
Thailand Statistician
October 2022; 20(4): 731-743
http://statassoc.or.th
Contributed paper

Some Properties of the New Mixture of Nakagami Distribution
Ibrahim Abdullahi [a] and Wikanda Phaphan*[b]
[a] Department of Mathematics and Statistics, Faculty of Science,
Yobe State University, Damaturu, Nigeria
[b]Department of Applied Statistics, Faculty of Applied Science,
King Mongkuts University of Technology North Bangkok, Bankok, Thailand
*Corresponding author; e-mail: wikanda.p@sci.kmutnb.ac.th

Received: 10 July 2021
Revised: 30 October 2021

Accepted: 2 December 2021

Abstract
One new mixture Nakagami distribution has been introduced. Then some attributes of the pro-

posed distribution have been explored. The comparisons of the effectiveness of estimators via the
quasi-Newton and the simulated annealing were made by considering the bias, and the mean squared
error (MSE). Lastly, to illustrate its usefulness, the model has been applied in describing real data
sets.

Keywords: Survival distribution, right skewed distribution, quasi-Newton method, simulated an-
nealing.

1. Introduction
Survival analysis is a field of statistics relating to death and failure. The research in survival anal-

ysis seeks the following four things:1. the survival rates of the population; 2. the force of mortality
rate at a given time; 3. other factors causing death; 4. the environmental impact on studying.

The key data for survival analysis is the time to the occurrence of a given event, namely the
death of patients, failed marriage ending in divorce, students resignation, or employees resignation.
The time from the start to the given event occurs. It is survival time. The statistical analysis of the
survival data focuses on survival function and hazard function.

In general, many physical causes for failure or death at a point in time. It is difficult to clas-
sify those causes and to explain them with a mathematical model. We select the parametric survival
distributions and then bring them to estimate data characteristics. Some parametric distributions
were used as models to describe the survival data, namely exponential distribution, Weibull Distri-
bution, Log-normal distribution, Nakagami distribution, inverse Gaussian distribution, LogLogistic
distribution, and so forth. In this article, we are interested in the Nakagami distribution for the de-
velopment. In order to have the new alternative distribution which is applied to the survival analysis.
The Nakagami mixture model is proposed by combining the Nakagami (Nak) distribution and the
length-biased Nakagami (LBNak) distribution with the weighted parameter. The basic properties of
the proposed distribution are established. The reliability of the proposed distribution, compared to an
existing distribution is demonstrated.
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2. The Nakagami distribution
The Nakagami distribution (Nak) was proposed by Nakagami (1960). This distribution is the

intensity distribution due to rapid fading. The Nakagami distribution has two parameters; λ ≥ 0.5
is the shape parameter and β > 0 is scale parameter. The corresponding cumulative distribution
function (CDF) is given by

F (x) =
1

Γ(λ)
γ

(
λ,

λ

β
x2

)
. (1)

where Γ is the gamma function, and γ is the regularized (lower) incomplete gamma function. The
probability density function (PDF) is as this formula:
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3. Theoretical Result
3.1. The Probability Density Function of the New Mixture of Nakagami Distribution

The length-biased probability density function (PDF) is defined as follows: let X be a non-
negative random variable having a continuous PDF f(·) and a finite first moment E[X] exist. We
say that a non-negative random variable Y with the PDF h(·) has the length-biased random variable
associated with X , if its PDF is given by this formula:

h(x) =
xf(x)

E[X]
, x > 0, (4)

where f(x) is the PDF of the original distribution. Suppose X1 be an independent random variable
of Nakagami (Nak) distribution, the corresponding probability density function of X1 is given by

f(x1) =
2λλ

Γ(λ)βλ
x2λ−1
1 exp

(
−λ

β
x2
1

)
; x1 > 0. (5)

Let X2 be an independent random variable of the length-biased Nakagami (LBNak) distribution
proposed by Abdullahi and Phaphan (2022), the probability density function of X2 is

f(x2) =
2λλ+1/2x2λ

2 e−
λ
β x2

2

Γ(λ+ 1/2)βλ+1/2
; x2 > 0. (6)

The mixture approach is one of the prominent methods of obtaining new alternative probabil-
ity distributions in the field of probability and statistics because of its simplicity and unambiguous
interpretation for applications such as the research of Chananet and Phaphan (2021), Phaphan and
Pongsart (2019), Gillariose and Tomy (2011), Bowonrattanaset and Budsaba (2011), Birnbaum
and Saunders (1969a), and Birnbaum and Saunders (1969b). For the new mixture of Nakagami
distribution, we consider the new random variable X such that

X =

{
X1 with probability p
X2 with probability 1− p,

where 0 ≤ p ≤ 1. Obviously, X is a mixture of X1 and X2 and the PDF of X is given by

fp(x) = pf(x1) + (1− p)f(x2), (7)
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insert (5) and (6) in (7) yield
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]}
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where λ ≥ 0.5 and β > 0. From Figure 1, it can be shown that the new mixture of Nakagami density
function seems positively skewed, λ is a shape parameter, and β is a scale parameter. Besides, when
p = 0 in the equation (8) then the equation yield the PDF of LBNak distribution, and also when p = 1
equation (8) then the equation yield the PDF of Nak distribution.

