456 .443 .407 .265 .262 .249 

  AB N .051 .049 .051 .924 .777 .538 .981 .925 .779 .996 .980 .922 
   G  .050 .049 .050 .936 .798 .557 .984 .939 .801 .997 .985 .936 
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Table 4 (Continued) 

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.20 (2,12,2) B N .996 .966 .827 .740 .664 .543 .489 .445 .377 .273 .263 .236 
   UNI 1 .987 .864 .774 .692 .555 .486 .443 .374 .260 .246 .224 
   SYM .999 .981 .849 .764 .682 .546 .483 .442 .378 .258 .251 .226 
   ESR .999 .981 .854 .768 .687 .548 .486 .445 .378 .259 .251 .230 
   MSR .998 .978 .850 .762 .686 .551 .487 .443 .373 .262 .245 .227 
  A j  N 1 1 .993 .978 .953 .885 .844 .804 .730 .578 .555 .519 
   j G 

 
1 1 .994 .982 .956 .884 .845 .804 .730 .564 .546 .498 

  AB N .050 .049 .050 .920 .694 .395 .990 .918 .691 .999 .990 .919 
   G  .048 .050 .051 .934 .709 .397 .994 .934 .708 1 .993 .936 

 (2,12,3) B N 1 .991 .927 .763 .713 .621 .509 .475 .426 .279 .266 .249 
   UNI 1 .998 .961 .805 .745 .641 .504 .474 .419 .263 .252 .242 
   SYM 1 .996 .949 .792 .735 .633 .500 .470 .413 .264 .260 .245 
   ESR 1 .996 .950 .796 .739 .636 .503 .471 .419 .262 .257 .240 
   MSR 1 .995 .948 .794 .737 .635 .504 .467 .416 .266 .257 .241 
  A j  N 1 1 1 .985 .970 .934 .855 .831 .783 .590 .572 .546 
   j G 

 
1 1 1 .989 .975 .934 .859 .829 .779 .576 .561 .531 

  AB N .050 .052 .049 .986 .894 .642 .999 .986 .896 1 .999 .986 
   G  .046 .050 .050 .991 .911 .653 1 .990 .910 1 .999 .990 

 (2,12,4) B N 1 .997 .967 .781 .739 .666 .517 .489 .447 .278 .271 .263 
   UNI 1 1 .987 .823 .776 .694 .509 .487 .441 .267 .261 .251 
   SYM 1 .999 .981 .806 .763 .683 .509 .485 .447 .271 .262 .245 
   ESR 1 .999 .981 .812 .767 .685 .508 .485 .448 .270 .262 .251 
   MSR 1 .999 .978 .808 .765 .683 .507 .483 .447 .271 .262 .251 
  A j  N 1 1 1 .987 .978 .951 .865 .846 .804 .594 .580 .553 
   j G 

 
1 1 1 .991 .983 .956 .866 .844 .803 .584 .568 .543 

  AB N .052 .052 .049 .996 .957 .785 1 .996 .958 1 1 .996 
   G  .053 .050 .050 .997 .969 .805 1 .998 .970 1 1 .998 

.50 (2,30,2) B N 1 1 .996 .985 .963 .899 .856 .817 .725 .544 .519 .462 
   UNI 1 1 .999 .997 .984 .925 .885 .839 .746 .546 .510 .458 
   SYM 1 1 .999 .995 .982 .922 .882 .834 .739 .543 .517 .461 
   ESR 1 1 .999 .995 .981 .922 .886 .842 .744 .540 .514 .461 
   MSR 1 1 .999 .995 .981 .920 .883 .837 .744 .539 .513 .460 
  A j  N 1 1 1 1 1 1 .999 .997 .990 .952 .942 .916 
   j G 

 
1 1 1 1 1 1 .999 .998 .992 .956 .945 .918 

  AB N .050 .050 .050 .999 .958 .706 1 .999 .960 1 1 .999 
   G  .050 .049 .049 1 .968 .716 1 1 .968 1 1 1 

 (2,30,3) B N 1 1 1 .989 .978 .943 .873 .842 .782 .554 .532 .498 
   UNI 1 1 1 .998 .993 .969 .903 .872 .810 .555 .533 .493 
   SYM 1 1 1 .997 .991 .967 .900 .865 .806 .555 .531 .496 
   ESR 1 1 1 .997 .992 .967 .897 .870 .808 .551 .529 .497 
   MSR 1 1 1 .997 .990 .964 .897 .868 .805 .551 .533 .498 
  A j  N 1 1 1 1 1 1 .999 .998 .995 .955 .949 .933 
   j G 

