Thailand Statistician

October 2022; 20(4): 779-790
http://statassoc.or.th
Contributed paper

On the Normal Approximation for Some Special Estimators of the

Ratio of Binomial Proportions

Parichart Pattarapanitchai*[a], Kamon Budsaba [a], Tran Loc Hung [b] and

Andrei Volodin [c]

[a] Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat
University, Rangsit Campus, Pathum Thani, Thailand.

[b] Faculty of Basic Sciences, University of Finance and Marketing, Ho Chi Minh, Vietnam.

[c] Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan,
Canada.

*Corresponding author; e-mail: pattarapanitchai@gmail.com

Received: 29 July 2020
Revised: 10 February 2021
Accepted: 27 February 2021

Abstract

We focus on the normal approximation for special cases of point estimators of the ratio of
Binomial proportions of two independent populations. We prove that these estimators are normally
distributed, something that has not been done before. We investigate its performance in terms of bias,
variance, and mean square error, using Monte Carlo simulations. The results show that the normal
approximation, which is relatively simple, provides a reliable result. The normal approximation
approach could be recommended on the basis of the specific values of the parameters and/or sample
sizes.

Keywords: Point estimators, ratio of binomial proportions, inverse binomial sampling, direct binomial
sampling, normal asymptotic of an estimator.

1. Introduction

The problem of comparing of a probabilities of success in Bernoulli trials is a topic in biological
and medical investigations. In this article, we identify the sample scheme that provides the best
accuracy for the point estimation for the ratio of probabilities.

A mathematical statement of the problem is as follows. Let X, X,,... and Y,,Y,,... be two

independent sequences of Bernoulli random variables with success probabilities p, and p,,

respectively. The observations are done according to the sequential sampling schemes with stopping
times v, and v,. Each sample may be obtained in the framework of direct or inverse binomial

sampling schemes; see definitions below. From the results of observations X = (X,..., X, ,,) and
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Y®" =(y, s Y, ), it is necessary to identify the most accurate method of estimation of the ratio

o="10

P

In the previous investigations (Ngamkham et al. 2016), Chapters 1 and 2 of Ngamkham (2018),
and Pattarapanitchai et al. (2020), consideration was most on the confidence estimation for the
parameter €. In this article, we are mainly interested in point estimators.

The aforementioned references give a detailed literature review pertaining to the estimation of
6. Of note, the first easy-to-calculate methods of & estimation were suggested by Noether (1957)
and Guttman (1958). A survey of these early methods can be found in Sheps (1959). Advantages of
estimators for €@ with the uniformly minimal risk are shown in articles by Bennett (1981) , Roberts
(1993), and Lui (1996) .

In this article, we consider estimators for so-called special cases developed previously in
Ngamkham et al. (2016) and Chapter 2 (Ngamkham 2018). We provide rigorous proofs that these
estimators are approximately normally distributed. This has been stated in Ngamkham et al. (2016)
and Chapter 2 (Ngamkham 2018), but no actual proofs were provided.

The simulation results are collected in tables that present the coefficient of skewness, coefficient
of kurtosis, true (simulated) and theoretical (from normal approximation) variances, bias, and the
mean square error (MSE) (quadratic risk). For each scenario, we generated 10° random numbers
with the Bernoulli and/or Negative Binomial (Pascal) distribution with various values of parameters
(success probabilities) p,, p,. We consider the problem of estimating of the probabilities ratio

0 =21 for the following schemes of Bernoulli trials: special case direct-inverse, and two special
b

cases of the inverse-direct.

2. Point estimator for the ratio of Binomial proportions

The material presented in this section can be found in Ngamkham et al. (2016) and Chapter 2 of
Ngamkham (2018). We present it here to fix the notation, and make the article more self-contained.
For a solution of the problems stated in the introduction, we consider estimates for the ratio of

Binomial proportions 6 = Pi we use the following notation.
b

Direct binomial sampling: a random vector X" =(X,,...,X,) with Bernoulli components

and fixed number of observations n is observed. In the case of direct Binomial sampling, we use
... = T n
the statistic X, =—, where T = Z X,.
n n k=1

Inverse binomial sampling: a Bernoulli sequence Y = (Y,,...,Y,) isobserved with a stopping
time

v=min{n: "y, Zm}.

k=1

That is, the components of the sequence Y,,7,

",Y,,... are observed until the given number m of

. . . . T
successes appears. In the case of inverse binomial sampling, we use the statistic ¥ =—.
m
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In the following we keep the notation X, X,,... for a Bernoulli sequence obtained by the direct
sampling scheme and Y,,7Y,,... for a Bernoulli sequence obtained by the inverse sampling scheme.

