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Abstract

Trimmed samples are widely utilized in several areas of statistical practice, especially when some
sample values at either or both extremes might have been adulterated. In this paper, the problem of
estimating the parameter of power function II distribution based on trimmed samples under
informative and non-informative priors has been addressed. The problem discussed using Bayesian
approach to estimate the parameter of power function II distribution. The explicit expressions for
estimator and risk are developed under all loss functions. Elicitation of hyperparameter through prior
predictive approach is also discussed. Posterior predictive distributions along with posterior predictive
intervals and credible intervals are also derived under different priors. A comparison is made using
the Monte Carlo simulation. The influence of parametric value on the estimate and risk is also
discussed.

Keywords: Inverse transformation method, doubly censored samples, loss functions, posterior predictive
distributions, credible intervals, predictive intervals.

1. Introduction
The power function distribution is often used to study the electrical component reliability. The
distribution function of power function II distribution is given by

F(x)=1-(1-x)",2>0,0<x<1. (1
And the corresponding PDF of power function II distribution has the following form
f(x)=2(1-x)",2450,0<x<], ®)

where A is the shape parameter. Trimmed samples are widely employed in several areas of statistical
practice, especially when some sample values at either or both extremes might have been
contaminated. The problem of estimating the parameters of power function distribution based on a
trimmed sample and prior information has been considered in this paper. There are a few works
available in literature on the Bayesian analysis of the power function distribution and its mixture.
Meniconi and Barry (1996) discussed the electrical component reliability using the power function
distribution. With the rapid progression of VLSI products, electrostatic discharge, accelerated life,
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electromagnetic pulse, radiation monitoring, and subsequent modelling of failure are regarded by both
producers and consumers as an important issue in the quality control and assurance of semiconductors.
Most distributions and their established relevant explanation of physical failure phenomena are used
to estimate system reliability due to the variety and complexity of determining failure modes and
causes in semiconductor devices. So, the power function distribution taken into account when
estimating the device reliability of electronic components due to its applicability, simplicity and
therefore attractiveness to reliability engineers.

Ahsanullah and Kabir (1974) gave a brief characterization of the power function distribution. Al-
Hussaini and Jaheen (1992). Wingo (1993) derived the theory for the maximum likelihood (ML) point
estimation of the parameters of the Burr distribution when type 11 singly censored sample is at hand.
Akhter and Hirai (2009) studied the scale parameter from the Rayleigh distribution from type II singly
and doubly censored data.

Sindhu et al. (2019a, 2019b) studied the Bayesian estimation approach for mixture models.
Fernandez (2000) studied a Bayesian approach to inference in reliability studies based on type II
doubly censored data from a Rayleigh distribution. Sindhu and Hussain (2022) studied predictive
inference and parameter estimation from the half-normal distribution for the left censored data. They
also studied the problem of predicting an independent future sample from the same distribution in a
Bayesian setting.

Saleem and Aslam (2009) investigated the Rayleigh distributed survival time in conjunction with
the Rayleigh distributed censor time in order to derive the maximum likelihood and Bayes estimators
for the unknown parameters and their corresponding variances. To find the Bayes estimators under the
squared error loss function, they assumed informative and noninformative priors. In their study, they
derived and evaluated the posterior predictive distribution of future observations, the predictive
intervals, the credible intervals, and the highest posterior intervals. Saleem et al. (2010) used a two-
component mixture of the power function distribution to model a heterogeneous population. They
investigated a comprehensive simulation scheme with a large number of parameter points to highlight
the properties and behavior of the estimates in terms of sample size, censoring rate, parameter size,
and the proportion of the mixture’s components.

Feroze and Aslam (2012) studied Bayesian analysis of Gumbel type II distribution under doubly
censored samples using different loss functions. Sindhu et al. (2013a) studied Bayes estimation of the
parameters of the inverse Rayleigh distribution for left censored data. Sindhu et al. (2013b) discussed
the Bayesian analysis of the Kumaraswamy distribution under failure censoring sampling scheme.
Anum et al. (2021, 2022) used modified Kies generalized transformation and the new power function
to suggest a unique statistical models. Sindhu et al. (2022) discussed different estimation method of
mixture distribution and modeling the COVID-19 pandemic. Sindhu and Atangana (2021) suggested
the model of reliability formed on inverse power law and generalized inverse Weibull model. Sindhu
et al. (2021a, 2021b) studied new family of Gumbel type II distribution.

Doubly censoring of type II is used to indicate that a specified number of observations at both
ends is missing in an ordered sample of size n while the number of censored observations is a random
variable in type I censoring and the time of analysis is fixed. A number of extreme sample values,
especially in reliability analysis or biomedical studies, due to negligence of inexperienced observers
or other factors. Therefore excluding these findings from the original data set may be appropriate. The
remaining sample is often referred as to the type II doubly censored sample, where the lowest and the
highest values have been censored or discarded.
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The present study investigated the prominent features of the unknown parameter of the power
function II distribution based on doubly censored type II. The analysis of this type has not been studied
earlier in literature through Bayesian structure to the best of our knowledge.

