
Thailand Statistician 

October 2022; 20(4): 779-790 

http://statassoc.or.th  

Contributed paper  
 

On the Normal Approximation for Some Special Estimators of the 

Ratio of Binomial Proportions  

Parichart Pattarapanitchai*[a], Kamon Budsaba [a], Tran Loc Hung [b] and  

Andrei Volodin [c]  
[a] Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat 

University, Rangsit Campus, Pathum Thani, Thailand.  

[b] Faculty of Basic Sciences, University of Finance and Marketing, Ho Chi Minh, Vietnam. 

[c] Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, 
Canada. 

*Corresponding author; e-mail: pattarapanitchai@gmail.com 

 

Received: 29 July 2020 

Revised: 10 February 2021 

Accepted: 27 February 2021 

 

Abstract 

We focus on the normal approximation for special cases of point estimators of the ratio of 

Binomial proportions of two independent populations. We prove that these estimators are normally 

distributed, something that has not been done before. We investigate its performance in terms of bias, 

variance, and mean square error, using Monte Carlo simulations. The results show that the normal 

approximation, which is relatively simple, provides a reliable result. The normal approximation 

approach could be recommended on the basis of the specific values of the parameters and/or sample 

sizes. 

______________________________ 
Keywords: Point estimators, ratio of binomial proportions, inverse binomial sampling, direct binomial 

sampling, normal asymptotic of an estimator. 

 

1. Introduction 

The problem of comparing of a probabilities of success in Bernoulli trials is a topic in biological 

and medical investigations. In this article, we identify the sample scheme that provides the best 

accuracy for the point estimation for the ratio of probabilities. 

A mathematical statement of the problem is as follows. Let 1 2, , ...X X  and 1 2, ,...Y Y   be two 

independent sequences of Bernoulli random variables with success probabilities 1p  and 2 ,p  

respectively. The observations are done according to the sequential sampling schemes with stopping 

times 1  and 2 .   Each sample may be obtained in the framework of direct or inverse binomial 

sampling schemes; see definitions below. From the results of observations 1

1

( )
1( ,..., )X X X

  and 
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2

2

( )
1( ,..., ),Y Y Y

  it is necessary to identify the most accurate method of estimation of the ratio 

1

2

.
p

p
   

In the previous investigations (Ngamkham et al. 2016), Chapters 1 and 2 of Ngamkham (2018), 

and Pattarapanitchai et al. (2020), consideration was most on the confidence estimation for the 

parameter  . In this article, we are mainly interested in point estimators. 

  The aforementioned references give a detailed literature review pertaining to the estimation of 
.  Of note, the first easy-to-calculate methods of   estimation were suggested by Noether (1957) 

and Guttman (1958). A survey of these early methods can be found in Sheps (1959). Advantages of 

estimators for   with the uniformly minimal risk are shown in articles by Bennett (1981) , Roberts 

(1993), and Lui (1996) . 
  In this article, we consider estimators for so-called special cases developed previously in 

Ngamkham et al. (2016) and Chapter 2 (Ngamkham 2018). We provide rigorous proofs that these 

estimators are approximately normally distributed. This has been stated in Ngamkham et al. (2016) 

and Chapter 2 (Ngamkham 2018), but no actual proofs were provided. 

  The simulation results are collected in tables that present the coefficient of skewness, coefficient 

of kurtosis, true (simulated) and theoretical (from normal approximation) variances, bias, and the 

mean square error (MSE) (quadratic risk). For each scenario, we generated 510  random numbers 

with the Bernoulli and/or Negative Binomial (Pascal) distribution with various values of parameters 

(success probabilities) 1 2, .p p   We consider the problem of estimating of the probabilities ratio 

1

2

p

p
   for the following schemes of Bernoulli trials: special case direct-inverse, and two special 

cases of the inverse-direct. 