The following results are well known; see, for example Chapter 2 of Ngamkham (2018).

Proposition 1 /. Random variable v has a Pascal distribution with parameters m and p,

denoted P(m,p); that is, its probability mass function is

P(v=k)= k-l "= p) "k =mm+1,m+2
= = m—1 p P K =m,m ,m gees

m(l-p)

p

2. Random variable T has a binomial distribution with parameters n and p, denoted

The mean and variance are E(v)= 2 and Var(v)=

B(n, p); thatis, its probability mass function is
N e N
P(T—t)—(tjp 1-p)"",t=0,1,..,n

The mean and variance are E(T) =np and Var(T) =np(1- p).

The following result is proved in Theorem 3.2 and Corollary 3.1 of (Giang and Hung 2018). It
is crucial for the proof of asymptotic normality of our estimators.

Proposition 2 Let U,,U,,... be a sequence of independent identically distributed random variables
with a mean of u>0 and variance o’. Suppose that V,,V,,... is a sequence of independent
Bernoulli with parameter p random variables. Additionally, assume that random variables

U,,U,,... and V,,V,,... are independent. Write S, :Zj-v;Uf’ where N, :Z:’:IV,,nZI. Then,

S,y ~HMPH d
Jn(po® + 1 p(1- p))

N(0;1) as n— oo,

Remark 1 Note that there is a small typographical error in the formulation of Theorem 3.2 of Giang
and Hung (2018). It is said that random variables V,,V,,... should be positive. Careful analysis of

the proof ensures that random variables Y;,7, should be nonnegative. This is also used in

LY.
Corollary 3.1 of Giang and Hung (2018), where the random variables are assumed to have a Bernoulli
distribution.

3. Special Case of the Direct-Inverse Sampling Scheme
Fix two natural numbers » and m. The first sample is obtained by the scheme of direct
binomial sampling with probability p, of success and a fixed sample size n, while the second

sample is obtained by the scheme of inverse binomial sampling with the probability p, and a

stopping time that is defined by the fixed number m of successes in the sample. Therefore, we
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consider two independent sequences of Bernoulli random variables X,,..., X, and Y,,...,Y,, where

o dy
. n
v:mln{n.Zk:lYk Zm}.

For the special case of the direct-inverse sampling scheme, we suggest the following procedure.
The (random) sample size for the second sample depends on the choice of m. We recommend the
following sampling plan for the second sample: observe until you reach the same number of successes

as in the first experiment; that is, set m=7 = ZZ=1 X, . For the estimate of 1/p,, we consider the

statistics Y, =v, /T (remind that m=T), where the conditional distribution of v, is the Pascal
distribution P(7, p,) and the unconditional distribution can be obtained by a standard procedure
knowing that 7' has the Binomial distribution. The new suggested estimate of the parameter & is
~ == Tv, v
en =XnYT =__T=_T.
nT n
We note that there was no actual rigorous proof of the asymptotic normality of this estimator that
we present in Proposition 3. This rigorous proof uses the following well known result on mean and
variance of random sums. The proof of this statement can be found in Theorem 6.6.2 of Gut (2009).

Lemma 1 Let Y,,Y,,... be independent identically distributed random variables, and U be a
nonnegative integer-valued random variable, independent of V,,Y,,... Set S, = ZLIYI for n>1.
(@ If EU)<w% and E|Y|<o, then E(S,)=EU)-E(Y,).
(b) If, in addition Var(U)<ow and Var(Y))<ow, then Var(S,)=EU) -Var(Y,)
+(E(Y)) -Var).

