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Abstract 

This study purposes the use of Bayesian estimation for the discrete Weibull regression under 

type-I right censored data. Moreover, we compared the performance of the maximum likelihood 

estimation and the Bayesian estimation with uniform noninformative priors and informative priors 

using the random walk Metropolis algorithm. A simulation study was conducted to compare the 

performance of three different estimation methods using mean square error with three types of data: 

excessive zeros data, under-dispersion data, and over-dispersion data. A real dataset is analyzed to 

see how the model works in practice. The results from both the simulation study and a real data 

application showed that the maximum likelihood estimation and the Bayesian estimation with 

informative priors are both appropriate for the discrete Weibull regression under type-I right censored 

data in the cases of excessive zeros and under-dispersion. However, the Bayesian estimation with 

informative priors is more appropriate for the discrete Weibull regression under type-I right censored 

data than other methods in the case of over-dispersion.  

______________________________ 
Keywords:  Bayesian estimation, random walk Metropolis algorithm, discrete Weibull regression, type- I right 

censored, over-dispersion. 

 

1. Introduction 

Count data refers to the number of times an event or an item occurs over a fixed period of time, 

which can take only the non-negative integer values. Examples include the number of times cardiac 

arrest happens over a fixed period of time, the number of times patients visit a doctor over a fixed 

period of time within a hospital, the number of epileptic seizures experienced over a fixed period of 

time, the number of claims in an insurance company over a fixed period of time, and the number of 

recurrent circuit breaker failures over a fixed period of time. This form of counts information is 

applied to many research areas such as medicine, actuarial science, biostatistics, demography, 

economics, engineering, political science, and sociology. Individual count data is called a count 

variable, which is treated as a random variable: the Poisson, negative binomial, and discrete Weibull 

distributions are widely used to represent its distribution. 
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Regression analysis for count data is used in realistic contexts when other variables have an 

effect on the count response variable. Modeling count data may present three types of dispersion: 

equi-dispersion, under-dispersion, and over-dispersion. The Poisson regression is most commonly 

used for modeling count data, e.g., Lovett and Flowerdew (1989) and Hutchinson and Holtman 

(2005). Despite the popularity of the Poisson regression, it is limited by its equi-dispersion, i.e., the 

assumption that the mean and variance are equal. Alternatively, the negative binomial regression has 

become the most widely used for modeling count data, e.g., Gardner et al. (1995), and Allison and 

Waterman (2002), as this regression is appropriate for modeling over-dispersion count data. With 

real data, the dispersion is mostly under-dispersed or over-dispersed, and the discrete Weibull 

regression can be adapted to both situations. Moreover, many datasets have multiple zeros response 

variables. 

The discrete Weibull regression is an interesting subject for study and development, e.g., 

Kalktawi (2017), Kalktawi et al. (2018), Haselimashhadi et al. (2018), and Collins et al. (2020). 

Focusing on over-dispersion data wherein the variance is larger than the mean may limit the 

effectiveness of a standard model. When the value of an observation or measurement is only partly 

known we refer to this observation as being censored. In some cases, the response variable takes large 

values or outliers affecting its mean and variance, causing over-dispersion that potentially having a 

negative effect on the performance of a regression model. Thus, censoring the large values of this 

response can control this over-dispersion. Censored count data can appear in many applications where 

recording the count response variable is available for a limited range while the covariate values are 

always observed. Therefore, appropriate censoring is applied to solve problem with over-dispersion 

data. There are three types of right censoring: type-I right censoring that fixes a predetermined 

censoring value; type-II right censoring that fixes a predetermined number of uncensored data; and 

random censoring, extended from the type-I right censoring, in which the predetermined censoring 

value is random. The challenge faced by practitioners is the selection of censored data, e.g., Saffari 

et al. (2013), Kalktawi (2017), Yu (2018), and Saffari and Allen (2019). 

Improvement can be made in the estimation of parameters for the discrete Weibull regression. 

Recently, Kalktawi (2017) introduced the maximum likelihood estimation for the discrete Weibull 

regression model with type-I right censoring, which is the classical inference that uses only empirical 

knowledge from the likelihood function. In the cases of over-dispersion, the performance of a 

censoring model is better than a standard model.  Besides the classical inference, the Bayesian 

statistical inference differs from the maximum likelihood estimation that uses two sources of 

information, i.e., prior knowledge about the parameters from the prior probability distribution and 

empirical knowledge from the likelihood function. Moreover, Haselimashhadi et al. (2018) proposed 

the Bayesian estimation for the discrete Weibull regression model with an application to health data. 

When a prior distribution has no population basis  in other words, there is no specific prior 

knowledge about the parameters  the noninformative prior is used; for instance, Haselimashhadi et 

al. (2018) chose uniform noninformative priors on parameters. On the other hand, when there is prior 

knowledge of the parameters, the informative prior is provided in the Bayesian estimation. 

 In this paper, we focus on the Bayesian estimation for the discrete Weibull regression under 

type-I right censored data with uniform noninformative priors and informative priors. The main 

difficulty faced when dealing with the Bayesian estimation comes from the computation of the 

posterior probability distribution, in which case the Markov chain Monte Carlo (MCMC) method is 

used to draw a sample from a probability distribution. We choose one MCMC method, that is, the 

random walk Metropolis algorithm, for simulating a sample from a posterior probability distribution. 
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The remainder of this paper is organized as follows. In Section 2, we introduce the discrete 

Weibull distribution and the discrete Weibull regression, present the discrete Weibull regression 

model under type-I right censored data and the Bayesian estimation for the discrete Weibull 

regression model under type-I right censored data, and define the random walk Metropolis algorithm. 