 

2. Point estimator for the ratio of Binomial proportions 

The material presented in this section can be found in Ngamkham et al. (2016) and Chapter 2 of 

Ngamkham (2018). We present it here to fix the notation, and make the article more self-contained. 
For a solution of the problems stated in the introduction, we consider estimates for the ratio of 

Binomial proportions 1

2

.
p

p
   We use the following notation. 

Direct binomial sampling: a random vector ( )
1( ,..., )n

nX X X  with Bernoulli components 

and fixed number of observations n  is observed. In the case of direct Binomial sampling, we use 

the statistic ,n

T
X

n
  where 

1
.

n

kk
T X


   

Inverse binomial sampling: a Bernoulli sequence ( )
1( ,..., )Y Y Y

  is observed with a stopping 

time  

 1
min :

n

kk
n Y m


  . 

That is, the components of the sequence 1 2, ,...Y Y  are observed until the given number m  of 

successes appears. In the case of inverse binomial sampling, we use the statistic .mY
m


  
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In the following we keep the notation 1 2, , ...X X  for a Bernoulli sequence obtained by the direct 

sampling scheme and 1 2, ,...Y Y  for a Bernoulli sequence obtained by the inverse sampling scheme. 

The following results are well known; see, for example Chapter 2 of Ngamkham (2018). 

 

Proposition 1 1. Random variable   has a Pascal distribution with parameters m  and ,p  

denoted ( , );P m p  that is, its probability mass function is  

 ( )1
( ) (1 ) , , 1, 2,...

1
m k mk

P k p p k m m m
m

  
      

 
 

The mean and variance are ( )
m

E
p

   and  
 

2

1
.

m p
Var

p



  

2. Random variable T  has a binomial distribution with parameters n  and ,p denoted 

( , );B n p  that is, its probability mass function is  

 ( )( ) (1 ) , 0,1, , ....t n tn
P T t p p t n

t
 

    
 

 

The mean and variance are  E T np  and ( ) (1 ).Var T np p   

 

The following result is proved in Theorem 3.2 and Corollary 3.1 of (Giang and Hung 2018). It 

is crucial for the proof of asymptotic normality of our estimators. 

 

Proposition 2 Let 1 2, ,...U U  be a sequence of independent identically distributed random variables 

with a mean of 0   and variance 2 .   Suppose that 1 2, ,...V V  is a sequence of independent 

Bernoulli with parameter p  random variables. Additionally, assume that random variables 

1 2, ,...U U  and 1 2, ,...V V  are independent. Write 
1

,n

n

N

N jj
S U


   where 

1
, 1.

n

n ii
N V n


   Then,  

 
( )

2 2
(0;1)   as   .

( (1 ))

nN d
S np

N n
n p p p



 


 

 
 

 

Remark 1 Note that there is a small typographical error in the formulation of Theorem 3.2 of Giang 

and Hung (2018). It is said that random variables 1 2, ,...V V  should be positive. Careful analysis of 

the proof ensures that random variables 1 2, ,...Y Y  should be nonnegative. This is also used in 

Corollary 3.1 of Giang and Hung (2018), where the random variables are assumed to have a Bernoulli 

distribution. 

 

3. Special Case of the Direct-Inverse Sampling Scheme 

Fix two natural numbers n  and .m   The first sample is obtained by the scheme of direct 

binomial sampling with probability 1p  of success and a fixed sample size ,n  while the second 

sample is obtained by the scheme of inverse binomial sampling with the probability 2p  and a 

stopping time that is defined by the fixed number m  of successes in the sample. Therefore, we 
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consider two independent sequences of Bernoulli random variables 1, ..., nX X  and 1,..., ,Y Y  where 

 1
min : .

n

kk
n Y m


   

For the special case of the direct-inverse sampling scheme, we suggest the following procedure. 