Proposition 3 If n — «, then the estimate 0, is asymptotically normal with a mean of 6 and

variance 6’ (21)171 -0 —l)/n.

Proof: Let v,,v,,... be independent random variables with the identical distribution P(1, p,) (first
success distribution). We can interpret these random variables as the time between consecutive
successes in the second sample. Since samples are independent, we can state that v,,v,,... are

independent of 7. By Proposition 1, E(v,) = 1 and Var(v,) = 1= fz for i >1. Then, the random

b P

variable v, can be represented as the sum of a random number of random variables:
T
Vr = Z[:l Vi

According to Lemma 1, E(v,)=E(,)-E(T) = P né,

P,

Var(v,) = E(T)-Var(v)+(E()) -Var(T) = np, (l‘fz){pizj np,(1-p,)

2

=n6’ (2p171 -0 —l).
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Taking into consideration that 6, =v, /n, we obtain the mean and variance stated in the proposition.

To prove asymptotic normality, we apply Proposition 2, with U, =v, and V, = X,,i>1. In this

1 1-
case, p=p,u=— and o’ = Py

p P
2 2
¢’ (2p;' =07 ~1). We have that

g —0)
Je (2p" -0 1)

4. Special Cases of the Inverse-Direct Sampling Scheme

Note that for the special case of the direct-inverse sampling scheme, the first sample is obtained
by the direct Bernoulli sampling scheme, and the second sample is retrieved with the inverse sampling
scheme, where the number of successes equals the number of successes in the first sample. In this
section, we concentrate on special cases of the inverse-direct sampling scheme, where the first sample
is obtained by the inverse binomial sampling scheme and the second sample is obtained by the direct

Hence, pu=60 and po’+u’p(l-p)=

< SN(,1) as n—> oo

binomial sampling scheme, where the number of trials #» is the same as the number of observations
in the first experiment.
The first sample is obtained by the inverse sampling method with parameters (m, p,). We

recommend the following sampling plan for the second sample. Let v be the (random) sample size
for the first sample; that is, the value when we achieve m successes. This value v from the first

sample is used in designing the second sample. For the second sample, the number of trials » is the
same as the number of observations in the first experiment; thatis, set n =v. Denote T, = ZZZIX

Then the suggested estimate is

= (m=D(v+ 1) m
=T, +1) T, +1
The random variable v does not depend on X, X,,..., so itis possible to calculate the mean
value and variance of 7, and its distribution. Since there is a typographical error in the formula for

the variance in (Ngamkham 2018) for these calculations, we present the correct derivation. We also
note that there was no actual rigorous proof of the asymptotic normality that we present in this article.

Proposition 4 Statistic T, is asymptotically (m — ) normal with parameters
E(T)=m%2 =% and Var(T,) :%(9—2;;1 +1).

P

Proof: Let X,,X,,... be independent identically distributed Bernoulli random variables with the

i

parameter p,. Then T, =Z’_V:1X . 1s the sum of random number of random variables. By

Proposition 2 and Lemma 1

E(T,) = E(v)-E(X,)="L2,
p

1
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Var(1,) = E(v) Var(X,)+ (E(X,)] Var(v) =™ py (1- p,)+ p2 052

b )2

4
=m=*(p,+p,=2p,p,)-
1
To prove asymptotic normality, we apply Proposition 2, with n=m,U, = X,,i>1 and
N, =v= Z;":l v, and v,,j=1 are P(l,p,) independent random variables, similar to the random

variables defined in Proposition 3. In this case p=1/p ,u=p, and o’ =p, (1— pz). Hence,

mp,uz% and p0'2+,u2p(l—p)=%(€—2pl+l). We have that

|
am_*
M( ;

1 j L5N(0,1) as m— oo
?(0—2]714‘1)

4.1. Two special cases of the inverse-direct sampling scheme

1) First special case of the inverse-direct sampling scheme

T . . . 1 . .
Note that — is an unbiased estimator of v Hence we suggest to estimate the reciprocal

m
2) Second special case of the inverse-direct sampling scheme
~ -D(v+1
The suggested estimate for the parameter 6 is 6 = (m =Dy +1) ~

