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Abstract

In the present paper, we consider the positive exponential family of distributions, which has three
parameters 0, v and p. On assigning different values to these parameters, it covers many distributions.
For the testing of hypotheses regarding the parameters # and v, a sequential testing procedures and
robustness of the Operating characteristics and Average sample number functions are derived. The
robustness of the Sequential probability ratio test for the parameter 6, when the coefficient of variation
is known are also obtained. The acceptance and rejection regions for the null hypotheses Hy against
the alternative hypotheses H are also studied and presented through a graph. The numerical values
of operating characteristics and Average sample number function are presented in the tables and
graphs.

Keywords: PEFD, sequential probability ratio test, operating characteristics, average sample num-
ber, acceptance and rejection regions, null hypotheses, alternative hypotheses, type I error and type 11
error.

1. Introduction

The sequential probability ratio test (SPRT) for two simple hypotheses is first developed by
Wald (1947). He derived the theoretical expressions for the operating characteristics (OC) and av-
erage sample number (ASN) functions for the performance of SPRTS. The SPRT has been applied
by various authors for testing the statistical hypotheses, for references, one may refer to Oakland
(1950), Epstein and Sobel (1955), Johnson (1966), Phatarford (1971), Bain and Engelhardt (1982),
Chaturvedi et al.(2000), Sevil and Demirhan (2008), etc.

The robustness of the SPRT in respect of OC and ASN functions has been studied by several
researchers. For references, Harter and Moore (1976) gives the robustness of the exponential SPRT,
when the underlying distribution is a Weibull distribution. Montagne and Singpurwalla (1985) in-
vestigated the robustness of the sequential life-testing procedure with respect to the risks and the
expected sample sizes for the exponential distribution when the life length is not exponential. Hub-
bard and Allen (1991) applied SPRT on the mean of the negative binomial distribution when the
dispersion parameter is known and the robustness of the test to the misspecification of dispersion
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parameter is studied. Chaturvedi et al. (1998) considered a family of life-testing models and studied
the robustness of the SPRTS for various parameters involved in the model and also generalised the
results of Montagne and Singpurwalla (1985).

For testing a simple hypothesis (against a simple alternative) for the mean of an inverse Gaussian
distribution, Joshi and Shah (1990) developed SPRT, assuming the coefficient of variation (CV) to
be known. They obtained theoretical expressions for the OC and the ASN functions. Kumar et al.
(2018) derived the robustness of the OC and the ASN functions for the rate and the scale parameters
of the Erlang distribution. They also derived the robustness with respect to OC and ASN functions
with known coefficient of variation for the scale parameter.

2. Positive Exponential Family of Distribution
Liang (2008) proposed a positive exponential family of distribution (PEFD). Let us consider a
random variable (r.v.) X follows the PEFD presented by the probability density function (pdf)

pg}py*le(#)

f(x;0,v,p) = W;

x>0,0,v,p>0 (1)

where, 6 is assumed to be unknown and p,  are known constants. When p = v = 1; we get one-
parameter exponential distribution, for p = 1; we get gamma distribution, for v=1; we get Weibull
distribution, for v > 0, p = 1; we get Erlang distribution, for v > 1/2, p = 2; we get half - normal
distribution, for v > m/2, p = 2; we get chi-distribution, for v = 1, p = 2; we get Rayleigh
distribution and for v = p + 1, p = 2; we get Generalized Rayleigh distribution.

In the model (1), for testing the simple null hypothesis against the simple alternative, the SPRTS
and the robustness of the SPRTS in respect of OC and ASN functions are developed in the Section 3,
4,5 and 6. In Section 7, the robustness of the SPRT for a misspecified coefficient of variation is also
studied. In Section 8, the acceptance and rejection regions for H vs H7 for # are derived and plotted
in Figure 8.1. Finally, in Sections 9 and 10, the results and findings are presented through tables and
graphs, respectively.

3. SPRT for Testing the Hypothesis Regarding ‘6’

For a given sequence of observations X7, X2, X3, ... from (1), the problem of testing the
simple null hypothesis Hy : 8 = 6y against the simple alternative hypothesis Hy : 6 = 6,
(61 > 6y) is considered. The SPRT for testing is defined as follows

(%) [ (L_L
Zen(®) (L L)] .