In Section 3, we investigate the performance of the estimations through a simulation study and apply 

our computational methods to a real dataset. Finally, we conclude our findings in Section 4.  

 

2. Materials and Methods 

2.1. Discrete Weibull distribution 

The discrete Weibull distribution was proposed by Nakagawa and Osaki (1975). They considered 

failure studies in which the time to failure is often measured in the number of cycles to failure and 

becomes a discrete random variable. In failure analysis, the failure data in failure studies are generally 

measured in discrete time such as cycles, blows, shocks, or revolutions. Moreover, the discrete 

Weibull distribution is useful to reliability engineers and theoreticians. 

Let Y  be a discrete random variable which follows the discrete Weibull distribution with the 

parameters q  and ,  denoted by  , .Y DW q   The cumulative distribution function and the 

probability mass function of a discrete random variable Y  are given by  

  
 11 , 0,1,2,

; ,
0, otherwise,

y

Y

q y
F y q




  

 



   

and  

  
 1 , 0,1,2,

; ,
0, otherwise,

yy
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q q y
p y q
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
  

 



  

respectively, where 0 1q   and 0   are the shape parameters (Nakagawa and Osaki, 1975). In 

addition, the parameter  1 0; ,Yq p q    which is the probability of Y  being more than zero. 

The relationship to the continuous Weibull distribution and discrete Weibull distribution is 

shown through the shape parameter. The cumulative distribution function of a continuous random 

variable CY  is given by 

   1 , 0
; ,

0, otherwise,

C

C

y

C
Y C

e y
F y



 
  

 


  

where   and   are the scale and shape parameter, respectively. The parameter   from the discrete 

Weibull distribution is equivalent to the shape parameter   from the continuous Weibull distribution. 

Moreover, the parameter q  from the discrete Weibull distribution is equivalent to e   when   is the 

scale parameter from the continuous Weibull distribution. 

 

2.2. Discrete Weibull regression 

Regression analysis for count data is a statistical technique to evaluate the relationship between 

a dependent variable that is a count variable and one or more explanatory variables; accordingly, it 

useful in real life when other variables have an effect on response variables. The discrete Weibull 
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regression can link the independent variables through the shape parameters q  and .  In this paper, 

we linked the independent variables only through the shape parameter .q  

Lee and Wang (2003) assumed that the scale parameter   in the continuous Weibull distribution 

is related to k  covariates via the log link function;  log .  xα  Similar to the continuous Weibull 

distribution, Kalktawi (2017) assumed that the parameter q  in the discrete Weibull distribution is 

related to k  covariates via the log-log link function;   log log .q  xα   

Let Y  be a count response variable which takes only the non-negative integer values and let 

1 2, , , kx x x  be k  explanatory variables. Assume that the conditional distribution of Y  given 

1 2, , , kx x x  follows the discrete Weibull distribution with the parameters q  and ,  where the 

parameter q  is related to k  explanatory variables 1 2, , , kx x x  via the log-log link function: 

   log log ,q  xα  (1) 

where  11 kx xx   and  0 1 ,k   α   

so    0 1 1log log k kq x x       , 

   .eq q e 
xα

x                (2) 

The conditional probability mass function of Y  given 1 2, , , kx x x  can be written as 

     
 

1
1

1

, ,

, 0,1, 2,
, ,

0, otherwise,
k

y y
e e

kY X X

e e y
p y x x

 
 

  
 



xα xα




        (3) 

where  11 kx xx   and  0 1 .k   α   

Given n  independent observations 1 2, , , ny y y  and 1 2, , , ,i i ikx x x  1,2, , ,i n   from (3) for 

the count response variable 1 2, , , nY Y Y  and k  explanatory variables 1 2, , , ,i i ikx x x  the likelihood 

function of the discrete Weibull regression model is given by 

      
 

1 1

1

1

, , , , ,
iii i

n y y
e e

DW n n
i

L f y y e e
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

 
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 


x α x α

x x            

where  11i i ikx xx   and  0 1 .k   α   

The log-likelihood function of the discrete Weibull regression model is given by 

    
 1

1

log .
iii i

n y y
e e

DW
i

l e e
 

 



 
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 


x α x α

  

 

2.3. Discrete Weibull regression under type-I right censored data 

Right censoring is used when data is right skewed or has an outlier. In this paper, we choose 

type-I right censoring to solve the problem of over-dispersion data.  Let * * *
1 2, , , nY Y Y  be the count 

response variables which take only the non-negative integer values and let 1 2, , , ,i i ikx x x  

1,2, , ,i n   be k  explanatory variables. Assume that the conditional distribution of *
iY  given 

1 2, , , ,i i ikx x x  1, 2, , ,i n   follows the discrete Weibull distribution with the parameters iq  and ,  
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where the parameter iq  is related to k  explanatory variables 1 2, , , ,i i ikx x x  1, 2, , ,i n   via the 

log-log link function in (1). Given n  independent observations * * *
1 2, , , ny y y  and 

 11 ,i i ikx xx   1, 2, , ,i n   from (3) censored from the right at a fixed censoring value ,C  

the observed response variables 1 2, , , ny y y  can be determined as 

  
* *

*

*

, ,
min ,

, .
i i

i i

i

y y C
y y C

C y C

 
  


 (4) 