=D, +1) T, +1
In Ngamkham et al. (2016), Chapter 2 of Ngamkham (2018), and Pattarapanitchai et al. (2020),

the delta method is applied to prove its asymptotically normality as m — o and to find the

asymptotic mean and variance of €. The main problem in the derivations in these articles is that the
authors did not rigorously prove that the statistics 7, is asymptotically normal, as we did in this

article. In Pattarapanitchai et al. (2020), the following Taylor expansion of the statistic is obtained,

_O6m 1 (T, 1)_ Om _(emjz Q_lj
O+m (1 1)2 m 0) 0+m \O+m m 0)
J’_

0 m

>

4 2
. . 1
Hence, E(0) = Om ~0 for m — o, Var(@)z( Om j — &+p—22(1—2p1) .
0+m O+m) m\ p, p

Applying asymptotic normality of the statistic 7, provided in Proposition 4, by the classical

~

Delta method, we can state that statistic @ is approximately normal with a mean of @ and variance

i(‘g_mj4 (&4—}?—%(1—2]91 )J.

m\ @+m JZ2
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5. Simulation Study

We use simulation studies to evaluate the properties of the normal approximation. We estimate
the bias, MSE, true (simulated) variance, and asymptotic (theoretical, from normal approximation)
variance through Monte Carlo simulation with the R statistical software. For the parameter
configurations, we generated 10,000 random samples from two independent Bernoulli populations
with parameters p, and p,. Numerical results on the values of the accuracy measurements, bias,
MSE, true variance, and asymptotic variance for the three estimators of @ of the ratio of two
Binomial proportions for different number of trials # = 50,100,200,1000 in the Special Scheme of
Direct-Inverse sampling scheme and different values of number of successes m =50,100,200,1000
and different combinations of success probabilities p, =0.05,0.1(0.1)0.9 and p, =0.1(0.2)0.9 are

reported in the tables below.

Table 1 Special direct-inverse case: true variance (T) and asymptotic variance (A), n =50

p, p 005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 T 0.177 0356 0.677 0960 1203 1392 1.557 1.680 1.756 1.802
A  0.185 0360 0.680 0.960 1.200 1.400 1.560 1.680 1.760 1.800
03 T 0.017 0.035 0.067 0.093 0.115 0.133 0.147 0.155 0.160 0.160
A  0.018 0.036 0.067 0.093 0.116 0.133 0.147 0.156 0.160 0.160
0.5 T 0.005 0.011 0.021 0.029 0.035 0.040 0.043 0.045 0.045 0.043
A  0.006 0.011 0.021 0.029 0.035 0.040 0.043 0.045 0.045 0.043
07 T 0.002 0.005 0.009 0.012 0.015 0.016 0.017 0.017 0.016 0.015
A 0.003 0.005 0.009 0.012 0.015 0.016 0.017 0.017 0.016 0.015
09 T 0.001 0.002 0.004 0.006 0.007 0.007 0.007 0.007 0.006 0.004
A 0.001 0.002 0.004 0.006 0.007 0.007 0.007 0.007 0.006 0.004
Table 2 Special direct-inverse case: bias (B) and mean square error (M), n =50
P, D 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 B 0042 0006 0001 0000 0001 0000 -0001 -0001 —-0003 —0.001
M 0179 0356 0.677 0.960 1.203 1.392 1.557 1.680 1.756 1.802
0.3 B 0014 0.002 0.000 0.000 -0.001 0.000 -0.001 -0.001 -0.001 -0.001
M 0.018 0.035 0.067 0.093 0.115  0.133 0.147 0.155 0.160 0.160
0.5 B 0.008 0.001 0.000 0.000 0.000 0.000 -0.001 -0.001 -0.001 -0.001
M 0005 0.011 0.021 0.029 0.035 0.040 0.043 0.045 0.045 0.043
0.7 B  0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 0.002 0.005 0.009 0.012 0.015 0.016 0.017 0.017 0.016 0.015
0.9 B 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M  0.001 0.002 0.004 0.006 0.007 0.007 0.007 0.007 0.006 0.004
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Table 3 Special direct-inverse case: kurtosis (K) and skewness (S), n =50

