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Abstract

This study purposes the use of Bayesian estimation for the discrete Weibull regression under
type-I right censored data. Moreover, we compared the performance of the maximum likelihood
estimation and the Bayesian estimation with uniform noninformative priors and informative priors
using the random walk Metropolis algorithm. A simulation study was conducted to compare the
performance of three different estimation methods using mean square error with three types of data:
excessive zeros data, under-dispersion data, and over-dispersion data. A real dataset is analyzed to
see how the model works in practice. The results from both the simulation study and a real data
application showed that the maximum likelihood estimation and the Bayesian estimation with
informative priors are both appropriate for the discrete Weibull regression under type-I right censored
data in the cases of excessive zeros and under-dispersion. However, the Bayesian estimation with
informative priors is more appropriate for the discrete Weibull regression under type-I right censored
data than other methods in the case of over-dispersion.

Keywords: Bayesian estimation, random walk Metropolis algorithm, discrete Weibull regression, type-I right
censored, over-dispersion.

1. Introduction

Count data refers to the number of times an event or an item occurs over a fixed period of time,
which can take only the non-negative integer values. Examples include the number of times cardiac
arrest happens over a fixed period of time, the number of times patients visit a doctor over a fixed
period of time within a hospital, the number of epileptic seizures experienced over a fixed period of
time, the number of claims in an insurance company over a fixed period of time, and the number of
recurrent circuit breaker failures over a fixed period of time. This form of counts information is
applied to many research areas such as medicine, actuarial science, biostatistics, demography,
economics, engineering, political science, and sociology. Individual count data is called a count
variable, which is treated as a random variable: the Poisson, negative binomial, and discrete Weibull
distributions are widely used to represent its distribution.
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Regression analysis for count data is used in realistic contexts when other variables have an
effect on the count response variable. Modeling count data may present three types of dispersion:
equi-dispersion, under-dispersion, and over-dispersion. The Poisson regression is most commonly
used for modeling count data, e.g., Lovett and Flowerdew (1989) and Hutchinson and Holtman
(2005). Despite the popularity of the Poisson regression, it is limited by its equi-dispersion, i.e., the
assumption that the mean and variance are equal. Alternatively, the negative binomial regression has
become the most widely used for modeling count data, e.g., Gardner et al. (1995), and Allison and
Waterman (2002), as this regression is appropriate for modeling over-dispersion count data. With
real data, the dispersion is mostly under-dispersed or over-dispersed, and the discrete Weibull
regression can be adapted to both situations. Moreover, many datasets have multiple zeros response
variables.

The discrete Weibull regression is an interesting subject for study and development, e.g.,
Kalktawi (2017), Kalktawi et al. (2018), Haselimashhadi et al. (2018), and Collins et al. (2020).
Focusing on over-dispersion data wherein the variance is larger than the mean may limit the
effectiveness of a standard model. When the value of an observation or measurement is only partly
known we refer to this observation as being censored. In some cases, the response variable takes large
values or outliers affecting its mean and variance, causing over-dispersion that potentially having a
negative effect on the performance of a regression model. Thus, censoring the large values of this
response can control this over-dispersion. Censored count data can appear in many applications where
recording the count response variable is available for a limited range while the covariate values are
always observed. Therefore, appropriate censoring is applied to solve problem with over-dispersion
data. There are three types of right censoring: type-I right censoring that fixes a predetermined
censoring value; type-II right censoring that fixes a predetermined number of uncensored data; and
random censoring, extended from the type-I right censoring, in which the predetermined censoring
value is random. The challenge faced by practitioners is the selection of censored data, e.g., Saffari
et al. (2013), Kalktawi (2017), Yu (2018), and Saffari and Allen (2019).

Improvement can be made in the estimation of parameters for the discrete Weibull regression.
Recently, Kalktawi (2017) introduced the maximum likelihood estimation for the discrete Weibull
regression model with type-I right censoring, which is the classical inference that uses only empirical
knowledge from the likelihood function. In the cases of over-dispersion, the performance of a
censoring model is better than a standard model. Besides the classical inference, the Bayesian
statistical inference differs from the maximum likelihood estimation that uses two sources of
information, i.e., prior knowledge about the parameters from the prior probability distribution and
empirical knowledge from the likelihood function. Moreover, Haselimashhadi et al. (2018) proposed
the Bayesian estimation for the discrete Weibull regression model with an application to health data.
When a prior distribution has no population basis — in other words, there is no specific prior
knowledge about the parameters — the noninformative prior is used; for instance, Haselimashhadi et
al. (2018) chose uniform noninformative priors on parameters. On the other hand, when there is prior
knowledge of the parameters, the informative prior is provided in the Bayesian estimation.

In this paper, we focus on the Bayesian estimation for the discrete Weibull regression under
type-I right censored data with uniform noninformative priors and informative priors. The main
difficulty faced when dealing with the Bayesian estimation comes from the computation of the
posterior probability distribution, in which case the Markov chain Monte Carlo (MCMC) method is
used to draw a sample from a probability distribution. We choose one MCMC method, that is, the
random walk Metropolis algorithm, for simulating a sample from a posterior probability distribution.
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The remainder of this paper is organized as follows. In Section 2, we introduce the discrete
Weibull distribution and the discrete Weibull regression, present the discrete Weibull regression
model under type-I right censored data and the Bayesian estimation for the discrete Weibull
regression model under type-I right censored data, and define the random walk Metropolis algorithm.
In Section 3, we investigate the performance of the estimations through a simulation study and apply
our computational methods to a real dataset. Finally, we conclude our findings in Section 4.

