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Abstract 

When the multicollinearity problem appears in the multiple linear regression model, the 

performance of the unbiased estimator which is the ordinary least squares (OLS)  is ine�cient.  To 

solve the above-mentioned problem, several biased and almost unbiased regression estimators are 

introduced. In this study, as an alternative to the OLS estimator, a modified two-parameter regression 

estimator called the Dawoud biased regression ( DBR)  estimator is proposed.  Moreover, we 

theoretically compare the performance of the DBR estimator with the OLS and some existing 

estimators by the criterion of the mean squares error.  Furthermore, a Monte Carlo simulation study 

and real- life data are given to evaluate the performance of the DBR estimator.  The main finding is 

that the DBR estimator performs better than other regression estimators under determined conditions. 

______________________________ 
Keywords: Dawoud biased estimator, Liu estimator, Monte Carlo simulation, multicollinearity, ridge estimator. 

 

1.  Introduction 

The multiple linear regression model is known as 

 ,y X                     (1) 

where y  is an 1n  vector of the known response variable, X  is an pn   full rank matrix of the 

known explanatory variables,   is an 1p  vector of the unknown regression parameters, and   is 

defined as an 1n  vector of disturbances such that 2( ) .nCov I   The unbiased ordinary least 

squares (OLS) estimator of   in (1) is defined by  

 1ˆ ,S X y                    (2) 

where .S X X  

The instability and inefficiency of the OLS estimator in the appearance of the multicollinearity 

problem for the multiple linear regression model encourage authors to introduce many biased and 

almost unbiased estimators to cope with this problem (Hoerl and Kennard (1970) ) , to mention a few 

of the related studies, Stein (1956) , Massy (1965) , Hoerl and Kennard (1970) , Mayer and Willke 

(1973), Swindel (1976), Liu (1993), Akdeniz and Kaçiranlar (1995), Ozkale and Kaçiranlar (2007), 

Sakallıoglu and Kaçıranlar (2008) , Yang and Chang (2010) , and recently Roozbeh (2018) , Akdeniz 
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and Roozbeh (2019)  and Lukman et al.  ( 2019a, 2019b)   among others.  The proposed biased and 

almost unbiased regression estimators in the previous- mentioned studies and others have biasing 

parameters.  The determination of these parameters plays a useful role in giving a good view of these 

estimators’  performances, to mention some of the studies related to obtaining the biasing parameters 

problem in regression models using an efficient criterion, Amini and Roozbeh (2015) , Akdeniz and 

Roozbeh (2017), Roozbeh et al. (2020) and Roozbeh and Hamzah (2020), among others. The paper 

objective is to propose a new kind of two-parameter estimator for the regression parameter in the 

appearance of the multicollinearity problem and then to compare the performance of the newly 

introduced estimator with the OLS, the ridge of Hoerl and Kennard (1970), the Liu of Liu (1993), the 

two-parameter of Ozkale and Kaçiranlar (2007), and the modified ridge type of Lukman et al. (2019a) 

estimators. 

 

1.1. Some alternative biased regression estimators 

The ordinary ridge regression (ORR) estimator is known as follows: 

 ˆ ˆ,k WS    0,k                   (3) 

where 1( )pW S k     and k  is known as the biasing parameter (Hoerl and Kennard 1970). 

The Liu estimator is known as follows: 

 ˆ ˆ,d F    0 1,d                   (4) 

where 1( ) ( )p pF S S d      and d  is known as the biasing parameter (Liu 1993). 

The two-parameter (TP) estimator is known as follows: 

ˆ ˆ,TP M    0, 0 1,k d                                                     (5) 

where 1( ) ( )p pM S k S kd      (Ozkale and Kaçiranlar 2007). 

The modified ridge type (MRT) estimator is known as follows: 

 ˆ ˆ,MRT RS    0, 0 1,k d                    (6) 

where 1( (1 ) )pR S k d      (Lukman et al. 2019a). 