Wald (1947), suggested two constants A and B depending on o and (3 such that 0 < B <
1 < A, where o and 3 are Type I and Type Il errors, respectively. The approximate values of A and
B are given by

1—
A= b and B = P .
« l-«
The OC function L(#) is given by
Ah—1
L(9) = T Rh

where ‘R’ is the non-zero solution of
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From (1) and (2), we have

hv
E[e%])" = (&) . (3)
[1 + hov (% - ei)}

On taking logarithm and using the expression In(1 + x), —1 < = < 1in (3). After retaining the
terms up to third degree in ‘h’ and on simplifying, we obtain the following quadratic equation in ‘h’-

B2 (1 1\ h,[/1 1)\? 11 0o
e (Lo L) _ltp (i1 Lot (™Yo @
57 (01 90> 20 (91 90> +9(01 00> n(91> 0 @

On solving (4), we get the numerical values of OC function. The ASN function is approximately

given by

L(O)InB+[1—-L(#)|InA
E(Z)

E(N|) = (&)

provided that E'(Z) # 0, where

s =ofu(2) -0 (L-2)]

From Equation(5), the ASN function under Hg and H1 is given by

(I1-a)lnB+alnd

Tn8) oG- 0]

fInB+(1—-p5)InA .
(8] oo )

4. SPRT for Testing the Hypothesis Regarding ‘1’

Now, we derive the OC and ASN function for the parameter ‘v’ under the simple null hypothesis
Hj : v = vy against the simple alternative hypothesis Hy : v = 11 (v1 > 1y). The value of Z; is

Ey(N) =

and

Ey(N) =

F(VO) 91/07111 xp(VlfVU) . (6)

Z; =
L(v1) '

Using (1) and (6) for the OC function, we have

L(vo) hi V1 — Y v| =
(Fies)) i 4= 7

Again, on taking the logarithm of both sides of (7), with In(1 4+ z); —1 < 2 < 1 and using
the approximation

InF(az):ln\/ﬂ—x+<x—;> Inz (8)
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we get,

h2 1% e 40 3 h Vl — 1 2 1 1

6( y )(V+1)—4< > >(2V+1)—<V0—2>ln1/0+<u1—2>1nu1
1

_<1+IHV—2V>(V1—I/0):O (9)

which is a quadratic equation in ‘h’. The numerical values of OC function is now obtained from
Equation (9). We get the values of ASN function by replacing the denominator of (5) by

E(Zilv) =InT(v) —InT(v1) + (11 — o) In X + (11 — o) E(In ;).

Using the result of Gradshteyn and Ryzhik(1965, p.576, 4.352(1)) that

1
Y(z) =lnx — % (10)

1 1 1
E(Z;lv) = <Vo - 2> Inyy — (1/1 - 2) Invy + (1 +Inv— 2y> (r1 — ).

5. Robustness of the SPRT for ‘9’ when ‘2’ has Undergone a Change.

Let us consider that the parameter ‘v’ has undergone a change to /* and then probability distri-
bution (1) becomes f(z;; 60, v, p). For the robustness of SPRT developed in Section 3 with respect
to OC function, the values of ‘h’ are obtained by Equations (1) and (2) as

00 hv 1 1 —v* B
(3) [em(5-5)] -v (i

Taking logarithm on both sides of Equation (11) and using the expansion of In(1 + z), —1 <
z < 1, we have

3 2
Qh? /(1 1 Qh (1 1 11 0o
—0 == ——0——-— 0{———]—-In|{—]=0 12
3 ) 2 01 6o +Q 01 6o 01 (12)
which is a quadratic equation in ‘h’. On solving (12), we get the real roots of ‘h’. The robustness of
the SPRT with respect to ASN is studied by replacing the denominator of (5) by

E(Z\G)—ln@(l))_Qg(Hll_elO)

6. Robustness of the SPRT for ‘> when ‘0’ has Undergone a Change.
Let us suppose that the parameter ‘0’ has undergone a change to 6* and then probability distri-
bution (1) becomes f(x;; 0%, v, p). For OC function, value of ‘h’ are obtained by the equation