2. Materials and Methods
2.1. Discrete Weibull distribution

The discrete Weibull distribution was proposed by Nakagawa and Osaki (1975). They considered
failure studies in which the time to failure is often measured in the number of cycles to failure and
becomes a discrete random variable. In failure analysis, the failure data in failure studies are generally
measured in discrete time such as cycles, blows, shocks, or revolutions. Moreover, the discrete
Weibull distribution is useful to reliability engineers and theoreticians.

Let Y be a discrete random variable which follows the discrete Weibull distribution with the

parameters ¢ and f, denoted by Y ~ DW(q,ﬁ). The cumulative distribution function and the
probability mass function of a discrete random variable Y are given by
1-g"" y=0,1,2,...
F(v:q.8)=1 1 r=on
0, otherwise,

and

y

Tt y=01.2
pY(y;qaﬂ): q q > Y ) ? SN
0, otherwise,

respectively, where 0 <g <1 and £ >0 are the shape parameters (Nakagawa and Osaki, 1975). In
addition, the parameter ¢ =1-p, (O;q, ﬁ’) which is the probability of ¥ being more than zero.

The relationship to the continuous Weibull distribution and discrete Weibull distribution is
shown through the shape parameter. The cumulative distribution function of a continuous random
variable Y, is given by

_ 1."5

1-e v, 20
E, (y.;4,0)= > Jc
e (ve ) {0, otherwise,
where A and [ are the scale and shape parameter, respectively. The parameter £ from the discrete

Weibull distribution is equivalent to the shape parameter £ from the continuous Weibull distribution.

Moreover, the parameter ¢ from the discrete Weibull distribution is equivalent to e when A is the

scale parameter from the continuous Weibull distribution.

2.2. Discrete Weibull regression

Regression analysis for count data is a statistical technique to evaluate the relationship between
a dependent variable that is a count variable and one or more explanatory variables; accordingly, it
useful in real life when other variables have an effect on response variables. The discrete Weibull



794 Thailand Statistician, 2022; 20(4): 791-811

regression can link the independent variables through the shape parameters ¢ and . In this paper,
we linked the independent variables only through the shape parameter g.
Lee and Wang (2003) assumed that the scale parameter A in the continuous Weibull distribution

is related to &k covariates via the log link function; log(/”t) =x0a. Similar to the continuous Weibull
distribution, Kalktawi (2017) assumed that the parameter ¢ in the discrete Weibull distribution is
related to &k covariates via the log-log link function; log(—log(q)) = X0.

Let Y be a count response variable which takes only the non-negative integer values and let
X,,X,,...,x, be k explanatory variables. Assume that the conditional distribution of ¥ given

X,%,,...,x, follows the discrete Weibull distribution with the parameters ¢ and S, where the

parameter ¢ is related to k explanatory variables x,,x,,...,x, via the log-log link function:

log(—log(q)) =Xa, (1)
where x:(l X e xk) and (lz(ao o - ak)',
$0 log(~log(q)) = a, +ax, +...+a,x, ,
g=q(x)=e". 2)
The conditional probability mass function of ¥ given x,,x,,...,x, can be written as
x| e
e’ —le™® , =0,1,2,...
P ey B G B S ®
0, otherwise,
where x=(1 x - x)anda=(q, o - a,).
Given n independent observations y,,y,,...,y, and x,,x,,...,x,, i=12,...,n, from (3) for

the count response variable V,,Y,,...,Y, and k explanatory variables x,,x,,,...,x,, the likelihood

function of the discrete Weibull regression model is given by

s

Lyy = f(y, sees V) |X. . ) - ﬁ{(eex'" )y‘ —(e"’"" )(),‘H)p }

i=1

where x, =(1 x, - x)anda=(q, @ - a).

The log-likelihood function of the discrete Weibull regression model is given by

Ly = Zlog |:(eew )J’fﬁ B (e—e‘r" )(},,_H)/f :|

2.3. Discrete Weibull regression under type-I right censored data
Right censoring is used when data is right skewed or has an outlier. In this paper, we choose

type-1 right censoring to solve the problem of over-dispersion data. Let Y;',Y,,...,Y, be the count
response variables which take only the non-negative integer values and let x,,x,,...,x,,

i=12,...,n, be k explanatory variables. Assume that the conditional distribution of ¥, given

XisXipseens Xy, 1=1,2,...,n, follows the discrete Weibull distribution with the parameters g, and £,
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where the parameter ¢, is related to k explanatory variables x,,x,,...,x,, {=12,...,n, via the
log-log link function in (1). Given n independent observations y,,y;,...,y, and
X, = (1 X, v X, ), i=12,...,n, from (3) censored from the right at a fixed censoring value C,
the observed response variables y,, y,,...,y, can be determined as
: * y* s y* < C)

c=min(y,,C)=<" . 4

¥, (v.C) {C’ psc 4)

Let 6,, i=12,...,n, be the censor indicator for type-I right censoring that can be specified as

. 0, yi‘ <C,
S =1y =2C)= i 5)
—1(x20) {L s (

The likelihood function of the discrete Weibull regression under type-I right censored data model
is given by

Lepw = f (952 [X10000%, ) = H[( o )y/’ _(e*e»m )(w)” r‘ [(e )C” T .

