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Abstract 

Trimmed samples are widely utilized in several areas of statistical practice, especially when some 

sample values at either or both extremes might have been adulterated. In this paper, the problem of 

estimating the parameter of power function II distribution based on trimmed samples under 

informative and non-informative priors has been addressed. The problem discussed using Bayesian 

approach to estimate the parameter of power function II distribution. The explicit expressions for 

estimator and risk are developed under all loss functions. Elicitation of hyperparameter through prior 

predictive approach is also discussed. Posterior predictive distributions along with posterior predictive 

intervals and credible intervals are also derived under different priors. A comparison is made using 

the Monte Carlo simulation. The influence of parametric value on the estimate and risk is also 

discussed. 

______________________________ 
Keywords: Inverse transformation method, doubly censored samples, loss functions, posterior predictive 

distributions, credible intervals, predictive intervals. 

 

1. Introduction 

The power function distribution is often used to study the electrical component reliability. The 

distribution function of power function II distribution is given by 

     , 0, 0 1.1 1 xF x x

       (1) 

And the corresponding PDF of power function II distribution has the following form 

    
1

, 0, 0 1,1f xx x





     (2) 

where   is the shape parameter. Trimmed samples are widely employed in several areas of statistical 

practice, especially when some sample values at either or both extremes might have been 

contaminated. The problem of estimating the parameters of power function distribution based on a 

trimmed sample and prior information has been considered in this paper. There are a few works 

available in literature on the Bayesian analysis of the power function distribution and its mixture. 

Meniconi and Barry (1996) discussed the electrical component reliability using the power function 

distribution. With the rapid progression of VLSI products, electrostatic discharge, accelerated life, 
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electromagnetic pulse, radiation monitoring, and subsequent modelling of failure are regarded by both 

producers and consumers as an important issue in the quality control and assurance of semiconductors. 

Most distributions and their established relevant explanation of physical failure phenomena are used 

to estimate system reliability due to the variety and complexity of determining failure modes and 

causes in semiconductor devices. So, the power function distribution taken into account when 

estimating the device reliability of electronic components due to its applicability, simplicity and 

therefore attractiveness to reliability engineers. 

Ahsanullah and Kabir (1974) gave a brief characterization of the power function distribution. Al-

Hussaini and Jaheen (1992). Wingo (1993) derived the theory for the maximum likelihood (ML) point 

estimation of the parameters of the Burr distribution when type II singly censored sample is at hand. 

Akhter and Hirai (2009) studied the scale parameter from the Rayleigh distribution from type II singly 

and doubly censored data. 

Sindhu et al. (2019a, 2019b) studied the Bayesian estimation approach for mixture models. 

Fernández (2000) studied a Bayesian approach to inference in reliability studies based on type II 

doubly censored data from a Rayleigh distribution. Sindhu and Hussain (2022) studied predictive 

inference and parameter estimation from the half-normal distribution for the left censored data. They 

also studied the problem of predicting an independent future sample from the same distribution in a 

Bayesian setting. 

Saleem and Aslam (2009) investigated the Rayleigh distributed survival time in conjunction with 

the Rayleigh distributed censor time in order to derive the maximum likelihood and Bayes estimators 

for the unknown parameters and their corresponding variances. To find the Bayes estimators under the 

squared error loss function, they assumed informative and noninformative priors. In their study, they 

derived and evaluated the posterior predictive distribution of future observations, the predictive 

intervals, the credible intervals, and the highest posterior intervals. Saleem et al. (2010) used a two-

component mixture of the power function distribution to model a heterogeneous population. They 

investigated a comprehensive simulation scheme with a large number of parameter points to highlight 

the properties and behavior of the estimates in terms of sample size, censoring rate, parameter size, 

and the proportion of the mixture’s components. 

Feroze and Aslam (2012) studied Bayesian analysis of Gumbel type II distribution under doubly 

censored samples using different loss functions. Sindhu et al. (2013a) studied Bayes estimation of the 

parameters of the inverse Rayleigh distribution for left censored data. Sindhu et al. (2013b) discussed 

the Bayesian analysis of the Kumaraswamy distribution under failure censoring sampling scheme. 

Anum et al. (2021, 2022) used modified Kies generalized transformation and the new power function 

to suggest a unique statistical models. Sindhu et al. (2022) discussed different estimation method of 

mixture distribution and modeling the COVID-19 pandemic. Sindhu and Atangana (2021) suggested 

the model of reliability formed on inverse power law and generalized inverse Weibull model. Sindhu 

et al. (2021a, 2021b) studied new family of Gumbel type II distribution. 