Let ,i  1, 2, , ,i n   be the censor indicator for type-I right censoring that can be specified as 

  
*

*

*

0, ,

1, .
i

i i

i

y C
I y C

y C


 
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
 (5) 

The likelihood function of the discrete Weibull regression under type-I right censored data model 

is given by  

      
 
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x α x α x α
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The log-likelihood function of the discrete Weibull regression under type-I right censored data 

model is given by  

       1

1 1

1 log ,
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where       1
, .
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ii y ey e

iw e e


   
x αx α

α  

In next section, we apply the inverse of the observed Fisher’s information matrix to generate a 

random error vector in a random walk Metropolis algorithm. Let  I θ  be the observed Fisher's 

information matrix for the    2 2k k    unknown parameters with negative members of the 

second derivative of the log-likelihood function with respect to , 0,1, ,j j k    and   has the form: 
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 (7) 

where  
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 
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2.4. Bayesian estimation 

In this section, we present the Bayesian inference for the discrete Weibull regression model under 

type-I right censored data. We focus on the three covariates, so the parameters α  and   are 

considered. We investigate the performance of the estimation through both noninformative and 

informative prior distributions. Firstly, we perform the estimators using the uniform noninformative 

prior distribution proposed by Haselimashhadi et al. (2018). In the context of discrete Weibull 

regression, there are no conjugate priors. It is often more natural to express prior information directly 

in terms of the parameters .α  According to j  is a regression coefficient that can be a real number; 

, 0,1, 2,3j j    and the possible values of a normal distribution is a real number. Then, we select 

the prior distribution of  j  as a normal distribution (Gelman et al. 2008, Fu 2016, Chanialidis et. 

al., 2018). Moreover, a normal prior distribution on   is particularly convenient with the 

computational methods. According to the parameter    from the discrete Weibull distribution is 

equivalent to the shape parameter   from the continuous Weibull distribution that 0   and the 

possible values of a Gamma distribution is a positive real number. Then, we select the prior 

distribution of   as a Gamma distribution (Aslam et al., 2014; Chacko and Mohan 2019). The joint 

prior distribution of the parameters α  and   under the independence assumption is 

          0 1 2 3( ) ( , ) .             θ α   

According to the informative prior distributions of the parameters α  and ,  we assume the 

hyperparameters of i  are  2, ,i i   0,1, 2,3i   and the hyperparameters of   are  , .a b  

The choice of the hyperparameters’ values will generally depend upon the applications of real 

data. At this moment, we leave them unspecified. 
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The joint posterior density function of the parameters α  and   can be written as 

  
 

  0 3

0

, , ( )
, , ,

, , ( )

L
p

L d d d



   
  

 



  

θ y x δ θ
θ y x δ

θ y x δ θ 

 

  , , ( ).L  θ y x δ θ         (8) 

The Bayes estimator of function  h θ  of the parameters α  and   under squared error loss 

function is the expected value of function  h θ  under the joint posterior density function. Therefore, 

the Bayes estimator of function  h θ  is given by 

   0 3

0

ˆ( ) ( ) , , .h h p d d d  
  

 

   θ θ θ y x δ   (9) 

Since the integral in (9) does not have a closed form, we choose the Metropolis-Hastings 

algorithm to estimate the Bayes estimators. 

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for 

simulating a sample from a probability distribution that is the target distribution from which direct 

sampling is difficult (Hastings 1970). This algorithm is similar to acceptance-rejection method the 

proposal (candidate) value can be generated from the proposal distribution. Then, the proposal value 

is accepted with an acceptance probability. Moreover, the Metropolis-Hastings algorithm is 

converging to the target distribution itself. In this paper, we choose a random walk Metropolis 

algorithm, which is a special case of a Metropolis-Hastings algorithm. 

Let the joint posterior density function of the parameters α  and ,   , , ,p θ y x δ  in (8) be the 

target distribution, θ  be the current state value and *θ  be the proposal value generated from the 

proposal distribution  * .q θ θ  Then, the proposal value *θ  is accepted with the probability 

 min 1, ,p R θ  where  

 
 
 

 
 

** *

*

, , ( )
.

, , ( )

qL
R

L q




 θ

θ θθ y x δ θ

θ y x δ θ θ θ
  

In the random walk Metropolis algorithm, the proposal distribution is symmetrical, depending 

only on the distance between the current state value and the proposal value. Then, the proposal value 
*θ  is accepted with probability  min 1, ,p R θ  where  

        * *, , , , .R L L θ θ y x δ θ θ y x δ θ   

The iterative steps of the random walk Metropolis algorithm can be described as follows: 

Step 1: Initialize the parameters 
            0 0 0 0 0 0

0 1 2 3, , , ,    θ  for the algorithm using the 

maximum likelihood estimation (MLE) of the parameters  0 1 2 3, , , , .    θ  

Step 2: For 1,2, ,l L   repeat the following steps; 

a. Generate random error vector ε  from a multivariate normal distribution with a zero-mean 

vector and variance-covariance matrix as a diagonal matrix in which the diagonal elements are the 
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diagonal of the inverse of the observed Fisher’s information matrix in (7); 

   1, .diag I  ε μ 0 Σ θ    Then, set  1* .
l

 θ θ ε   

b. Calculate  min 1,p R θ  where        * *, , , , .R L L θ θ y x δ θ θ y x δ θ  

c. Generate u  from a uniform distribution;  0,1 .u U  

 If ,u p   accept *θ  and set   *l
θ θ  with probability .p  

 If ,u p   reject *θ  and set    1l l
θ θ  with probability 1 .p  

Step 3: Remove B  of the chain for burn-in.  