3.2. The Cumulative Density Function of the New Mixture of Nakagami Distribution

Suppose F (x1) be a cumulative density function (CDF) of Nak distribution and F (x2) be a
cumulative density function of LBNak distribution. Let X be a random variable of the new mixture
of Nakagami distribution, then the CDF of X is given by

Fp(x) = p(F (x1)) + (1− p)F (x2). (9)

From (9), the CDF can be expressed as
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Let
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λ

β
t2 ⇒ ∂t =

∂kβ

2λt
. (11)

Substituting equation (11) into (10) and integrate with respect to k, yields the cumulative density
function of X in equation (13).
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where γ1 and γ2 are the lower incomplete gamma function.

3.3. The rth Ordinary Moment of the New Mixture of Nakagami Distribution
The rth ordinary moment of the new mixture of Nakagami distribution is defined by

E(Xr) =

∞∫
0

{
2λλ

βλ
x2λ+r−1 exp

(
−λ

β
x2

)[
p

Γ(λ)
+

x(1− p)
√
λ

Γ(λ+ (1/2))
√
β

]}
∂x. (14)

Substituting equation (11) into (14) and integrate with respect to k, yields the rth ordinary
moment of the new mixture of Nakagami distribution in equation (15) .
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The mean of the new mixture of Nakagami distribution takes the form:
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)
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E(X2) is the second moment obtained from equation (15) when r = 2.
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The variance is obtained from equation (16) and (17)
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3.4. The Moment Generating Function of the New Mixture of Nakagami Distribution
The moment generating function of the new mixture of Nakagami distribution is given by

E(eXt) = MX(t) =
∞∑
r=0

trE(Xr)

r!
. (19)

By inserting equation (15) into (19) yield the moment generating function of the new mixture of
Nakagami distribution in equation (20).

MX(t) =

∞∑
r=0

tr

r!

{
pβr/2

λr/2Γ(λ)
Γ
(
λ+

r

2

)
+

(1− p)β
r+1
2

λ
r+1
2 Γ(λ+ (1/2))

Γ

(
λ+

(
r + 1

2

))}
. (20)

3.5. The Incomplete Moments of the New Mixture of Nakagami Distribution
The incomplete moments of the new mixture of Nakagami distribution is given by
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Substituting equation (11) into (21) and integrate with respect to k yields
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If r = 1, 2 then we obtained the first and the second incomplete moment.

3.6. Survival Function and Hazard Rate Function of the New Mixture of Nakagami Distribu-
tion

Let X is a continuous random variable with a cumulative density function F (x) on the interval
[0,∞). The survival function of X , can be written in this form:

S(x) = 1− F (x). (22)
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By inserting equation (13) into equation (22) yield the survival function of the new mixture of
Nakagami distribution in equation (23).

Sp(x) = 1−
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The hazard rate function of X can be defined as:

hp(x) =
f(x)

S(x)
.

Hence the hazard rate function of the new mixture of Nakagami distribution is
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which increases monotonically from 0 to ∞ as time increases from 0 to ∞ (see Figure 2).

3.7. Parameter Estimation of the New Mixture of Nakagami Distribution
The maximum likelihood estimators of the parameters of the new mixture of Nakagami distri-

bution will be estimated in this section. Let x1, . . . , xn be a random sample of size n drawn from the
new mixture of Nakagami distribution, then the likelihood function of the new mixture of Nakagami
distribution is given by:
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The log likelihood function in equation (26) is obtained by taking the log of equation (25).
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The maximum likelihood estimators can be obtained by take derivative of equation (26) with
respect to λ, β, p and solving for λ, β, p.

