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Abstract
In the present paper, we consider the positive exponential family of distributions, which has three

parameters θ, ν and ρ. On assigning different values to these parameters, it covers many distributions.
For the testing of hypotheses regarding the parameters θ and ν, a sequential testing procedures and
robustness of the Operating characteristics and Average sample number functions are derived. The
robustness of the Sequential probability ratio test for the parameter θ, when the coefficient of variation
is known are also obtained. The acceptance and rejection regions for the null hypotheses H0 against
the alternative hypotheses H1 are also studied and presented through a graph. The numerical values
of operating characteristics and Average sample number function are presented in the tables and
graphs.

Keywords: PEFD, sequential probability ratio test, operating characteristics, average sample num-
ber, acceptance and rejection regions, null hypotheses, alternative hypotheses, type I error and type II
error.

1. Introduction
The sequential probability ratio test (SPRT) for two simple hypotheses is first developed by

Wald (1947). He derived the theoretical expressions for the operating characteristics (OC) and av-
erage sample number (ASN) functions for the performance of SPRTS. The SPRT has been applied
by various authors for testing the statistical hypotheses, for references, one may refer to Oakland
(1950), Epstein and Sobel (1955), Johnson (1966), Phatarford (1971), Bain and Engelhardt (1982),
Chaturvedi et al.(2000), Sevil and Demirhan (2008), etc.

The robustness of the SPRT in respect of OC and ASN functions has been studied by several
researchers. For references, Harter and Moore (1976) gives the robustness of the exponential SPRT,
when the underlying distribution is a Weibull distribution. Montagne and Singpurwalla (1985) in-
vestigated the robustness of the sequential life-testing procedure with respect to the risks and the
expected sample sizes for the exponential distribution when the life length is not exponential. Hub-
bard and Allen (1991) applied SPRT on the mean of the negative binomial distribution when the
dispersion parameter is known and the robustness of the test to the misspecification of dispersion
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parameter is studied. Chaturvedi et al. (1998) considered a family of life-testing models and studied
the robustness of the SPRTS for various parameters involved in the model and also generalised the
results of Montagne and Singpurwalla (1985).

For testing a simple hypothesis (against a simple alternative) for the mean of an inverse Gaussian
distribution, Joshi and Shah (1990) developed SPRT, assuming the coefficient of variation (CV) to
be known. They obtained theoretical expressions for the OC and the ASN functions. Kumar et al.
(2018) derived the robustness of the OC and the ASN functions for the rate and the scale parameters
of the Erlang distribution. They also derived the robustness with respect to OC and ASN functions
with known coefficient of variation for the scale parameter.

2. Positive Exponential Family of Distribution
Liang (2008) proposed a positive exponential family of distribution (PEFD). Let us consider a

random variable (r.v.) X follows the PEFD presented by the probability density function (pdf)

f(x; θ, ν, ρ) =
ρxρν−1e(

−xρ

θ )

Γ(ν)θν
; x > 0, θ, ν, ρ > 0 (1)

where, θ is assumed to be unknown and ρ, ν are known constants. When ρ = ν = 1; we get one-
parameter exponential distribution, for ρ = 1; we get gamma distribution, for ν=1; we get Weibull
distribution, for ν > 0, ρ = 1; we get Erlang distribution, for ν > 1/2, ρ = 2; we get half - normal
distribution, for ν > m/2, ρ = 2; we get chi-distribution, for ν = 1, ρ = 2; we get Rayleigh
distribution and for ν = p+ 1, ρ = 2; we get Generalized Rayleigh distribution.

In the model (1), for testing the simple null hypothesis against the simple alternative, the SPRTS
and the robustness of the SPRTS in respect of OC and ASN functions are developed in the Section 3,
4, 5 and 6. In Section 7, the robustness of the SPRT for a misspecified coefficient of variation is also
studied. In Section 8, the acceptance and rejection regions forH0 vsH1 for θ are derived and plotted
in Figure 8.1. Finally, in Sections 9 and 10, the results and findings are presented through tables and
graphs, respectively.