Step 4: Calculate the estimated values of the Bayes estimators of the parameters α  and   under 

the squared error loss function from the average of the generated values given by 

  

1

1ˆ ,
L

l

Bayes
l BL B

 
 




  (10) 

where   is a parameter in vector  0 1 2 3, , , , .    θ  

3. Results and Discussion 

3.1. Simulation study 

In this section, a Monte Carlo simulation is conducted to assess and compare the performance of 

the maximum likelihood estimation and the Bayesian estimation for the discrete Weibull regression 

with type-I right censored data and various selected sample sizes n  60, 90, 120 and 150. The three 

explanatories are  1 0,1 ,ix N  2 0.3,0.3 ,ix U   and  3 0.4 .ix Ber  In particular, we select 

 0 1 2 3, , , ,      0.1, 0.2,1.6,0.2,0.9   for the excessive zeros case,  0 1 2 3, , , ,      

 2.8,0.01,0.4, 0.2, 2.5    for the under-dispersion case, and  0 1 2 3, , , ,      

 2.8,0.01,0.4, 0.2,0.9    for the over-dispersion case. We compute iq  for each type of data from 

the log-log link function in (2). We then generate the count response variables * * *
1 2, , , nY Y Y  from (3) 

using function rdw( ) from package DWreg  in R. We censor the data using type-I right censoring 

with different percentages of censored data: censoring at 2,3C   for the excessive zeros case, 

censoring at 3,4,5C   for the under-dispersion case, and censoring at 29,34,40,49C   for the over-

dispersion case. Then we get the response variables 1 2, , , ny y y  as observed data from (4) and the 

indicator 1 2, , , n    is the censor indicator from (5). 

Next, we calculate the maximum likelihood estimators of the parameters α  and    by 

minimizing the negative log-likelihood function of the discrete Weibull regression under the type-I 

right censored data model in (6). Then, we get  ˆ m

MLθ  using function optim( ) from package stats  

in R. We calculate the Bayes estimators of the parameters α  and   with uniform noninformative 

priors under the squared error loss function using the random walk Metropolis algorithm with 

10,000L   replicates and 10% of the chain for burn-in; 1,000.B   Then, we get  
 ˆ m

Bayes U
θ  from (10) 

where Rθ  in Step 2(b) is    * , , , , .R L Lθ θ y x δ θ y x δ  We calculate the Bayes estimators of the 

parameters α  and   with informative priors under the squared error loss function using the random 
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walk Metropolis algorithm with 10,000L   replicates and 10% of the chain for burn-in; 1,000.B 

Then, we get  ˆ m

Bayesθ  from (10). 

For each sample sizes ,n  we repeat the previous steps for a 1,000M   times. The parameter 

estimates and the mean squared error (MSE) of estimators based on 1,000M   from the MLE and 

the Bayesian estimation with uniform noninformative priors (Bayes(Uniform)) and informative priors 

(Bayes(Informative)) are reported in Tables 1 and 2 for the excessive zeros case when censoring at 

3C   and 2,C   Tables 3 to 5 for the under-dispersion case when censoring at 5,C   4C   and 

3,C   and Tables 6 to 9 for the over-dispersion case when censoring at 49,C   40,C   34C   

and 29.C   

 

Table 1 Parameter estimates (Est.) and MSE for the excessive zeros case  

 0.1, 0.2,1.6,0.2,0.9 θ  at 3C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(5.66%) 

0  0.0947 0.0494 0.0494 0.0563 0.0901 0.0498 

1  0.2339 0.0347 0.2506 0.0415 0.2365 0.0356 

2  1.7953 1.2122 1.9203 1.4732 1.8147 1.2437 

3  0.2449 0.1235 0.2544 0.1421 0.2419 0.1248 

  1.0056 0.0634 1.0472 0.0789 0.9872 0.0599 

90 

(5.63%) 

0  0.1057 0.0317 0.0759 0.0335 0.1031 0.0318 

1  0.2161 0.0184 0.2247 0.0206 0.2172 0.0187 

2  1.7150 0.6491 1.7831 0.7326 1.7245 0.6582 

3  0.2118 0.0660 0.2157 0.0702 0.2098 0.0662 

  0.9565 0.0373 0.9804 0.0417 0.9433 0.0359 

120 

(5.68%) 

0  0.0981 0.0230 0.0752 0.0246 0.0957 0.0231 

1  0.2128 0.0134 0.2193 0.0146 0.2138 0.0136 

2  1.7028 0.4564 1.7501 0.4921 1.7101 0.4578 

3  0.2230 0.0535 0.2261 0.0568 0.2215 0.0537 

  0.9426 0.0256 0.9596 0.0277 0.9327 0.0247 

150 

(5.64%) 

0  0.0993 0.0201 0.0816 0.0209 0.0976 0.0202 

1  0.2118 0.0100 0.2165 0.0106 0.2125 0.0101 

2  1.6522 0.3202 1.6875 0.3389 1.6579 0.3212 

3  0.2144 0.0420 0.2169 0.0436 0.2133 0.0420 

  0.9362 0.0194 0.9492 0.0209 0.9285 0.0189 

Note: the boldface identifies the smallest MSE for each case. 
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Table 2 Parameter estimates (Est.) and MSE for the excessive zeros case 

 0.1, 0.2,1.6,0.2,0.9 θ  at 2C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(12.31%) 