 
1 1 1 1 1 1 1 .999 .996 .958 .952 .936 

  AB N .049 .048 .048 1 .997 .930 1 1 .998 1 1 1 
   G  .051 .051 .051 1 .999 .940 1 1 .999 1 1 1 

 (2,30,4) B N 1 1 1 .990 .984 .963 .880 .855 .813 .561 .544 .520 
   UNI 1 1 1 .999 .997 .984 .913 .887 .843 .560 .541 .512 
   SYM 1 1 1 .998 .995 .981 .905 .881 .838 .556 .539 .513 
   ESR 1 1 1 .998 .995 .981 .909 .884 .838 .557 .541 .512 
   MSR 1 1 1 .997 .994 .982 .905 .884 .839 .555 .539 .514 
  A j  N 1 1 1 1 1 1 .999 .999 .997 .958 .953 .941 
   j G 

 
1 1 1 1 1 1 1 .999 .998 .962 .957 .946 

  AB N .048 .049 .049 1 1 .982 1 1 1 1 1 1 
   G  .050 .049 .050 1 1 .988 1 1 1 1 1 1 
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Table 5 The powers of F-test for fixed 1 2 3 4( , , , ) (1, 1,1, 1),        for 2(0, ),j G  

2( ) (0, ),ij G    and for 2 2(0, ), ( ) (0, )j ijN N       with 2 2 ,R    where 60BN   

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.05 (4,3,2) B N .860 .749 .598 .530 .484 .411 .382 .357 .316 .246 .240 .218 
   UNI .887 .793 .635 .567 .516 .437 .395 .364 .323 .244 .228 .212 
   SYM .878 .775 .618 .554 .502 .423 .383 .359 .319 .238 .230 .216 
   ESR .868 .772 .618 .556 .508 .427 .389 .362 .322 .238 .231 .215 
   MSR .867 .766 .614 .553 .498 .423 .387 .360 .318 .237 .231 .213 
  A j  N .999 .956 .729 .623 .542 .426 .385 .349 .301 .217 .211 .190 
   j G   .999 .956 .728 .610 .526 .419 .361 .332 .289 .208 .199 .187 

  AB N .052 .051 .049 .731 .471 .258 .907 .726 .467 .979 .908 .725 
   G  .051 .050 .050 .748 .483 .260 .925 .751 .477 .985 .925 .747 

 (4,3,3) B N .901 .821 .689 .548 .520 .461 .395 .375 .344 .252 .243 .226 
   UNI .922 .857 .735 .587 .547 .485 .400 .386 .350 .244 .239 .222 
   SYM .921 .843 .716 .568 .533 .469 .396 .373 .345 .238 .232 .221 
   ESR .912 .835 .714 .569 .540 .480 .397 .379 .345 .241 .235 .224 
   MSR .908 .826 .711 .567 .535 .475 .394 .375 .342 .241 .236 .223 

  A j  N 1 .994 .886 .660 .595 .501 .401 .372 .332 .224 .217 .202 
   j G   1 .995 .888 .638 .579 .484 .372 .350 .318 .213 .206 .195 

  AB N .049 .052 .049 .900 .707 .446 .975 .896 .707 .995 .976 .898 
   G  .051 .049 .049 .917 .730 .456 .983 .916 .728 .997 .983 .916 

 (4,3,4) B N .924 .859 .750 .558 .539 .487 .402 .387 .356 .249 .244 .238 
   UNI .944 .889 .791 .601 .573 .515 .408 .394 .365 .243 .239 .232 
   SYM .939 .880 .778 .581 .547 .503 .395 .384 .362 .242 .240 .226 
   ESR .931 .869 .772 .581 .553 .511 .404 .388 .365 .240 .242 .229 
   MSR .930 .867 .762 .579 .549 .509 .399 .383 .364 .245 .237 .231 
  A j  N 1 .999 .956 .671 .625 .544 .404 .386 .350 .221 .221 .210 
   j G   1 .999 .956 .657 .606 .529 .377 .361 .328 .214 .207 .200 

  AB N .051 .050 .050 .950 .826 .585 .990 .950 .823 .999 .990 .949 
   G  .049 .051 .052 .962 .845 .606 .994 .963 .849 .999 .993 .963 

.10 (4,6,2) B N .993 .970 .891 .846 .800 .715 .673 .637 .575 .447 .425 .393 
   UNI .998 .987 .936 .900 .857 .766 .724 .681 .601 .453 .429 .390 