∂ℓ

∂λ
= n lnλ+ n+ 2 ln

n∑
i=1

xi −
1

β

n∑
i=1

x2
i

n∑
i=1

2
[
pΨ(λ)

√
λΓ(λ+ 1

2 )
√
β − xi(p− 1)Γ(λ)

(
λΨ

(
λ+ 1

2

)
− 1

2

)]
√
λ
[
2pΓ

(
λ+ 1

2

)√
β − 2xi

√
λΓ(λ)(p− 1)

]
 = 0

∂ℓ

∂β
=

λ

β2

n∑
i=1

x2
i +

n∑
i=1

(p− 1)xiΓ(λ)
√
λ

2
[
pΓ(λ+ 1

2 )
√
β − xiΓ(λ)

√
λ(p− 1)

] = 0

∂ℓ

∂p
=

−x
√
λΓ(λ) + Γ(λ+ 1

2 )
√
β

pΓ(λ+ 1
2 )
√
β − x

√
λΓ(λ)(p− 1)

= 0

Because these equations are nonlinear equations, they can not be analytically solved but can
be numerically solved through iterative methods. This article prefers the nlminb function in the R
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programming language for the maximum likelihood estimation (MLE) via the quasi-Newton method
and the optim function for the MLE via the simulated annealing. For using the nlminb and the optim
function, we mush to find the initial parameters λ, β, and p for a given sample that maximizes the
likelihood function, likelihood function to be maximized, and parameter limits.

This paper generated random numbers of the new mixture of Nakagami distribution by using the
accept-reject method through the Nakagami random number generation procedure from the nakagami
package and the simulations were repeated 1,000 times for each model. Also, determining sample
of size n = 10, 30, 50, 100 , parameters λ = 0.5, 1, 2, β = 0.5, 1, 3, and give p = 0.5. All of the
experiments were run on the R program version 4.0.5, set initial parameters for the nlminb function
as c(0,0), and set the initial parameters for the optim function as c(0.2,0.1). Therefore, it shows the
result from calculating 9 models of each method and each sample of size, see in Table 1-8.

Regarding the simulation results, it was observed that the maximum likelihood estimators via
the quasi-Newton method worked well for parameter β, and the maximum likelihood estimators via
simulated annealing worked well for both parameters λ and β and for all n. Hence, we can conclude
that the maximum likelihood estimators via the optim function with simulated annealing are more
efficient than the maximum likelihood estimators via the nlminb (quasi-Newton method) function in
the R program.

Note that the bias will be less than Tables 1-8, if we select suitable initial parameters for each
dataset but in this paper, we set the initial parameter to be the same for all datasets.

Table 1 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the quasi-Newton method λ̂MLE and β̂MLE for n = 10

λ β λ̂ β̂ Bias (λ̂) Bias(β̂) MSE(λ̂) MSE(β̂)

0.5 0.5 48.956 0.588 48.456 0.088 6312.395 0.064
1 57.351 0.773 56.851 -0.227 6873.944 0.316
3 62.922 1.530 62.422 -1.470 6441.232 4.902

1 0.5 74.515 0.582 73.515 0.082 10101.709 0.035
1 98.450 0.895 97.450 -0.105 12614.077 0.272
3 100.497 2.257 99.497 -0.743 10973.515 3.150

2 0.5 93.006 0.578 91.006 0.078 12833.254 0.025
1 125.807 0.940 123.807 -0.060 16847.171 0.162
3 117.110 2.682 115.110 -0.318 13428.995 1.716

4. Numerical Illustrations
To explore the potential of the proposed distribution, two actual data sets have been taken into

consideration by using the AdequacyModel package in R, see R Core Team (2021a).

Illustration 1: The first data set depicts the fatigue fracture life of Kevlar 373/epoxy when sub-
jected to steady pressure at 90 percent stress until all fail. Abdul-Moniem and Seham (2015) previ-
ously investigated this data set. It has 76 observations, which are as follows:
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751,
0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596,
1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733,
1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316,
1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513,
2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005,
5.4435, 5.5295, 6.5541, 9.0960.
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Table 2 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the simulated annealing λ̃MLE and β̃MLE for n = 10

λ β λ̃ β̃ Bias (λ̃) Bias(β̃) MSE(λ̃) MSE(β̃)

0.5 0.5 14.385 14.805 13.885 14.305 237.927 255.408
1 12.749 13.641 12.249 12.641 212.151 250.768
3 8.331 6.872 7.831 3.872 127.577 112.167

1 0.5 14.907 14.156 13.907 13.656 242.636 235.061
1 12.141 13.017 11.141 12.017 176.612 228.706
3 7.152 5.315 6.152 2.315 89.258 101.862

2 0.5 14.223 13.078 12.223 12.578 201.211 212.443
1 12.055 11.682 10.055 10.682 165.664 209.125
3 8.394 4.671 6.394 1.671 97.427 86.600