p, p 005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 K 5242 3977 3498 3359 3256 3.196 3.163 3.112 3.113 3.129
S 1.298 0.894 0.613 0496 0424 0368 0.328 0.307 0.292  0.290
03 K 5140 3.888 3.429 3313 3.187 3.146 3.132 3.092 3.113 3.127
S 1266 0.844 0.581 0.467 0.391 0347 0312 0.287 0.278 0.279
0.5 K 4844 3762 3.379 3.257 3.161 3.117 3.099 3.090 3.098 3.129
S 1.194 0.779 0.533 0.422 0.343 0.295 0.268 0.265 0.250 0.265
0.7 K 4492 3602 3.255 3.136 3.138 3.078 3.100 3.059 3.070 3.083
S 1.099 0.686 0443 0329 0.294 0.237 0.213 0.192 0.194 0.233
09 K 3951 3276 3.115 3.015 3.021 3.025 2982 3.018 3.055 3.110
S 0943 0542 0313 0216 0.164 0.112 0.068 0.047 0.039 0.098

Table 4 First special inverse-direct case: true variance (T) and asymptotic variance (A), m =50

p, p 005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 T 0.113 0.036 0.013 0.008 0.005 0.004 0.003 0.003 0.002 0.002
A 0.112 0.036 0.013 0.008 0.005 0.004 0.003 0.003 0.002 0.002
03 T 0770 0.205 0.057 0.028 0.017 0.012 0.009 0.007 0.006 0.005
A 0768 0.204 0.057 0.028 0.017 0.012 0.009 0.007 0.006 0.005
05 T 2010 0.502 0.126 0.056 0.031 0.020 0.014 0.010 0.008 0.006
A 2000 05 0.125 0.056 0.031 0.020 0.014 0.010 0.008 0.006
07 T 3829 0928 0.218 0.091 0.048 0.028 0.018 0.012 0.008 0.006
A 3808 0924 0.217 0.090 0.047 0.028 0.018 0.012 0.008 0.006
09 T 6226 1481 0335 0.133 0.066 0.036 0.021 0.013 0.007 0.004
A 6192 1476 0333 0.132 0.065 0.036 0.021 0.012 0.007 0.004

Table 5 First special inverse-direct case: bias (B) and mean square error (M), m =50

p, p 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 B 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 0.113 0.036 0.013 0.008 0.005 0.004 0.003 0.003 0.002 0.002
03 B 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 0.770 0.205 0.057 0.028 0.017 0.012 0.009 0.007 0.006 0.005
0.5 B 0.003 0.004 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
M 2.010 0.503 0.126 0.056 0.031 0.020 0.014 0.010 0.008 0.006
0.7 B 0.008 0.007 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
M 3.829 0928 0.218 0.091 0.048 0.028 0.018 0.012 0.008 0.006
09 B 0.009 0.008 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
M 6.226 1481 0.335 0.133 0.066 0.036 0.021 0.013 0.007 0.004
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Table 6 First special inverse-direct case: kurtosis (K) and skewness (S), m =50

p, p 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 K 3.148 3.132 3.116 3.105 3.067 3.082 3.102 3.076 3.096 3.127
S 0295 0.291 0.285 0.305 0.305 0.327 0333 0346 0.360 0.367
03 K 3.129 3.128 3.108 3.145 3.107 3.081 3.041 3.003 3.013 3.005
S 0286 0.279 0.256 0.253 0.234 0.215 0.202 0.183 0.165 0.140
0.5 K 3.131 3.096 3.113 3.132 3.100 3.051 3.065 3.038 3.035 2.996
S 0281 0.265 0.276 0.262 0.240 0.213 0.178 0.151 0.112 0.053
0.7 K 3.134 3.107 3.115 3.122 3.142 3.130 3.059 3.059 3.017 3.034
S 0284 0.280 0.277 0.283 0.263 0.246 0.208 0.165 0.098 0.021
09 K 3.132 3.098 3.123 3.122 3.126 3.124 3.119 3.108 3.117 3.137
S 0285 0276 0.282 0.292 0.297 0.286 0.280 0.254 0.208 0.101