Doubly censoring of type II is used to indicate that a specified number of observations at both 

ends is missing in an ordered sample of size n  while the number of censored observations is a random 

variable in type I censoring and the time of analysis is fixed. A number of extreme sample values, 

especially in reliability analysis or biomedical studies, due to negligence of inexperienced observers 

or other factors. Therefore excluding these findings from the original data set may be appropriate. The 

remaining sample is often referred as to the type II doubly censored sample, where the lowest and the 

highest values have been censored or discarded. 
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The present study investigated the prominent features of the unknown parameter of the power 

function II distribution based on doubly censored type II. The analysis of this type has not been studied 

earlier in literature through Bayesian structure to the best of our knowledge. 

The rest of paper is organized as follows. In Section 2, the posterior distributions have been 

derived under non-informative and informative priors. Estimation of parameter has been discussed in 

Section 3. Credible intervals have been derived in Section 4. Method of elicitation of the hyper-

parameters via prior predictive approach has been discussed in Section 5. Posterior predictive 

distribution and posterior predictive intervals are developed in Section 6. Simulation study and 

graphical comparison have been performed in Section 7. The conclusions regarding the study have 

been presented in Section 8. 

 

2. Prior and Posterior Distributions 

Consider a random sample of size n  from the power function II distribution with parameter .

Some data may not be observed, a known number of observation in an ordered sample are missing at 

both ends in failure censored experiments, the observations which are the smallest r  and the largest 

s  are random then data collected will be      1
... ,

r r s
x x x


    while the 1r   smallest observations 

and n s  largest observations have been censored. The likelihood function for   of the given type II 

double censored sample  ,...,r sx xx  is then: 

 
              

1!
, , , 1 , ,

1 ! !

s r n s

i r s
i r

n
L x f x F x F x

r n s
   

 



 
 

  

 
     

        
1

1!
, (1 ) 1 (1 ) (1 ) ,

1 ! !

s r n s

i r s
i r

n
L x x x x

r n s

   
 





    
 

  

            
1 1

1

0

1
, 1 exp ln 1 ln 1 ( ) ln 1 ,

r s
k s r

i r s
k i r

r
L x x k x n s x

k
  

 
 

 

     
            

    
   

      
1

0

1
, 1 exp ,

r
k

irs i
k

r
L x x

k
  





          
  (3) 

where 1,s r     and 
           

1

ln 1 ln 1 ( ) ln 1 .
s

irs i i r s
i r

x x k x n s x




 
        

 
  

 
2.1. Posterior distribution under non-informative prior 

The uniform and Jeffreys prior are the example of non-informative priors which materializes the 

use of the Bayesian estimation methods when no prior information is available. The posterior 

distribution under the assumption of uniform and Jeffreys priors have been derived and presented in 

the following. 

The uniform distribution is assumed to be 

 ( ) , 0.U k     (4) 
The Jeffreys prior has been derived to be 

  ( ) , 0,J I      (5) 

where  
 2

2

ln ,L x
I E






 
     

 is the Fisher’s information matrix. For the model (1)   2
,

n
I 


  
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hence,  
1

.J 


  The general posterior distribution under the assumption of noninformative prior 

is 

  
     

 
 

   

1

0

1

0

1
1 exp

, 0.
1

1

r
k

irs i
k

r
k

k
irs i

r
x

k
p

r

k x

 

 

 

 
 











           
   

  
  




| x  (6) 

The posterior distribution under the uniform prior is obtained when = 0 and  = 1 while under 

the Jeffreys prior it is obtained under the conditions = 1 and  = 0. 

 

2.2. Posterior distribution under informative prior 

In case of informative prior, the use of prior information is equivalent to add a number of 

observations to the given sample size and hence leads to a reduction of posterior risks of the Bayes 

estimates based on the said informative prior. Bolstad (2004) studied a method to evaluate the worth 

of prior information in terms of the number of additional observations supposed to be added to the 

given sample size. 

The informative prior for the parameter   is assumed to be exponential distribution: 

 exp ( ) , 0.mme      (7) 

The informative prior for the parameter   is assumed to be gamma distribution: 

  
 

1
gam , , , 0.

a
a bb
e a b

a
     


 (8) 

The informative prior for the parameter   is assumed to be inverse Levy distribution:  

  
1
2

In-Lev exp , 0.
2 2

c c
c


  



   
    

  
 (9) 

The posterior distribution under the assumption of gamma prior is: 

  
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k
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k
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

 

 



 








            
   

  
   




| x  (10) 

The expressions for the posterior distribution under exponential prior and inverse Levy prior are 

obtained when 1,a b m   and 1/ 2, / 2a b c   respectively. It is observed that the posterior 

density function under non-informative and informative prior is recognized as the mixture of gamma 

density functions. 