The (random) sample size for the second sample depends on the choice of .m  We recommend the 

following sampling plan for the second sample: observe until you reach the same number of successes 

as in the first experiment; that is, set 
1

.
n

kk
m T X


    For the estimate of 21 ,p  we consider the 

statistics T TY T   (remind that m T  ), where the conditional distribution of T  is the Pascal 

distribution 2( , )P T p  and the unconditional distribution can be obtained by a standard procedure 

knowing that T  has the Binomial distribution. The new suggested estimate of the parameter   is  

 .T T
n n T

T
X Y

n T n

 
     

We note that there was no actual rigorous proof of the asymptotic normality of this estimator that 

we present in Proposition 3. This rigorous proof uses the following well known result on mean and 

variance of random sums. The proof of this statement can be found in Theorem 6.6.2 of Gut (2009). 

 

Lemma 1 Let 1 2, ,...Y Y  be independent identically distributed random variables, and U be a 

nonnegative integer-valued random variable, independent of 1 2, ,...Y Y  Set 
1

n

n ii
S Y


   for 1n  .  

(a) If ( )E U    and 1 ,E Y    then 1( ) ( ) ( ).UE S E U E Y    

(b) If, in addition ( )Var U    and 1( ) ,Var Y     then 1( ) ( ) ( )UVar S E U Var Y 

 
2

1( ) ( ).E Y Var U   

 

Proposition 3 If ,n    then the estimate  n  is asymptotically normal with a mean of   and 

variance  2 1 1
12 1 .p n     

 

Proof: Let 1 2, ,...   be independent random variables with the identical distribution 2(1, )P p  (first 

success distribution). We can interpret these random variables as the time between consecutive 

successes in the second sample. Since samples are independent, we can state that 1 2, ,...   are 

independent of .T  By Proposition 1, 
2

1
( )iE

p
   and 2

2
2

1
( )i

p
Var

p



  for 1.i   Then, the random 

variable T  can be represented as the sum of a random number of random variables:  

 
1

.
T

T ii
 


   

According to Lemma 1, 1
1

2

( ) ( ) ( ) ,T

np
E E E T n

p
       

 
          

 
 

 

2
2 2

1 1 1 1 12
22

2 1 1
1

1 1
1

2 1 .

T

p
Var E T Var E Var T np np p

pp

n p

  

  

  
       

 

  
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Taking into consideration that  ,n T n   we obtain the mean and variance stated in the proposition. 

To prove asymptotic normality, we apply Proposition 2, with i iU   and , 1.i iV X i    In this 

case, 1

2

1
,p p

p
   and 2 2

2
2

1
.

p

p



   Hence, p   and  2 2 1p p p   

 2 1 1
12 1 .p     We have that  

 
 2 1 1

1

(0,1) as .
2 1

n
d

n
N n

p

 

  


 

 
 

 

4. Special Cases of the Inverse-Direct Sampling Scheme 

Note that for the special case of the direct-inverse sampling scheme, the first sample is obtained 

by the direct Bernoulli sampling scheme, and the second sample is retrieved with the inverse sampling 

scheme, where the number of successes equals the number of successes in the first sample. In this 

section, we concentrate on special cases of the inverse-direct sampling scheme, where the first sample 

is obtained by the inverse binomial sampling scheme and the second sample is obtained by the direct 

binomial sampling scheme, where the number of trials n  is the same as the number of observations 

in the first experiment. 

The first sample is obtained by the inverse sampling method with parameters 1( , ).m p   We 

recommend the following sampling plan for the second sample. Let   be the (random) sample size 

for the first sample; that is, the value when we achieve m  successes. This value   from the first 

sample is used in designing the second sample. For the second sample, the number of trials n  is the 

same as the number of observations in the first experiment; that is, set .n   Denote 
1

.kk
T X



 
 

Then the suggested estimate is  

 ( 1)( 1)
.