0  0.0967 0.0504 0.0439 0.0653 0.0915 0.0508 

1  0.2351 0.0354 0.2529 0.0453 0.2382 0.0367 

2  1.7942 1.2739 1.9304 1.5840 1.8194 1.3095 

3  0.2440 0.1296 0.2558 0.1527 0.2412 0.1320 

  1.0073 0.0898 1.0658 0.1801 0.9879 0.0859 

90 

(12.37%) 

0  0.1070 0.0324 0.0734 0.0347 0.1032 0.0326 

1  0.2159 0.0200 0.2265 0.0228 0.2177 0.0204 

2  1.6975 0.6971 1.7721 0.7883 1.7096 0.7088 

3  0.2142 0.0686 0.2186 0.0738 0.2113 0.0688 

  0.9500 0.0517 0.9902 0.0594 0.9368 0.0505 

120 

(12.49%) 

0  0.1001 0.0241 0.0744 0.0254 0.0970 0.0241 

1  0.2142 0.0143 0.2212 0.0157 0.2152 0.0145 

2  1.6936 0.4780 1.7469 0.5207 1.7027 0.4832 

3  0.2234 0.0575 0.2270 0.0611 0.2215 0.0579 

  0.9332 0.0339 0.9623 0.0373 0.9230 0.0330 

150 

(12.35%) 

0  0.1001 0.0202 0.0798 0.0212 0.0977 0.0203 

1  0.2108 0.0108 0.2161 0.0116 0.2115 0.0109 

2  1.6476 0.3365 1.6859 0.3615 1.6542 0.3388 

3  0.2158 0.0432 0.2186 0.0452 0.2146 0.0433 

  0.9353 0.0279 0.9566 0.0299 0.9261 0.0270 

Note: the boldface identifies the smallest MSE for each case. 
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Table 3 Parameter estimates (Est.) and MSE for the under-dispersion case 

 2.8,0.01,0.4, 0.2,2.5  θ  at 5C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(4.56%) 

0  2.9553 0.2158 3.0408 0.2578 2.9588 0.2169 

1  0.0086 0.0269 0.0080 0.0280 0.0082 0.0269 

2  0.4309 0.8177 0.4359 0.8663 0.4300 0.8188 

3  0.2099 0.1029 0.2204 0.1072 0.2122 0.1024 

  2.6466 0.1234 2.6888 0.1433 2.6334 0.1202 

90 

(4.53%) 

0  2.8593 0.1192 2.9147 0.1333 2.8618 0.1198 

1  0.0157 0.0144 0.0161 0.0149 0.0157 0.0144 

2  0.4225 0.4722 0.4218 0.4870 0.4201 0.4727 

3  0.2094 0.0614 0.2159 0.0637 0.2107 0.0613 

  2.5705 0.0619 2.5971 0.0689 2.5617 0.0611 

120 

(4.53%) 

0  2.8528 0.0937 2.8943 0.1021 2.8542 0.0938 

1  0.0069 0.0109 0.0063 0.0110 0.0068 0.0108 

2  0.3998 0.3274 0.3984 0.3394 0.3961 0.3275 

3  0.2149 0.0427 -0.2206 0.0430 0.2165 0.0422 

  2.5599 0.0511 2.5798 0.0556 2.5530 0.0504 

150 

(4.51%) 

0  2.8706 0.0752 2.9027 0.0818 2.8714 0.0749 

1  0.0106 0.0081 0.0106 0.0082 0.0105 0.0081 

2  0.4245 0.2613 0.4263 0.2657 0.4241 0.2602 

3  0.1910 0.0322 0.1952 0.0325 0.1920 0.0321 

  2.5613 0.0421 2.5762 0.0448 2.5553 0.0412 

Note: the boldface identifies the smallest MSE for each case. 
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Table 4 Parameter estimates (Est.) and MSE for the under-dispersion case 

 2.8,0.01,0.4, 0.2,2.5  θ  at 4C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(17.06%) 

0  2.9354 0.2310 -3.0346 0.2765 2.9381 0.2313 

1  0.0082 0.0302 0.0084 0.0322 0.0081 0.0305 

2  0.4408 0.9009 0.4535 0.9623 0.4438 0.9056 

3  0.2104 0.1136 -0.2238 0.1200 0.2138 0.1138 

  2.6224 0.1372 2.6738 0.1586 2.6047 0.1335 

90 

(16.55%) 

0  2.8519 0.1355 2.9141 0.1499 2.8543 0.1354 

1  0.0158 0.0162 0.0159 0.0167 0.0157 0.0162 

2  0.4181 0.5259 0.4162 0.5477 0.4167 0.5310 

3  0.2136 0.0703 0.2217 0.0726 0.2152 0.0702 

  2.5626 0.0752 2.5939 0.0823 2.5514 0.0738 

120 

(16.72%) 

0  2.8452 0.1062 2.8913 0.1148 2.8458 0.1057 

1  0.0059 0.0115 0.0061 0.0117 0.0060 0.0115 

2  0.3796 0.3745 0.3793 0.3830 0.3776 0.3742 

3  0.2147 0.0471 0.2218 0.0486 0.2164 0.0475 

  2.5502 0.0631 2.5736 0.0673 2.5408 0.0619 

150 

(16.75%) 

