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Abstract

This study analyzed the prevalence of over weight and obesity of Pakistani female in Bayesian
paradigm. For the modeling of this data set Rayleigh-Rayleigh distribution (RRD) is used. The
posterior distributions are evaluated using uniform, Jeffreys and exponential priors. These posterior
distributions are not attained in closed form. Two approximation techniques, Lindley and Tierney-
Kadane(T-K) are used to obtain the Bayes estimators under three different loss functions (squared
error, Weighted and Precautionary loss functions). Monte Carlo simulation study and real life data
about the prevalence of over weight and obesity of the Pakistani female is used to show the superi-
ority of Bayes estimators over the maximum likelihood (ML) estimators. It is concluded that Bayes
estimators under informative priors perform better than non informative priors due to minimum asso-
ciated risks. It is also found that estimators obtained through Bayesian technique are better than most
common ML method.

Keywords: Bayesian estimation, Lindley approximation, overweight, Pakistani female, Tierney-
Kadane method

1. Introduction

Obesity is the excessive fat of a person that presents risk to health. Body mass index (BMI), mid
upper arm circumference (MUAC), waist and hip circumference are commonly used screening tools
of obesity and over weight. Chronic diseases like diabetes, cardiovascular, hypertensions and cancer
are main reasons of over weight and obesity.

Friedrich (2002) stated that in developing countries, the epidemic of obesity is very rapid. In-
crease in urbanization, change in life style, economic growth, excessive food intake and lack of
physical activities are major reason of this epidemic. Jafar et al. (2006) studied the prevalence of
overweight and obesity in Pakistan and BMI cutoff values associated with hypertension and diabetes
mellitus. Hajian-Tilaki and Heidari (2007) conducted cross sectional study to determine the preva-
lence rate of obesity and its associated factors in Iran. Hou et al. (2008) showed the prevalence of
excessive weight in Shanghai metropolis population and its risk factors. Befort et al. (2012) analyzed
the obesity prevalence from adults of urban and rural areas in the United States and its association
with demographic, eating habits and physical activities are studied. Over the past three decades, a
dramatic increase in excessive weight among Canadian is recorded. Twells et al. (2014) presented
data about past and current excessive weight in Canada. It is predicted that obesity will continuously
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increase all over the country. Asif et al. (2020) examined current prevalence of overweight and obe-
sity in Pakistani adults and sociodemographic factors associated with body weight are marital status,
gender and residential areas. For this purpose, secondary data from 10,063 Pakistani adult is taken
through population-based household survey. About women, it is concluded that 6.3% were obese and
23.9% were overweight.

Analysis and modeling of real life phenomena is an important aspect of statistics. Due to com-
plexity, diversity and variation in real world, large number of statistical distributions and their gen-
eralizations are derived and studied. Parameters are the most important feature of a distribution,
described the specific characteristic of the phenomena. That is why statistician are in effort of esti-
mation of these parameters.

Rayleigh distribution was proposed by Lord Rayleigh. It is used to model the wave height of
ocean, wind speed, random complex numbers which are composed of real and imaginary part and
independently and identically normally distributed with zero mean and equal variances. The absolute
value of the complex number follows Rayleigh distribution.

Kundu and Raqgab (2005) estimated the parameters of generalized Rayleigh distribution using
methods of maximum likelihood, modified moment, percentile, least square, weighted least square
and modified L-moments. These estimates are compared through simulation study. Mousa and Al-
Sagheer (2005) considered Bayesian prediction bounds from informative progressively type-II right
censored sample from Rayleigh distribution. Merovci (2014) proposed the transmuted generalized
Rayleigh distribution and discussed some of its properties like moments, order statistics, reliabil-
ity analysis. The real life data is used to study the usefulness of the distribution. Dey et al. (2016)
considered point and interval estimation of progressive Type-II censored two-parameter Rayleigh dis-
tribution. MLEs are estimated using profile log-likelihood function. Approximate Bayes estimators
are obtained through importance sampling technique.

Ateeq et al. (2019) derived Rayleigh-Rayleigh distribution (RRD) and studied some properties
of the distribution like moments, moment generating function, Shannon and Rényi entropies, order
statistics, L-moments. Parameters are estimated through method of maximum likelihood technique.
The Bayesian estimation of parameters of the distribution has not been addressed so far.