( 1)( 1) 1

m m

T T 






 
 

  
 

The random variable   does not depend on 1 2, ,...,X X  so it is possible to calculate the mean 

value and variance of T  and its distribution. Since there is a typographical error in the formula for 

the variance in (Ngamkham 2018) for these calculations, we present the correct derivation. We also 

note that there was no actual rigorous proof of the asymptotic normality that we present in this article.  

 

Proposition 4 Statistic T  is asymptotically ( )m    normal with parameters  

 2
12

1

( ) ( ) 2 1 .
p m m

E T m and Var T p
p

  
 

      

 
Proof: Let 1 2, , ...X X  be independent identically distributed Bernoulli random variables with the 

parameter 2 .p   Then 
1 ii

T X


 
   is the sum of random number of random variables. By 

Proposition 2 and Lemma 1 

2
1

1

( ) ( ) ( ) ,
mp

E T E E X
p

     
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            
 

 

2 12
1 1 2 2 2 2

1 1

2
1 2 1 2

1

1
1

2 .

m pm
Var T E Var X E X Var p p p

p p

p
m p p p p

p

  


      

  

 

To prove asymptotic normality, we apply Proposition 2, with , , 1i in m U X i    and 

1

m

m jj
N  


    and , 1j j   are 1(1, )P p  independent random variables, similar to the random 

variables defined in Proposition 3. In this case 1 21 ,p p p   and  2
2 21 .p p     Hence, 

m
mp


  and    2 2

12

1
1 2 1 .p p p p  


      We have that  

 



 
 

12

1

0,1 .
1

2 1

m

d

m

N as m

p







 
 

   

 

 

 

4.1. Two special cases of the inverse-direct sampling scheme 

 

1) First special case of the inverse-direct sampling scheme 

Note that 
T

m
  is an unbiased estimator of 

1
.


 Hence we suggest to estimate the reciprocal  

2) Second special case of the inverse-direct sampling scheme 

The suggested estimate for the parameter   is 
( 1)( 1)

.
( 1)( 1) 1

m m

T T 






 
 

  
 

In Ngamkham et al. (2016), Chapter 2 of Ngamkham (2018), and Pattarapanitchai et al. (2020), 

the delta method is applied to prove its asymptotically normality as m    and to find the 

asymptotic mean and variance of .  The main problem in the derivations in these articles is that the 

authors did not rigorously prove that the statistics T  is asymptotically normal, as we did in this 

article. In Pattarapanitchai et al. (2020), the following Taylor expansion of the statistic is obtained,  

 
2

2

1 1 1
.

1 1

T Tm m m

m m m m m

m

   


    



    
                

 
 

 

Hence, ( )
m

E
m


 


 


 for ,m      

4 2
2 2

12
1 1

1
( ) 1 2 .

p pm
Var p

m m p p






  
    

   
 

Applying asymptotic normality of the statistic T  provided in Proposition 4, by the classical 

Delta method, we can state that statistic   is approximately normal with a mean of   and variance 

 
4 2

2 2
12

1 1

1
1 2 .

p pm
p

m m p p





  
   

   
 

 

 

 



Parichart Pattarapanitchai et al. 785 

5. Simulation Study 

We use simulation studies to evaluate the properties of the normal approximation. We estimate 

the bias, MSE, true (simulated) variance, and asymptotic (theoretical, from normal approximation) 

variance through Monte Carlo simulation with the R statistical software. For the parameter 

configurations, we generated 10,000 random samples from two independent Bernoulli populations 

with parameters 1p  and 2 .p  Numerical results on the values of the accuracy measurements, bias, 

MSE, true variance, and asymptotic variance for the three estimators of   of the ratio of two 

Binomial proportions for different number of trials 50,100,200,1000n   in the Special Scheme of 

Direct-Inverse sampling scheme and different values of number of successes 50,100, 200,1000m   

and different combinations of success probabilities 1 0.05,0.1(0.1)0.9p   and 2 0.1(0.2)0.9p   are 

reported in the tables below. 