   SYM .996 .981 .919 .878 .832 .744 .701 .658 .592 .446 .430 .392 
   ESR .995 .978 .919 .879 .838 .744 .708 .665 .594 .451 .429 .398 
   MSR .995 .974 .909 .871 .829 .743 .703 .664 .587 .447 .430 .394 
  A j  N 1 1 .997 .984 .962 .891 .850 .806 .723 .557 .535 .491 
   j G   1 1 .996 .989 .968 .892 .852 .808 .717 .543 .518 .468 

  AB N .051 .049 .050 .959 .758 .442 .997 .956 .756 1 .997 .957 
   G  .049 .051 .050 .971 .779 .447 .999 .970 .777 1 .999 .970 

 (4,6,3) B N .997 .986 .946 .860 .833 .773 .690 .662 .615 .456 .444 .415 
   UNI .999 .996 .974 .914 .888 .828 .739 .709 .653 .461 .449 .415 
   SYM .999 .992 .964 .889 .860 .800 .716 .684 .635 .446 .439 .412 
   ESR .998 .991 .962 .896 .864 .807 .720 .692 .644 .457 .444 .420 
   MSR .998 .990 .958 .886 .856 .799 .717 .684 .637 .454 .443 .418 
  A j  N 1 1 1 .990 .979 .942 .864 .834 .776 .569 .548 .516 
   j G   1 1 1 .994 .982 .945 .868 .837 .775 .549 .530 .496 

  AB N .050 .048 .050 .996 .945 .721 1 .997 .944 1 1 .996 
   G  .051 .049 .049 .998 .961 .736 1 .998 .960 1 1 .998 

 (4,6,4) B N .999 .993 .970 .868 .846 .801 .694 .677 .637 .458 .445 .432 
   UNI 1 .998 .987 .921 .902 .856 .740 .718 .675 .463 .450 .433 
   SYM .999 .996 .981 .897 .877 .832 .721 .699 .661 .455 .444 .423 
   ESR .999 .995 .978 .898 .878 .837 .736 .707 .668 .461 .453 .426 
   MSR .999 .994 .975 .892 .873 .828 .719 .702 .659 .460 .448 .429 
  A j  N 1 1 1 .992 .984 .962 .873 .851 .804 .570 .556 .531 
   j G   1 1 1 .996 .989 .965 .876 .851 .804 .556 .543 .514 

  AB N .051 .050 .049 .999 .984 .861 1 .999 .984 1 1 .999 
   G  .048 .051 .050 1 .992 .884 1 1 .991 1 1 1 
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Table 5 (Continued) 

SF 
Designs

( , , )a b n  
Factor Dist 

2 0   2 2.5    2 2
    2 22    

R R R R 
.25 .5 1 .25 .5 1 .25 .5 1 .25 .5 1 

.20 (4,12,2) B N 1 1 .994 .986 .972 .937 .914 .890 .838 .707 .682 .631 
   UNI 1 1 .999 .997 .992 .971 .954 .935 .883 .741 .711 .658 
   SYM 1 1 .997 .993 .987 .959 .941 .919 .868 .725 .698 .652 
   ESR 1 1 .997 .994 .987 .961 .944 .921 .871 .737 .705 .651 
   MSR 1 1 .996 .992 .984 .955 .938 .917 .864 .727 .701 .652 
  A j  N 1 1 1 1 1 .999 .998 .994 .981 .918 .901 .862 
   j G   1 1 1 1 1 .999 .999 .995 .984 .924 .905 .868 

  AB N .050 .050 .050 .999 .959 .702 1 .999 .959 1 1 .999 
   G  .050 .049 .051 1 .969 .705 1 1 .971 1 1 1 

 (4,12,3) B N 1 1 .999 .989 .981 .963 .921 .906 .873 .714 .700 .665 
   UNI 1 1 1 .998 .995 .987 .962 .949 .918 .750 .730 .694 
   SYM 1 1 1 .996 .992 .978 .949 .934 .904 .736 .719 .682 
   ESR 1 1 1 .996 .992 .980 .952 .939 .907 .741 .723 .689 
   MSR 1 1 .999 .995 .990 .976 .947 .935 .905 .737 .720 .686 
  A j  N 1 1 1 1 1 1 .998 .996 .991 .922 .913 .888 
   j G   1 1 1 1 1 1 .999 .998 .993 .929 .916 .891 

  AB N .051 .049 .050 1 .998 .938 1 1 .999 1 1 1 
   G  .049 .050 .050 1 .999 .952 1 1 .999 1 1 1 

 (4,12,4) B N 1 1 1 .990 .985 .973 .926 .914 .891 .717 .705 .684 
   UNI 1 1 1 .999 .997 .992 .965 .956 .934 .756 .739 .710 
   SYM 1 1 1 .996 .994 .986 .952 .943 .921 .740 .725 .699 
   ESR 1 1 1 .996 .993 .986 .954 .945 .922 .745 .731 .707 
   MSR 1 1 1 .995 .992 .984 .949 .943 .917 .742 .725 .702 
  A j  N 1 1 1 1 1 1 .999 .997 .994 .926 .920 .901 
   j G   1 1 1 1 1 1 .999 .998 .996 .931 .921 .904 