 

3. Bayes Estimators and Posterior Risks under Different Loss Functions 

The theory of the decision implies that a loss function must be defined and used to measure the 

risk associated with each of the potential estimates in order to select the best estimator. Since there is 

no definite analytical process to identify the proper loss function that should be used. This section 

enlightens the derivation of the Bayes estimator (BE) and corresponding posterior risks (PR) under 

different loss functions. The Bayes estimators are evaluated under squared error loss function (SELF), 

precautionary loss function (PLF), weighted squared error loss function (WSELF), quasi-quadratic 
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loss function (QQLF), squared-log error loss function (SLELF), and entropy loss function (ELF). The 

Bayes estimator (BE) and corresponding posterior risks (PR) under different loss functions are given 

in the following table. 

 

Table 1 Bayes estimator and posterior risks under different loss functions 

Loss Function=  ˆ,  L    Bayes Estimator Posterior Risk 

SELF:  
2

ˆ    E  |x   Var |x  

PLF:   
 

2
ˆ

ˆ

 




  2E  |x     22 E E 

 
 

 
| |x x  

WSELF: 
 

2
ˆ 




   

-1
E |x      

-1
E E | |x x  

QQLF:  
2ˆc ce e      1

ln cE e
c


|x      

2
c cE e E e    

SLELF:   
2

ˆln ln     exp lnE  x|       
2 2

ln lnE E x x| |  

ELF:  
ˆ ˆ

ln 1b
 

 

     
        

     

   
1

1E 


 |x      1ln lnE E  |x  

 

The Bayes estimators and posterior risks under uniform prior are 
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The Bayes estimators and posterior risks under the rest of priors can be obtained in a similar 

manner. 

 

4. Bayesian Credible Intervals for the Doubly Type II Censored Data 

The Bayesian credible intervals for the doubly type II censored data under informative and non-

informative priors, as discussed by Saleem and Aslam (2009) are presented in the following. The 

credible intervals for doubly type II censored data under uninformative priors are 
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The credible intervals are obtained assuming uniform and Jeffreys priors under the conditions 

2, 1    and 1, 0    respectively. The credible intervals for doubly type II censored data 

under informative priors are 
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 The credible interval assuming exponential prior is obtained when 1,a b w   and for inverse 

Levy 1 / 2, / 2.a b c   

 

5. Elicitation 

Bayesian analysis elicitation of opinion is a crucial step. It helps to make it easy for us to 

understand what the experts believe in and what their opinions are. In statistical inference, the 

characteristics of a certain predictive distribution proposed by an expert determine the 

hyperparameters of a prior distribution. 

In this paper, we focus on a probability elicitation method known as prior predictive elicitation. 

Predictive elicitation is a method for estimating hyperparameters of prior distributions by inverting 

corresponding prior predictive distributions. Elicitation of hyperparameter from the prior  p   is 

conceptually difficult task because we first have to identify prior distribution and then its 

hyperparameters. The prior predictive distribution is used for the elicitation of the hyperparameters 

which is compared with the experts’ judgment about this distribution and then the hyperparameters 

are chosen in such a way so as to make the judgment agree closely as possible with the given 

distribution (reader desires more detail see Grimshaw et al. (2001), Kadane (1980), O’Hagan et al. 

(2006), Kadane et al. (1996), Jenkinson (2005) and Leon et al. (2003)). According to Aslam (2003), 

the method of assessment is to compare the predictive distribution with experts' assessment about this 

distribution and then to choose the hyperparameters that make the assessment agree closely with the 

member of the family. He discusses three important methods to elicit the hyperparameters: (i) via the 

prior predictive probabilities (ii) via elicitation of the confidence levels (iii) via the predictive mode 

and confidence level. 

 

5.1. Prior predictive distribution 

The prior predictive distribution is 

    
0

( ) .g y p y p d  


  |  (11) 

The predictive distribution under gamma prior is 

 
    

1
( ) , 0 1.

1 ln 1

a

a

ab
g y y

y b y


  
    (12) 

The expressions for the predictive distribution under exponential prior and Inverse Levy prior are 

obtained when 1,a b m   and 1 / 2, / 2a b c   respectively. By using the method of elicitation 

defined by Aslam (2003), we obtain the following hyperparameters m  0.146341, a  4.898331, 

b  1.098839 and c  1.098839. 
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6. Predictive Distribution 

The predictive distribution contains the information about the independent future random 

observation given preceding observations. The reader desires more details can see Bolstad (2004) and 

Bansal (2007). 

 

6.1. Posterior predictive distribution and predictive interval 

The posterior predictive distribution of the future observation 1ny x   is  

 
0
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x x| || ) =  (13) 
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
 


   is the future observation density and  |p  x  is the posterior 

distribution obtained by incorporating the likelihood with the respective prior distributions. 