The log-likelihood function of the discrete Weibull regression under type-I right censored data
model is given by

n

L = >(1-6 ) log [(eyﬂ J- (e*oa ap e )} —CPY s,
i=1

i=1

= ." (l—d)log[wi(u,ﬂ)]—Cﬁié;e"“, (6)

where w, (@, 8) = (ej/*ex,u )_ (87(%“)%"“ )

In next section, we apply the inverse of the observed Fisher’s information matrix to generate a

random error vector in a random walk Metropolis algorithm. Let 7 (9) be the observed Fisher's

information matrix for the (k+2)><(k+2) unknown parameters with negative members of the

second derivative of the log-likelihood function with respectto «, j =0,1,...,k and L has the form:

0? 0? 0°
-—1 - -1
dal " da,0a, " da,0p "
0 0 0°
e — —1 -—1
[(9): aaoaal CDW a 12 CDW aalaﬂ CDW , (7)
0? 0? 0?
-—1 -—I -—1
| aaoaﬁ CDW aalaﬁ CDW 8ﬁ2 CcDW ]
where
2 n _ 2 5\1 91 n
a—lc‘DW = 1=6| 0w _ 10w ow —C”Zé}x[jx[/,e"‘“,
6aj6aj, oW, 605].60:]., w, 605]. 6aj, pary
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2 1 1-8.| &’w, - Ow,
a—] = _61|: aWz _L%%:l Cﬁlog 25xlje

da,0f " S w | 0a,0B w oa, O
o n1-8[&w, 1 (ow Y 2
— ey = ——|—==| [-C"|log(C seM,
B ow = L ” |:aﬂ2 Wi[aﬁj :| [Og( )] ; €
%:_x e”|: W «yﬁ ef(vu) e (y +1)ﬂ:|
oa, Y ' ' ’
% =" [e_y"ﬂew ¥/ log(y,) _ e (v, + 1)ﬂ log(y, +1)},
aZWl X;0 € y’.ﬂe ayi {l yl }
oa.oa xljxlj ¢ (7 +1)ﬁew ( +l)/3 {l ( +l)/3 xu}
o eyl log(y,){1-yle )

i X, 0

=—X;e xio >
Ga0f " | = (3 1) og (3, + 1) 1= (3, +1) €

P, | (o () {1t
and = ¢

B e (1) g +1)) (1= (3, +1) e} |

2.4. Bayesian estimation
In this section, we present the Bayesian inference for the discrete Weibull regression model under
type-I right censored data. We focus on the three covariates, so the parameters o and [ are

considered. We investigate the performance of the estimation through both noninformative and
informative prior distributions. Firstly, we perform the estimators using the uniform noninformative
prior distribution proposed by Haselimashhadi et al. (2018). In the context of discrete Weibull
regression, there are no conjugate priors. It is often more natural to express prior information directly
in terms of the parameters a. According to «, is a regression coefficient that can be a real number;

a,€R,j=0,1,23 and the possible values of a normal distribution is a real number. Then, we select
the prior distribution of ¢« as a normal distribution (Gelman et al. 2008, Fu 2016, Chanialidis et.

al., 2018). Moreover, a normal prior distribution on « is particularly convenient with the
computational methods. According to the parameter § from the discrete Weibull distribution is
equivalent to the shape parameter £ from the continuous Weibull distribution that >0 and the

possible values of a Gamma distribution is a positive real number. Then, we select the prior
distribution of £ as a Gamma distribution (Aslam et al., 2014; Chacko and Mohan 2019). The joint

prior distribution of the parameters a and £ under the independence assumption is
7(0) = (0. f) =7 () 7 (e ) 7 (a,) 7 (e) 7 ()
According to the informative prior distributions of the parameters a and [, we assume the
hyperparameters of ¢, are ( ,u,.,al.z), i=0,1,2,3 and the hyperparameters of /3 are (a,b).

The choice of the hyperparameters’ values will generally depend upon the applications of real
data. At this moment, we leave them unspecified.
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The joint posterior density function of the parameters @ and £ can be written as

L(0]y.x,3)7(0)

p(8ly.x.8)=

>

S8

T T L(8y,x,8)7(0)da, --dad 3

o L(8]y.x,8)(6). ®)
The Bayes estimator of function h(ﬂ) of the parameters @ and £ under squared error loss
function is the expected value of function 4 (9) under the joint posterior density function. Therefore,

the Bayes estimator of function h(()) is given by

©

h(8) = T T j h(®)p(0]y.x,8)dc, -da,dp. 9)

Since the integral in (9) does not have a closed form, we choose the Metropolis-Hastings
algorithm to estimate the Bayes estimators.

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for
simulating a sample from a probability distribution that is the target distribution from which direct
sampling is difficult (Hastings 1970). This algorithm is similar to acceptance-rejection method the
proposal (candidate) value can be generated from the proposal distribution. Then, the proposal value
is accepted with an acceptance probability. Moreover, the Metropolis-Hastings algorithm is
converging to the target distribution itself. In this paper, we choose a random walk Metropolis
algorithm, which is a special case of a Metropolis-Hastings algorithm.

Let the joint posterior density function of the parameters « and S, p(9|y,x,6), in (8) be the

target distribution, @ be the current state value and @ be the proposal value generated from the

proposal distribution q(B* |9) Then, the proposal value @ is accepted with the probability

p=min(LR,), where

L(0"|y.x.8)7(6") q(6[0)
= x .
* L(8]y,x.3)7(0) 4(0]0)
In the random walk Metropolis algorithm, the proposal distribution is symmetrical, depending
only on the distance between the current state value and the proposal value. Then, the proposal value

0" is accepted with probability p = min(l, R, ), where

R, =L(0"|y,x.8)7(0")/L(0]y.x.8)7(0).
The iterative steps of the random walk Metropolis algorithm can be described as follows:

Step 1: Initialize the parameters 9(0) =( (()0), 1(0), §°),a§°),ﬂ‘°)) for the algorithm using the

maximum likelihood estimation (MLE) of the parameters 0 = (ao .0, 0,04, ).