 

1.2. The proposed modified two-parameter regression estimator 

Following the same method that used by Liu (1993), Kaciranlar et al. (1999) and Yang and Chang 

(2010), we propose a new kind of two-parameter regression estimator for   by replacing ̂  with 

ˆ
MRT  in TP̂  as follows: 

ˆ ˆ.DBR MRS                                                                (7) 

This estimator is going to be called the Dawoud biased regression (DBR) estimator. 

Properties of the DBR estimator: 

ˆ ˆ( ) ( ) .DBRE MRSE MRS                                                   (8) 

The bias and the covariance of the DBR estimator are given respectively, 

ˆ( ) [ ] ,DBR pB MRS I                                                        (9) 

2ˆ( ) ,DBRD MRSR M                                                       (10) 

and the mean square error matrix (MSEM) is calculated as 
2ˆ( ) [ ] [ ] .DBR p pMSEM MRSR M MRS I MRS I                                    (11) 
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Writing Equation (1) in the canonical form for comparing the DBR estimator performance with 

the mentioned estimators as follows: 

,  Zy                                                                     (12) 

where  XZ   and .    Here,   is an orthogonal matrix such that 

1 2( , , , ).pZ Z X X T diag t t t         The OLS estimator of   is known as  

,ˆ 1 yZT                                                                      (13) 

.)ˆ( 12  TMSEM                                                             (14) 

The ORR of   (Hoerl and Kennard 1970) is known as 

ˆ ˆ ,k WT                                                                    (15) 

where 1[ ]pW T kI    and the MSEM is known as 

 2ˆ( ) ( ) ( ) .k p pMSEM WTW WT I WT I                     (16) 

Hoerl et al. (1975) gave the harmonic-mean of the biasing parameter for the ORR estimator as 

follows: 

.
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The Liu estimator of   (Liu 1993) is known as 

ˆ ˆ ,d F                                                                        (18) 

where 1[ ] [ ],p pF T I T dI    d  is known as the biasing parameter of the Liu estimator and given 

as 

 ,

))1/(ˆ(

))1(/(1(

ˆ1ˆ

1

22

12



































p

i

ii

p

i

ii

opt

t

tt

d




              (19) 

and the MSEM of this estimator is known as 

 2 1 2 1 1ˆ( ) (1 ) ( ) ( ) .d p pMSEM FT F d T I T I                       (20) 

In case of optd̂  becomes negative, Ozkale and Kaçiranlar (2007) gave the following alternative 

for the biasing parameter: 
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The TP estimator of   (Ozkale and Kaçiranlar 2007) is known as  

ˆ ˆ ,TP M                                                                       (22) 

where 1( ) ( ),p pM T k T kd      the biasing parameters k  and d  of the TP estimator are known as 

 
2

min 2 2 2
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and the MSEM of this estimator is known as 
2 1ˆ( ) [ ] [ ] .TP p pMSEM MT M M I M I                                              (25) 

In case of )(ˆ
min TPd  becomes negative, we can use ˆ

altd  that was derived by Ozkale and Kaçiranlar 

(2007). The MRT estimator of   (Lukman et al. 2019a) is known as 

ˆ ˆ,MRT RT                                                                    (26) 

where 1( (1 ) ) ,pR T k d      the biasing parameters k  and d  of  the MRT estimator are known as  

2

min 2

ˆˆ ( ) min ,
ˆ(1 ) i

k MRT
d





 
  

 
                                                      (27) 
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and the MSEM of this estimator is known as 
2ˆ( ) [ ] [ ] .MRT p pMSEM RTR RT I RT I                                        (29) 

The proposed DBR estimator of   is given by   

ˆ ˆ.DBR MRT                                                                (30) 

The MSEM of the proposed DBR estimator of   is going to be 

 2ˆ( ) [ ] [ ] .DBR p pMSEM MRTR M MRT I MRT I                     (31) 

The lemmas that are useful in the theoretical comparisons are stated in the section below.  

 

Lemma 1. (Farebrother 1976) Let G  be an nn   positive definite (pd) matrix, which is 0G   and 

  be the vector; then 0G    iff  1 1.G     
 

Lemma 2. (Trenkler and Toutenburg 1990) Let ,i iC y   2,1i  be the two linear estimators of .  