The rest of paper is organized as follows. In Section 2, the posterior distributions have been
derived under non-informative and informative priors. Estimation of parameter has been discussed in
Section 3. Credible intervals have been derived in Section 4. Method of elicitation of the hyper-
parameters via prior predictive approach has been discussed in Section 5. Posterior predictive
distribution and posterior predictive intervals are developed in Section 6. Simulation study and
graphical comparison have been performed in Section 7. The conclusions regarding the study have
been presented in Section 8.

2. Prior and Posterior Distributions

Consider a random sample of size n from the power function II distribution with parameter A.
Some data may not be observed, a known number of observation in an ordered sample are missing at
both ends in failure censored experiments, the observations which are the smallest » and the largest
s are random then data collected will be x,) <x, ) <..<x, while the 7 —1 smallest observations

and n—s largest observations have been censored. The likelihood function for A4 of the given type 11

double censored sample x =(x,,...,x, ) is then:

s

n—s

L(XJ)=#(!n_s)!gf(xm’ﬂ){F(’%M)}H {1‘F(x<s)’/1)} ;

S n-s

Hx )= #('H—S)'H{ﬂ(1 =)= e

L(x’i) . r-1 (—l)k (}’]:1]151*1 exp{_ﬁ,{iln(l - X, )’1 _kln(l —x(r))—(n —-5) 1r1(1 —x(x))}},
L(x,A) ‘ (—l)k (rlzljﬂ’ exp[—/lSm, (x(,.) )J, (3)

k=0

where 7 =s-r+1, and 3, (x(i)):{iln(l—x(i))‘ _kln(l—x(y))—(n—s)ln(l—x(x))}.

2.1. Posterior distribution under non-informative prior
The uniform and Jeffreys prior are the example of non-informative priors which materializes the
use of the Bayesian estimation methods when no prior information is available. The posterior
distribution under the assumption of uniform and Jeffreys priors have been derived and presented in
the following.
The uniform distribution is assumed to be
7, (A) ck, A>0. “)

The Jeffreys prior has been derived to be

7,() e JI(A), A>0, (5)

O*InL(4,x)) . . . : n
——————=| is the Fisher’s information matrix. For the model (1) / (/1) = =

where 1(/1) = —E( PE
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1
hence, 7, (l) ocz. The general posterior distribution under the assumption of noninformative prior

p(hlx)= (1) (kljll ""i(j {‘”) (s )}
S ]{J(())}

The posterior distribution under the uniform prior is obtained when {= 0 and v = 1 while under

is

,A>0. (6)

~

the Jeffreys prior it is obtained under the conditions {= 1 and v = 0.

2.2. Posterior distribution under informative prior

In case of informative prior, the use of prior information is equivalent to add a number of
observations to the given sample size and hence leads to a reduction of posterior risks of the Bayes
estimates based on the said informative prior. Bolstad (2004) studied a method to evaluate the worth
of prior information in terms of the number of additional observations supposed to be added to the
given sample size.

The informative prior for the parameter A is assumed to be exponential distribution:
Top(A) = me ™", 1 >0. (7
The informative prior for the parameter A is assumed to be gamma distribution:
T (A) = D jee b a0, (8)

I'(a)

The informative prior for the parameter A is assumed to be inverse Levy distribution:

1 A
T Ly (’1) = \/il : exp[—(%ﬂ, c>0. ©9)
The posterior distribution under the assumption of gamma prior is:
r=1 -1
> (-1) {rk ] v exp|:—ﬂ{b+ 3, (% )H
p(A]x)=""—
< (-1 I'(r+a)
(-1) P AN
k=0 {b +3,, (x(;) )}

The expressions for the posterior distribution under exponential prior and inverse Levy prior are

,a,b,A>0. (10)

obtained when a=1Lb=m and a=1/2,b=c/2 respectively. It is observed that the posterior

density function under non-informative and informative prior is recognized as the mixture of gamma
density functions.

3. Bayes Estimators and Posterior Risks under Different Loss Functions

The theory of the decision implies that a loss function must be defined and used to measure the
risk associated with each of the potential estimates in order to select the best estimator. Since there is
no definite analytical process to identify the proper loss function that should be used. This section
enlightens the derivation of the Bayes estimator (BE) and corresponding posterior risks (PR) under
different loss functions. The Bayes estimators are evaluated under squared error loss function (SELF),
precautionary loss function (PLF), weighted squared error loss function (WSELF), quasi-quadratic
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loss function (QQLF), squared-log error loss function (SLELF), and entropy loss function (ELF). The
Bayes estimator (BE) and corresponding posterior risks (PR) under different loss functions are given

in the following table.