Step 2: For [=1,2,...,L repeat the following steps;
a. Generate random error vector ¢ from a multivariate normal distribution with a zero-mean
vector and variance-covariance matrix as a diagonal matrix in which the diagonal elements are the
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diagonal of the inverse of the observed Fisher’s information matrix in (7);
€~ N(p =0,X= diag(f1 (0))) Then, set 0" =0 +&.

b. Calculate p =min(1,R,) where R, =L (9* lv.x, 6) i (9* )/L (0|y, X, 8) 7(8).

c. Generate « from a uniform distribution; u ~ U (0,1).

If u< p, accept 0" andset ') =0" with probability p.

-1

If u>p, reject 0 and set 0" =0 with probability 1— p.

Step 3: Remove B of the chain for burn-in.
Step 4: Calculate the estimated values of the Bayes estimators of the parameters a and £ under

the squared error loss function from the average of the generated values given by

5 L <0
- o, (10)

Bayes
L-B [=B+1

where 6 is a parameter in vector 0 = (ao,al ,Qy, a3,,6’).

3. Results and Discussion
3.1. Simulation study

In this section, a Monte Carlo simulation is conducted to assess and compare the performance of
the maximum likelihood estimation and the Bayesian estimation for the discrete Weibull regression
with type-I right censored data and various selected sample sizes 7 =60, 90, 120 and 150. The three

explanatories are x, ~ N(0,1), x,, ~U(=0.3,0.3), and x, ~ Ber(0.4). In particular, we select
(2., 0,05, 8) =(0.1,-0.2,1.6,0.2,0.9) for the excessive zeros case, (@,,a,,a,,a;, /)
=(-2.8,0.01,0.4,-0.2,2.5)  for the under-dispersion case, and (q,a,a,,a;,0)
= (—2.8,0.01,0.4, —0.2,0.9) for the over-dispersion case. We compute ¢, for each type of data from
the log-log link function in (2). We then generate the count response variables ¥,",Y, ,...,Y, from (3)
using function rdw ( ) from package DWreg in R. We censor the data using type-I right censoring
with different percentages of censored data: censoring at C =2,3 for the excessive zeros case,
censoring at C =3,4,5 for the under-dispersion case, and censoring at C =29,34,40,49 for the over-
dispersion case. Then we get the response variables y,,y,,...,», as observed data from (4) and the
indicator §,,9,,...,0, is the censor indicator from (5).

Next, we calculate the maximum likelihood estimators of the parameters a and f by
minimizing the negative log-likelihood function of the discrete Weibull regression under the type-I
right censored data model in (6). Then, we get 6%’2 using function optim( ) from package stats
in R. We calculate the Bayes estimators of the parameters a and £ with uniform noninformative
priors under the squared error loss function using the random walk Metropolis algorithm with
L =10,000 replicates and 10% of the chain for burn-in; B =1,000. Then, we get o\ ) from (10)

Bayes

where R, in Step 2(b) is R, = L(G*

y,x,é) / L(0|y,x,6). We calculate the Bayes estimators of the

parameters a and £ with informative priors under the squared error loss function using the random
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walk Metropolis algorithm with L =10,000 replicates and 10% of the chain for burn-in; B =1,000.
Then, we get 6"  from (10).

Bayes
For each sample sizes n, we repeat the previous steps for a M =1,000 times. The parameter
estimates and the mean squared error (MSE) of estimators based on M =1,000 from the MLE and

the Bayesian estimation with uniform noninformative priors (Bayes(Uniform)) and informative priors
(Bayes(Informative)) are reported in Tables 1 and 2 for the excessive zeros case when censoring at
C=3 and C =2, Tables 3 to 5 for the under-dispersion case when censoring at C =5, C=4 and
C =3, and Tables 6 to 9 for the over-dispersion case when censoring at C =49, C=40, C=34
and C=29.

Table 1 Parameter estimates (Est.) and MSE for the excessive zeros case
0= (0.1,—0.2,1.6,0.2,0.9) at C=3

n MLE Bayes (Uniform) Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, 0.0947 0.0494  0.0494 0.0563 0.0901  0.0498

a, —0.2339 0.0347 -0.2506 0.0415 —-0.2365 0.0356

(5.22%) a, 1.7953 1.2122  1.9203 1.4732 1.8147  1.2437
a, 0.2449 0.1235 0.2544 0.1421 02419  0.1248

B 1.0056 0.0634  1.0472 0.0789 0.9872  0.0599

a, 0.1057 0.0317  0.0759 0.0335 0.1031  0.0318

a, —-0.2161 0.0184 -0.2247 0.0206 -0.2172  0.0187

(5.2;)%) a, 1.7150 0.6491  1.7831 0.7326 1.7245  0.6582
a, 0.2118 0.0660  0.2157 0.0702 0.2098  0.0662

B 0.9565 0.0373  0.9804 0.0417 0.9433  0.0359

a, 0.0981 0.0230 0.0752 0.0246 0.0957  0.0231

a, —-0.2128 0.0134 -0.2193 0.0146  —0.2138  0.0136

(5.1628(‘)’/0) a, 1.7028 0.4564 1.7501 0.4921 1.7101  0.4578
a, 0.2230 0.0535 0.2261 0.0568 0.2215  0.0537