F(VO)>h L ohn—w) P /Oo w1 (— =
ghivi—ro) gt +r=16(=55) gy = 1
<F(V1) L(v) ()" Jo

where () = ”7

L)\ 1w B -
<F(V1)> F(I/)¢ La(vy —vg) +v] =1 (13)



748 Thailand Statistician, 2022; 20(4): 744-753

where ¢ = %.
Taking logarithm on both sides of Equation (13) and using the approximation (8), we get the
roots of ‘h’ from the following equation

h2 V1T — 1 3 h vy — 1 2 1 1
6( iy )(V+1)—4< » >(2V+1)—(Vg—2>lnug+<vl—2>lnyl

— (1 —wvy)Ing — <1+lnu 211/> (1 — ) =0.

The robustness of the SPRT with respect to ASN function is studied by replacing the denominator of
(5) by
E(Zilv) =InT(vp) —InT(11) + (11 — o) In A+ (v1 — o) E(Inx;).

Using the result (10), we get

1 1 1
E(Z;lv) = <1/0 - 2) Inyy + (1/1 - 2) Inwy + (1 +In¢g+Inv— 2U> (11 — o).

7. Robustness of the SPRT for ‘9’ with Known Coefficient of Variation(CV)

For PEFD, the mean and variance are (§v/) and (6?1) for p = 1, then coefficient of variation
(cv) = % Let us suppose that coefficient of variation changes from c to c*, so that, the pdf (1)
shifts to f(x;; 6, c*, p). Then, from (2) and (1), the OC and ASN functions are

0o C% 1 1 (%*1)2 B
(91) [1+h9 (91_90>] -1 (14)

Taking logarithm on both sides of Equation (14) and using the expansion of In(1+x), =1 < z < 1
and retaining the terms upto third degree in ‘h’, we get the following quadratic equation

3 2
Yh? (1 1 vh o1 1 11 6o
(- =) e - — 0(———)-I(2)=0 5
s 7 \6 ") 2% e w) TYNe T e) ™M (1)
On solving (15), we get the real roots of ‘h’. The robustness of the SPRT with respect to ASN
function is studied by replacing the denominator of (10) by

0 11
E(Z|\) =In (;) — 0 <91 - 90)
where ¢ = (5)2

8. Acceptance and Rejection Region of PEFD

We wish to test the simple null hypothesis Hy : 8 = 0y against the simple alternative
Hy : 6 = 01(61 > 6p) having pre-assigned 0 < v, § < 1. Z; is defined as
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n
Let us define, Y'(n) = > X; and N = first integer n(> 1), for which the inequality
i=1

Y(n) <cp +dnorY(n) > ca + dn holds with the constants

9. Results and Findings

L.

IL.

III.

Iv.

10.

The numerical values of the OC and ASN functions for the parameters 6 and v are derived
in Table 1 and the curves are represented in Figures 1 and 2. The Table and Curves gives the
satisfactory results.

From Table 2, the values of OC and ASN curves are plotted in Figure 3 for various values
of ‘Q’. The OC curve shifts to the right(left) and ASN curve shifts to the right upward (left
downward) for Q < 1(Q > 1). From both the curves, it is evident that the SPRT is highly
sensitive for any change in ‘v’.

From Table 3, the values of OC and ASN curves are plotted in Figure 4 for various values
of ‘¢’. The OC curve shifts to the right(left) and ASN curve shifts to the right upward (left
downward) for ¢ < 1(¢ > 1). From both the curves, it is evident that the SPRT is highly
sensitive for any change in ‘6.

From Table 4, the values of OC and ASN curves are plotted in Figure 5 for various values
of ‘¢p’. The OC curve shifts to the right (left) and ASN curve shifts to the right upward (left
downward) for ) < 1(1) > 1). From both the curves, it is evident that the SPRT is highly
sensitive for any change in ‘1),

Figure 6, shows the acceptance and rejection regions for Hg under the case when
Hy:0y=13vs Hy : 1 = 15 fora = 8 = 0.05 and v = 2. The values of constants
c1 = —287.0828, co = 287.0828 and d = —27.90466, respectively. Thus, if

Y(N) < —27.90466 N + 287.0828, we accept Hy and if

Y (N) > —27.90466 N — 287.0828, we accept H;. At the intermediate stages, we continue
sampling.