Table 1 Bayes estimator and posterior risks under different loss functions

Loss Function=L (/1, /i)

Bayes Estimator Posterior Risk

SELF: (i—i)z E(2]x) Var(Z]x)
(A ™ T
wr B o) e el
WSELF: (1-4) {E(A]x)f E(21%)-{E(21x)}

QQLEF: (e*ci _e )2

el o e

SLELF: (m—hﬂ)z

exp{E(]n/Hx)} E{(lnﬂ | x)}2 —{E(lni | x)}2

o [0

inf (2" |x)| +£(In7)

{E(fl | x)}l

The Bayes estimators and posterior risks under uniform prior are

y)

r=1

> (-1
k=0
(/i) SELF(£=1,6=3,7=1p=2) —

SELF({=1,7=1,6=2)
PLF({=0.5,7=1,6=3)
WSELF (¢ =1,7=0,5=1)

<

r

F(z’+5)

L (e
S (r=1) T(r+y)
2.(-1) [ k J{S (xo))}w

v

I'(r+2)

PLF(£=0.5,6=3,7=Ly =)
WSELF (¢ =1,6=2,7=0,p=1)

ﬂQQLF =log

_lwg &1 T(e+2)
' J{:" ()™ | zol j{:s~,.m.(x(,,>)}f*2

C(t+y)
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#(oarr ) = rl(l)k[rkl){i ) ';1(_1)’“(:1 {Hl

(=0

p( ELF):ln " (1 T(c+1) +y(r+1)-In - NS " .
s j{s o s, ]{ -

The Bayes estimators and posterior risks under the rest of priors can be obtained in a similar

[ 1}{”) s lj{l

L
—
=
\:_/
=

-

~

manner.

4. Bayesian Credible Intervals for the Doubly Type II Censored Data

The Bayesian credible intervals for the doubly type II censored data under informative and non-
informative priors, as discussed by Saleem and Aslam (2009) are presented in the following. The
credible intervals for doubly type II censored data under uninformative priors are

, r—1 k _1 ) r=1 k _1
ey 21 (rk ]{1 d 2(r+1)(1—%)k§(_1) [rk J{,(xl)}f
<< ; e

Tl By

The credible intervals are obtained assuming uniform and Jeffreys priors under the conditions
y=2,0=1 and y =1, =0 respectively. The credible intervals for doubly type II censored data

under informative priors are
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1 ) r—1 0 ‘ (r_lj 1
j{b+ 5, (x(i) )}r+a+1 x 2(r+a)(1-%) k:()( ) k {b+ 3, (x(i) )}r+a+1

<A -

r=1 _ Gamma r—1 —
222(_Uk(rkljlﬁa 22:(‘Uk(rk1jlﬁa
{3, ()} {3 ()
The credible interval assuming exponential prior is obtained when a =1, 5 = w and for inverse
Levy a=1/2,b=c/2.

5. Elicitation

Bayesian analysis elicitation of opinion is a crucial step. It helps to make it easy for us to
understand what the experts believe in and what their opinions are. In statistical inference, the
characteristics of a certain predictive distribution proposed by an expert determine the
hyperparameters of a prior distribution.

In this paper, we focus on a probability elicitation method known as prior predictive elicitation.
Predictive elicitation is a method for estimating hyperparameters of prior distributions by inverting

corresponding prior predictive distributions. Elicitation of hyperparameter from the prior p(/”t) is

conceptually difficult task because we first have to identify prior distribution and then its
hyperparameters. The prior predictive distribution is used for the elicitation of the hyperparameters
which is compared with the experts’ judgment about this distribution and then the hyperparameters
are chosen in such a way so as to make the judgment agree closely as possible with the given
distribution (reader desires more detail see Grimshaw et al. (2001), Kadane (1980), O’Hagan et al.
(2006), Kadane et al. (1996), Jenkinson (2005) and Leon et al. (2003)). According to Aslam (2003),
the method of assessment is to compare the predictive distribution with experts' assessment about this
distribution and then to choose the hyperparameters that make the assessment agree closely with the
member of the family. He discusses three important methods to elicit the hyperparameters: (i) via the
prior predictive probabilities (ii) via elicitation of the confidence levels (iii) via the predictive mode
and confidence level.

5.1. Prior predictive distribution
The prior predictive distribution is

g =[p(y14)p(2)dA (11)

The predictive distribution under gamma prior is
ab’
(=) {p-m(1-p)f"
The expressions for the predictive distribution under exponential prior and Inverse Levy prior are
obtained when a=1,b=m and a=1/2,b=c/2 respectively. By using the method of elicitation

defined by Aslam (2003), we obtain the following hyperparameters m = 0.146341, a = 4.898331,
b =1.098839 and ¢ =1.098839.

g(y)= O0<y<l.

(12)
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6. Predictive Distribution

The predictive distribution contains the information about the independent future random
observation given preceding observations. The reader desires more details can see Bolstad (2004) and
Bansal (2007).