0  2.8674 0.0839 2.9058 0.0920 2.8682 0.0834 

1  0.0105 0.0089 0.0108 0.0091 0.0107 0.0089 

2  0.4161 0.3100 0.4187 0.3197 0.4162 0.3111 

3  0.1882 0.0369 0.1944 0.0372 0.1904 0.0368 

  2.5558 0.0507 2.5756 0.0543 2.5488 0.0498 

Note: the boldface identifies the smallest MSE for each case. 
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Table 5 Parameter estimates (Est.) and MSE for the under-dispersion case 

 2.8,0.01,0.4, 0.2,2.5  θ  at 3C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(42.10%) 

0  2.9373 0.2878 3.0847 0.3746 2.9434 0.2860 

1  0.0009 0.0412 0.0015 0.0437 0.0013 0.0412 

2  0.4241 1.2051 0.4271 1.3230 0.4226 1.2227 

3  0.2180 0.1615 0.2369 0.1768 0.2237 0.1637 

  2.6171 0.2215 2.7058 0.2653 2.5890 0.2127 

90 

(41.28%) 

0  2.8587 0.1752 2.9518 0.2068 2.8616 0.1745 

1  0.0181 0.0227 0.0187 0.0233 0.0181 0.0227 

2  0.3914 0.7241 0.3938 0.7695 0.3905 0.7322 

3  0.2185 0.0992 0.2312 0.1032 0.2218 0.0990 

  2.5649 0.1297 2.6214 0.1479 2.5463 0.1266 

120 

(41.48%) 

0  2.8490 0.1312 2.9187 0.1483 2.8517 0.1311 

1  0.0068 0.0157 0.0066 0.0160 0.0069 0.0157 

2  0.3658 0.4952 0.3632 0.5134 0.3620 0.4962 

3  0.2157 0.0694 0.2266 0.0711 0.2189 0.0693 

  2.5519 0.1017 2.5947 0.1115 2.5389 0.1000 

150 

(41.55%) 

0  2.8827 0.1113 2.9376 0.1256 2.8843 0.1101 

1  0.0100 0.0124 0.0103 0.0126 0.0103 0.0123 

2  0.4184 0.4125 0.4184 0.4327 0.4161 0.4146 

3  0.1918 0.0526 0.1996 0.0532 0.1942 0.0524 

  2.5723 0.0874 2.6049 0.0949 2.5605 0.0850 

Note: the boldface identifies the smallest MSE for each case. 
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Table 6 Parameter estimates (Est.) and MSE for the over-dispersion case 

 2.8,0.01,0.4, 0.2,0.9  θ  at 49C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(15.95%) 

0  2.8892 0.2132 3.0102 0.2417 2.9071 0.2041 

1  0.0090 0.0322 0.0090 0.0297 0.0083 0.0301 

2  0.5447 1.0049 0.4456 0.8921 0.4934 0.8125 

3  0.2221 0.1246 0.2220 0.1136 0.2207 0.1130 

  0.9308 0.0166 0.9543 0.0174 0.9287 0.0152 

90 

(15.53%) 

0  2.8097 0.1314 2.8942 0.1305 2.8253 0.1218 

1  0.0167 0.0174 0.0160 0.0158 0.0162 0.0159 

2  0.4768 0.6416 0.4145 0.5159 0.4445 0.5060 

3  0.2116 0.0767 0.2191 0.0701 0.2147 0.0700 

  0.9089 0.0093 0.9272 0.0091 0.9096 0.0084 

120 

(15.58%) 

0  2.8115 0.1097 2.8863 0.1049 2.8272 0.0980 

1  0.0110 0.0122 0.0080 0.0109 0.0095 0.0112 

2  0.4606 0.5229 0.3787 0.3664 0.4179 0.3671 

3  0.2133 0.0565 0.2182 0.0457 0.2152 0.0478 

  0.9077 0.0083 0.9244 0.0078 0.9093 0.0073 

150 

(15.68%) 

0  2.8266 0.0878 2.8938 0.0789 2.8430 0.0760 

1  0.0151 0.0098 0.0122 0.0084 0.0137 0.0086 

2  0.4496 0.4691 0.4169 0.2970 0.4310 0.3107 

3  0.1942 0.0469 0.1923 0.0363 0.1937 0.0386 

  0.9082 0.0069 0.9233 0.0060 0.9106 0.0059 

Note: the boldface identifies the smallest MSE for each case. 
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Table 7 Parameter estimates (Est.) and MSE for the over-dispersion case 

 2.8,0.01,0.4, 0.2,0.9  θ  at 40C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(21.67%) 

0  2.8772 0.2196 3.0158 0.2541 2.8993 0.2083 

1  0.0103 0.0326 0.0085 0.0317 0.0094 0.0310 

2  0.5615 1.0951 0.4381 0.9470 0.4984 0.8806 

3  0.2227 0.1347 0.2268 0.1242 0.2235 0.1222 

  0.9252 0.0174 0.9549 0.0189 0.9248 0.0159 

90 

(21.05%) 

0  2.8052 0.1465 2.8989 0.1380 2.8209 0.1301 

1  0.0183 0.0181 0.0165 0.0165 0.0174 0.0165 

2  0.4826 0.7263 0.4068 0.5683 0.4426 0.5566 

3  0.2231 0.0883 -0.2205 0.0754 -0.2211 0.0764 

  0.9084 0.0109 0.9282 0.0100 0.9081 0.0095 

120 

(21.12%) 