In this study, we proposed Bayesian estimation of the parameters of RRD using two approxi-
mation techniques, Lindley approximation by Lindley (1980) and Tirney-Kadane (T-K) method by
Tierney and Kadane (1986). Square error loss function (SELF), weighted loss function (WLF) and
precautionary loss function (PLF) are used to derive Bayes estimators and posterior risk functions.
Uniform, Jeffreys and exponential priors are utilized for derivation of the posterior distributions. A
real life data set about the prevalence of overweight and obesity of Pakistani female is taken from the (
https://data.worldbank.org/country/pakistan). The Bayes estimators of the parameters of distribution
are compared with MLEs. The purpose of study is to motivate practitioners toward Bayesian frame
work.

Rest of the paper is organized as follows. Section 2 provides estimation techniques of the param-
eters of RRD in classical and Bayesian paradigm. In Section 3, the posterior distributions are derived
under uniform, Jeffreys and exponential priors. In Section 4, the Bayes estimators under three sym-
metry and asymmetry loss functions are derived using Lindley and T-K approximation techniques.
The article is concluded in Section 5.

2. Estimation of Rayleigh-Rayleigh Distribution

Ateeq et al. (2019) derived the generalization of Rayleigh distribution named as Rayleigh-
Rayleigh distribution (RRD) by using Transformed-Transformed technique proposed by Alzaatreh
et al. (2013). By adding another scale parameter in the Rayleigh distribution, the generalized distri-
bution is more flexible for complexed real-life phenomena.

Let the random variable X follow to the RRD having probability density function (PDF) and



768 Thailand Statistician, 2022; 20(4): 766-778

cumulative density function (CDF) as

1'3 __at
g(x)zme spta? z,8,0 >0
G(z) = 1—6_8;‘“2, x, 3,0 > 0.

Both (3 and o are the scale parameters.
Let X1, Xo, ..., X, be arandom sample of size n from RRD. The likelihood and log likelihood
function of the distribution are:
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Equating score functions to zero, two normal equations are obtained.
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These normal equation cannot be solved simultaneously to obtain MLEs.

In this study, max Lik package in R language is utilized for MLEs through Newton Raphson
iterative process and Hessian matrix is also obtained. Information matrix is the negative expectation
of Hessian matrix.

2.1. Bayesian estimation

In Bayesian paradigm, probability distribution is assigned not only to observed data but also
to parameters which are considered random variables. Bayes rule is formal method to combine the
prior knowledge about parameter with the sample information contained in the likelihood to provide
posterior distributions, which gives full answer to any Bayesian problem.

2.2, Prior and posterior distributions

The distinctive feature of Bayesian approach is prior distribution, based on past studies or opin-
ion of subject area experts. Calculation of posterior distribution is the main goal of Bayesian statistics.
Bayesian approach makes use of expert’s prior knowledge about the parameters. When this prior in-
formation is not available, it is possible to make use of the non-informative priors. Uniform and
Jeffreys are two commonly used non-informative priors.

Laplace (1820) proposed the principal that uniform distribution can be used as prior when infor-
mation about parameters is not available. This prior is not invariant under re-parameterization.

In this study, the prior distributions for the parameters [ and o are uniform, Jeffreys and expo-
nential. Assuming the independence of prior,the joint uniform prior distribution for the parameters [3
and o is;

m(B,0) o 1. (3)

The joint posterior distribution of the parameters 3 and ¢ using equations (1) and (3) is;
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Table 1 Bayes Estimators and Posterior Risk under different Loss functions

Loss Function Bayes Estimators Posterior Risk
SELF E(0|x) E(0%|x) -[E(0]x)]?
WLF E(0~x)~? E(@|x) — [E(6~1]x)]?