A  1 100%  Bayesian interval  ,L U  can be obtained by solving the following two equations 

simultaneously 
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The posterior predictive distribution of the future observation 1ny x   under uniform or Jeffreys 

priors are obtained under these conditions 1    and 0    in following expression. 
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The posterior predictive distribution of the future observation 1ny x   under gamma prior is 
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The expressions for the posterior predictive distribution of the future observation 1ny x   under 

exponential prior and inverse Levy prior are obtained when 1,a b m   and 1/ 2, / 2,a b c   

respectively. Posterior predictive interval under uniform prior is 
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Posterior predictive intervals for the rest of priors can be obtained by little modifications. 

 

7. Simulation Study 

Monte Carlo simulation techniques are widely used in statistical research. Since real-world data 

sets can often be radically non-normal, it is essential that statisticians have a variety of techniques 

available for univariate or multivariate non-normal data generation. This section shows how 

simulation can be helpful and illuminating way to approach problems in Bayesian analysis. Bayesian 

problems of updating estimates can be handled easily and straight forwardly with simulation. Here, 

the inverse transformation method of simulation is used to compare the performance of different 

estimators. The study has been carried out for different values of ( ,n r and )s  using  (3.5, 7 and 

10). Censoring rate is assumed to be 20%. The estimation has been done under 10% left and 10% right 

censored samples. Sample size is varied to observe the effect of small and large samples on the 

estimators. Changes in the estimators and their risks have been determined when changing the loss 

function and the prior distribution of   while keeping the sample size fixed. All these results are 

obtained from 5,000 Monte Carlo replications. In the Tables, the estimators for the parameter and the 

risk, is averaged over the total number of repetitions. Mathematica 8.0 has been used to carry out the 

results. All the results are summarized in the Tables 2-21 and Figures 1-18. 

 

Table 2 Bayes estimates and the posterior risks (given in parentheses) under SELF 

n 
Uniform Prior Jeffreys Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.92533 7.77441 11.08181 3.71341 7.44810 10.5978 

(0.86122) (3.38166) (6.86337) (0.81246) (3.28642) (6.61851) 

40 
5, 36r n s    

3.70702 7.29598 10.53040 3.61550 7.14997 10.2546 

(0.38246) (1.47990) (3.08415) (0.37401) (1.45009) (3.00765) 

60 
7, 54r n s    

3.63335 7.25471 10.41370 3.55732 7.12365 10.21040 

(0.24463) (0.97518) (2.00985) (0.23882) (0.95754) (1.97036) 

80 
9, 72r n s    

3.59448 7.19386 10.27320 3.53655 7.09076 10.08170 

(0.17901) (0.70797) (1.47419) (0.17709) (0.70660) (1.42546) 
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Table 3 Bayes estimates and the posterior risks (given in parentheses) under SELF 

n 
Exponential Prior Gamma Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.81379 7.35705 10.23330 3.82389 6.40303 8.12309 

(0.80961) (2.99378) (5.79352) (0.66588) (1.83888) (2.94527) 

40 
5, 36r n s    

3.62664 7.16263 10.05310 3.65350 6.688747 8.86411 

(0.36587) (1.42462) (2.80108) (0.33374) (1.11268) (1.95458) 

60 
7, 54r n s    

3.58728 7.139440 10.03860 3.60160 6.82085 9.12666 

(0.23834) (0.94397) (1.86996) (0.22372) (0.80199) (1.43107) 

80 
9, 72r n s    

3.55628 7.07613 10.03343 3.59740 6.85248 9.37437 

(0.17548) (0.69823) (1.40224) (0.17059) (0.61694) (1.13663) 

 

Table 4 Bayes estimates and the posterior risks (given in parentheses) under In-Levy 

n 
SELF PLF 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.39827 6.19757 8.28772 3.52882 6.41695 8.48414 

(0.66891) (2.15804) (3.84658) (0.18298) (0.33347) (0.44089) 

40 
5, 36r n s    

3.46435 6.69062 8.95265 3.52232 6.74176 9.19329 

(0.33805) (1.25501) (2.24817) (0.09458) (0.18102) (0.24685) 

60 
7, 54r n s    

3.49571 6.71834 9.34759 3.50652 6.78337 9.46309 

(0.22846) (0.84183) (1.62749) (0.06348) (0.12280) (0.17130) 

80 
9, 72r n s    

3.49620 6.80950 9.52627 3.50003 6.84533 9.57812 

(0.17875) (0.64503) (1.26232) (0.04758) (0.09459) (0.13104) 
 

Table 5 Bayes estimates and the posterior risks (given in parentheses) under PLF 

n 
Uniform Prior Jeffreys Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.98717 8.02401 11.47080 3.82573 7.63340 11.16410 

(0.20198) (0.40647) (0.58107) (0.20413) (0.40731) (0.59571) 

40 
5, 36r n s    

3.76031 7.47589 10.53900 3.66187 7.31773 10.40680 

(0.09964) (0.19808) (0.27925) (0.09967) (0.19917) (0.28325) 