Suppose that 1 2
ˆ ˆ( ) ( ) 0,Difference Cov Cov     such that 2,1)ˆ( iCov i  be the covariance 

matrix of i̂  and ˆ( ) ( ) ,i i ib Bias C X I     1,2.i   Then,  

 2
1 2 1 2 1 1 2 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) 0MSEM MSEM Difference b b b b                          (32) 

iff 2 1
2 1 1 2[ ] 1b Difference b b b   

 
where ˆ ˆ( ) ( ) .i i i iMSEM Cov b b     

 

The paper remaining part is as follows: in Section 2, the proposed DBR estimator is compared 

theoretically with each mentioned estimator and then the optimal biasing parameters k and d of the 

DBR estimator are found. Then, a Monte Carlo simulation study is completed in Section 3. Real-life 

chemical data is used in Section 4. Finally, concluding remarks are stated in Section 5. 

 

2. Comparisons among the Estimators 

1. Comparison between ̂  and ˆ .DBR  The difference between ˆ( )MSEM 
 
and ˆ( )DBRMSEM   is 

given as 
2 1ˆ ˆ( ) ( ) ( ) [ ] [ ]DBR p pMSEM MSEM T MRTR M MRT I MRT I                         (33) 
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Theorem 1. DBR̂  is superior to ̂  iff  

2 1[ ] [ ( )][ ] 1p pMRT I T MRTR M MRT I                                     (34) 

 

Proof: The difference of the dispersion matrices is given as 

2 1( )Difference T MRTR M    
2
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2 2
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
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   
               (35) 

where 1T MRTR M    is pd iff 2 2 2 2( (1 )) ( ) ( ) 0i i i it k d t k t t kd       or 

( (1 ))( ) ( ) 0.i i i it k d t k t t kd       So, for 0k  and 0 1,d   

2( (1 ))( ) ( ) 2 (1 ) 0.i i i i it k d t k t t kd t k k d          Therefore, 1T MRTR M    is pd.  

 

2. Comparison between k̂  and ˆ .DBR  The difference between ˆ( )kMSEM 
 
and ˆ( )DBRMSEM   

is given as 
2ˆ ˆ( ) ( ) ( ) [ ] [ ]k DBR p pMSEM MSEM WTW MRTR M WT I WT I              

[ ] [ ]p pMRT I MRT I                                               (36) 

 

Theorem 2. DBR̂  is superior to k̂  iff  

1[ ] [ [ ] [ ] ][ ] 1,p p p pMRT I V WT I WT I MRT I                             (37) 

where 2
1 ( ).V WTW MRTR M       

 

Proof: The difference of the dispersion matrices is given as 

2
2 2

1 2 2 2

1

( )
( ) ,

( ) ( (1 )) ( )

p

i i i

i i i i

t t t kd
V WTW MRTR M diag

t k t k d t k
 
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      

    
       (38) 

where WTW MRTR M    is pd iff 2 2( (1 )) ( ) 0i it k d t kd      or ( (1 )) ( ) 0.i it k d t kd      So, 

for 0k  and 0 1,d   ( (1 )) ( ) 0.i it k d t kd k       Therefore, WTW MRTR M    is pd. 

 

3. Comparison between d̂  and ˆ .DBR  The difference between ˆ( )dMSEM 
 
and ˆ( )DBRMSEM   

is given as 
2 1 2 1 1ˆ ˆ( ) ( ) ( ) (1 ) ( ) ( )d DBR p pMSEM MSEM FT F MRTR M d T I T I                

[ ] [ ]p pMRT I MRT I                                                    (39) 

 

Theorem 3. DBR̂  is superior to d̂   iff  

2 1 1
2[ ] [ (1 ) ( ) ( ) ][ ] 1,p p p pMRT I V d T I T I MRT I                               (40) 

where 2 1
2 ( ).V FT F MRTR M        

 