0  2.8117 0.1223 2.8908 0.1103 2.8285 0.1071 

1  0.0114 0.0132 0.0078 0.0117 0.0095 0.0118 

2  0.4254 0.6258 0.3782 0.3977 0.3988 0.4166 

3  0.2079 0.0621 0.2154 0.0493 0.2111 0.0517 

  0.9060 0.0101 0.9252 0.0086 0.9084 0.0084 

150 

(21.23%) 

0  2.8216 0.0972 2.8996 0.0855 2.8407 0.0817 

1  0.0149 0.0103 0.0124 0.0087 0.0137 0.0090 

2  0.4632 0.5204 0.4134 0.3188 0.4370 0.3330 

3  0.2003 0.0474 0.1942 0.0382 0.1979 0.0397 

  0.9073 0.0078 0.9254 0.0068 0.9102 0.0066 

Note: the boldface identifies the smallest MSE for each case. 
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Table 8 Parameter estimates (Est.) and MSE for the over-dispersion case 

 2.8,0.01,0.4, 0.2,0.9  θ  at 34C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(26.57%) 

0  2.8899 0.2355 3.0260 0.2724 2.9076 0.2235 

1  0.0077 0.0342 0.0071 0.0337 0.0075 0.0328 

2  0.4884 1.1340 0.4309 1.0156 0.4589 0.9562 

3  0.2147 0.1338 0.2270 0.1322 0.2190 0.1253 

  0.9281 0.0200 0.9574 0.0211 0.9256 0.0181 

90 

(26.02%) 

0  2.8053 0.1454 2.9020 0.1473 2.8218 0.1353 

1  0.0196 0.0186 0.0187 0.0177 0.0189 0.0175 

2  0.4695 0.7872 0.4068 0.6168 0.4350 0.6037 

3  0.2160 0.0913 0.2236 0.0815 0.2183 0.0797 

  0.9067 0.0118 0.9284 0.0116 0.9067 0.0107 

120 

(26.20%) 

0  2.8055 0.1251 2.8902 0.1140 2.8231 0.1092 

1  0.0123 0.0147 0.0077 0.0127 0.0101 0.0130 

2  0.4413 0.6286 0.3751 0.4203 0.4051 0.4244 

3  0.2092 0.0661 0.2165 0.0533 0.2124 0.0551 

  0.9029 0.0110 0.9239 0.0093 0.9054 0.0092 

150 

(26.15%) 

0  2.8316 0.1071 2.9040 0.0903 2.8472 0.0899 

1  0.0165 0.0108 0.0138 0.0093 0.0151 0.0096 

2  0.4579 0.5436 0.4146 0.3262 0.4337 0.3545 

3  0.2006 0.0556 0.1955 0.0420 0.1978 0.0450 

  0.9094 0.0089 0.9268 0.0076 0.9116 0.0074 

Note: the boldface identifies the smallest MSE for each case. 
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Table 9 Parameter estimates (Est.) and MSE for the over-dispersion case 

 2.8,0.01,0.4, 0.2,0.9  θ  at 29C   

n  

(% censored) 
parameter 

MLE Bayes (Uniform) Bayes (Informative) 

Est. MSE Est. MSE Est. MSE 

60 

(31.91%) 

0  2.8875 0.2318 3.0291 0.2835 2.9059 0.2259 

1  0.0068 0.0366 0.0058 0.0364 0.0063 0.0354 

2  0.5112 1.2369 0.4345 1.1243 0.4685 1.0654 

3  0.2193 0.1578 0.2322 0.1490 0.2232 0.1454 

  0.9255 0.0203 0.9563 0.0229 0.9221 0.0192 

90 

(30.95%) 

0  2.8063 0.1522 2.9094 0.1561 2.8235 0.1403 

1  0.0212 0.0199 0.0179 0.0191 0.0193 0.0187 

2  0.4339 0.8027 0.4031 0.6372 0.4177 0.6227 

3  0.2240 0.0957 0.2276 0.0857 0.2243 0.0842 

  0.9076 0.0128 0.9312 0.0130 0.9074 0.0118 

120 

(31.23%) 

0  2.8209 0.1191 2.8943 0.1175 2.8324 0.1088 

1  0.0101 0.0144 0.0076 0.0135 0.0089 0.0133 

2  0.4467 0.6259 0.3685 0.4408 0.4050 0.4485 

3  0.2075 0.0642 0.2174 0.0583 0.2108 0.0569 

  0.9072 0.0107 0.9251 0.0102 0.9073 0.0095 

150 

(31.22%) 

0  2.8331 0.1007 2.9117 0.0962 2.8512 0.0889 

1  0.0174 0.0117 0.0140 0.0104 0.0157 0.0104 

2  0.4798 0.6005 0.4134 0.3530 0.4442 0.3887 

3  0.1894 0.0618 0.1946 0.0459 0.1924 0.0497 

  0.9082 0.0093 0.9288 0.0086 0.9117 0.0079 

Note: the boldface identifies the smallest MSE for each case. 

 

From the numerical results for fixed censoring time ,C  as the sample size ( )n  increases, the 

MSE of the estimators decreases for all methods. In the cases of excessive zeros and under-dispersion, 

the performance of the MLE and the Bayes estimators with informative priors for parameter α  is 

quite similar and better than the Bayes estimators with uniform noninformative priors in terms of the 

MSE of the estimators.  In the cases of over-dispersion, the performance of the Bayes estimators for 

the parameters α  and   is better than the MLE in terms of the MSE of the estimators.  Moreover, 

the Bayes estimators with informative priors for parameter   shows the best performance for all 

cases in terms of the MSE of the estimators.  Besides, note that the MSE of the estimators of 2  are 

generally too big that may cause from we define a strong effect on 2x  or the high variance of the 

estimators of 2.  In addition, the MSE of estimators is depends on the explanatory variable .