60 
7, 54r n s    

3.67819 7.34681 10.43240 3.59795 7.18242 10.25790 

(0.06598) (0.13181) (0.18716) (0.06600) (0.13195) (0.18739) 

80 
9, 72r n s    

3.62149 7.24346 10.30200 3.58433 7.17615 10.20560 

(0.05087) (0.09829) (0.13972) (0.051149) (0.09868) (0.14024) 
 

Table 6 Bayes estimates and the posterior risks (given in parentheses) under PLF 

n 
Exponential Prior Gamma Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.86466 7.54919 10.65220 3.91809 6.59282 8.28236 

(0.19577) (0.38241) (0.53958) (0.16574) (0.27887) (0.35032) 

40 
5, 36r n s    

3.72165 7.27841 10.29801 3.71449 6.71447 8.95066 

(0.09861) (0.19285) (0.27286) (0.08921) (0.16125) (0.21495) 

60 
7, 54r n s    

3.60543 7.18868 10.16510 3.66105 6.85698 9.28930 

(0.06468) (0.12897) (0.18236) (0.06139) (0.114972) (0.15576) 

80 
9, 72r n s    

3.60403 7.14848 10.16210 3.61198 6.90519 9.47683 

(0.04878) (0.09704) (0.13758) (0.04652) (0.09022) (0.119412) 
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Table 7 Bayes estimates and the posterior risks (given in parentheses) under WSELF 

n 
Uniform Prior Jeffreys Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.72527 7.45755 10.61520 3.46476 7.04198 10.05660 

(0.20070) (0.41444) (0.589911) (0.20387) (0.41435) (0.59174) 

40 
5, 36r n s    

3.57036 7.18436 10.35280 3.49387 7.05023 10.13230 

(0.09920) (0.19960) (0.28763) (0.09984) (0.20147) (0.28955) 

60 
7, 54r n s    

3.54435 7.12553 10.17870 3.52771 7.00775 10.16510 

(0.06565) (0.13198) (0.18853) (0.06657) (0.13224) (0.18994) 

80 
9, 72r n s    

3.52103 7.07107 10.09340 3.51561 6.97971 10.2771 

(0.04909) (0.09740) (0.14014) (0.04993) (0.09844) (0.13938) 
 

Table 8 Bayes estimates and the posterior risks (given in parentheses) under WSELF 

n 
Exponential Prior Gamma Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.58268 7.01863 9.77231 3.64830 6.11131 7.75482 

(0.19910) (0.39003) (0.54306) (0.16664) (0.27913) (0.35418) 

40 
5, 36r n s    

3.54268 6.99132  9.78016  3.58615  6.52838  8.59472  

(0.09843) (0.19368) (0.27172) (0.08990) (0.16365) (0.21549) 

60 
7, 54r n s    

3.50695 6.98862 9.87215 3.53039 6.67008 9.05560 

(0.06495) (0.12962) (0.18285) (0.06098) (0.11522) (0.15642) 

80 
9, 72r n s    

3.50438 6.98104 9.88729 3.53003 6.75080 9.23674 

(0.04873) (0.09718) (0.13935) (0.04655) (0.08654) (0.12220) 
 

Table 9 Bayes estimates and the posterior risks (given in parentheses) under In-Levy 

n 
WSELF QQLF 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.25806 5.86659 7.93722 3.11082 5.38011 6.80766 

(0.18622) (0.33530) (0.45363) (0.00141) (0.00010) (0.00002) 

40 
5, 36r n s    

3.37253 6.45195 8.84808 3.32100 6.07971 8.11384 

(0.09502) (0.18177) (0.24928) (0.00050) (0.00002) (9.47×10-7) 

60 
7, 54r n s    

3.41603 6.67175 9.16089 3.38948 6.38621 8.64783 

(0.06386) (0.12472) (0.17125) (0.00029) (5.47×10-6) (2.12×10-7) 

80 
9, 72r n s    

3.43855 6.70822 9.41587 3.45129 6.50295 9.26928 

(0.04815) (0.09326) (0.13195) (0.00020) (2.82×10-6) (8.38×10-8) 
 

Table 10 Bayes estimates and the posterior risks (given in parentheses) under QQLF 

n 
Uniform Prior Jeffreys Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.53766 6.48044 8.67685 3.34816 6.14469 8.28434 

(0.00091) (0.00003) (2.99×10-6) (0.00119) (0.00005) (4.90×10-6) 

40 
5, 36r n s    

3.52699 6.67729 9.14271 3.43872 6.51616 8.99632 

(0.00040) (7.90×10-6) (3.08×10-7) (0.00046) (9.27×10-6) (4.54×10-6) 

60 
7, 54r n s    

3.52069 6.83900 9.47975 3.46397 6.69697 9.29961 

(0.00025) (2.82×10-6) (7.18×10-8) (0.00027) (3.58×10-6) (1.04×10-6) 