  AB N .051 .050 .048 1 1 .988 1 1 1 1 1 1 
   G  .047 .049 .050 1 1 .993 1 1 1 1 1 1 

.50 (4,30,2) B N 1 1 1 1 1 1 .999 .998 .993 .962 .953 .931 
   UNI 1 1 1 1 1 1 1 1 .999 .985 .978 .959 
   SYM 1 1 1 1 1 1 1 1 .999 .981 .973 .954 
   ESR 1 1 1 1 1 1 1 1 .998 .981 .974 .954 
   MSR 1 1 1 1 1 1 1 1 .998 .982 .973 .953 
  A j  N 1 1 1 1 1 1 1 1 1 1 1 1 
   j G   1 1 1 1 1 1 1 1 1 1 1 1 

  AB N .049 .051 .051 1 1 .964 1 1 1 1 1 1 
   G  .049 .048 .051 1 1 .972 1 1 1 1 1 1 

 (4,30,3) B N 1 1 1 1 1 1 .999 .999 .997 .965 .959 .945 
   UNI 1 1 1 1 1 1 1 1 1 .987 .982 .973 
   SYM 1 1 1 1 1 1 1 1 .999 .983 .979 .969 
   ESR 1 1 1 1 1 1 1 1 1 .985 .981 .968 
   MSR 1 1 1 1 1 1 1 1 .999 .982 .979 .967 
  A j  N 1 1 1 1 1 1 1 1 1 1 1 1 
   j G   1 1 1 1 1 1 1 1 1 1 1 1 

  AB N .050 .049 .051 1 1 1 1 1 1 1 1 1 
   G  .050 .050 .051 1 1 1 1 1 1 1 1 1 

 (4,30,4) B N 1 1 1 1 1 1 .999 .999 .998 .967 .962 .953 
   UNI 1 1 1 1 1 1 1 1 1 .987 .984 .978 
   SYM 1 1 1 1 1 1 1 1 1 .985 .981 .974 
   ESR 1 1 1 1 1 1 1 1 1 .985 .983 .976 
   MSR 1 1 1 1 1 1 1 1 1 .984 .980 .973 
  A j  N 1 1 1 1 1 1 1 1 1 1 1 1 
   j G   1 1 1 1 1 1 1 1 1 1 1 1 

  AB N .049 .052 .051 1 1 1 1 1 1 1 1 1 
   G  .049 .051 .050 1 1 1 1 1 1 1 1 1 
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Table 6 The best and worst distribution of powers of F-test for 1 2( , ) ( 1,1)     is fixed,

2, 20Ba N   

b 
k  

b 
k 

0 .5 1 2  0 .5 1 2 
2 U        2 N       
4 U N N N  4 N D D D 

10 U U N N  10 N N D D 
           

(6a) The best distribution  (6b) The worst distribution 
 

Table 7 The best and worst distribution of powers of F-test for 1 2 3 4( , , , ) (1, 1,1, 1)        is fixed, 

4, 20Ba N   

b 
k  

b 
k 

0 .5 1 2  0 .5 1 2 
2 U U      2 N N     
4 U U U N  4 N N N D 

10 U U U U  10 N N N N 
           

(7a) The best distribution  (7b) The worst distribution 
 

Table 8 The best and worst distribution of powers of F-test for 1 2( , ) ( 1,1)    is fixed, 

2, 60,Ba N  1 2 3( , , )S S S  represents the best designs for 2, 3n   and 4 

 

b 
k  

b 
k 

0 .5 1 2  0 .5 1 2 
3 U ( , , N)        3 N ( , ,D)       

6 U ( , N or U, N or U)  N N  6 N   D D 

12 U U N N  12 N N D D 
30   U U N  30   N N D 

           

(8a) The best distribution  (8b) The worst distribution 
 

Table 9 The best and worst distribution of powers of F-test for 1 2 3 4( , , , ) (1, 1,1, 1)        is fixed, 

4, 60Ba N   

b 
k  

b 
k 

0 .5 1 2  0 .5 1 2 
3 U U U N  3 N N N D 
6 U U U U  6 N N N - 

12 - U U U  12 - N N N 
30 - - U U  30 - - N N 

           

(9a) The best distribution  (9b) The worst distribution 
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