3. SPRT for Testing the Hypothesis Regarding ‘θ’
For a given sequence of observations X1, X2, X3, . . . from (1), the problem of testing the

simple null hypothesis H0 : θ = θ0 against the simple alternative hypothesis H1 : θ = θ1
(θ1 > θ0) is considered. The SPRT for testing is defined as follows

Zi = ln

(
θ0
θ1

)ν

−
[
xρi

(
1

θ1
− 1

θ0
.

)]
(2)

Wald (1947), suggested two constants A and B depending on α and β such that 0 < B <
1 < A, where α and β are Type I and Type II errors, respectively. The approximate values of A and
B are given by

A ≈
1− β

α
and B ≈

β

1− α
.

The OC function L(θ) is given by

L(θ) =
Ah − 1

Ah −Bh

where ‘h’ is the non-zero solution of

E[eZi ]h = 1.
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From (1) and (2), we have

E
[
eZi

]h
=

(
θ0
θ1

)hν[
1 + hθν

(
1
θ1

− 1
θ0

)] . (3)

On taking logarithm and using the expression ln(1 + x), −1 < x < 1 in (3). After retaining the
terms up to third degree in ‘h’ and on simplifying, we obtain the following quadratic equation in ‘h’-

h2

3
θ3

(
1

θ1
− 1

θ0

)3

− h

2
θ2

(
1

θ1
− 1

θ0

)2

+ θ

(
1

θ1
− 1

θ0

)
− ln

(
θ0
θ1

)
= 0. (4)

On solving (4), we get the numerical values of OC function. The ASN function is approximately
given by

E(N |θ) = L(θ) lnB + [1− L(θ)] lnA

E(Z)
(5)

provided that E(Z) ̸= 0, where

E(Z) = ν

[
ln

(
θ0
θ1

)
− θ

(
1

θ1
− 1

θ0

)]
.

From Equation(5), the ASN function under H0 and H1 is given by

E0(N) =
(1− α) lnB + α lnA

ν
[
ln
(
θ0
θ1

)
− θ

(
1
θ1

− 1
θ0

)]
and

E1(N) =
β lnB + (1− β) lnA

ν
[
ln
(
θ0
θ1

)
− θ

(
1
θ1

− 1
θ0

)] .
4. SPRT for Testing the Hypothesis Regarding ‘ν’

Now, we derive the OC and ASN function for the parameter ‘ν’ under the simple null hypothesis
H0 : ν = ν0 against the simple alternative hypothesis H1 : ν = ν1(ν1 > ν0). The value of Zi is

Zi =
Γ(ν0)

Γ(ν1)
θν0−ν1x

ρ(ν1−ν0)
i . (6)

Using (1) and (6) for the OC function, we have(
Γ(ν0)

Γ(ν1)

)h 1

Γ(ν)
Γ[h(ν1 − ν0) + ν] = 1. (7)

Again, on taking the logarithm of both sides of (7), with ln(1 + x); −1 < x < 1 and using
the approximation

ln Γ(x) = ln
√
2π − x+

(
x− 1

2

)
lnx (8)
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we get,

h2

6

(
ν1 − ν0
ν

)3

(ν + 1)− h

4

(
ν1 − ν0
ν

)2

(2ν + 1)−
(
ν0 −

1

2

)
ln ν0 +

(
ν1 −

1

2

)
ln ν1

−
(
1 + ln ν − 1

2ν

)
(ν1 − ν0) = 0 (9)

which is a quadratic equation in ‘h’. The numerical values of OC function is now obtained from
Equation (9). We get the values of ASN function by replacing the denominator of (5) by

E(Zi|ν) = lnΓ(ν0)− ln Γ(ν1) + (ν1 − ν0) lnλ+ (ν1 − ν0)E(lnxi).

Using the result of Gradshteyn and Ryzhik(1965, p.576, 4.352(1)) that

ψ(x) = lnx− 1

2x
(10)

E(Zi|ν) =
(
ν0 −

1

2

)
ln ν0 −

(
ν1 −

1

2

)
ln ν1 +

(
1 + ln ν − 1

2ν

)
(ν1 − ν0).