PLF E(6?]x) 2[\/E(62]x) -E(0]x)]

Jeffreys (1946) proposed an invariant prior probability distribution, which capture all the infor-
mation about parameters from sample. For parameter 6, the Jeffreys prior is defined as;

m(0) < \/1(0)
where I(0) is Fisher information of parameter 6, defined as;
0 f(y: «9)}
002 1

Assuming the independence of priors, the joint prior distribution for the parameters of RRD is defined
as;

1(6) = —nE[

r(Bo)x 21 Bo>o0. 5)
Bo

By using Equations (5) and (1) the posterior distribution is given as;

(8, 0lx) = WHLl 3 exp(—w%ﬂzx?)
; fooo fooo WHL1 x? eXP(_SB}Iﬁzx?)dﬂdg

An informative prior leads to reduction of posterior risk of the Bayes estimators because the use
of prior information is equal to adding a number of observations to the given sample size. Sindhu et al.
(2013) used inverse levy and gamma prior for the Bayesian estimation of Kumaraswamy distribution
under failure censoring sampling scheme. The joint prior distribution for the parameters of RRD
using exponential distribution is:

B,0>0. (6)

71—(/85 U) X 6_6(11_0&25 B) 0,a1,02 > 0 (7)

where a1, az are hyper parameters By using (7) and (1) the posterior distribution under exponential
prior is:

(8, 0x) WH?:1x§eXP(—WbZ$?—a1ﬁ—a20) fo50
m(5,0|X) = -0 — o .
o~ Jo W [T =7 eXP(—sg%a Yoa} —a1f — axo)
(8)

Equations (4), (6) and (8) are not in closed form. So we cannot determine marginal posterior
distributions, Bayes estimators and posterior risk of 5 and o.

3. Bayes Estimators and Posterior Risk

Loss functions are the basic tool in decision theory, used to check goodness of an estimators.
Bayes estimators are the values obtained by minimizes the average of loss function.

In this study, Bayes estimators of the parameters of RRD are evaluated under SELF, WLF and
PLF. The Bayes estimators and posterior risk of parameter # under defined loss function is shown in
Table 1.

Bayes estimators and risk function are evaluated by taking posterior expectations of function of
parameters U (3, o).
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_ o [T UB,0)L(B, 05 2)m (B, 0)dBdo
oL &aas ©(B,0)dBds

It is tedious to solve due to ratio of two integrals. We used Lindley and T-K approximation
techniques for this purpose and estimators obtained are compared through minimum values of risk.

B,0>0. (9)

(57 ) Bolx[ (670—)]

3.1. Lindley’s approximation technique
In this section, three loss function are used for the derivation of Bayes estimators and posterior
risk of unknown parameters 3 and o under the exponential prior. Equation (9) can be written as

1 UB,0) )elBasz)+p(8:7) 4 Bd o
60|x[ (/87 )]_ fo fo 6l60$)+p'80d,3d0'
fo Jo U 0)e?P2)dBdo
Jo fo @Qﬂo)dﬁdg

where Q(3,0)=l(3, 0; x)+p(B,0) and p(5,0) = Inw (5, 0). Using Lindley approximation tech-
nique, for sufficient large sample size Equation (10) can be approximated as

(10)

i . 1
U(B, CT) %U(,B, O') + 5 Z Zuijaij + Z Ujpj + 5 [L300'11U1 + L12(20’12U1 + O'11U2)
K3 J J
+ Lio(09sU1 + 201503) +L03022U2}, ij=1,2 (11)

where /3 and & are MLEs of 3 and 0. The elements of variance covariance matrix o;; can be obtained
by taking the inverse of Fisher information matrix. Also

o) U0
1= 03 2= T,

U(B,0) U(B, o) U (B, o)
ull:TBZ’ UZQZT’ U12:U21:W
Ur = w1011 + ug012, Uz = u1091 + u2092
p1 = 30(856, o) = —;, p2 = ﬁp(aﬁ, o) = 1 (for exponential prior)
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The parameters of RRD are estimated using Equation (11) by taking different value of U (3, o) for
different loss functions as defined in Table 1.
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3.1.1 Under square error loss function (SELF)
Bayes estimator and posterior risk for the parameter 3 under SELF using U (8, 0) = f3, are;

~ R 1
BrLs =B + o11p1 + 021p2 + 5 [L?,oﬁfl + L21(3011012) + Li2(o11022 + 20%2) + Los(022021)

pPB(LS) = |:32 + o011 + 25(01101 + o21p2) + g [Lso(QCT%l) + La1(6011021) + L12(2011022 + 40%2)
A 1
+ L03(2012022)]] — {5 + o11p1 + 02102 + 5 {Lsotfi + L21(3011012) + Li2(011022 + 20%2)

+ L03(0'220'2]_)]:| 2.