Tables and Figures

Table 1 OC and ASN Functions under & = § = 0.05

Hy:00=13,H;, :01 =15 Ho:v9=13,Hy :v1 =15

0 L(0) E(N) 0 L(0) E(N) v L(v) E(N) v L(v) E(N)
120 09986 146.6379 14.0 0.4649 421.7277 12.0 09978  9.2084 14.0 04909 29.2767
122 09969 162.8450 14.2 0.3268 401.3977 122 09958 10.2831 142 0.3489  28.5099
124 09936 182.6031 144 0.2148 365.6746 124 09921 11.5862 14.4 02299 26.4396
12.6  0.9903 206.8220 14.6  0.1344  324.0585 126 0.9852 13.1771 14.6  0.1429  23.7140
12.8 09936 236.4311 14.8 0.0813 283.5593 12.8 09727 15.1207 14.8 0.0852  20.9075
13.0 09511 272.0115 150 0.0481 247.6194 13.0 09506 17.4707 15.0 0.0496 18.3477
132 09745 3129813 152 0.0280 217.1700 13.2 09128 20.2269 152 0.0284 16.1527
134 09101 3562505 154 0.0161 191.8948 13.4 0.8514 23.2560 154 0.0161 14.3239
13.6  0.8427 3949805 15.6 0.0091 171.0361 13.6 0.7591 26.1920 15.6 0.0091 12.8154

13.8

0.7423  419.4413 15.8 0.0051 153.7820 13.8 0.6350 28.4159 158 0.0051 11.5706
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Table 2 OC and ASN Functions Hy : 0g = 13, H, : 61 = 15,aa = 3 =0.05

Q =096 Q=008 Q=1 Q=102 Q=104
9 L) E(NN) L(®O) EN) L) EN) L) EN) L®O)  E(N)

120 09997  117.9642 0.9994  130.7879 0.9986  146.6379  0.9969  166.6099  0.993 192.2676
122 0.9994 1279919 0.9987 143.4212 0.9970 162.8450 0.9933  187.7760 0.9851  220.2996
124 09987 139.8035 0.9972  158.5618 0.9937  182.6031 0.9860  213.933  0.9692  255.0499
126 0.9974 153.8510 0.9942 176.8701 0.9871 206.8220 0.9717  246.1303  0.9389  297.0357
128 0.9948 170.6990 0.9884  199.1305 0.9745 236.4311 0.9448 284.9204 0.8844  344.6670
13.0 09898 191.0183 0.9775 226.1628 0.9512  272.0115 0.8970 329.26 0.7952  392.0871
132 09806 2155267 0.9577 2585597 0.9101 3129813 0.8188 374.7806 0.6673  428.1692
134 09640 2448080 0.9231  296.1020 0.8427  356.2505 0.7043  412.5785 0.5125  440.5583
13.6  0.9354 2789059 0.8662 336.7466 0.7424 3949805 0.5604 431.4178 0.3583  424.5372
13.8 0.8884  316.5908 0.7801  375.4905 0.6113 419.4413  0.4086 4245431 0.2306  387.0856
140 0.8162 3544084 0.6636 404.3614 0.4650 421.7277 0.2745 395.0849  0.1395 340.6018
142 0.7155 386.2119 0.5263 4152478 0.3269 401.3977  0.1729 353212  0.0811  294.8779
144 05904 4045178 0.3874 404.8214 0.2149 365.6746  0.1042  308.9473  0.0460  254.6703
146 04552 404.1337 0.2665 3769041 0.1345 324.0585 0.0609 268.2821  0.0256  221.1477
14.8 0.3283 3855071  0.1738  339.5334  0.0814  283.5593  0.0350  233.4569  0.0141  193.7957
150 0.2238  354.2942  0.1090 300.2335 0.0482 247.6194 0.0198 204.5853 0.0076  171.5783
152 0.1460  317.7116  0.0667  263.6472  0.0281  217.1700  0.0111  180.9222  0.0041  153.4506
154 0.0925 2813539 0.0401 231.7132 0.0162 191.8948 0.0061 161.5276 0.0021  138.5275
15,6  0.0573 2482856  0.0238  204.7226  0.0092  171.0361  0.0033  145.5348  0.0011  126.1096