 

Table 1 Special direct-inverse case: true variance (T) and asymptotic variance (A), 50n   

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 T 0.177 0.356 0.677 0.960 1.203 1.392 1.557 1.680 1.756 1.802 
 A 0.185 0.360 0.680 0.960 1.200 1.400 1.560 1.680 1.760 1.800 
0.3 T 0.017 0.035 0.067 0.093 0.115 0.133 0.147 0.155 0.160 0.160 

 A 0.018 0.036 0.067 0.093 0.116 0.133 0.147 0.156 0.160 0.160 
0.5 T 0.005 0.011 0.021 0.029 0.035 0.040 0.043 0.045 0.045 0.043 

 A 0.006 0.011 0.021 0.029 0.035 0.040 0.043 0.045 0.045 0.043 
0.7 T 0.002 0.005 0.009 0.012 0.015 0.016 0.017 0.017 0.016 0.015 

 A 0.003 0.005 0.009 0.012 0.015 0.016 0.017 0.017 0.016 0.015 
0.9 T 0.001 0.002 0.004 0.006 0.007 0.007 0.007 0.007 0.006 0.004 

 A 0.001 0.002 0.004 0.006 0.007 0.007 0.007 0.007 0.006 0.004 
 

Table 2 Special direct-inverse case: bias (B) and mean square error (M), 50n   

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 B 0.042 0.006 0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.001 
 M 0.179 0.356 0.677 0.960 1.203 1.392 1.557 1.680 1.756 1.802 
0.3 B 0.014 0.002 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.001 

 M 0.018 0.035 0.067 0.093 0.115 0.133 0.147 0.155 0.160 0.160 
0.5 B 0.008 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 

 M 0.005 0.011 0.021 0.029 0.035 0.040 0.043 0.045 0.045 0.043 
0.7 B 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 M 0.002 0.005 0.009 0.012 0.015 0.016 0.017 0.017 0.016 0.015 
0.9 B 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 M 0.001 0.002 0.004 0.006 0.007 0.007 0.007 0.007 0.006 0.004 
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Table 3 Special direct-inverse case: kurtosis (K) and skewness (S), 50n   

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 K 5.242 3.977 3.498 3.359 3.256 3.196 3.163 3.112 3.113 3.129 
 S 1.298 0.894 0.613 0.496 0.424 0.368 0.328 0.307 0.292 0.290 

0.3 K 5.140 3.888 3.429 3.313 3.187 3.146 3.132 3.092 3.113 3.127 
 S 1.266 0.844 0.581 0.467 0.391 0.347 0.312 0.287 0.278 0.279 

0.5 K 4.844 3.762 3.379 3.257 3.161 3.117 3.099 3.090 3.098 3.129 
 S 1.194 0.779 0.533 0.422 0.343 0.295 0.268 0.265 0.250 0.265 

0.7 K 4.492 3.602 3.255 3.136 3.138 3.078 3.100 3.059 3.070 3.083 
 S 1.099 0.686 0.443 0.329 0.294 0.237 0.213 0.192 0.194 0.233 

0.9 K 3.951 3.276 3.115 3.015 3.021 3.025 2.982 3.018 3.055 3.110 
 S 0.943 0.542 0.313 0.216 0.164 0.112 0.068 0.047 0.039 0.098 

 

Table 4 First special inverse-direct case: true variance (T) and asymptotic variance (A), 50m   

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 T 0.113 0.036 0.013 0.008 0.005 0.004 0.003 0.003 0.002 0.002 
 A 0.112 0.036 0.013 0.008 0.005 0.004 0.003 0.003 0.002 0.002 
0.3 T 0.770 0.205 0.057 0.028 0.017 0.012 0.009 0.007 0.006 0.005 

 A 0.768 0.204 0.057 0.028 0.017 0.012 0.009 0.007 0.006 0.005 
0.5 T 2.010 0.502 0.126 0.056 0.031 0.020 0.014 0.010 0.008 0.006 