Table 7 Second special inverse-direct case: true variance (T) and asymptotic variance (A), m =50

p, p 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 T 0.008 0.040 0.239 0.731 1.687 3.231 5.813 9.213 13.553 18.877
A 0.007 0.033 0.178 0.485 0.988 1.708 2.654 3.830 5.231 6.852
03 T 0.001 0.003 0.012 0.030 0.058 0.098 0.154 0.224 0313 0.424
A 0.001 0.002 0.011 0.026 0.049 0.081 0.123 0.175 0.239 0.314
0.5 T 0.000 0.001 0.003 0.008 0.013 0.021 0.029 0.040 0.051 0.065
A 0.000 0.001 0.003 0.007 0.012 0.018 0.026 0.035 0.045 0.056
0.7 T 0.000 0.000 0.002 0.003 0.005 0.007 0.010 0.012 0.014 0.016
A 0.000 0.000 0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015
09 T 0.000 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004
A 0.000 0.000 0.001 0.002 0.002 0.003 0.004 0.004 0.004 0.004
Table 8 Second special inverse-direct case: bias (B) and mean square error (M), m =50
)2 D 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
01 B 0009 0017 0025 0028 0019 0003 -0016 -0.053 -0.103 —0.162
M 0008 0040 0239 0732 1687 3231 5813 9216 13.564 18.903
03 B 0003 0006 0008 0009 0005 0000 -0006 -0018 —0.031 —0.047
M 0001 0003 0012 0030 0058 0098 0.154 0225 0314 0426
05 B 0002 0003 0005 0005 0004 0001 —0005 -0012 -0019 —-0.028
M 0.000 0.001 0.003 0008 0013 0021 0029 0040 0.052  0.066
07 B 0001 0.002 0004 0004 0003 0000 —0004 -0.008 —0014 —0.020
M 0.000 0.000 0.002 0003 0.005 0007 0010 0012 0014 0016
0.9 B 0.001 0.002 0.003 0.003 0.002 0.000 -0.003 -0.006 -0.011 -0.016
M 0.000 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004

6. Conclusions
We presented only some of our simulations, but have run many more. Our conclusion is based
on all the results, presented or not. According to our simulations, we can conclude the following.

6.1. Special case of the direct-inverse sampling scheme
The bias of estimation increases when values of p, and p, close to 0. As expected, the bias

decreases when the sample size increases for all value of the parameters p, and p,. Incases where

the value of p, issmall, the bias of our approach is large (see Table 5) and decreases when the value
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value of the parameter p, becomes larger, especially for moderate (n=100) to large sample sizes
(n>200).

Table 9 Second special inverse-direct case: kurtosis (K) and skewness (S), m =50

P, D 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 K 4239 4829 6951 10.833 44999 27.473 41.002 38.084 33.487 28.347
S 0783 0933 1326 1.760 2.921 2.832 3.709 3.877 3.846 3.688
03 K 3755 3940 4.069 4.629 4.676 5.253 5.712 6.092 7.041 8.046
S 0.623 0.680 0.728 0.844 0.897 1.002 1.111 1.188 1.300 1421
05 K 3703 3.700 3.750 3.804 3.883 4.005 3.980 4.116 4.548 4.677
S 0595 0595 0.612  0.624 0.652 0.672 0.693 0.739 0.843 0.883
07 K 3.646 3.627 3555 3.552 3.480 3.441 3.461 3.537 3.680 3.780
S 0574 0562 0537 0.521 0.494 0.489 0.483 0.518 0.549 0.602
09 K 3.624 3576 3445 3.380 3.349 3.211 3.173 3.143 3.173 3.302
S 0566 0545 0491 0.448 0.402 0.347 0.302 0.259 0.243 0.297

We can say the same about the MSE and both the true and asymptotic variances; they are smaller
when the value of p, is smaller and the value of p, is larger. Moreover, they are very close to zero

when p, iscloseto 0 and p, close to 1, especially for moderate to large sample sizes.

We use the coefficients of skewness and kurtosis as descriptive statistics to show that the normal
approximation is appropriated for our estimators. According to our results, the values of the skewness
and kurtosis of these estimators are very close to zero and 3, respectively, when the sample size n
is large. This says that the normal approximation is working well for large sample sizes, which is not
surprising.