B 0.9426 0.0256  0.9596 0.0277 0.9327  0.0247

a, 0.0993 0.0201 0.0816 0.0209 0.0976  0.0202

a, -0.2118 0.0100 -0.2165 0.0106 -0.2125 0.0101

(5.1654(‘)%) a, 1.6522 03202  1.6875 0.3389 1.6579  0.3212
a, 0.2144 0.0420 0.2169 0.0436 02133 0.0420

B 0.9362 0.0194  0.9492 0.0209 0.9285  0.0189

Note: the boldface identifies the smallest MSE for each case.
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Table 2 Parameter estimates (Est.) and MSE for the excessive zeros case
0=(0.1,-0.2,1.6,0.2,0.9) at C=2

n MLE Bayes (Uniform) Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, 0.0967 0.0504  0.0439 0.0653 0.0915  0.0508

a, -0.2351 0.0354 -0.2529 0.0453 -0.2382  0.0367

(122()1%) a, 1.7942  1.2739 1.9304 1.5840 1.8194  1.3095
a, 0.2440 0.1296  0.2558 0.1527 0.2412  0.1320

B 1.0073 0.0898 1.0658 0.1801 0.9879  0.0859

a, 0.1070 0.0324  0.0734 0.0347 0.1032  0.0326

a, -0.2159 0.0200 -0.2265 0.0228 -0.2177  0.0204

(12207%) a, 1.6975 0.6971 1.7721 0.7883 1.7096  0.7088
a, 0.2142 0.0686 0.2186 0.0738 0.2113  0.0688

it 0.9500 0.0517  0.9902 0.0594 0.9368  0.0505

a, 0.1001 0.0241  0.0744 0.0254 0.0970  0.0241

a, -0.2142 0.0143 -0.2212 0.0157 -0.2152 0.0145

(121"2‘8%) a, 1.6936 0.4780 1.7469 0.5207 1.7027  0.4832
a, 0.2234 0.0575 0.2270 0.0611 0.2215  0.0579

s 0.9332 0.0339 0.9623 0.0373 0.9230  0.0330

a, 0.1001 0.0202 0.0798 0.0212 0.0977  0.0203

a, -0.2108 0.0108 -0.2161 0.0116 -0.2115 0.0109

(121;2%) a, 1.6476  0.3365 1.6859 0.3615 1.6542  0.3388
a, 0.2158 0.0432 0.2186 0.0452 0.2146  0.0433

B 0.9353 0.0279  0.9566 0.0299 0.9261  0.0270

Note: the boldface identifies the smallest MSE for each case.
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Table 3 Parameter estimates (Est.) and MSE for the under-dispersion case
0=(-2.8,0.01,0.4,-0.2,2.5) at C=5

n MLE Bayes (Uniform)  Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, —2.9553 0.2158 -3.0408 0.2578 -2.9588  0.2169

a, 0.0086 0.0269 0.0080 0.0280 0.0082  0.0269

(422%) a, 0.4309 0.8177 0.4359 0.8663 0.4300 0.8188
a; -0.2099 0.1029 -0.2204 0.1072 -0.2122  0.1024

B 2.6466 0.1234  2.6888 0.1433 2.6334  0.1202

a, -2.8593 0.1192 -2.9147 0.1333  -2.8618 0.1198

a, 0.0157 0.0144 0.0161 0.0149 0.0157  0.0144

(4?;)%) a, 0.4225 04722 0.4218 0.4870 0.4201  0.4727
a, -0.2094 0.0614 -0.2159 0.0637 -0.2107  0.0613

B 2.5705 0.0619 25971 0.0689 2.5617  0.0611

a, -2.8528 0.0937 -2.8943 0.1021 -2.8542  0.0938

o, 0.0069 0.0109 0.0063 0.0110 0.0068  0.0108

(4'1523(()%) a, 0.3998 0.3274 0.3984 0.3394 0.3961  0.3275
a, -0.2149 0.0427 -0.2206 0.0430 -0.2165  0.0422

B 2.5599 0.0511  2.5798 0.0556 2.5530  0.0504

a, -2.8706 0.0752 -2.9027 0.0818 -2.8714 0.0749

a, 0.0106 0.0081 0.0106 0.0082 0.0105  0.0081

(4'1551(()%) a, 0.4245 0.2613  0.4263 0.2657 0.4241  0.2602
a, —-0.1910 0.0322 -0.1952 0.0325 -0.1920  0.0321

B 2.5613 0.0421  2.5762 0.0448 2.5553  0.0412

Note: the boldface identifies the smallest MSE for each case.
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Table 4 Parameter estimates (Est.) and MSE for the under-dispersion case
0=(-2.8,0.01,04,-0.2,2.5) at C=4

n MLE Bayes (Uniform) Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, -2.9354 0.2310 -3.0346 0.2765 -2.9381 0.2313

a, 0.0082 0.0302 0.0084 0.0322 0.0081  0.0305

(17%06%) a, 0.4408 0.9009 0.4535 0.9623 0.4438  0.9056
a, -0.2104 0.1136 -0.2238 0.1200 -0.2138  0.1138

B 2.6224 0.1372  2.6738 0.1586 2.6047  0.1335

a, -2.8519 0.1355 -29141 0.1499 -2.8543 0.1354

a, 0.0158 0.0162 0.0159 0.0167 0.0157  0.0162

(16.9505%) a, 0.4181 0.5259 04162 0.5477 0.4167  0.5310
a, -0.2136 0.0703 -0.2217 0.0726 -0.2152  0.0702