3.1.2 Under weighted loss function (WLF)
Bayes estimator and posterior risk for the parameter 3 under WLF using U(3,0) = 71, are;

-2

~ - - B
B+ B=3011 — B2(011p1 + 021p2) — —5— L3001, + 3L21011012 + L12(022011 + 207,)

BLW = 9

-1
+ L03022021]]
PB(LW) ZBLS - BLW-

3.1.3 Under precautionary loss function (PLF)
Bayes estimator and posterior risk for the parameter 3 under PLF using U(3,0) = 32, are;

5 A B
B2+ 011 + 2B(011p1 + 021p2) + = [2L3007, + 6La1011021

BLP = 9

1/2
+ L12(2011022 + 4075) + 2L03012022]

psr) =2[Brp — Brs).

Similarly Bayes estimators and function of posterior risk for other parameter ¢ can be derive. For
different priors, values of p; and p» are used as:

p1=p2=0, for uniform prior
1 1

P1L=—"7,P2= —7; for Jeffreys prior (12)
B8 o

p1 = —ay, p2 = —as, for exponential prior

3.2. Tierney-Kadane’s approximation (T-K) technique

Tierney and Kadane (1986) proposed an approximate procedure for the evaluation of ratio of two
integrals. Although Lindley’s approximation is also the solution of this problem, but it involve third
derivative of log likelihood function, which is tedious to solve in some situations. Now the posterior
expectation given in Equation (9) can be written as;

ol 239 dBdo

U(B,o) = I [ e (Bo)dBdo

13)
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where

11(630—): [l(ﬁ,a,:c)er(ﬁ,a)]

=31~

l2(8,0) = —[InU(B,0) +1(B,052) + p(B,0)].

n

By solving Equation (13) using T-K approximation technique, we get;

1
~ det> "2 N A

U(Ba U) ~ |: det Z :| exp [nl2(6l2 ) Ulz) - nll(ﬂll y Ol )] (14)
where 3% and 3" are negative inverse Hessian matrix of l5(3, o) and [, (3, o) respectively . Also 3,

and &, are point of maxima of l2(8, o), similarly ﬁll and 6y, for I (B, 0).
Now the Bayes estimates of /3, o are derived under defined loss functions using T-K approxima-

tion.

3.2.1 Under square error loss function (SELF)
For Bayes estimator of 3 under SELF, U(83, 0)=/, then

Bris = [%q §€$P {lnﬁb +nly (B, 61,) — nly (Biy s 5’11)]

1>

1 . . . ~ 2
PB(TKS) :[%} exp [2571512 +nl1(Bry, 01,) — nll(ﬁzl,ﬁll)] - |:BTKS:| .

3.2.2 Under weighted loss function (WLF)
For Bayes estimator of 3 under WLF, U(8, 0)=8"", then

-1

221

PB(TKW) :BTKS - BTKW—

BTKW — [|:z”:| 2@3;‘p|:— ln/;’lz + nll(/é’lwﬁ'lz) — nll(le,?nl)H

3.2.3 Under precautionary loss function (PLF)
For Bayes estimator of 3 under PLF, U(8, 0)=32, then

1221

parip) =2[Brrp — Brics).

BTKP _\/|:|z:|:| 561’]9 |:21n3l2 + nll(@lzv&b) - nll(Bln&h)

Similarly, Bayes estimators of other parameters o and corresponding function of posterior risk
are derived. Taking different values of p; and po defined in Equation (12), Bayes estimators under
uniform, Jeffreys and exponential prior are derived.

4. Simulation Study

A Monte Carlo simulation study is carried out for the evaluation of MLEs and Bayes estimators.
These estimates are compared on the basis of values of corresponding risk functions. For this purpose
sample of different sizes n = 10, 30, 50, 70, 100, 120, 170, 200, 250, 300, 400 and 500 are generated

4
from RRD by using the random number generator X = <85402ln(1_1U)> , proposed by Ateeq
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et al. (2019). MLEs are estimated numerically using R-software maxzLik. Bayes estimators and
values of risk function of 5 and ¢ are evaluated through results derived above under Lindley and T-K
methods using SELE,WLF and PLF. Three priors uniform, Jeffreys and exponential are used. Values
of parameters are selected as 8 = 2.67, and 0 = 12.5 . Elicited values of hyper parameters for
exponential priors are a; = 2 and a2 = 5. This process is repeated 5000 times and R-program is
formulated for this purpose.