6.1. Posterior predictive distribution and predictive interval
The posterior predictive distribution of the future observation y =x,,, is

P 1x)= [ p(2 [0 p(y | HdA, (13)

where p (y | ﬂ,) =1 (l - y)(H) is the future observation density and p (/1 | x) is the posterior
distribution obtained by incorporating the likelihood with the respective prior distributions.
A (1 - a)lOO% Bayesian interval (L, U ) can be obtained by solving the following two equations

simultaneously

[ p oy =2 = [ pvixdy (14)

The posterior predictive distribution of the future observation y = x ., under uniform or Jeffreys

n+l

priors are obtained under these conditions p =v =1 and p=v=0 in following expression.

FIGJY[r_q r4p
C1-9){3 (%) -2
p(y|x)= H( )k{r_lj ,0<y<lL. (15)

1

Sis (x(i) )}Hp

The posterior predictive distribution of the future observation y = x,,, under gamma prior is

k

| ) r—1 (r+a) .
k:O( ) { k j(1_y){b+sm (x([.))—ln(l—y)}m+

py|x)= : [ ,0<y<lL (16)

The expressions for the posterior predictive distribution of the future observation y = x, _, under

n+l

exponential prior and inverse Levy prior are obtained when a=1,b=m and a=1/2,b=c/2,

respectively. Posterior predictive interval under uniform prior is
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Posterior predictive intervals for the rest of priors can be obtained by little modifications.

7. Simulation Study

Monte Carlo simulation techniques are widely used in statistical research. Since real-world data
sets can often be radically non-normal, it is essential that statisticians have a variety of techniques
available for univariate or multivariate non-normal data generation. This section shows how
simulation can be helpful and illuminating way to approach problems in Bayesian analysis. Bayesian
problems of updating estimates can be handled easily and straight forwardly with simulation. Here,
the inverse transformation method of simulation is used to compare the performance of different
estimators. The study has been carried out for different values of (n, 7 and s) using 4 (3.5, 7 and

10). Censoring rate is assumed to be 20%. The estimation has been done under 10% left and 10% right
censored samples. Sample size is varied to observe the effect of small and large samples on the
estimators. Changes in the estimators and their risks have been determined when changing the loss
function and the prior distribution of A while keeping the sample size fixed. All these results are
obtained from 5,000 Monte Carlo replications. In the Tables, the estimators for the parameter and the
risk, is averaged over the total number of repetitions. Mathematica 8.0 has been used to carry out the
results. All the results are summarized in the Tables 2-21 and Figures 1-18.

Table 2 Bayes estimates and the posterior risks (given in parentheses) under SELF

, Uniform Prior Jeffreys Prior
A=35 A=1 A=10 A=35 A=1 A=10
20 3.92533 7.77441  11.08181 3.71341 7.44810 10.5978
r=3,n-s=18 (0.86122) (3.38166) (6.86337) (0.81246) (3.28642) (6.61851)
40 3.70702 7.29598  10.53040 3.61550 7.14997 10.2546
r=5n-s=36 (0.38246)  (1.47990) (3.08415) (0.37401) (1.45009) (3.00765)
60 3.63335 7.25471  10.41370 3.55732 7.12365  10.21040
r=7T,n—s=>54 (0.24463)  (0.97518) (2.00985) (0.23882) (0.95754) (1.97036)
80 3.59448 7.19386  10.27320 3.53655 7.09076  10.08170

r=9,n-s=72  (0.17901) (0.70797) (1.47419) (0.17709) (0.70660) (1.42546)
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Table 3 Bayes estimates and the posterior risks (given in parentheses) under SELF

" Exponential Prior Gamma Prior
A=35 A=1 A=10 A=35 A=17 A=10
20 3.81379 7.35705  10.23330 3.82389 6.40303 8.12309
r=3,n-s=18 (0.80961)  (2.99378)  (5.79352) (0.66588) (1.83888) (2.94527)
40 3.62664 7.16263  10.05310 3.65350  6.688747 8.86411
r=5n-s5=36 (0.36587)  (1.42462) (2.80108) (0.33374) (1.11268) (1.95458)
60 3.58728  7.139440  10.03860 3.60160 6.82085 9.12666
r=7,n—s=>54 (0.23834)  (0.94397)  (1.86996) (0.22372) (0.80199) (1.43107)
80 3.55628 7.07613  10.03343 3.59740 6.85248 9.37437

r=9,n-s=72  (0.17548) (0.69823) (1.40224) (0.17059) (0.61694) (1.13663)

Table 4 Bayes estimates and the posterior risks (given in parentheses) under In-Levy

SELF PLF
" 1=35 A=7 1=10 1=35 A=7 1=10
20 339827  6.19757 828772  3.52882  6.41695  8.48414
r=3,n-s=18  (0.66891) (2.15804) (3.84658) (0.18298) (0.33347) (0.44089)
40 346435 6.69062  8.95265  3.52232  6.74176  9.19329
r=5n-s=36  (0.33805) (1.25501) (2.24817) (0.09458) (0.18102) (0.24685)
60 349571 671834 934759  3.50652  6.78337  9.46309
r=T7,n—s=54  (0.22846) (0.84183) (1.62749) (0.06348) (0.12280) (0.17130)
80 349620  6.80950  9.52627  3.50003  6.84533  9.57812

r=9,n—-s=72  (0.17875) (0.64503) (1.26232) (0.04758) (0.09459) (0.13104)