Proof: The difference of the dispersion matrices is given as 

2 2
2 1 2

2 2 2 2

1

( ) ( )
( ) ,

( 1) ( (1 )) ( )

p

i i i

i i i i i

t d t t kd
V FT F MRTR M diag

t t t k d t k
 



  
      

    
           (41) 
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where 1FT F MRTR M     is pd iff 2 2 2 2 2 2( (1 )) ( ) ( ) ( ) ( 1) 0i i i i i it k d t d t k t t kd t         or 

( (1 ))( )( ) ( )( 1) 0.i i i i i it k d t d t k t t kd t         So, if 0k  and 0 1,d 

.0)1())(1()12()1)(()()())1(( 22  ddkdkdktdkttdkttktdtdkt iiiiiiii

Therefore, 1FT F MRTR M     is pd.  

 

4. Comparison between TP̂  and ˆ .DBR  The difference between ˆ( )TPMSEM   and 

ˆ( )DBRMSEM  is given as 

2 1ˆ ˆ( ) ( ) ( ) [ ] [ ]TP DBR p pMSEM MSEM MT M MRTR M M I M I               

[ ] [ ] .p pMRT I MRT I                                              (42) 

 

Theorem 4. DBR̂  is superior to TP̂  iff  

3[ ] [ [ ] [ ] ][ ] 1p p p pMRT I V M I M I MRT I                              (43) 

where 2 1
3 ( ).V MT M MRTR M        

 

Proof: The difference of the dispersion matrices is given as 

2 2
2 1 2

3 2 2 2

1

( ) ( )
( ) ,

( ) ( (1 )) ( )

p

i i i

i i i i i

t kd t t kd
V MT M MRTR M diag

t t k t k d t k
 



  
      

    
         (44) 

where 1MT M MRTR M     is pd iff 0))1(( 22  ii tdkt  or ( (1 )) 0.i it k d t     Obviously, 

for 0k  and 0 1,d 
 
( (1 )) (1 ) 0.i it k d t k d       Therefore, 1MT M MRTR M     is pd. 

 

5. Comparison between MRT̂  and ˆ .DBR  The difference between ˆ( )MRTMSEM 
 

and 

ˆ( )DBRMSEM   is given as 

2ˆ ˆ( ) ( ) ( ) [ ] [ ]MRT DBR p pMSEM MSEM RTR MRTR M RT I RT I              

[ ] [ ] .p pMRT I MRT I                                           (45) 

 

Theorem 5. DBR̂  is superior to ˆ
MRT  iff  

 4[ ] [ [ ] [ ] ][ ] 1,p p p pMRT I V RT I RT I MRT I                       (46) 

where 2
4 ( ).V RTR MRTR M      

 

Proof: The difference of the dispersion matrices is given as 

2
2 2

4 2 2 2

1

( )
( ) ,

( (1 )) ( (1 )) ( )

p

i i i

i i i i

t t t kd
V RTR MRTR M diag

t k d t k d t k
 



 
      

     
       (47) 

where RTR MRTR M    is pd iff 2 2( ) ( ) 0i it k t kd     or ( ) ( ) 0.i it k t kd     Obviously, for 

0k  and 0 1,d  ( ) ( ) (1 ) 0.i it k t kd k d       Therefore, RTR MRTR M    is pd.  
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6. The proposed DBR estimator parameters determination k  and d  

Here, we discuss getting both of the biasing parameters k  and d  which are unknown and 

should be estimated from the known data. The optimal biasing parameter k  in the ORR estimator and 

the optimal d  in the Liu estimator are given by Hoerl and Kennard (1970) and Liu (1993), 

respectively. Several proposed estimators for both of the biasing parameters k  and d  are given and 

illustrated in lots of previous studies, for example, Hoerl et al. (1975), Kibria (2003), Kibria and Banik 

(2016), Lukman and Ayinde (2017), Månsson et al. (2015) and Khalaf and Shukur (2005), among 

others. 

This time, we discuss getting the optimal values of both k  and d  for the proposed DBR 

estimator. At first, in case of d  is fixed, the optimal value of k  is gotten by minimizing  

ˆ ˆ ˆ( ) (( ) ( )),DBR DBR DBRMSEM E        

ˆ( , ) ( ( )),DBRMSE k d tr MSEM   

2 2 2 2
2

2 2 2 2
1 1

( ) ( (1 ) 2 )
( , ) .