B 2.5626 0.0752  2.5939 0.0823 2.5514  0.0738

a, -2.8452 0.1062 -2.8913 0.1148 -2.8458  0.1057

a, 0.0059 0.0115 0.0061 0.0117 0.0060  0.0115

(161.33%) a, 0.3796 0.3745  0.3793 0.3830 0.3776  0.3742
a, -0.2147 0.0471 -0.2218 0.0486 -0.2164  0.0475

B 2.5502 0.0631 2.5736 0.0673 2.5408  0.0619

a, -2.8674 0.0839 -2.9058 0.0920 -2.8682  0.0834

a, 0.0105 0.0089 0.0108 0.0091 0.0107  0.0089

(161;2%) a, 0.4161 0.3100 0.4187 0.3197 0.4162 0.3111
a, —0.1882 0.0369 -0.1944 0.0372 -0.1904 0.0368

p 2.5558 0.0507  2.5756 0.0543 2.5488  0.0498

Note: the boldface identifies the smallest MSE for each case.
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Table 5 Parameter estimates (Est.) and MSE for the under-dispersion case

0=(-2.8,0.01,04,-0.2,2.5) at C=3
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n MLE Bayes (Uniform)  Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, -2.9373 0.2878 -3.0847 0.3746 -2.9434  0.2860

a, 0.0009 0.0412 0.0015 0.0437 0.0013  0.0412

(42i(2)%) a, 0.4241 1.2051 0.4271 1.3230 0.4226  1.2227
a, -0.2180 0.1615 -0.2369 0.1768 -0.2237  0.1637

B 2.6171 0.2215  2.7058 0.2653 2.5890  0.2127

a, -2.8587 0.1752 -2.9518 0.2068 -2.8616  0.1745

a, 0.0181 0.0227 0.0187 0.0233 0.0181  0.0227

(41.9208%) a, 0.3914 0.7241  0.3938 0.7695 0.3905  0.7322
a, -0.2185 0.0992 -0.2312 0.1032  -0.2218  0.0990

B 2.5649 0.1297  2.6214 0.1479 2.5463  0.1266

a, -2.8490 0.1312 -2.9187 0.1483 -2.8517 0.1311

o, 0.0068 0.0157 0.0066 0.0160 0.0069  0.0157

@ 11"2‘;)%) a, 0.3658 0.4952  0.3632 0.5134 0.3620  0.4962
a, -0.2157 0.0694 -0.2266 0.0711 -0.2189  0.0693

B 2.5519 0.1017  2.5947 0.1115 2.5389  0.1000

a, -2.8827 0.1113 -2.9376 0.1256 -2.8843  0.1101

a, 0.0100 0.0124  0.0103 0.0126 0.0103  0.0123

(411;2%) a, 0.4184 04125 0.4184 0.4327 0.4161 0.4146
a, -0.1918 0.0526 -0.1996 0.0532  -0.1942  0.0524

B 2.5723 0.0874  2.6049 0.0949 2.5605  0.0850

Note: the boldface identifies the smallest MSE for each case.
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Table 6 Parameter estimates (Est.) and MSE for the over-dispersion case
0=(-2.8,0.01,0.4,-0.2,0.9) at C=49

n MLE Bayes (Uniform) Bayes (Informative)
(% censored) DT Eg MSE Est.  MSE  Est MSE

a, -2.8892 0.2132 -3.0102 0.2417 -2.9071  0.2041

a, 0.0090 0.0322  0.0090 0.0297 0.0083  0.0301

(152(2%) a, 0.5447 1.0049  0.4456 0.8921 0.4934  0.8125
ay -0.2221 0.1246 -0.2220 0.1136  -0.2207  0.1130

B 0.9308 0.0166 09543 0.0174 0.9287  0.0152

a, -2.8097 0.1314 -2.8942 0.1305 -2.8253  0.1218

a, 0.0167 0.0174  0.0160 0.0158 0.0162  0.0159

(15?503%) a, 0.4768 0.6416  0.4145 0.5159 0.4445  0.5060
a; -0.2116 0.0767 -0.2191 0.0701 -0.2147  0.0700

B 0.9089 0.0093  0.9272 0.0091 0.9096  0.0084

a, -2.8115 0.1097 -2.8863 0.1049 -2.8272  0.0980

a, 0.0110 0.0122  0.0080 0.0109 0.0095 0.0112

(151;2%) a, 0.4606 0.5229  0.3787 0.3664 0.4179  0.3671
a, —0.2133 0.0565 -0.2182 0.0457 -0.2152  0.0478

B 0.9077 0.0083  0.9244 0.0078 0.9093  0.0073

a, —2.8266 0.0878 -2.8938 0.0789 —-2.8430  0.0760

a, 0.0151 0.0098  0.0122 0.0084 0.0137  0.0086

(151.22%) a, 0.4496 0.4691  0.4169 0.2970 0.4310 0.3107
a, —0.1942 0.0469 -0.1923 0.0363 —-0.1937 0.0386

B 0.9082 0.0069  0.9233 0.0060 0.9106  0.0059

Note: the boldface identifies the smallest MSE for each case.
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Table 7 Parameter estimates (Est.) and MSE for the over-dispersion case

0=(-2.8,0.01,0.4,-0.2,0.9) at C =40

n MLE Bayes (Uniform)  Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, -2.8772 0.2196 -3.0158 0.2541 -2.8993  0.2083

o 0.0103 0.0326  0.0085 0.0317 0.0094  0.0310

(21.6607%) a, 0.5615 1.0951  0.4381 0.9470 0.4984  0.8806
a; —-0.2227 0.1347 -0.2268 0.1242  -0.2235  0.1222