 A 2.000 0.5 0.125 0.056 0.031 0.020 0.014 0.010 0.008 0.006 
0.7 T 3.829 0.928 0.218 0.091 0.048 0.028 0.018 0.012 0.008 0.006 

 A 3.808 0.924 0.217 0.090 0.047 0.028 0.018 0.012 0.008 0.006 
0.9 T 6.226 1.481 0.335 0.133 0.066 0.036 0.021 0.013 0.007 0.004 

 A 6.192 1.476 0.333 0.132 0.065 0.036 0.021 0.012 0.007 0.004 
 

Table 5 First special inverse-direct case: bias (B) and mean square error (M), 50m      

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 B 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 M 0.113 0.036 0.013 0.008 0.005 0.004 0.003 0.003 0.002 0.002 
0.3 B 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 M 0.770 0.205 0.057 0.028 0.017 0.012 0.009 0.007 0.006 0.005 
0.5 B 0.003 0.004 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 

 M 2.010 0.503 0.126 0.056 0.031 0.020 0.014 0.010 0.008 0.006 
0.7 B 0.008 0.007 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

 M 3.829 0.928 0.218 0.091 0.048 0.028 0.018 0.012 0.008 0.006 
0.9 B 0.009 0.008 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 

 M 6.226 1.481 0.335 0.133 0.066 0.036 0.021 0.013 0.007 0.004 
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Table 6 First special inverse-direct case: kurtosis (K) and skewness (S), 50m   

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 K 3.148 3.132 3.116 3.105 3.067 3.082 3.102 3.076 3.096 3.127 
 S 0.295 0.291 0.285 0.305 0.305 0.327 0.333 0.346 0.360 0.367 

0.3 K 3.129 3.128 3.108 3.145 3.107 3.081 3.041 3.003 3.013 3.005 
 S 0.286 0.279 0.256 0.253 0.234 0.215 0.202 0.183 0.165 0.140 

0.5 K 3.131 3.096 3.113 3.132 3.100 3.051 3.065 3.038 3.035 2.996 
 S 0.281 0.265 0.276 0.262 0.240 0.213 0.178 0.151 0.112 0.053 

0.7 K 3.134 3.107 3.115 3.122 3.142 3.130 3.059 3.059 3.017 3.034 
 S 0.284 0.280 0.277 0.283 0.263 0.246 0.208 0.165 0.098 0.021 

0.9 K 3.132 3.098 3.123 3.122 3.126 3.124 3.119 3.108 3.117 3.137 
 S 0.285 0.276 0.282 0.292 0.297 0.286 0.280 0.254 0.208 0.101 

 

Table 7 Second special inverse-direct case: true variance (T) and asymptotic variance (A), 50m   

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 T 0.008 0.040 0.239 0.731 1.687 3.231 5.813 9.213 13.553 18.877 
 A 0.007 0.033 0.178 0.485 0.988 1.708 2.654 3.830 5.231 6.852 
0.3 T 0.001 0.003 0.012 0.030 0.058 0.098 0.154 0.224 0.313 0.424 

 A 0.001 0.002 0.011 0.026 0.049 0.081 0.123 0.175 0.239 0.314 
0.5 T 0.000 0.001 0.003 0.008 0.013 0.021 0.029 0.040 0.051 0.065 

 A 0.000 0.001 0.003 0.007 0.012 0.018 0.026 0.035 0.045 0.056 
0.7 T 0.000 0.000 0.002 0.003 0.005 0.007 0.010 0.012 0.014 0.016 

 A 0.000 0.000 0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015 
0.9 T 0.000 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 

 A 0.000 0.000 0.001 0.002 0.002 0.003 0.004 0.004 0.004 0.004 
 

Table 8 Second special inverse-direct case: bias (B) and mean square error (M), 50m      