5. Robustness of the SPRT for ‘θ’ when ‘ν’ has Undergone a Change.
Let us consider that the parameter ‘ν’ has undergone a change to ν∗ and then probability distri-

bution (1) becomes f(xi; θ, ν∗, ρ). For the robustness of SPRT developed in Section 3 with respect
to OC function, the values of ‘h’ are obtained by Equations (1) and (2) as(

θ0
θ1

)hν [
1 + hθ

(
1

θ1
− 1

θ0

)]−ν∗

= 1. (11)

Taking logarithm on both sides of Equation (11) and using the expansion of ln(1 + x), −1 <
x < 1, we have

Qh2

3
θ3

(
1

θ1
− 1

θ0

)3

− Qh

2
θ2

(
1

θ1
− 1

θ0

)2

+Qθ

(
1

θ1
− 1

θ0

)
− ln

(
θ0
θ1

)
= 0 (12)

which is a quadratic equation in ‘h’. On solving (12), we get the real roots of ‘h’. The robustness of
the SPRT with respect to ASN is studied by replacing the denominator of (5) by

E(Z|θ) = ln

(
θ0
θ1

)
−Qθ

(
1

θ1
− 1

θ0

)
where Q = ν∗

ν .

6. Robustness of the SPRT for ‘ν’ when ‘θ’ has Undergone a Change.
Let us suppose that the parameter ‘θ’ has undergone a change to θ∗ and then probability distri-

bution (1) becomes f(xi; θ∗, ν, ρ). For OC function, value of ‘h’ are obtained by the equation(
Γ(ν0)

Γ(ν1)

)h 1

Γ(ν)
θh(ν1−ν0) ρ

(θ∗)ν

∫ ∞

0
xh(ν1−ν0)+ν−1e(−

xρ

θ∗ )dx = 1

(
Γ(ν0)

Γ(ν1)

)h 1

Γ(ν)
ϕh(ν1−ν0)Γ[h(ν1 − ν0) + ν] = 1 (13)
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where ϕ = θ∗

θ .
Taking logarithm on both sides of Equation (13) and using the approximation (8), we get the

roots of ‘h’ from the following equation

h2

6

(
ν1 − ν0
ν

)3

(ν + 1)− h

4

(
ν1 − ν0
ν

)2

(2ν + 1)−
(
ν0 −

1

2

)
ln ν0 +

(
ν1 −

1

2

)
ln ν1

− (ν1 − ν0) lnϕ−
(
1 + ln ν − 1

2ν

)
(ν1 − ν0) = 0.

The robustness of the SPRT with respect to ASN function is studied by replacing the denominator of
(5) by

E(Zi|ν) = lnΓ(ν0)− ln Γ(ν1) + (ν1 − ν0) lnλ+ (ν1 − ν0)E(lnxi).

Using the result (10), we get

E(Zi|ν) =
(
ν0 −

1

2

)
ln ν0 +

(
ν1 −

1

2

)
ln ν1 +

(
1 + lnϕ+ ln ν − 1

2ν

)
(ν1 − ν0).

7. Robustness of the SPRT for ‘θ’ with Known Coefficient of Variation(CV)

For PEFD, the mean and variance are (θν) and
(
θ2ν

)
for ρ = 1, then coefficient of variation

(CV ) = 1√
ν

. Let us suppose that coefficient of variation changes from c to c∗, so that, the pdf (1)
shifts to f(xi; θ, c∗, ρ). Then, from (2) and (1), the OC and ASN functions are

(
θ0
θ1

) h

c2
[
1 + hθ

(
1

θ1
− 1

θ0

)](−1

c∗ )
2

= 1. (14)

Taking logarithm on both sides of Equation (14) and using the expansion of ln(1+x), −1 < x < 1
and retaining the terms upto third degree in ‘h’, we get the following quadratic equation

ψh2

3
θ3

(
1

θ1
− 1

θ0

)3

− ψh

2
θ2

(
1

θ1
− 1

θ0

)2

+ ψθ

(
1

θ1
− 1

θ0

)
− ln

(
θ0
θ1

)
= 0. (15)

On solving (15), we get the real roots of ‘h’. The robustness of the SPRT with respect to ASN
function is studied by replacing the denominator of (10) by

E(Z|λ) = ln

(
θ0
θ1

)
− ψθ

(
1

θ1
− 1

θ0

)
where ψ =

(
c
c∗

)2
.