Table 2 MLEs, Bayes estimators and posterior risk using uniform prior for the parameter 3

Loss functions
n MLE SELF WLF PLF SELF WLF PLF
Lindley Method T-K Method
30 3.779533 3.779763  3.779531  3.779879 3.071579  3.071579 3.07171
0.000878  0.000878  0.0002324 0.000232 0.000804  0.000730  0.000262
50  3.779851 3.779669  3.779532  3.779737  3.07156 3.07156 3.071699
0.000516  0.000516  0.000136  0.000136  0.000855 1e-07 0.000278
70  3.779672 3.779629  3.779532  3.779678 3.071569  3.071569  3.071658
0.000366  0.000366  0.000097  0.000097 0.000543 0.0000410 0.000176
100  3.779650 3.779601  3.779533  3.779635 3.071465 3.071465 3.071639
0.000257  0.000257  0.000068  0.000068 0.001068  0.000210  0.000348
120 3.779592 3.779589  3.779533  3.779617  3.07168 3.07168 3.071725
0.000212  0.000212  0.000056  0.000056 0.000274  0.000710 8.9¢e-05
170 3.779598 3.779573  3.779533  3.779592 3.071585  3.071585 3.07171
0.000149  0.000149  0.000039  0.000039 0.000770  0.000051  0.000250
250 3.779815 3.779560  3.779533  3.779573 3.071577  3.071577 3.07171
0.000101  0.000101 0.000026  0.000026  0.000818  0.000071 0.000266
300 3.779681  3.779555  3.779533  3.779567 3.071737  3.071736  3.071643
0.000084  0.000084  0.000022  0.000022 0.000571  0.000710  0.000186
400 3.779686 3.779550  3.779533  3.779558 3.071821 3.071821 3.071717
0.000063  0.000063  0.000016  0.000016  0.000639 2e-07 0.000208
500 3.779876  3.779546  3.779533  3.779553 3.071476  3.071476  3.071649
0.000050  0.000050  0.000013  0.000013 0.001064  0.000041 0.000346
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Table 3 MLEs, Bayes estimators and Posterior risk using Jeffreys’ prior for the parameter 3

Loss functions
n MLE SELF WLF PLF SELF WLF PLF
Lindley Method T-K Method
30 3.07171 3.071897  3.071757 3.071968  3.07171 3.07171  3.071678
0.000432  0.000432  0.000140 0.000140 0.000194 0.000761  6.34e-05
50 3.07178 3.071822  3.071738 3.071864 3.779533  3.779532 3.779486
0.000259  0.000025  0.000084 0.000084 0.000352 1.2e-06 9.33e-05
70 3.07188 3.071790  3.071730 3.071820 3.071453 3.071453 3.071704
0.000184  0.000184  0.000059 0.000059 0.001539 4e-07 0.000501
100 3.071790  3.071766  3.071724 3.071786  3.779064  3.779062 3.779533
0.000128  0.000128  0.000041 0.000041 0.003549 1.9e-06 0.000939
120 3.07187 3.071756  3.071721 3.071773 3.071441 3.07144 3.07171
0.000106  0.000106  0.000034 0.000034 0.001654 4e-07 0.000538
170 3.07179 3.071743  3.071718 3.071755 3.779561 3.77956 3.77977
0.000075  0.000075  0.000024 0.000024 0.001578 1.5e-06 0.000417
250  3.07191 3.071732  3.071715 3.071740 3.071723 3.071711 3.071782
0.000050  0.000050  0.000016  0.000016 2e-06 0.000006 6e-07
300 3.07170 3.071728  3.071715 3.071735 3.071721 3.071876 3.071761
0.000042  0.0000042 0.000003 0.000001  0.000002 0.000002  0.000005
400  3.07171 3.071724  3.071713  3.071729 3.071434 3.071434 3.071572
0.000031  0.000031  0.000010 0.000010 0.000848 0.000912 0.000276
500 3.0717 3.071721  3.071713 3.071725 3.071715 3.071706 3.071711
0.000025 0.0000025 0.000008 0.000008 0.000005 0.000008  0.000007