( ) ( (1 )) ( ) ( (1 ))

p p
i i i i

i ii i i i

t t kd k d t k
MSE k d

t k t k d t k t k d




 

  
 

     
             (48) 

After setting ( ( , ) ) 0,MSE k d k    we obtain the optimal value of k  as follows 
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Since ,0k  so 
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                           (50) 

After setting 0)),((  ddkMSE , we obtain the optimal value of d  as follows 

2 2 2 2
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2
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i i i i

i

k t k t
d

k k
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                                                 (51) 

Following the similar technique used in Akdeniz and Roozbeh (2017), we find the values of k  
that make the given value of d  is between 0 and 1 using Equation (51). Since 0 1,d   that means 

2 2 2 2

2 2
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i i i i

i

k t k t

k k
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
 so after examining the signs of the previous inequality, the value of k  

should be as follows 

2 2 2 2 2

2 2

( )
.

2

i i i i i i

i i

t t t
k

    
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 
                                        (52) 

So, there are many values of k  we can choose according to Equation (52) which are positive and 

make d  values are between 0 and 1. To restrict the chosen value of the parameter ,k  we take the 

midpoint of the interval in Equation (52) as follows 
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                                        (53) 

We change the unknown parameters in Equations (52) and (53) by their unbiased estimators in 

order to use them in practical parts. So, we have 
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2 2 2 2 2
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and the corresponding optimal d  with the unbiased estimators is given as: 

2 2 2 2
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3.    Simulation Study 

A Monte Carlo simulation study is completed for comparing the proposed DBR estimator 

performance with the other mentioned estimators in this section.  Following the methods of Gibbons 

(1981) and Kibria (2003), the explanatory variables are generated as follows 
2 1/ 2

, 1(1 ) , 1,2,..., ; 1, 2,..., ,ij ij i px z z i n j p                                     (57) 

where ijz   are independent pseudo- random numbers and follow a standard normal distribution and 

the correlations of the explanatory variables are considered here as 90.0  and 0.99. The dependent 

variable y  with n  observations are considered as: 

1 1 2 2 , 1, 2, , ,i i i p ip iy x x x e i n                                        (58) 

where ie  are i. i. d.  2(0, )N   and in this simulation we choose 3p
  
and 7.  The   values are 

considered as 1,    Newhouse and Oman (1971) .  The biasing parameters of the estimators are 

considered here as 9.0,6.0,3.0k  such that Wichern and Churchill (1978) and Kan et al. (2013) said 

that the ORR estimator has better results when k  is between 0 and 1 and 0.2,0.5,0.8.d   The number 

of replications in this simulation is 1,000 times for the given sample sizes 50n  and 100 and 2

1, 25 and 100. We calculate the mean squares error (MSE) criterion for the estimators in each replicate 

as follows 
1000

* * *

1

1
( ) ( ) ( ),

1000
ij i ij i

j

MSE     


                                        (59) 

where *
ij  is any given estimator and i  is the given true parameter. The estimated MSE values of 

the estimators are stated in Tables 1-8. For each row, the smaller MSE value is bolded. 

Tables 1-8 clarify that if ,    and p
 
have an increase in their values, then the estimated MSEs 

also have an increase in their values, while the factor n  has an increase in its value, then the estimated 

MSEs have a decrease in their values. As known, the OLS estimator has the worst one among all given 

estimators.  In addition, the results clarify that the proposed DBR estimator outperforms better than 

other mentioned estimators in all cases except the Liu estimator gives near MSE values of the DBR 

estimator when the biasing parameters k  and d  are very small ( near to zero) .  Thus, the results we 

got from the simulation are consistent with the results of the theoretical part.  
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Table 1 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 3,p   9.0  and 50n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 0.22428 0.21052 0.19120 0.21325 0.20800 0.19782 