B 0.9252 0.0174  0.9549 0.0189 0.9248  0.0159

a, -2.8052 0.1465 -2.8989 0.1380 -2.8209  0.1301

o 0.0183 0.0181  0.0165 0.0165 0.0174  0.0165

(212)05%) a, 0.4826 0.7263  0.4068 0.5683 0.4426  0.5566
a, —-0.2231 0.0883 -0.2205 0.0754 -0.2211  0.0764

p 0.9084 0.0109  0.9282 0.0100 0.9081  0.0095

a, -2.8117 0.1223 -2.8908 0.1103  -2.8285 0.1071

o, 0.0114 0.0132  0.0078 0.0117 0.0095 0.0118

@ 1%?;)%) a, 0.4254 0.6258  0.3782 0.3977 0.3988  0.4166
a, -0.2079 0.0621 -0.2154 0.0493 -0.2111  0.0517

B 0.9060 0.0101  0.9252 0.0086 0.9084  0.0084

a, -2.8216 0.0972 -2.8996 0.0855 -2.8407  0.0817

a, 0.0149 0.0103  0.0124 0.0087 0.0137  0.0090

@ 11;;)%) a, 0.4632 0.5204 0.4134 0.3188 0.4370  0.3330
a, —-0.2003 0.0474 -0.1942 0.0382 -0.1979 0.0397

B 0.9073 0.0078  0.9254 0.0068 0.9102  0.0066

Note: the boldface identifies the smallest MSE for each case.
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Table 8 Parameter estimates (Est.) and MSE for the over-dispersion case
0=(-2.8,0.01,0.4,-0.2,0.9) at C =34

n MLE Bayes (Uniform) Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, -2.8899 0.2355 -3.0260 0.2724 -2.9076  0.2235

a, 0.0077 0.0342  0.0071 0.0337 0.0075  0.0328

(26.6507%) a, 0.4884 1.1340 0.4309 1.0156 0.4589  0.9562
a, -0.2147 0.1338 -0.2270 0.1322 -0.2190  0.1253

B 0.9281 0.0200 0.9574 0.0211 0.9256  0.0181

a, -2.8053 0.1454 -2.9020 0.1473 -2.8218  0.1353

a, 0.0196 0.0186  0.0187 0.0177 0.0189  0.0175

(26.9002%) a, 0.4695 0.7872  0.4068 0.6168 0.4350  0.6037
a, -0.2160 0.0913 -0.2236 0.0815 -0.2183  0.0797

s 0.9067 0.0118 0.9284 0.0116 0.9067  0.0107

a, -2.8055 0.1251 -2.8902 0.1140 -2.8231  0.1092

a, 0.0123 0.0147  0.0077 0.0127 0.0101  0.0130

(261.5(())%) a, 0.4413 0.6286  0.3751 0.4203 0.4051 0.4244
a, -0.2092 0.0661 -0.2165 0.0533 -0.2124 0.0551

B 0.9029 0.0110  0.9239 0.0093 0.9054  0.0092

a, -2.8316 0.1071 -2.9040 0.0903 -2.8472  0.0899

a, 0.0165 0.0108  0.0138 0.0093 0.0151  0.0096

(261.?2%) a, 0.4579 0.5436  0.4146 0.3262 0.4337  0.3545
a, —-0.2006 0.0556 —-0.1955 0.0420 -0.1978 0.0450

p 0.9094 0.0089  0.9268 0.0076 0.9116  0.0074

Note: the boldface identifies the smallest MSE for each case.
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Table 9 Parameter estimates (Est.) and MSE for the over-dispersion case

0=(-2.8,0.01,0.4,-0.2,0.9) at C =29

n MLE Bayes (Uniform)  Bayes (Informative)
(% censored) parameter Est. MSE Est. MSE Est. MSE

a, -2.8875 0.2318 -3.0291 0.2835 -2.9059  0.2259

a, 0.0068 0.0366  0.0058 0.0364 0.0063  0.0354

(31'6901 %) a, 0.5112 12369  0.4345 1.1243 0.4685  1.0654
a; -0.2193 0.1578 -0.2322 0.1490 -0.2232  0.1454

B 0.9255 0.0203  0.9563 0.0229 0.9221  0.0192

a, -2.8063 0.1522 -2.9094 0.1561 -2.8235  0.1403

o 0.0212 0.0199  0.0179 0.0191 0.0193  0.0187

(30'9905%) a, 0.4339 0.8027  0.4031 0.6372 0.4177  0.6227
a, —-0.2240 0.0957 -0.2276 0.0857 -0.2243  0.0842

B 0.9076 0.0128  0.9312 0.0130 0.9074  0.0118

a, -2.8209 0.1191 -2.8943 0.1175 -2.8324  0.1088

a, 0.0101 0.0144  0.0076 0.0135 0.0089  0.0133

3 11;;)%) a, 0.4467 0.6259  0.3685 0.4408 0.4050  0.4485
a, -0.2075 0.0642 -0.2174 0.0583 -0.2108  0.0569

B 0.9072 0.0107  0.9251 0.0102 0.9073  0.0095

a, -2.8331 0.1007 -2.9117 0.0962 -2.8512  0.0889

a, 0.0174 0.0117  0.0140 0.0104 0.0157  0.0104

3 11;;)%) a, 0.4798 0.6005  0.4134 0.3530 0.4442  0.3887
a, —0.1894 0.0618 -0.1946 0.0459 -0.1924 0.0497

B 0.9082 0.0093  0.9288 0.0086 0.9117  0.0079

Note: the boldface identifies the smallest MSE for each case.
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From the numerical results for fixed censoring time C, as the sample size (n) increases, the

MSE of the estimators decreases for all methods. In the cases of excessive zeros and under-dispersion,
the performance of the MLE and the Bayes estimators with informative priors for parameter a is

quite similar and better than the Bayes estimators with uniform noninformative priors in terms of the
MSE of the estimators. In the cases of over-dispersion, the performance of the Bayes estimators for
the parameters o and £ is better than the MLE in terms of the MSE of the estimators. Moreover,

the Bayes estimators with informative priors for parameter [ shows the best performance for all

cases in terms of the MSE of the estimators. Besides, note that the MSE of the estimators of ¢, are

generally too big that may cause from we define a strong effect on x, or the high variance of the

estimators of «,. In addition, the MSE of estimators is depends on the explanatory variable .