Table 5 Bayes estimates and the posterior risks (given in parentheses) under PLF

. Uniform Prior Jeffreys Prior
A=35 A=17 A=10 A=35 A=1 A=10
20 3.98717 8.02401  11.47080 3.82573 7.63340  11.16410
r=3,n-s=18 (0.20198) (0.40647) (0.58107) (0.20413) (0.40731) (0.59571)
40 3.76031 7.47589  10.53900 3.66187 7.31773  10.40680
r=5n-s=36  (0.09964) (0.19808) (0.27925) (0.09967)  (0.19917)  (0.28325)
60 3.67819 7.34681  10.43240 3.59795 7.18242  10.25790
r=T7T,n—s=54  (0.06598) (0.13181) (0.18716) (0.06600) (0.13195) (0.18739)
80 3.62149 7.24346  10.30200 3.58433 7.17615  10.20560

r=9,n—-s=72  (0.05087) (0.09829) (0.13972) (0.051149) (0.09868) (0.14024)

Table 6 Bayes estimates and the posterior risks (given in parentheses) under PLF

. Exponential Prior Gamma Prior
A=35 A=1 A=10 A=35 A=1 A=10
20 3.86466 7.54919  10.65220 3.91809 6.59282 8.28236
r=3,n—-s=18 (0.19577) (0.38241) (0.53958) (0.16574)  (0.27887)  (0.35032)
40 3.72165 7.27841  10.29801 3.71449 6.71447 8.95066
r=5n-s=36  (0.09861) (0.19285) (0.27286) (0.08921)  (0.16125)  (0.21495)
60 3.60543 7.18868  10.16510 3.66105 6.85698 9.28930
r=7,n-s=54  (0.06468) (0.12897) (0.18236) (0.06139) (0.114972)  (0.15576)
80 3.60403 7.14848  10.16210 3.61198 6.90519 9.47683

r=9,n—-s=72  (0.04878) (0.09704) (0.13758) (0.04652)  (0.09022) (0.119412)
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Table 7 Bayes estimates and the posterior risks (given in parentheses) under WSELF

" Uniform Prior Jeffreys Prior
A=35 A=1 A=10 A=35 A=1 A=10
20 3.72527 7.45755 10.61520 3.46476 7.04198  10.05660
r=3,n-s=18 (0.20070) (0.41444) (0.589911) (0.20387) (0.41435) (0.59174)
40 3.57036 7.18436 10.35280 3.49387 7.05023  10.13230
r=5n-s=36  (0.09920) (0.19960) (0.28763)  (0.09984) (0.20147) (0.28955)
60 3.54435 7.12553 10.17870 3.52771 7.00775  10.16510
r=T,n—s=54  (0.06565) (0.13198) (0.18853)  (0.06657) (0.13224) (0.18994)
80 3.52103 7.07107 10.09340 3.51561 6.97971 10.2771

r=9,n—s=72  (0.04909) (0.09740)  (0.14014) (0.04993) (0.09844) (0.13938)

Table 8 Bayes estimates and the posterior risks (given in parentheses) under WSELF

. Exponential Prior Gamma Prior
A=35 A=1 A=10 A=35 A=1 A=10
20 3.58268 7.01863 9.77231 3.64830 6.11131 7.75482
r=3,n-s=18 (0.19910)  (0.39003)  (0.54306) (0.16664) (0.27913) (0.35418)
40 3.54268 6.99132 9.78016 3.58615 6.52838 8.59472
r=5n-s5s=36 (0.09843)  (0.19368) (0.27172) (0.08990) (0.16365) (0.21549)
60 3.50695 6.98862 9.87215 3.53039 6.67008 9.05560
r=7T,n—s=>54 (0.06495)  (0.12962) (0.18285) (0.06098)  (0.11522) (0.15642)
80 3.50438 6.98104 9.88729 3.53003 6.75080 9.23674

r=9,n-s=72  (0.04873) (0.09718) (0.13935) (0.04655) (0.08654) (0.12220)

Table 9 Bayes estimates and the posterior risks (given in parentheses) under In-Levy

. WSELF QQLF
1=35 A=7 A=10 A1=35 A=7 2=10

20 325806  5.86659  7.93722  3.11082 5.38011 6.80766
r=3,n-s=18 (0.18622) (0.33530) (0.45363) (0.00141)  (0.00010)  (0.00002)
40 337253 645195  8.84808  3.32100 6.07971 8.11384
r=5mn-s=36(0.09502) (0.18177) (0.24928) (0.00050)  (0.00002) (9.47x107)
60 341603  6.67175  9.16089  3.38948 6.38621 8.64783
r=7,n-s=54  (0.06386) (0.12472) (0.17125) (0.00029) (5.47x10) (2.12x107)
80 343855  6.70822  9.41587  3.45129 6.50295 9.26928

r=9,n—-s=72  (0.04815) (0.09326) (0.13195) (0.00020) (2.82x10) (8.38x10%)