Table 4 MLEs, Bayes estimators and Posterior risk using exponential prior for the parameter

Loss functions
n MLE SELF WLF PLF SELF WLF PLF
Lindley Method T-K Method

30 3.079885 3.078951 3.080348 3.482737 3.071236  3.071235  3.071347
0.002923  0.002854  0.000934  0.000926  0.000678 1.5e-06 0.000220

50  3.076466 3.075918 3.076738 3.296010 3.071247  3.071248  3.071473
0.001700  0.001477  0.000547 0.000445 0.001389 6e-07 0.000452

70 3.075092 3.074702 3.075287 3.227620 3.071479  3.071477  3.071593
0.001209  0.000997  0.000390 0.000289  0.000703 1.2e-06 0.000229
100 3.074078 3.073804 3.074215 3.179113  3.07171 3.071819  3.071927
0.000846  0.000740  0.000244  0.000273  0.000668  0.000017  0.000217

120  3.073685 3.073456 3.073799 3.160718  3.07171 3.07148 3.07125
0.000705 0.000662 0.000218  0.000226  0.00141 0.000341  0.000459

170  3.073103 3.072941 3.073183 3.133925 3.071479 3.07171 3.071941
0.000497  0.000396 0.000161 0.000141 0.001418  0.000431  0.000461
250 3.072650 3.072540 3.072704 3.113374 3.778954  3.779533  3.780113
0.000335  0.000275 0.000109  0.000089  0.004379 2e-06 0.001158
300 3.072495 3.072404 3.072541 3.106453 3.779533  3.778953  3.778372
0.000280  0.000220  0.000091 0.000081 0.004386  0.000432  0.000160
400 3.072297 3.072229 3.072331 3.097591 3.071816  3.071724  3.071632
0.000209  0.000189  0.000068  0.000058 0.000567  0.000014  0.000184
500 3.072179 3.072124 3.072206 3.092347 3.071475 3.071649  3.071822
0.000167  0.000147  0.000054 0.000044 0.001065 0.0000178  0.000346
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Table 5 MLEs, Bayes estimators and Posterior risk using uniform prior for the parameter o

Loss functions

n MLE SELF WLF PLF SELF WLF PLF
Lindley Method T-K Method
30 0.589911 0.589939 0.589911 0.589954 0.589896 0.589897  0.589897
1.7e-05 1.7e-06  2.88e-06  2.8e-06 3e-07 0.000002 4e-07
50 0.589912  0.58992  0.58991 0.58993 0.58989  0.589901 0.589903
9.9¢-06 9.9¢-06 1.6e-05 1.6e-05 2e-06 0.000007  3.4e-06
70 0.588219 0.589923  0.589911 0.589929 0.589906 0.589904  0.589902
7.1e-06 3.1e-07 1.2e-05 1.2e-05 2.5e-06  0.000008  4.3e-06
100 0.589919 0.589919 0.589911 0.589923  0.589906 0.589905  0.589904
4.9e-05 3.9e-06 8.4e-06 8.4e-06 6e-07 0.000005 1.1e-06
120 0.589917 0.589918 0.589911 0.589921 0.589907 0.589908  0.589909
4.1e-06 3.1e-06 6.1e-06 6.9¢-06 8e-07 0.000008  1.4e-06
170  0.589219 0.589916 0.589912  0.589918  0.589905 0.589908  0.589911
2.9e-05 2.9e-06 4.9e-07 4.8e-07 3.3e-06  0.000007  5.6e-06
250 0.589442 0.589914 0.589911 0.589916 0.589905 0.589909  0.589912
2.0e-05 2.0e-06 3.9e-06 3.3e-06 3.1e-06  0.000004  5.7e-06
300 0.589520 0.589913  0.589912  0.589915 0.589911 0.589908  0.589904
1.6e-05 1.6e-06 2.2e-06 2.8e-06 4.1e-06  0.000002  6.9¢-06
400 0.589618 0.589913  0.589913 0.589914 0.589910 0.589912  0.589914
1.2e-05 1.2e-06 2.2e-06 2.1e-06 2.1e-06  0.000002  3.5e-06
500 0.589677 0.589912 0.589919 0.589913 0.589905 0.589908  0.589919
1.0e-05 1.0e-06 1.7e-06 1.5e-06 2.3e-06  0.000005  6.5e-06