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 B 0.009 0.017 0.025 0.028 0.019 0.003 0.016 0.053 0.103 0.162 
 M 0.008 0.040 0.239 0.732 1.687 3.231 5.813 9.216 13.564 18.903 
0.3 B 0.003 0.006 0.008 0.009 0.005 0.000 0.006 0.018 0.031 0.047 

 M 0.001 0.003 0.012 0.030 0.058 0.098 0.154 0.225 0.314 0.426 
0.5 B 0.002 0.003 0.005 0.005 0.004 0.001 0.005 0.012 0.019 0.028 

 M 0.000 0.001 0.003 0.008 0.013 0.021 0.029 0.040 0.052 0.066 
0.7 B 0.001 0.002 0.004 0.004 0.003 0.000 0.004 0.008 0.014 0.020 

 M 0.000 0.000 0.002 0.003 0.005 0.007 0.010 0.012 0.014 0.016 
0.9 B 0.001 0.002 0.003 0.003 0.002 0.000 0.003 0.006 0.011 0.016 

 M 0.000 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 

 

6. Conclusions 

We presented only some of our simulations, but have run many more. Our conclusion is based 

on all the results, presented or not. According to our simulations, we can conclude the following.  

 

6.1. Special case of the direct-inverse sampling scheme 

The bias of estimation increases when values of 1p  and 2p  close to 0. As expected, the bias 

decreases when the sample size increases for all value of the parameters 1p  and 2 .p  In cases where 

the value of 1p  is small, the bias of our approach is large (see Table 5) and decreases when the value 
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value of the parameter 2p  becomes larger, especially for moderate ( 100)n   to large sample sizes 

( 200).n   

 

Table 9 Second special inverse-direct case: kurtosis (K) and skewness (S), 50m      

2p  1p  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 K 4.239 4.829 6.951 10.833 44.999 27.473 41.002 38.084 33.487 28.347 
 S 0.783 0.933 1.326 1.760 2.921 2.832 3.709 3.877 3.846 3.688 

0.3 K 3.755 3.940 4.069 4.629 4.676 5.253 5.712 6.092 7.041 8.046 
 S 0.623 0.680 0.728 0.844 0.897 1.002 1.111 1.188 1.300 1.421 

0.5 K 3.703 3.700 3.750 3.804 3.883 4.005 3.980 4.116 4.548 4.677 
 S 0.595 0.595 0.612 0.624 0.652 0.672 0.693 0.739 0.843 0.883 

0.7 K 3.646 3.627 3.555 3.552 3.480 3.441 3.461 3.537 3.680 3.780 
 S 0.574 0.562 0.537 0.521 0.494 0.489 0.483 0.518 0.549 0.602 

0.9 K 3.624 3.576 3.445 3.380 3.349 3.211 3.173 3.143 3.173 3.302 
 S 0.566 0.545 0.491 0.448 0.402 0.347 0.302 0.259 0.243 0.297 

 

We can say the same about the MSE and both the true and asymptotic variances; they are smaller 

when the value of 1p  is smaller and the value of 2p  is larger. Moreover, they are very close to zero 

when 1p  is close to 0 and 2p  close to 1, especially for moderate to large sample sizes. 

We use the coefficients of skewness and kurtosis as descriptive statistics to show that the normal 

approximation is appropriated for our estimators. According to our results, the values of the skewness 

and kurtosis of these estimators are very close to zero and 3, respectively, when the sample size n  

is large. This says that the normal approximation is working well for large sample sizes, which is not 

surprising. 

The values of skewness are all negative for the values 1 20.7, 0.9p p   for large sample sizes. 

This means that the data are slightly skewed to the left or negatively skewed. The skewness of the 

estimator is positive when 1p  and 2p  are smaller. 

The estimator has a positive kurtosis with values smaller than 3 for values of 1p  and 2p  in the 

region 1 2( 0.7, 0.9),p p   which means that the estimator has a fat-tailed distribution (leptokurtic). 