However, when n is large enough the MSE of estimators will decrease and not too big anymore.
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Finally, we can summarize the best performance method for the discrete Weibull regression under

type-I right censored data in Table 10.
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Table 10 The best performance method for the discrete Weibull regression
under type-I right censored data

n  parameter

Excessive zeros case

Under-dispersion case

Over-dispersion case

MLE,

MLE,

Bayes (Informative)

60, 90 Bayes (Informative) Bayes (Informative)
B Bayes (Informative) Bayes (Informative) Bayes (Informative)
MLE, MLE, Bayes (Uniform),
120, 150 Bayes (Informative) Bayes (Informative) Bayes (Informative)
B Bayes (Informative) Bayes (Informative) Bayes (Informative)

3.1 Real data application

In this section, a real dataset is presented to show the performance of the proposed methodology.
The dataset is the German health registry for the years 1984- 1988 available in the R package
COUNT under the name rwm, with 27,326 observations. The response variable is the number of

visits to doctors during the year and the three explanatory variables are age, years of formal education,
and household yearly income. The response variable has 37.09% of zeros, the sample mean is 3.18,
and the sample variance is 32.37, that is in the case of excessive zeros and over-dispersion data.
Moreover, this dataset was found to be suitable for the Bayesian discrete Weibull regression model
by Haselimashhadi et al. (2018). To demonstrate the approach with this dataset, we random sample
sizes of n=60,90,120 and 150 from this dataset that correspond with the main dataset, which has

excessive zeros and is over-dispersion data using the bootstrap technique to estimate the standard
errors of the different parameter estimates with the following process:

Step 1: Create a bootstrap sample of size n, z,,z,,...,z,, from the original data z,,z,,...,z,;
zZ, :(yj,xi), i=12,...,n, with replacement giving 1/n probability for each zj, i=12,...,n
Thus, we obtain the following: z: = (y;*,xj), i=12,...,n

Step 2: Censor the bootstrap sample from Step 1 using type-I right censoring at C = 3,4,5. Thus,
we obtain the censored data y,,y,,...,y, from (4) and the censor indicator 6,,0,,...,0, from (5).

Step 3: Estimate the maximum likelihood estimators of the parameters a and £ by minimizing
the negative log-likelihood function of the discrete Weibull regression under the type-I right censored
data model in (6). Then, get (A);Z) using function optim ( ) from package stats in R.

Step 4: Estimate the Bayes estimators of the parameters o and £ with uniform non-informative
priors under the squared error loss function using the random walk Metropolis algorithm with
L =10,000 replicates and 10% of the chain for burn-in; B=1,000. Then, get o ) from (10)

Bayes
y,x,6)/L(0|y,x,6).

Step 5: Estimate the Bayes estimators of the parameters o and £ with informative priors under

where R, in Step 2(b.) is R, = L(0’

the squared error loss function using the random walk Metropolis algorithm with L =10,000

replicates and 10% of the chain for burn-in; B =1,000. Then, get 0" from (10).

Bayes
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Step 6: For each sample size n, repeat Step 1 to Step 5a B =1,000 times.

Step 7: Calculate the parameter estimates and standard error (SE) of estimators based on
B =1,000.

Figure 1 shows the SE of estimators plots for each sample size using methods only censoring at
Cc=5 (z 12.78—16.40%). Moreover, the results of censoring at C =4 (z 16.15—19.73%) and

C=3 (z 32.49—34.68%) are similar to censoring at C =5. For fixed censoring time C, as the

sample size (n) increases the SE of the estimators decreases for all methods. In addition, the

performance of the MLE and the Bayes estimators with informative priors for the parameters a and

B is quite similar and better than the Bayes estimators with uniform noninformative priors in terms

of the parameter estimates and the SE of the estimators. The result of the application to health data
from the German health registry for the years 1984-1988 is close to the simulation result of the

excessive zeros case when censoring at C =2(~12.31-12.49%).

4. Conclusions

In this article, we have considered the classical and Bayesian inference for the discrete Weibull
regression under type I right censored data. The results of the simulation showed that as the sample
size increases the MSE of the estimators decreases for all methods, indicating that the estimators are
consistent. Moreover, the results of an application to the real data revealed that as the sample size
increases the SE of the estimators decreases for all methods, indicating that the estimators are precise.
In the cases of excessive zeros and under- dispersion, the MLE and the Bayes estimators with
informative priors for the parameters a and S are both appropriate for the discrete Weibull
regression under type-1I right censored data in terms of the MSE of the estimators. In addition, the
MSE of the MLE and the Bayes estimators with informative priors are not difference at the third
decimal. However, in the case of over-dispersion, the Bayes estimators with informative priors for
the parameters « and [ are more appropriate for the discrete Weibull regression under type I right

censored data than other methods in terms of the MSE of the estimators.
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Figure 1 SE plots for each sample size by method when censoring at C =5
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