8. Acceptance and Rejection Region of PEFD
We wish to test the simple null hypothesis H0 : θ = θ0 against the simple alternative

H1 : θ = θ1(θ1 > θ0) having pre-assigned 0 < α, β < 1. Zi is defined as

Zi = ν ln

(
θ0
θ1

)
+ xi

(
1

θ0
− 1

θ1

)
.
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Let us define, Y (n) =
n∑

i=1
Xi and N = first integer n(≥ 1), for which the inequality

Y (n) ≤ c1 + dn or Y (n) ≥ c2 + dn holds with the constants

c1 =
lnB(

1
θ0

− 1
θ1

) , c2 = lnA(
1
θ0

− 1
θ1

) and d =
ν ln

(
θ0
θ1

)
(

1
θ0

− 1
θ1

) .
9. Results and Findings

I. The numerical values of the OC and ASN functions for the parameters θ and ν are derived
in Table 1 and the curves are represented in Figures 1 and 2. The Table and Curves gives the
satisfactory results.

II. From Table 2, the values of OC and ASN curves are plotted in Figure 3 for various values
of ‘Q’. The OC curve shifts to the right(left) and ASN curve shifts to the right upward (left
downward) for Q < 1(Q > 1). From both the curves, it is evident that the SPRT is highly
sensitive for any change in ‘ν’.

III. From Table 3, the values of OC and ASN curves are plotted in Figure 4 for various values
of ‘ϕ’. The OC curve shifts to the right(left) and ASN curve shifts to the right upward (left
downward) for ϕ < 1(ϕ > 1). From both the curves, it is evident that the SPRT is highly
sensitive for any change in ‘θ’.

IV. From Table 4, the values of OC and ASN curves are plotted in Figure 5 for various values
of ‘ψ’. The OC curve shifts to the right (left) and ASN curve shifts to the right upward (left
downward) for ψ < 1(ψ > 1). From both the curves, it is evident that the SPRT is highly
sensitive for any change in ‘ψ’.

V. Figure 6, shows the acceptance and rejection regions for H0 under the case when
H0 : θ0 = 13 vs H1 : θ1 = 15 for α = β = 0.05 and ν = 2. The values of constants
c1 = −287.0828, c2 = 287.0828 and d = −27.90466, respectively. Thus, if
Y (N) ≤ −27.90466N + 287.0828, we accept H0 and if
Y (N) ≥ −27.90466N −287.0828, we acceptH1. At the intermediate stages, we continue
sampling.

10. Tables and Figures

Table 1 OC and ASN Functions under α = β = 0.05

H0 : θ0 = 13, H1 : θ1 = 15 H0 : ν0 = 13, H1 : ν1 = 15
θ L(θ) E(N) θ L(θ) E(N) ν L(ν) E(N) ν L(ν) E(N)

12.0 0.9986 146.6379 14.0 0.4649 421.7277 12.0 0.9978 9.2084 14.0 0.4909 29.2767
12.2 0.9969 162.8450 14.2 0.3268 401.3977 12.2 0.9958 10.2831 14.2 0.3489 28.5099
12.4 0.9936 182.6031 14.4 0.2148 365.6746 12.4 0.9921 11.5862 14.4 0.2299 26.4396
12.6 0.9903 206.8220 14.6 0.1344 324.0585 12.6 0.9852 13.1771 14.6 0.1429 23.7140
12.8 0.9936 236.4311 14.8 0.0813 283.5593 12.8 0.9727 15.1207 14.8 0.0852 20.9075
13.0 0.9511 272.0115 15.0 0.0481 247.6194 13.0 0.9506 17.4707 15.0 0.0496 18.3477
13.2 0.9745 312.9813 15.2 0.0280 217.1700 13.2 0.9128 20.2269 15.2 0.0284 16.1527
13.4 0.9101 356.2505 15.4 0.0161 191.8948 13.4 0.8514 23.2560 15.4 0.0161 14.3239
13.6 0.8427 394.9805 15.6 0.0091 171.0361 13.6 0.7591 26.1920 15.6 0.0091 12.8154
13.8 0.7423 419.4413 15.8 0.0051 153.7820 13.8 0.6350 28.4159 15.8 0.0051 11.5706
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Table 2 OC and ASN Functions H0 : θ0 = 13,H1 : θ1 = 15, α = β = 0.05