Table 10 Bayes estimates and the posterior risks (given in parentheses) under QQLF

i Uniform Prior Jeffreys Prior
A=35 A=17 A=10 A=35 A=17 A=10
20 3.53766 6.48044 8.67685 3.34816 6.14469 8.28434
r=3,n—s=18  (0.00091)  (0.00003) (2.99x10°)  (0.00119)  (0.00005)  (4.90x10°)
40 3.52699 6.67729 9.14271 3.43872 6.51616 8.99632
r=5n-s=36  (0.00040) (7.90x10)  (3.08x107)  (0.00046)  (9.27x10°)  (4.54x10)
60 3.52069 6.83900 9.47975 3.46397 6.69697 9.29961
r=7,n—s=54  (0.00025) (2.82x10°)  (7.18x10®)  (0.00027)  (3.58x10)  (1.04x10°)
80 3.49447 6.84470 9.61220  3.47716 6.80313 9.51691

r=9,n-s=72  (0.00018) (1.77x10°)  (3.04x10®)  (0.00019)  (1.92x10%)  (3.44x10°)
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Table 11 Bayes estimates and the posterior risks (given in parentheses) under QQLF

" Exponential Prior Gamma Prior
A=35 A=17 A=10 A=35 A=1 A=10
20 3.43177 6.14714 8.14054  3.52196 5.64855 6.88925
r=3,n—s=18  (0.00103)  (0.00005) (4.31x10%)  (0.00068)  (0.00005)  (8.30x10°)
40 3.47050 6.54578 8.98536  3.52907 6.15483 7.97230
r=5n-s=36  (0.00041) (8.85x10) (3.71x107)  (0.00035)  (0.00001)  (7.81x107)
60 3.48098 6.64879 9.26670  3.50222 6.38192 8.54705
r=7,n—s=54  (0.00026) (3.69x10)  (1.05x107)  (0.00023)  (4.28x10)  (1.84x107)
80 3.49523 6.69979 9.45261 3.50186 6.54692 8.80563

r=9,n—s=72  (0.00018) (2.05x10°) (4.11x10®)  (0.00017)  (2.40x10)  (8.00x10*)

Table 12 Bayes estimates and the posterior risks (given in parentheses) under SLELF

" Uniform Prior Jeffreys Prior
A=35 A=7 A=10 A=35 A=7 A=10
20 3.82828 7.69723  10.83940 3.58403 7.25302  10.66760
r=3,n-s=18 (0.06059)  (0.06059)  (0.06059) (0.06449) (0.06449) (0.06449)
40 3.66733 7.32027  10.44560 3.54135 7.13360  10.17720
r=5n-s=36  (0.03077) (0.03077) (0.03077) (0.03174) (0.03174) (0.03174)
60 3.59536 7.13222  10.37320 3.52742 7.01056  10.07440
r=7,n-s=>54 (0.02062)  (0.02062)  (0.02062) (0.02105) (0.02105) (0.02105)
80 3.55622 7.12479  10.17620 3.52631 7.00789  10.05920

r=9,n—-s=72  (0.01550) (0.01550) (0.01550) (0.01575) (0.01575) (0.01575)

Table 13 Bayes estimates and the posterior risks (given in parentheses) under SLELF

" Exponential Prior Gamma Prior
A=35 A=17 A=10 A=35 A=1 A=10
20 3.68864 7.28203 9.87553 3.71928 6.24026 7.84896
r=3,n-s=18 (0.06059) (0.06059) (0.06059) (0.04901)  (0.04901)  (0.04901)
40 3.61541 7.10907 9.95057 3.65825 6.57596 8.74732
r=5n-s=36  (0.03077) (0.03077) (0.03077) (0.02747)  (0.02747)  (0.02747)
60 3.52799 7.07746 9.97436 3.58032 6.69454 9.13093
r=T7,n—s=54  (0.02062) (0.02062) (0.02062) (0.01908) (0.01908)  (0.01908)
80 3.51374 7.03647  10.00910 3.57626 6.81407 9.30911

r=9,n—s=72  (0.01550) (0.01550) (0.01550) (0.01462) (0.01462) (0.01462)

Table 14 Bayes estimates and the posterior risks (given in parentheses) under In-Levy

SLELF ELF
" 1=35 1=7 1=10 1=35 1=7 1=10
20 340260  6.09065  8.09419  3.24454 589633  7.85509
r=3,n—s=18  (0.06248) (0.06248) (0.06248) (0.02497) (0.02497)  (0.02497)
40 341286 651539 891392  3.39342  6.44534  8.86326
r=5n-s=36  (0.03125) (0.03125) (0.03125) (0.01232) (0.01232) (0.01232)
60 346201  6.65328  9.22523  3.42523  6.63678  9.27257
r=7,n-s=54  (0.02083) (0.02083) (0.02083) (0.00818) (0.00818) (0.00818)
80 346537  6.73060  9.44915  3.45478  6.70293  9.40219

r=9,n-s=72  (0.01562) (0.01562) (0.01562) (0.00608) (0.00608) (0.00608)
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Table 15 Bayes estimates and the posterior risks (given in parentheses) under ELF