The estimator has a negative kurtosis when 1p  and 2p  are smaller, which indicates a thin-tailed 

data distribution. The best result is obtained when the sample size increases so the values of skewness 

and kurtosis of the estimator decreases and becomes very close to zero and 3 respectively. 

 

6.2. First special case of the inverse-direct sampling scheme 

The bias of estimation is very small for all values of 1p  and 2p  and for all sample sizes. The 

bias increases slightly with the values of 1p  close to 0 and 2p  close to 1. As expected, the bias 

decreases close to 0 when the sample size increases for all value of the parameters 1p  and 2 .p  

We can say the same about the MSE, both true and asymptotic variances; they are smaller when 

the value of 1p  is larger and the value of 2p  is smaller. Moreover, they are very close to zero when 

1p  is close to 1 and 2p  is close to 0, especially for moderate ( 100)m   to large sample sizes 

( 200).m   
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According to our results, the values of the skewness and kurtosis of these estimators are very 

close to zero and 3, respectively, when the sample size is large. This means that the normal 

approximation is working well for large sample sizes, which is not surprising. 

Overall, the skewness of the estimator is slightly positive for all values of 1p  and 2p  and for 

all sample sizes. This means that the data are slightly skewed to the right, or positively skewed. 

The estimator has a positive kurtosis with values smaller than 3 for values of 1p  and 2p  in the 

region 1 2( 0.4, 0.1 0.6)p p    for large sample size, which means that the estimator is leptokurtic. 

The estimator has a negative kurtosis when 1p  is smalle and 2p  is extreme, which indicates a thin-

tailed data distribution. The best result is obtained when the sample size increases so the values of 

skewness and kurtosis of the estimator decrease and become very close to zero and 3, respectively. 

 

6.3. Second special case of the inverse-direct sampling scheme 

The bias of estimation increases when the values of 1p  are close to 1 and 2p  are close to 0. As 

expected, the bias decreases when the sample size increases for all values of the parameters 1p  and 

2 .p  In cases when the value of 1p  is small, the bias of our approach is small (see Table 8), and 

decreases when the value of parameter 2p  becomes larger, especially for moderate ( 100m  ) to 

large sample sizes ( 200m  ). 

We can say the same about the MSE and both true and asymptotic variances. They are smaller 

when the value of 1p  is smaller and the value of 2p  is larger. Moreover, they are very close to zero 

when 1p  is close to 0 and 2p  is close to 1, especially for moderate to large sample sizes. When 1p  

is close to 1 and 2p  is close to 0, there is a large difference between the true variance and asymptotic 

variance for small sample sizes. 

According to our results, the value of the skewness and kurtosis of these estimators are very close 

to zero and 3, respectively, when the sample size n  is large. This means that the normal 

approximation is working well for large sample sizes, which is not surprising. 

Overall, the skewness of the estimator is positive for all values of 1p  and 2p  and for all sample 

sizes. This means that the data are skewed to the right or positively skewed. In cases where the value 

of 1p  is small, the skewness of the estimator is small, and decreases when the value of the parameter 

2p  becomes larger especially for moderate to large sample sizes. 

The estimator has a negative kurtosis with values larger than 3 for all values of 1p  and 2 ,p  

which indicates a thin-tailed distribution of the estimator. The best result is obtained when the sample 

size increases so the values of skewness and kurtosis of the estimator decrease and become very close 

to zero and 3, respectively. 

 

6.4. A remark on the real data analysis  

It is common for statistical papers to provide an example of real data analysis. Unfortunately, we 

cannot provide it in this article. These two Special Cases estimators were introduced in Ngamkham 

et al. (2016) and have not been used for a practical applications yet. According to the results presented 

in Pattarapanitchai et al. (2020), these estimators of the ratio of proportions are significantly more 

efficient in comparison with usual estimators for all four combinations of sampling schemes. The 

authors would like to attract the attention of practitioners to there interesting estimators. 
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