Q = 0.96 Q = 0.98 Q = 1 Q = 1.02 Q = 1.04
θ L(θ) E(N) L(θ) E(N) L(θ) E(N) L(θ) E(N) L(θ) E(N)

12.0 0.9997 117.9642 0.9994 130.7879 0.9986 146.6379 0.9969 166.6099 0.993 192.2676
12.2 0.9994 127.9919 0.9987 143.4212 0.9970 162.8450 0.9933 187.7760 0.9851 220.2996
12.4 0.9987 139.8035 0.9972 158.5618 0.9937 182.6031 0.9860 213.933 0.9692 255.0499
12.6 0.9974 153.8510 0.9942 176.8701 0.9871 206.8220 0.9717 246.1303 0.9389 297.0357
12.8 0.9948 170.6990 0.9884 199.1305 0.9745 236.4311 0.9448 284.9204 0.8844 344.6670
13.0 0.9898 191.0183 0.9775 226.1628 0.9512 272.0115 0.8970 329.26 0.7952 392.0871
13.2 0.9806 215.5267 0.9577 258.5597 0.9101 312.9813 0.8188 374.7806 0.6673 428.1692
13.4 0.9640 244.8080 0.9231 296.1020 0.8427 356.2505 0.7043 412.5785 0.5125 440.5583
13.6 0.9354 278.9059 0.8662 336.7466 0.7424 394.9805 0.5604 431.4178 0.3583 424.5372
13.8 0.8884 316.5908 0.7801 375.4905 0.6113 419.4413 0.4086 424.5431 0.2306 387.0856
14.0 0.8162 354.4084 0.6636 404.3614 0.4650 421.7277 0.2745 395.0849 0.1395 340.6018
14.2 0.7155 386.2119 0.5263 415.2478 0.3269 401.3977 0.1729 353.212 0.0811 294.8779
14.4 0.5904 404.5178 0.3874 404.8214 0.2149 365.6746 0.1042 308.9473 0.0460 254.6703
14.6 0.4552 404.1337 0.2665 376.9041 0.1345 324.0585 0.0609 268.2821 0.0256 221.1477
14.8 0.3283 385.5071 0.1738 339.5334 0.0814 283.5593 0.0350 233.4569 0.0141 193.7957
15.0 0.2238 354.2942 0.1090 300.2335 0.0482 247.6194 0.0198 204.5853 0.0076 171.5783
15.2 0.1460 317.7116 0.0667 263.6472 0.0281 217.1700 0.0111 180.9222 0.0041 153.4506
15.4 0.0925 281.3539 0.0401 231.7132 0.0162 191.8948 0.0061 161.5276 0.0021 138.5275
15.6 0.0573 248.2856 0.0238 204.7226 0.0092 171.0361 0.0033 145.5348 0.0011 126.1096

Table 3 OC and ASN Functions H0 : ν0 = 13,H1 : ν1 = 15, α = β = 0.05

ϕ = 0.96 ϕ = 0.98 ϕ = 1 ϕ = 1.02 ϕ = 1.04
ν L(ν) E(N) L(ν) E(N) L(ν) E(N) L(ν) E(N) L(ν) E(N)