Table 3 OC and ASN Functions Hy : vy = 13, Hy : v = 15, = 8 = 0.05

¢ =0.96 ¢ =0.98 p=1 ¢ =1.02 ¢ =1.04
v L(v) E(N) L(v) E(N) L(v) E(N) L(v) E(N) L(v) E(N)
12209994  8.0434  0.9983 9.0470  0.9958 10.2831 0.9903 11.8171 09787  13.7175
124 0.9987 8.8527  0.9967 10.0687 0.9921 11.5862 0.9820 13.4827 0.9611 15.8179
126  0.9975 9.8159 09938 11.3033 09852 13.1771 09669 15.5140 09305 18.3199
12.8 09952 109748 09882 12.8073 0.9727 15.1207 0.9405 17.9528 0.8796  21.1584
13.0 09910 123819 09782 14.6459 0.9506 17.4707 0.8960 20.7670  0.8003  24.0814
132 09833 14.1009 09604 16.8816 09128 20.2269 0.8251 23.7618 0.6884  26.5821
134 09693 16.1989 0.9294 19.5421 0.8514 23.2560 0.7221 26.4916  0.5501  28.0034
13.6 09448 18.7256  0.8779  22.5548 0.7591 26.1920 0.5896  28.3015 0.4044  27.8953
13.8 09033 21.6623 0.7979 25.6463 0.6350 28.4159 0.4435 28.6312 0.2743  26.3483
140 0.8366 24.8326 0.6852  28.2725 0.4909 29.2767 03072 27.4095 0.1741  23.9095
142 07382 27.8024 0.5465 29.7362 0.3489  28.5099 0.1982 25.1018 0.1054  21.1947
144 0.6091 29.8941 0.4008 29.5709 0.2299 26.4396 0.1213  22.3555 0.0618 18.6177
146 04635 304711 02713 27.8882  0.1429 23.7140 0.0717 19.6606  0.0356  16.3631
14.8 0.3245 293709 0.1720 252770 0.0852  20.9075 0.0414 17.2626  0.0203  14.4676
15.0 02112 27.0272 0.1040 22.3887 0.0496  18.3477 0.0237 15.2307 0.0115  12.9001
152 0.1300 24.1288 0.0610 19.6563 0.0284 16.1527 0.0134  13.5457 0.0065 11.6077
154 00771  21.2315 0.0351 17.2702 0.0161 14.3239 0.0076  12.1568  0.0036  10.5380
156 0.0447 18.6290 0.0200 15.2662 0.0091 12.8154 0.0043 11.0089  0.0020  9.6455
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Table 4 OC and ASN Functions Hy : 0p = 13, H; :

01 =15a=/3=0.05

¢ =0.98 p=1 $=1.02
0 L) EN) LO) EN) L®)  EN)

122 09994 1282688 09970 162.8450 09849 221.0448
124 09987 140.1371 09937 182.6031 09687  255.9894
126 09974 1542568 09871 206.8220 09379  298.1778
128 09947 171.1966 09745 2364311 0.8827  345.9449
130 09897 1916313 09512 2720115 07926 3932965
132 09803 2162803 09101 3129813 0.6637 428.9734
134 09635 2457220 0.8427 3562505 0.5084  440.6648
136 09344 2473173 07424 171.0361 03545  125.7705
138 0.8868 279.9782 0.6113 3949805 02276 4239333
140 08138 2802862 04650 191.8948 0.1375  138.1281
142 07122 3166156 03269 217.1700 0.0798 1529754
144 05864 3177702 02149 4194413 00452 3860318
146 04511 3533112 0.1345 247.6194 0.0251  171.0077
148 03247 3555624 00814 4217277 00138 3394071
150 02208 384.8421 0.0482 2835593 0.0075 193.1064
152 0.1439 387.1238  0.0281 4013977 0.0040 293.7435
154 00910 4039848 0.0162 324.0585 0.0021 220.3159
156 00564 4049570 0.0092 365.6746 0.0010 253.6803

13

T
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Values of 8
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1
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