80 
9, 72r n s    

3.49447 6.84470 9.61220 3.47716 6.80313 9.51691 

(0.00018) (1.77×10-6) (3.04×10-8) (0.00019) (1.92×10-6) (3.44×10-6) 
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Table 11 Bayes estimates and the posterior risks (given in parentheses) under QQLF 

n 
Exponential Prior Gamma Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.43177 6.14714 8.14054 3.52196 5.64855 6.88925 

(0.00103) (0.00005) (4.31×10-6) (0.00068) (0.00005) (8.30×10-6) 

40 
5, 36r n s    

3.47050 6.54578 8.98536 3.52907 6.15483 7.97230 

(0.00041) (8.85×10-6) (3.71×10-7) (0.00035) (0.00001) (7.81×10-7) 

60 
7, 54r n s    

3.48098 6.64879 9.26670 3.50222 6.38192 8.54705 

(0.00026) (3.69×10-6) (1.05×10-7) (0.00023) (4.28×10-6) (1.84×10-7) 

80 
9, 72r n s    

3.49523 6.69979 9.45261 3.50186 6.54692 8.80563 

(0.00018) (2.05×10-6) (4.11×10-8) (0.00017) (2.40×10-6) (8.00×10-8) 

 

Table 12 Bayes estimates and the posterior risks (given in parentheses) under SLELF 

n 
Uniform Prior Jeffreys Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.82828 7.69723 10.83940 3.58403 7.25302 10.66760 

(0.06059) (0.06059) (0.06059) (0.06449) (0.06449) (0.06449) 

40 
5, 36r n s    

3.66733 7.32027 10.44560 3.54135 7.13360 10.17720 

(0.03077) (0.03077) (0.03077) (0.03174) (0.03174) (0.03174) 

60 
7, 54r n s    

3.59536 7.13222 10.37320 3.52742 7.01056 10.07440 

(0.02062) (0.02062) (0.02062) (0.02105) (0.02105) (0.02105) 

80 
9, 72r n s    

3.55622 7.12479 10.17620 3.52631 7.00789 10.05920 

(0.01550) (0.01550) (0.01550) (0.01575) (0.01575) (0.01575) 
 

Table 13 Bayes estimates and the posterior risks (given in parentheses) under SLELF 

n 
Exponential Prior Gamma Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.68864 7.28203 9.87553 3.71928 6.24026 7.84896 

(0.06059) (0.06059) (0.06059) (0.04901) (0.04901) (0.04901) 

40 
5, 36r n s    

3.61541 7.10907 9.95057 3.65825 6.57596 8.74732 

(0.03077) (0.03077) (0.03077) (0.02747) (0.02747) (0.02747) 

60 
7, 54r n s    

3.52799 7.07746 9.97436 3.58032 6.69454 9.13093 

(0.02062) (0.02062) (0.02062) (0.01908) (0.01908) (0.01908) 

80 
9, 72r n s    

3.51374 7.03647 10.00910 3.57626 6.81407 9.30911 

(0.01550) (0.01550) (0.01550) (0.01462) (0.01462) (0.01462) 
 

Table 14 Bayes estimates and the posterior risks (given in parentheses) under In-Levy 

n 
SLELF ELF 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.40260 6.09065 8.09419 3.24454 5.89633 7.85509 

(0.06248) (0.06248) (0.06248) (0.02497) (0.02497) (0.02497) 

40 
5, 36r n s    

3.41286 6.51539 8.91392 3.39342 6.44534 8.86326 

(0.03125) (0.03125) (0.03125) (0.01232) (0.01232) (0.01232) 

60 
7, 54r n s    

3.46201 6.65328 9.22523 3.42523 6.63678 9.27257 

(0.02083) (0.02083) (0.02083) (0.00818) (0.00818) (0.00818) 

80 
9, 72r n s    

3.46537 6.73060 9.44915 3.45478 6.70293 9.40219 

(0.01562) (0.01562) (0.01562) (0.00608) (0.00608) (0.00608) 
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Table 15 Bayes estimates and the posterior risks (given in parentheses) under ELF 

n 
Uniform Prior Jeffreys Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.68275 7.40959 10.58120 3.52264 6.90079 9.97814 

(0.02438) (0.02438) (0.02438) (0.02560) (0.02560) (0.02560) 

40 
5, 36r n s    

3.59664 7.18686 10.29190 3.51985 6.94760 9.98612 

(0.01218) (0.01218) (0.01218) (0.01247) (0.01247) (0.01247) 

60 
7, 54r n s    

3.57060 7.11202 10.18220 3.49462 6.99606 9.99775 

(0.00811) (0.00811) (0.00811) (0.00824) (0.00824) (0.00824) 