Table 6 MLEs,Bayes estimators and Posterior risk using Jeffreys’ prior for the parameter o

Loss functions

n MLE SELF WLF PLF SELF WLF PLF
Lindley Method T-K Method
30 0.589947 0.589856 0.589992 0.577269 0.589864  0.589864  0.589865
5.3e-05 2.3e-05 9.0e-05 9.0e-05 9e-06 0.0000006  1.5e-06
50  0.589932 0.589878 0.589959 0.582269 0.596360  0.596371  0.596381
3.1e-05 3.1e-05 5.4e-05 5.4e-05 1.6e-05 0.000007 2.1e-05
70 0.589926 0.589888 0.589945 0.584460 0.589891  0.589894  0.589897
2.2e-05 2.2e-05 3.8e-05 3.8e-05 3.3e-06  0.0000082  5.5e-06
100 0.589921 0.589895 0.589935 0.586103 0.596463  0.596449  0.796435
1.5e-05 1.5e-06 2.6e-05 2.6e-05 2.2e-05 0.000007 2.8e-05
120 0.589920 0.589897 0.589931 0.586753 0.589901  0.589904  0.589904
1.3e-05 1.3e-06 2.2e-06 2.2e-06 3.7e-06  0.0000034  6.2e-06
170 0.589917 0.589901 0.589925 0.587677 0.596500  0.596484  0.596469
9.2e-05 9.2e-06 1.5-05 1.6e-05 2.4e-05 1e-06 3.0e-05
250 0.589915 0.589904 0.589920 0.588396  0.589904  0.589907  0.589911
6.3e-06 6.1e-07 1.0e-07 1.0e-07 3.9e-06  0.0000031  6.5e-06
300 0.589914 0.589905 0.589919 0.588654 0.589904  0.589907  0.589911
5.2e-06 5.2e-07 8.8e-07 8.2e-07 3.9e-06  0.0000051  6.5e-06
400 0.589913 0.589907 0.589917 0.588965 0.589911  0.589904  0.589898
3.9¢e-05 3.9¢-06 6.1e-06 6.6e-06 7.7¢e-06  0.0000061 1.3e-05
500 0.589913 0.589908 0.589915 0.589155 0.589904  0.589907  0.589911
3.1e-05 3.1e-06 5.3e-06 5.1e-06 3.9e-06  0.0000041  6.6e-06
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Table 7 MLEs, Bayes estimators and posterior risk using exponential prior for the parameter o

Loss functions

n MLE SELF WLF PLF SELF WLF PLF
Lindley Method T-K Method

30  0.588610 0.588001 0.588918 0.508422 0.589602  0.589602  0.589610
0.000363  0.000261  0.000609  0.000584  8.7e-06 3e-07 1.4e-05

50 0.589156  0.588800 0.589335 0.539519  0.58973 0.589731  0.589729
0.000211  0.000180  0.000356  0.000257  3.1e-06 le-07 5.3e-06

70 0.589374 0.589121 0.589501 0.553138 0.589778  0.589778  0.589786
0.000150  0.000120 0.000253  0.000224  9.7e-06 le-07 1.6e-05

100 0.589535 0.589357 0.589624 0.563660 0.589906  0.589913  0.589921
0.000105  0.000085 0.000177  0.000168 9e-06 0.000001 1.5e-05
120 0.589598 0.589449 0.589672 0.567855 0.589834  0.589839  0.589845
0.000087  0.000067 0.000148  0.000138  6.5e-06 0.000004 1.1e-05
170 0.589690 0.589585 0.589742 0.574178 0.589861  0.589858  0.589856
0.000061  0.000051 0.000104 0.000093  3.2e-06  0.0000042  5.5e-06
250 0.589762 0.589691 0.589797 0.579209 0.596252  0.596252  0.596262

0.000041  0.000031  0.000070  0.000062  1.5e-05 2e-07 1.9e-05
300 0.589786 0.589727 0.589816  0.580938  0.796328  0.796328  0.796309
0.000034  0.000023  0.000059  0.000039  3.0e-05 le-07 3.7e-05