. Uniform Prior Jeffreys Prior

A=35 A=1 A=10 A=35 A=1 A=10
20 3.68275 7.40959  10.58120 3.52264 6.90079 9.97814
r=3,n-s=18 (0.02438)  (0.02438) (0.02438) (0.02560) (0.02560) (0.02560)
40 3.59664 7.18686  10.29190 3.51985 6.94760 9.98612
r=5n-s=36 (0.01218) (0.01218) (0.01218) (0.01247) (0.01247) (0.01247)
60 3.57060 7.11202  10.18220 3.49462 6.99606 9.99775
r=7,n-s=54 (0.00811)  (0.00811)  (0.00811) (0.00824) (0.00824) (0.00824)
80 3.55195 7.10718  10.16270 3.49167 7.04029  10.06120
r=9,n-s="72 (0.00618)  (0.00618) (0.00618) (0.00625) (0.00625) (0.00625)

Table 16 Bayes estimates and the posterior risks (given in parentheses) under ELF

. Exponential Prior Gamma Prior

A=35 A=1 A=10 A=35 A=1 A=10
20 3.59567 6.98372 9.65015 3.24454 5.89633 7.85509
r=3,n-s=18 (0.02438)  (0.02438) (0.02438) (0.02055) (0.02055) (0.02055)
40 3.55142 6.99283 9.91212 3.39342 6.44534 8.86326
r=5n-s5s=36 (0.01218) (0.01218) (0.01218) (0.01111)  (0.01111)  (0.01111)
60 3.54733 7.03105 9.97753 3.42523 6.63368 9.27257
r=7T,n—s=>54 (0.00811)  (0.00811)  (0.00811) (0.00765) (0.00765) (0.00765)
80 3.51064 6.99718 9.97861 3.45478 6.70293 9.40219
r=9,n-s="72 (0.00618)  (0.00618) (0.00618) (0.00501) (0.00501) (0.00501)

Table 17 The lower (LL), the upper (UL) and the width of the 95% credible intervals under uniform

prior
nnTs A=3.5 Width A=7 Width 4=10 Width
IL UL L UL IL UL
3,20,18 24662 64707 40045 43813 114952 7.1139 60188 157915 9.7727
5.40,36 23591  4.6915 23324 44702 8.8899 44197  7.3400 145970  7.2570
7.60,54 25709 45134 19425 52772 92646 39874  7.6086 133576  5.7490
9.80.72 2.6399 43008 1.6609 5.8521  9.5339  3.6818  7.6884 125255  4.8371

Table 18 The lower (LL), the upper (UL) and the width of the 95% credible intervals under

jeffreys prior
r,n,n—s A=35 . A=7 . A=10 .
IL UL Width IL UL Width IL UL Width
3,20,18  2.2925 6.2017 3.9092 4.0725 11.0169  6.9444 5.5947  15.1348  9.5401
5,40,36  2.2808 4.5851 2.3043 4.3219 8.6884 4.3665 7.0964  14.2661 7.1697
7,60,54  2.5157 4.4426 1.9269 5.1638 9.1191 3.9553 7.4452 13.1479  5.7027
9,80,72  2.5982 4.2490 1.6508 5.7596 9.4192 3.6596 7.5668 12.3746  4.8078

Table 19 The lower (LL), the upper (UL) and the width of the 95% credible intervals under
exponential prior

nnTs A=35 Width A=7 Width 4=10 Width
L UL L UL L UL

3.20.18 23884 62664 38780 41412 108652 67241 55749 146270 9.0521

5.40,36 23371 46477 23107 43583  8.6672 43090 7.0429 140062  6.9633

7.60.54 25473 44721 19247 51789  9.0920 39131 77124 13.0018  5.2894

0.80.72 2.6219 42715 16496 57645 93912  3.6267 75378 122801 47423
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Table 20 The lower (LL), the upper (UL) and the width of the 95% credible intervals under
gamma prior

nnTs A=3.5 Width A=7 Width 4=10 Width
L UL LL UL LL UL

3.20.18 25338 6.0337 34999 39046 92978 53933 48182 114734  6.6552

5.40.36 24196 46331 22135 42348 81089 38742 62994 12.0624  5.7630

7.60.54 2.6058 44782 18724 50067 8.6041 35975 68416 117575 4.9159

9.80.72 2.6657 42819 16162 55772 89587 33815  7.0986 114025 43039

Table 21 The lower (LL), the upper (UL) and the width of the 95% credible intervals under inverse
levy prior

nmnTs A=35 Width A=7 Width 4=10 Width
LL UL L UL L UL

3,20,18  2.1401 5.6996 3.5595 3.5264 93914 58650  4.5623  12.1502  7.5880
5,40,36 22170  4.4325 2.2155 4.0405 8.0784  4.0379 6.3069  12.6097  6.3028
7,60,54 24652  4.3405 1.8753 4.9018 8.6306  3.7289 6.8818  12.1169  5.2352
9,80,72  2.5589  4.1768 1.6178 5.5185 9.0074  3.4890 7.1390  11.6526  4.5136