80 
9, 72r n s    

3.55195 7.10718 10.16270 3.49167 7.04029 10.06120 

(0.00618) (0.00618) (0.00618) (0.00625) (0.00625) (0.00625) 
 

Table 16 Bayes estimates and the posterior risks (given in parentheses) under ELF 

n 
Exponential Prior Gamma Prior 

3.5   7   10   3.5   7   10   
20 

3, 18r n s    
3.59567 6.98372 9.65015 3.24454 5.89633 7.85509 

(0.02438) (0.02438) (0.02438) (0.02055) (0.02055) (0.02055) 

40 
5, 36r n s    

3.55142 6.99283 9.91212 3.39342 6.44534 8.86326 

(0.01218) (0.01218) (0.01218) (0.01111) (0.01111) (0.01111) 

60 
7, 54r n s    

3.54733 7.03105 9.97753 3.42523 6.63368 9.27257 

(0.00811) (0.00811) (0.00811) (0.00765) (0.00765) (0.00765) 

80 
9, 72r n s    

3.51064 6.99718 9.97861 3.45478 6.70293 9.40219 

(0.00618) (0.00618) (0.00618) (0.00501) (0.00501) (0.00501) 

 

Table 17 The lower (LL), the upper (UL) and the width of the 95% credible intervals under uniform 

prior 

, ,r n n s

 
3.5   

Width 
7   

Width 
10   

Width 
LL UL LL UL LL UL 

3, 20, 18 2.4662 6.4707 4.0045 4.3813 11.4952 7.1139 6.0188 15.7915 9.7727 
5, 40, 36 2.3591 4.6915 2.3324 4.4702 8.8899 4.4197 7.3400 14.5970 7.2570 
7, 60, 54 2.5709 4.5134 1.9425 5.2772 9.2646 3.9874 7.6086 13.3576 5.7490 
9, 80, 72 2.6399 4.3008 1.6609 5.8521 9.5339 3.6818 7.6884 12.5255 4.8371 

 

Table 18 The lower (LL), the upper (UL) and the width of the 95% credible intervals under 
jeffreys prior 

, ,r n n s

 
3.5   

Width 
7   

Width 
10   

Width 
LL UL LL UL LL UL 

3, 20, 18 2.2925 6.2017 3.9092 4.0725 11.0169 6.9444 5.5947 15.1348 9.5401 
5, 40, 36 2.2808 4.5851 2.3043 4.3219 8.6884 4.3665 7.0964 14.2661 7.1697 
7, 60, 54 2.5157 4.4426 1.9269 5.1638 9.1191 3.9553 7.4452 13.1479 5.7027 
9, 80, 72 2.5982 4.2490 1.6508 5.7596 9.4192 3.6596 7.5668 12.3746 4.8078 

 

Table 19 The lower (LL), the upper (UL) and the width of the 95% credible intervals under 
exponential prior 

, ,r n n s

 
3.5   

Width 
7   

Width 
10   

Width 
LL UL LL UL LL UL 

3, 20, 18 2.3884 6.2664 3.8780 4.1412 10.8652 6.7241 5.5749 14.6270 9.0521 
5, 40, 36 2.3371 4.6477 2.3107 4.3583 8.6672 4.3090 7.0429 14.0062 6.9633 
7, 60, 54 2.5473 4.4721 1.9247 5.1789 9.0920 3.9131 7.7124 13.0018 5.2894 
9, 80, 72 2.6219 4.2715 1.6496 5.7645 9.3912 3.6267 7.5378 12.2801 4.7423 
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Table 20 The lower (LL), the upper (UL) and the width of the 95% credible intervals under 
gamma prior 

, ,r n n s

 
3.5   

Width 
7   

Width 
10   

Width 
LL UL LL UL LL UL 

3, 20, 18 2.5338 6.0337 3.4999 3.9046 9.2978 5.3933 4.8182 11.4734 6.6552 
5, 40, 36 2.4196 4.6331 2.2135 4.2348 8.1089 3.8742 6.2994 12.0624 5.7630 
7, 60, 54 2.6058 4.4782 1.8724 5.0067 8.6041 3.5975 6.8416 11.7575 4.9159 
9, 80, 72 2.6657 4.2819 1.6162 5.5772 8.9587 3.3815 7.0986 11.4025 4.3039 

 

Table 21 The lower (LL), the upper (UL) and the width of the 95% credible intervals under inverse 
levy prior 

, ,r n n s

 
3.5   

Width 
7   

Width 
10   

Width 
LL UL LL UL LL UL 

3, 20, 18 2.1401 5.6996 3.5595 3.5264 9.3914 5.8650 4.5623 12.1502 7.5880 
5, 40, 36 2.2170 4.4325 2.2155 4.0405 8.0784 4.0379 6.3069 12.6097 6.3028 
7, 60, 54 2.4652 4.3405 1.8753 4.9018 8.6306 3.7289 6.8818 12.1169 5.2352 
9, 80, 72 2.5589 4.1768 1.6178 5.5185 9.0074 3.4890 7.1390 11.6526 4.5136 

 

7.1. Graphical comparison 

The risks profile at different values of parameter under different priors is given in this section. 