400 0.589818 0.589774 0.589840 0.583181 0.589910  0.589910  0.589912
0.000026  0.000024  0.000044  0.000024  2.6e-06 0.000004 4.5e-06
500 0.589836 0.589801 0.589854  0.584523 0.589905  0.589905  0.589908
0.000020  0.000010  0.000035  0.000027  3.3e-06 0.000006 5.5e-06

The results of Monte Carlo simulation study, obtained from Table 2 to Table 7 showed that all
the Bayes estimators performed better than MLEs due to minimum values of associated risk. All
the Bayes estimators and MLEs approaches to true values of parameters by increasing the sample
size. For both parameters 8 and o, estimators under informative prior are more efficient than non-
informative priors. So it is preferable to use informative prior more than the non-informative priors
when the information about the parameters are available. For both parameters, estimators obtained
through T-K method perform better than Lindley approximation method. The Bayes estimators under
WLF using all the priors show better results as the values of risks are minimum.

5. Illustrative Real Life Example

A real life data set about the prevalence of overweight and obesity of Pakistani females for the
year 1976-2018 is taken from (https://data.worldbank.org/country/pakistan). This data set is used to
check the performance of Bayes and MLEs of the parameters of RRD.

From this data set, the MLEs of the parameters of RRD are evaluated using max Lik package
in R language. The Bayes estimators and associated posterior risk of the parameters are obtained
through the datasets. Three loss functions SELF, WLF and PLF are used for the evaluation of Bayes
estimators and associated posterior risk. The values of hyper parameters used in informative prior is
elicited as a1 = 2 and ay = 5.

The results obtained from real life data set are shown in Table 8. It is assessed that all the
Bayes estimators using informative and non-informative priors are better than MLEs due to minimum
values of risks. The estimators obtained through 7" — K approximation are superior than Lindley
approximation under each loss function and all the priors. Results obtained from real life data sets
are nearly same as findings of simulation study.
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Table 8 MLEs, Bayes estimators and posterior risk of S and ¢ using uniform, Jeffreys and exponential
priors

MLE SELF WLF PLF SELF WLF PLF
Lindley Method T-K Method
Uniform Prior
B 3.779533 3.779577  3.779533  3.779598  3.779533 3.779533  3.779347
0.0001648  0.0001647  4.360e-05 4.359e-05 0.0000140  6.874e-12  0.0003717
o 0.796537 0.796567  0.796537  0.796583  0.796525  0.796525  0.796525
2.441e-05 2.441e-05 3.065¢-05 3.064e-05 2.694e-10 3.397e-10  3.382e-10
Jeffrey’s Prior
B 3.779533 3.779591 3.779548  3.779613 3.779533 3.779533  3.779347
0.0001648  0.0001621  4.359e-05 4.339¢-05 0.0000135 6.874e-12  0.0003517
o 0.796537  0.7965494  0.796518  0.796564  0.796525  0.796525  0.796525
2.441e-05  2.371e-05 3.065e-05 3.065¢-05 2.694e-10 3.397e-10  3.382e-10
exponential Prior
B 3.779533 3.780018  3.779974  3.791415  3.779533 3.779533  3.779347
0.0001648  0.0001445 4.354e-05 4.253e-05 0.0000120 6.875e-12  0.0002715
o 0.796537 0.796460  0.793193  0.796475  0.796525  0.796525  0.796525
2.441e-05  2.240e-05 2.043e-05 3.064e-05 2.717e-10  3.368e-10  3.411e-10

6. Concluding Remarks

In this paper, classical and Bayesian estimation of the parameters of the RRD is performed. Fur-
ther the issue of the modeling of prevalence of over weight and obesity is resolved. The practitioner
can use this distribution for the evaluation of probabilities and prediction about the prevalence and
obesity of female. The posterior distribution of the parameters of the RRD are not in closed form, so
the Bayes estimators and corresponding posterior risk cannot be obtained. We used two approxima-
tion techniques to resolved this issue. Results of simulation study and real life data are evident that
the Bayes estimators perform better than the most commonly used MLEs. In the comparison of two
approximation techniques 7' — K method is significantly better than Lindley methods.
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