The values of skewness are all negative for the values p, =0.7, p, = 0.9 for large sample sizes.

This means that the data are slightly skewed to the left or negatively skewed. The skewness of the
estimator is positive when p, and p, are smaller.

The estimator has a positive kurtosis with values smaller than 3 for values of p, and p, inthe
region (p, =0.7, p, = 0.9), which means that the estimator has a fat-tailed distribution (leptokurtic).
The estimator has a negative kurtosis when p, and p, are smaller, which indicates a thin-tailed

data distribution. The best result is obtained when the sample size increases so the values of skewness
and kurtosis of the estimator decreases and becomes very close to zero and 3 respectively.

6.2. First special case of the inverse-direct sampling scheme
The bias of estimation is very small for all values of p, and p, and for all sample sizes. The

bias increases slightly with the values of p, close to 0 and p, close to 1. As expected, the bias
decreases close to 0 when the sample size increases for all value of the parameters p, and p,.

We can say the same about the MSE, both true and asymptotic variances; they are smaller when
the value of p, islarger and the value of p, issmaller. Moreover, they are very close to zero when

p, is close to 1 and p, is close to 0, especially for moderate (m =100) to large sample sizes
(m > 200).
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According to our results, the values of the skewness and kurtosis of these estimators are very
close to zero and 3, respectively, when the sample size is large. This means that the normal
approximation is working well for large sample sizes, which is not surprising.

Overall, the skewness of the estimator is slightly positive for all values of p, and p, and for
all sample sizes. This means that the data are slightly skewed to the right, or positively skewed.

The estimator has a positive kurtosis with values smaller than 3 for values of p, and p, inthe

region (p, >0.4,0.1< p, <0.6) for large sample size, which means that the estimator is leptokurtic.
The estimator has a negative kurtosis when p, issmalleand p, isextreme, which indicates a thin-

tailed data distribution. The best result is obtained when the sample size increases so the values of
skewness and kurtosis of the estimator decrease and become very close to zero and 3, respectively.

6.3. Second special case of the inverse-direct sampling scheme
The bias of estimation increases when the values of p, arecloseto 1 and p, arecloseto0. As

expected, the bias decreases when the sample size increases for all values of the parameters p, and
p,. In cases when the value of p, is small, the bias of our approach is small (see Table &), and
decreases when the value of parameter p, becomes larger, especially for moderate (m=100) to

large sample sizes (m >200).
We can say the same about the MSE and both true and asymptotic variances. They are smaller
when the value of p, issmaller and the value of p, islarger. Moreover, they are very close to zero

when p, isclosetoOand p, iscloseto 1, especially for moderate to large sample sizes. When p,
iscloseto 1 and p, iscloseto 0, there is a large difference between the true variance and asymptotic

variance for small sample sizes.

According to our results, the value of the skewness and kurtosis of these estimators are very close
to zero and 3, respectively, when the sample size » is large. This means that the normal
approximation is working well for large sample sizes, which is not surprising.

Overall, the skewness of the estimator is positive for all values of p, and p, and for all sample

sizes. This means that the data are skewed to the right or positively skewed. In cases where the value
of p, issmall, the skewness of the estimator is small, and decreases when the value of the parameter

p, becomes larger especially for moderate to large sample sizes.
The estimator has a negative kurtosis with values larger than 3 for all values of p, and p,,

which indicates a thin-tailed distribution of the estimator. The best result is obtained when the sample
size increases so the values of skewness and kurtosis of the estimator decrease and become very close
to zero and 3, respectively.

6.4. A remark on the real data analysis

It is common for statistical papers to provide an example of real data analysis. Unfortunately, we
cannot provide it in this article. These two Special Cases estimators were introduced in Ngamkham
et al. (2016) and have not been used for a practical applications yet. According to the results presented
in Pattarapanitchai et al. (2020), these estimators of the ratio of proportions are significantly more
efficient in comparison with usual estimators for all four combinations of sampling schemes. The
authors would like to attract the attention of practitioners to there interesting estimators.
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