 
Figure 1 Risks of estimators of 3.5   for different sample sizes under SELF 

 

 
Figure 2 Risks of estimators of 7   for different sample sizes under SELF 
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Figure 3 Risks of estimators of 10   for different sample sizes under SELF 

 

 

 
Figure 4 Risks of estimators of 3.5   for different sample sizes under PLF 

 

 
Figure 5 Risks of estimators of 7   for different sample sizes under PLF 
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Figure 6 Risks of estimators of 10   for different sample sizes under PLF 

 

 
Figure 7 Risks of estimators of 3.5   for different sample sizes under WSELF 

 

 
Figure 8 Risks of estimators of 7   for different sample sizes under WSELF 
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Figure 9 Risks of estimators of 10   for different sample sizes under WSELF 

 
Figure 10 Risks of estimators of 3.5   for different sample sizes under QQLF 

 

 
Figure 11 Risks of estimators of 7   for different sample sizes under QQLF 
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Figure 12 Risks of estimators of 10   for different sample sizes under QQLF 

 

 
 

Figure 13 Risks of estimators of 3.5   for different sample sizes under SLELF 

 

 

 
 

Figure 14 Risks of estimators of 7   for different sample sizes under SLELF 
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Figure 15 Risks of estimators of 10   for different sample sizes under SLELF 

 

 
 

Figure 16 Risks of estimators of 3.5   for different sample sizes under ELF 

 

 
Figure 17 Risks of estimators of 7   for different sample sizes under ELF 

 



Tabassum Naz Sindhu and Zawar Hussain 729 

 
Figure 18 Risks of estimators of 10   for different sample sizes under ELF 

 

8. Conclusions 

The simulation study has displayed some interesting properties of the Bayes estimates. After an 

extensive study of results, conclusions are drawn regarding the behavior of the estimators. The risks 

of the estimates seem to be large in case when the value of the parameter is large and small for relative 

smaller value of the parameter except under quasi-quadratic loss function. However, the risks under 

said loss functions are reduced as the sample size increases. Another interesting remark concerning 

the risks of the estimates is that increasing (decreasing) the value of the parameter reduces (increases) 

the risks of the estimates under quasi-quadratic loss function. The performance of squared-log error 

loss function and entropy loss function is independent of choice of parametric value. The above study 

depicts that the estimated value of the parameter converges to the true value of the parameter by 

increasing the sample size. The greater values of the parameter impose a negative impact on 

convergence and performance of the estimates. The effect of the increasing values of the parameter is 

in the form of underestimation assuming each informative prior. The patterns of the estimates 

discussed above, are almost similar under uniform and Jeffreys priors. However, the performance of 

the uniform prior is better for estimates under SLELF, ELF, PLF and QQLF. While for estimates, 

under SELF and WSELF, the performance of the Jeffreys prior is better than uniform prior. In 

comparison of informative priors, the gamma prior provides the better estimates as the corresponding 

risks are least under said loss functions with few exceptions.  While the exponential prior turns out to 

perform better under QQLF for larger values of the parameter, therefore it produces more efficient 

estimates as compared to other informative priors. After an extensive study of the results, thus 

obtained, we observed that the risks of the estimators under doubly type II censored data assuming 

uniform behave similarly to the risks of the estimators under exponential prior under SLELF and ELF.  

In addition, estimates under quasi-quadratic loss function give the minimum risks among all loss 

functions for each prior. The Credible interval are in accordance with the point estimates, that is, the 

width of credible interval is inversely proportional to sample size while, it is directly proportional to 

the parametric value. From Tables 17-21, appended above, reveal that the effect of the parametric 

values in the form of larger width of interval. The Credible interval assuming gamma prior is much 

narrower than the credible intervals assuming informative and non-informative priors. It is the use of 

prior information that makes a difference in terms of gain in precision. To see the effects of the 

posterior risks assuming different priors under different loss functions with various values of the 

parameter  , Figures 1-18 are prepared. It is observed from all the figures that posterior risk decreases 

with the increase in sample size under said loss functions. It is evident from Figures 13-18 that 
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behaviors of posterior risks are similar in all aspects under 3.5,  7   and 10. Results of above graphs 

clearly show that gamma prior has least posterior risk as compared to its competitors prior under all 

loss function with few exceptions. 

So result of graphical study and simulation study are similar in all aspect. In the future, this study 

can be conducted under different informative priors, other loss functions and under different censoring 

schemes and also for mixture distribution. 
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