7.1. Graphical comparison
The risks profile at different values of parameter under different priors is given in this section.
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Figure 1 Risks of estimators of A =3.5 for different sample sizes under SELF
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Figure 2 Risks of estimators of A =7 for different sample sizes under SELF
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Figure 3 Risks of estimators of 4 =10 for different sample sizes under SELF
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Figure 4 Risks of estimators of A =3.5 for different sample sizes under PLF
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Figure 5 Risks of estimators of A =7 for different sample sizes under PLF
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Figure 6 Risks of estimators of 4 =10 for different sample sizes under PLF
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Figure 7 Risks of estimators of A =3.5 for different sample sizes under WSELF
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Figure 8 Risks of estimators of A =7 for different sample sizes under WSELF
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Figure 9 Risks of estimators of 4 =10 for different sample sizes under WSELF

F=Docterior Rick

00015

00010

00005

Inverse Levy Prior

Jeffreys Prior

Exponential Prior

Uniform Prior
Gamma Prior

20 40

Figure 10 Risks of estimators of 4 =3.5 for different sample sizes under QQLF

F=Postarior Risk

00002

0000015

000001

5.x 1070

Inverse Levy Prior

Garuna Prior

Jeffreys Prior

H=m

Figure 11 Risks of estimators of A =7 for different sample sizes under QQLF
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Figure 12 Risks of estimators of 4 =10 for different sample sizes under QQLF
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Figure 14 Risks of estimators of A =7 for different sample sizes under SLELF
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Figure 15 Risks of estimators of 4 =10 for different sample sizes under SLELF
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Figure 16 Risks of estimators of 4 =3.5 for different sample sizes under ELF
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Figure 17 Risks of estimators of A =7 for different sample sizes under ELF
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Figure 18 Risks of estimators of 4 =10 for different sample sizes under ELF

8. Conclusions

The simulation study has displayed some interesting properties of the Bayes estimates. After an
extensive study of results, conclusions are drawn regarding the behavior of the estimators. The risks
of the estimates seem to be large in case when the value of the parameter is large and small for relative
smaller value of the parameter except under quasi-quadratic loss function. However, the risks under
said loss functions are reduced as the sample size increases. Another interesting remark concerning
the risks of the estimates is that increasing (decreasing) the value of the parameter reduces (increases)
the risks of the estimates under quasi-quadratic loss function. The performance of squared-log error
loss function and entropy loss function is independent of choice of parametric value. The above study
depicts that the estimated value of the parameter converges to the true value of the parameter by
increasing the sample size. The greater values of the parameter impose a negative impact on
convergence and performance of the estimates. The effect of the increasing values of the parameter is
in the form of underestimation assuming each informative prior. The patterns of the estimates
discussed above, are almost similar under uniform and Jeffreys priors. However, the performance of
the uniform prior is better for estimates under SLELF, ELF, PLF and QQLF. While for estimates,
under SELF and WSELF, the performance of the Jeffreys prior is better than uniform prior. In
comparison of informative priors, the gamma prior provides the better estimates as the corresponding
risks are least under said loss functions with few exceptions. While the exponential prior turns out to
perform better under QQLF for larger values of the parameter, therefore it produces more efficient
estimates as compared to other informative priors. After an extensive study of the results, thus
obtained, we observed that the risks of the estimators under doubly type II censored data assuming
uniform behave similarly to the risks of the estimators under exponential prior under SLELF and ELF.
In addition, estimates under quasi-quadratic loss function give the minimum risks among all loss
functions for each prior. The Credible interval are in accordance with the point estimates, that is, the
width of credible interval is inversely proportional to sample size while, it is directly proportional to
the parametric value. From Tables 17-21, appended above, reveal that the effect of the parametric
values in the form of larger width of interval. The Credible interval assuming gamma prior is much
narrower than the credible intervals assuming informative and non-informative priors. It is the use of
prior information that makes a difference in terms of gain in precision. To see the effects of the
posterior risks assuming different priors under different loss functions with various values of the
parameter A, Figures 1-18 are prepared. It is observed from all the figures that posterior risk decreases
with the increase in sample size under said loss functions. It is evident from Figures 13-18 that
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behaviors of posterior risks are similar in all aspects under 4 = 3.5, 7 and 10. Results of above graphs
clearly show that gamma prior has least posterior risk as compared to its competitors prior under all
loss function with few exceptions.

So result of graphical study and simulation study are similar in all aspect. In the future, this study
can be conducted under different informative priors, other loss functions and under different censoring
schemes and also for mixture distribution.
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