Table 3 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the quasi-Newton method λ̂MLE and β̂MLE for n = 30

λ β λ̂ β̂ Bias (λ̂) Bias(β̂) MSE(λ̂) MSE(β̂)

0.5 0.5 45.759 0.555 45.259 0.055 5227.054 0.024
1 51.926 0.696 51.426 -0.304 5508.718 0.247
3 59.112 1.369 58.612 -1.631 5591.255 4.341

1 0.5 66.334 0.556 65.334 0.056 8321.412 0.018
1 101.067 0.866 100.067 -0.134 12165.150 0.181
3 102.221 2.317 101.221 -0.683 10685.636 2.302

2 0.5 92.389 0.557 90.389 0.057 12285.127 0.014
1 127.711 0.903 125.711 -0.097 16646.267 0.107
3 115.994 2.737 113.994 -0.263 13146.579 1.027

Table 4 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the simulated annealing λ̃MLE and β̃MLE for n = 30.

λ β λ̃ β̃ Bias (λ̃) Bias(β̃) MSE(λ̃) MSE(β̃)

0.5 0.5 14.732 17.246 14.232 16.746 250.208 332.879
1 13.229 17.635 12.729 16.635 217.652 356.283
3 6.363 9.393 5.863 6.393 100.138 168.960

1 0.5 14.660 15.211 13.660 14.711 239.453 271.241
1 12.452 14.007 11.452 13.007 187.928 258.724
3 7.348 5.368 6.348 2.368 90.305 109.646

2 0.5 13.929 13.355 11.929 12.855 194.887 233.573
1 11.353 10.741 9.353 9.741 145.153 201.359
3 9.159 3.308 7.159 0.308 100.488 69.059
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Table 5 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the quasi-Newton method λ̂MLE and β̂MLE for n = 50.

λ β λ̂ β̂ Bias (λ̂) Bias(β̂) MSE(λ̂) MSE(β̂)

0.5 0.5 47.844 0.553 47.344 0.053 5276.343 0.019
1 53.412 0.659 52.912 -0.341 5423.619 0.221
3 59.201 1.285 58.701 -1.715 5424.683 4.093

1 0.5 73.046 0.544 72.046 0.044 8959.075 0.011
1 101.009 0.858 100.009 -0.142 11748.083 0.161
3 101.758 2.287 100.758 -0.713 10420.076 2.015

2 0.5 95.992 0.541 93.992 0.041 12699.802 0.008
1 128.565 0.883 126.565 -0.117 16534.429 0.097
3 113.252 2.715 111.252 -0.285 12522.042 0.994

Table 6 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the simulated annealing λ̃MLE and β̃MLE for n = 50.

λ β λ̃ β̃ Bias (λ̃) Bias(β̃) MSE(λ̃) MSE(β̃)

0.5 0.5 12.801 15.771 12.301 15.271 221.083 304.841
1 10.519 15.995 10.019 14.995 184.279 351.346
3 5.066 8.809 4.566 5.809 77.166 158.901

1 0.5 10.951 12.549 9.951 12.049 179.015 220.565
1 7.731 9.769 6.731 8.769 118.264 179.072
3 4.882 3.618 3.882 0.618 46.574 62.679

2 0.5 10.312 10.274 8.312 9.774 146.608 175.622
1 6.810 5.806 4.810 4.806 76.068 90.462
3 7.559 1.760 5.559 -1.240 70.164 32.591

Table 7 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the quasi-Newton method λ̂MLE and β̂MLE for n = 100.

λ β λ̂ β̂ Bias (λ̂) Bias(β̂) MSE(λ̂) MSE(β̂)

0.5 0.5 47.171 0.538 46.671 0.038 4852.809 0.012
1 55.248 0.647 54.748 -0.353 5436.870 0.207
3 63.634 1.306 63.134 -1.694 5658.259 3.832

1 0.5 72.891 0.539 71.891 0.039 8367.096 0.008
1 102.453 0.823 101.453 -0.177 11471.591 0.130
3 100.155 2.322 99.155 -0.678 9938.825 1.490

2 0.5 95.567 0.534 93.567 0.034 12259.945 0.005
1 127.249 0.898 125.249 -0.102 16004.806 0.070
3 113.105 2.677 111.105 -0.323 12479.566 0.642
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Table 8 The average estimates, the bias, the mean squared errors, and the simulated variance of the
maximum likelihood estimators via the simulated annealing λ̃MLE and β̃MLE for n = 100.