However, when n  is large enough the MSE of estimators will decrease and not too big anymore. 
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Finally, we can summarize the best performance method for the discrete Weibull regression under 

type-I right censored data in Table 10. 

 

Table 10 The best performance method for the discrete Weibull regression  

under type-I right censored data 

n  parameter Excessive zeros case Under-dispersion case Over-dispersion case 

60, 90 
α  

MLE,  

Bayes (Informative) 

MLE,  

Bayes (Informative) 
Bayes (Informative) 

  Bayes (Informative) Bayes (Informative) Bayes (Informative) 

120, 150 
α  

MLE,  

Bayes (Informative) 

MLE,  

Bayes (Informative) 

Bayes (Uniform),  

Bayes (Informative) 

  Bayes (Informative) Bayes (Informative) Bayes (Informative) 

 

3.1   Real data application 

In this section, a real dataset is presented to show the performance of the proposed methodology. 

The dataset is the German health registry for the years 1984- 1988 available in the R package 

COUNT under the name ,rwm  with 27,326 observations.  The response variable is the number of 

visits to doctors during the year and the three explanatory variables are age, years of formal education, 

and household yearly income. The response variable has 37.09% of zeros, the sample mean is 3.18, 

and the sample variance is 32.37, that is in the case of excessive zeros and over-dispersion data. 

Moreover, this dataset was found to be suitable for the Bayesian discrete Weibull regression model 

by Haselimashhadi et al. (2018). To demonstrate the approach with this dataset, we random sample 

sizes of 60,90,120n   and 150  from this dataset that correspond with the main dataset, which has 

excessive zeros and is over-dispersion data using the bootstrap technique to estimate the standard 

errors of the different parameter estimates with the following process: 

Step 1:  Create a bootstrap sample of size ,n  * * *
1 2, , , ,nz z z  from the original data 1 2, , , ;nz z z  

 * , ,i i iyz x 1,2, , ,i n   with replacement giving 1/ n  probability for each * ,iz 1,2, , .i n   

Thus, we obtain the following:  * ** *, ,i i iyz x 1,2, , .i n   

Step 2: Censor the bootstrap sample from Step 1 using type-I right censoring at 3,4,5.C   Thus, 

we obtain the censored data 1 2, , , ny y y  from (4) and the censor indicator 1 2, , , n    from (5). 

Step 3: Estimate the maximum likelihood estimators of the parameters α  and   by minimizing 

the negative log-likelihood function of the discrete Weibull regression under the type-I right censored 

data model in (6). Then, get  *ˆ b

MLθ  using function optim( ) from package stats  in R. 

Step 4: Estimate the Bayes estimators of the parameters α  and   with uniform non-informative 

priors under the squared error loss function using the random walk Metropolis algorithm with 

10,000L   replicates and 10% of the chain for burn- in; 1,000.B   Then, get  
 *ˆ b

Bayes U
θ  from ( 10) 

where Rθ  in Step 2(b.) is    * , , , , .R L Lθ θ y x δ θ y x δ  

Step 5: Estimate the Bayes estimators of the parameters α  and   with informative priors under 

the squared error loss function using the random walk Metropolis algorithm with 10,000L   

replicates and 10% of the chain for burn-in; 1,000B  . Then, get  *ˆ b

Bayesθ  from (10). 
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Step 6: For each sample size ,n  repeat Step 1 to Step 5 a * 1,000B   times. 

Step 7:  Calculate the parameter estimates and standard error ( SE)  of estimators based on 
* 1,000.B   

Figure 1 shows the SE of estimators plots for each sample size using methods only censoring at 

5C   12.78 16.40% .    Moreover, the results of censoring at 4C   16.15 19.73%   and 

3C   32.49 34.68%    are similar to censoring at 5.C    For fixed censoring time ,C  as the 

sample size ( )n increases the SE of the estimators decreases for all methods.  In addition, the 

performance of the MLE and the Bayes estimators with informative priors for the parameters α  and 

  is quite similar and better than the Bayes estimators with uniform noninformative priors in terms 

of the parameter estimates and the SE of the estimators.  The result of the application to health data 

from the German health registry for the years 1984-1988 is close to the simulation result of the 

excessive zeros case when censoring at  2 12.31 12.49% .C     

 

4. Conclusions 

In this article, we have considered the classical and Bayesian inference for the discrete Weibull 

regression under type I right censored data.  The results of the simulation showed that as the sample 

size increases the MSE of the estimators decreases for all methods, indicating that the estimators are 

consistent.  Moreover, the results of an application to the real data revealed that as the sample size 

increases the SE of the estimators decreases for all methods, indicating that the estimators are precise. 

In the cases of excessive zeros and under- dispersion, the MLE and the Bayes estimators with 

informative priors for the parameters α  and   are both appropriate for the discrete Weibull 

regression under type- I right censored data in terms of the MSE of the estimators.  In addition, the 

MSE of the MLE and the Bayes estimators with informative priors are not difference at the third 

decimal.  However, in the case of over-dispersion, the Bayes estimators with informative priors for 

the parameters α  and   are more appropriate for the discrete Weibull regression under type I right 

censored data than other methods in terms of the MSE of the estimators.  
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Figure 1 SE plots for each sample size by method when censoring at 5C   
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