12.2 0.9994 8.0434 0.9983 9.0470 0.9958 10.2831 0.9903 11.8171 0.9787 13.7175
12.4 0.9987 8.8527 0.9967 10.0687 0.9921 11.5862 0.9820 13.4827 0.9611 15.8179
12.6 0.9975 9.8159 0.9938 11.3033 0.9852 13.1771 0.9669 15.5140 0.9305 18.3199
12.8 0.9952 10.9748 0.9882 12.8073 0.9727 15.1207 0.9405 17.9528 0.8796 21.1584
13.0 0.9910 12.3819 0.9782 14.6459 0.9506 17.4707 0.8960 20.7670 0.8003 24.0814
13.2 0.9833 14.1009 0.9604 16.8816 0.9128 20.2269 0.8251 23.7618 0.6884 26.5821
13.4 0.9693 16.1989 0.9294 19.5421 0.8514 23.2560 0.7221 26.4916 0.5501 28.0034
13.6 0.9448 18.7256 0.8779 22.5548 0.7591 26.1920 0.5896 28.3015 0.4044 27.8953
13.8 0.9033 21.6623 0.7979 25.6463 0.6350 28.4159 0.4435 28.6312 0.2743 26.3483
14.0 0.8366 24.8326 0.6852 28.2725 0.4909 29.2767 0.3072 27.4095 0.1741 23.9095
14.2 0.7382 27.8024 0.5465 29.7362 0.3489 28.5099 0.1982 25.1018 0.1054 21.1947
14.4 0.6091 29.8941 0.4008 29.5709 0.2299 26.4396 0.1213 22.3555 0.0618 18.6177
14.6 0.4635 30.4711 0.2713 27.8882 0.1429 23.7140 0.0717 19.6606 0.0356 16.3631
14.8 0.3245 29.3709 0.1720 25.2770 0.0852 20.9075 0.0414 17.2626 0.0203 14.4676
15.0 0.2112 27.0272 0.1040 22.3887 0.0496 18.3477 0.0237 15.2307 0.0115 12.9001
15.2 0.1300 24.1288 0.0610 19.6563 0.0284 16.1527 0.0134 13.5457 0.0065 11.6077
15.4 0.0771 21.2315 0.0351 17.2702 0.0161 14.3239 0.0076 12.1568 0.0036 10.5380
15.6 0.0447 18.6290 0.0200 15.2662 0.0091 12.8154 0.0043 11.0089 0.0020 9.6455
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Table 4 OC and ASN Functions H0 : θ0 = 13,H1 : θ1 = 15, α = β = 0.05

ϕ = 0.98 ϕ = 1 ϕ = 1.02
θ L(θ) E(N) L(θ) E(N) L(θ) E(N)

12.2 0.9994 128.2688 0.9970 162.8450 0.9849 221.0448
12.4 0.9987 140.1371 0.9937 182.6031 0.9687 255.9894
12.6 0.9974 154.2568 0.9871 206.8220 0.9379 298.1778
12.8 0.9947 171.1966 0.9745 236.4311 0.8827 345.9449
13.0 0.9897 191.6313 0.9512 272.0115 0.7926 393.2965
13.2 0.9803 216.2803 0.9101 312.9813 0.6637 428.9734
13.4 0.9635 245.7220 0.8427 356.2505 0.5084 440.6648
13.6 0.9344 247.3173 0.7424 171.0361 0.3545 125.7705
13.8 0.8868 279.9782 0.6113 394.9805 0.2276 423.9333
14.0 0.8138 280.2862 0.4650 191.8948 0.1375 138.1281
14.2 0.7122 316.6156 0.3269 217.1700 0.0798 152.9754
14.4 0.5864 317.7702 0.2149 419.4413 0.0452 386.0318
14.6 0.4511 353.3112 0.1345 247.6194 0.0251 171.0077
14.8 0.3247 355.5624 0.0814 421.7277 0.0138 339.4071
15.0 0.2208 384.8421 0.0482 283.5593 0.0075 193.1064
15.2 0.1439 387.1238 0.0281 401.3977 0.0040 293.7435
15.4 0.0910 403.9848 0.0162 324.0585 0.0021 220.3159
15.6 0.0564 404.9570 0.0092 365.6746 0.0010 253.6803

Figure 1 Value of θ

Figure 2 Value of ν
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Figure 3 Value of θ

Figure 4 Value of ν

Figure 5 Value of θ
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