λ β λ̃ β̃ Bias (λ̃) Bias(β̃) MSE(λ̃) MSE(β̃)

0.5 0.5 12.049 15.249 11.549 14.749 218.982 312.654
1 8.384 13.209 7.884 12.209 153.024 301.827
3 4.210 7.561 3.710 4.561 63.616 171.043

1 0.5 8.491 10.046 7.491 9.546 147.107 178.373
1 3.380 4.931 2.380 3.931 49.570 81.970
3 3.113 1.240 2.113 -1.760 18.072 18.058

2 0.5 7.839 8.034 5.839 7.534 118.693 131.934
1 3.792 2.389 1.792 1.389 32.183 31.393
3 6.656 0.453 4.656 -2.547 50.977 10.839

From Figure 3, it clear that the data is right-skewed data. Hence, the Nakagami distribution
(Nak), the length-biased Nakagami distribution (LBNak), the new mixture of Nakagami distribution
(MNak), and the Nakagami exponential distribution (NakExp) which proposed by Abdullahi and
Obalowu (2020), have been fitted to data by MLE via the simulated annealing from the Adequacy-
Model package. The parameter estimates, Akaike’s information criterion (AIC), Bayesian informa-
tion criterion (BIC), Kolmogorov-Smirnov (KS) test, and Anderson-Darling (AD) test are exhibited
in Table 9. Based on the results, it clearly suggests that the new mixture of Nakagami distribution
outperforms the other three competing models.

Table 9 The MLE of the model parameters for the prostate cancer data, AIC measure, BIC measure,
KS test, and AD test

Fitting Dist. Estimate parameters AIC BIC KS test AD
λ β p Statistic p-value Statistic

Nak 0.3197 36.4452 - 312.1152 316.7767 0.3770 0.0000 0.8414
LBNak 0.2615 17.5919 - 402.1553 406.8168 0.6425 0.0000 0.8420
MNak 0.5529 7.4346 1.1669 255.1742 262.1664 0.1429 0.0812 1.1252

NakExp 0.2182 32.8661 0.3904 317.0142 324.0064 0.3576 0.0000 4.3393

Illustration 2: The second data set is about survival times in months after mastectomy of women
with breast cancer without censored observation from Everitt and Rabe-Hesketh (2001), and R Core
Team (2021b), which are as follows:
23, 47, 69, 148, 181, 5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 113, 118, 143.
From Figure 4, it clear that this data is right-skewed data. Again, models like the Nakagami distribu-
tion (Nak), the length-biased Nakagami distribution (LBNak), the new mixture of Nakagami distribu-
tion (MNak), and the Nakagami exponential distribution (NakExp) are being fitted to the given data
set and the parameters of each model were estimated by MLE via the simulated annealing. In order to
test the goodness of fit, AIC statistic, BIC statistic, Kolmogorov-Smirnov test, and Anderson-Darling
test have been employed. Based on the results of AIC statistics and Kolmogorov-Smirnov test that
there exists enough statistical evidence that the length-biased Nakagami distribution, the new mixture
of Nakagami distribution, and the Nakagami exponential distribution fits the breast cancer data very
well (Table 10).
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Table 10 The MLE of the model parameters for the survival times after mastectomy for cancer, AIC
measure, BIC measure, KS test, and AD test

Fitting Dist. Estimate parameters AIC BIC KS test AD
λ β p Statistic p-value Statistic

Nak 0.0054 30.6568 - 480.3764 482.8925 0.9741 0.0000 1.1603
LBNak 0.0026 27.9594 - 264.9343 267.4505 0.1436 0.6575 0.4303
MNak 0.0028 29.4391 0.3* 283.0474 285.5636 0.3331 0.0062 1.0654

NakExp 0.2364 48.8641 0.0179 278.6505 282.4248 0.3228 0.0089 1.4514

*fitted value

5. Conclusions
This article proposes a new distribution base upon Nakagami distribution, establishes some at-

tributes of the proposed distribution. A simulation study for performing the maximum likelihood
estimators via the quasi-Newton method and the simulated annealing were compared by Bias, and
mean squared error (MSE). To illustrate its usefulness, the model has been applied in describing real
data sets and compared to an existing distribution. The proposed model can be applied in a wide
variety of real situations, including reliability and survival data, especially the “small” values data.
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Figure 1 PDF plot for different values of the parameter λ, β, and p
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Figure 2 The hazard rate function plot for different values of the parameter λ, β, and p
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Figure 3 Histogram and distribution function plots of the empirical distribution of the fatigue fracture
life of Kevlar 373/epoxy
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Figure 4 Histogram and distribution function plots of the empirical distribution of the survival times
after mastectomy
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