  5 5.60637 5.26417 4.77823 5.33169 5.19960 4.94571 

  10 22.4254 21.0567 19.1131 21.3268 20.7986 19.7828 

 0.5 1 0.22428 0.21052 0.20328 0.21735 0.20422 0.19792 

  5 5.60637 5.26417 5.08074 5.43385 5.10510 4.94865 

  10 22.4254 21.0567 20.3229 21.7355 20.4206 19.7948 

 0.8 1 0.22428 0.21052 0.21567 0.22144 0.20055 0.19803 

  5 5.60637 5.26417 5.39290 5.53707 5.01333 4.95159 

  10 22.4254 21.0567 21.5715 22.1481 20.0533 19.8064 

0.6 0.2 1 0.22428 0.19813 0.19120 0.20328 0.19351 0.17556 

  5 5.60637 4.95348 4.77823 5.08074 4.83724 4.38658 

  10 22.4254 19.8142 19.1131 20.3229 19.3490 17.5465 

 0.5 1 0.22428 0.19813 0.20328 0.21094 0.18690 0.17598 

  5 5.60637 4.95348 5.08074 5.27467 4.67071 4.39656 

  10 22.4254 19.8142 20.3229 21.0988 18.6829 17.5864 

 0.8 1 0.22428 0.19813 0.21567 0.21892 0.18060 0.17629 

  5 5.60637 4.95348 5.39290 5.47239 4.51300 4.40622 

  10 22.4254 19.8142 21.5715 21.8897 18.0520 17.6249 

0.9 0.2 1 0.22428 0.18690 0.19120 0.19404 0.18060 0.15666 

  5 5.60637 4.67071 4.77823 4.85068 4.51300 3.91062 

  10 22.4254 18.6829 19.1131 19.4029 18.0520 15.6422 

 0.5 1 0.22428 0.18690 0.20328 0.20506 0.17178 0.15739 

  5 5.60637 4.67071 5.08074 5.12736 4.29166 3.92952 

  10 22.4254 18.6829 20.3229 20.5096 17.1666 15.7177 

 0.8 1 0.22428 0.18690 0.21567 0.21651 0.16369 0.15813 

  5 5.60637 4.67071 5.39290 5.41212 4.08702 3.94747 

  10 22.4254 18.6829 21.5715 21.6484 16.3478 15.7896 

 

4. Application  

The famous data that was originally adopted by Woods et al. (1932) is called the Portland cement 

and here is used to clarify the proposed DBR estimator performance and other given estimators. This 

data was analyzed in various studies, for example, Kaciranlar et al. (1999), Li and Yang (2012), 

Lukman et al. (2019a), and Dawoud and Kibria (2020a, 2020b), among others. The regression model 

of this data is known as 

0 1 1 2 2 3 3 4 4 .i iy X X X X                                                  (60) 
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Table 2 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 3,p  99.0  and 50n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 2.04246 1.18209 0.71536 1.33528 1.07698 0.70591 

  5 51.0603 29.5527 17.8825 33.3833 26.9246 17.6469 

  10 204.240 118.211 71.5303 133.532 107.698 70.5878 

 0.5 1 2.04246 1.18209 1.13253 1.58287 0.94395 0.73279 

  5 51.0603 29.5527 28.3137 39.5707 23.5989 18.3206 

  10 204.240 118.211 113.255 158.282 94.3961 73.2826 

 0.8 1 2.04246 1.18209 1.64629 1.85146 0.83433 0.75694 

  5 51.0603 29.5527 41.1575 46.2878 20.8584 18.9233 

  10 204.240 118.211 164.629 185.150 83.4340 75.6934 

0.6 0.2 1 2.04246 0.77164 0.71536 0.97692 0.66591 0.32203 

  5 51.0603 19.2909 17.8825 24.4216 16.6479 8.04804 

  10 204.240 77.1638 71.5303 97.6864 66.5921 32.1921 

 0.5 1 2.04246 0.77164 1.13253 1.33056 0.54432 0.35710 

  5 51.0603 19.2909 28.3137 33.2643 13.6064 8.92584 

  10 204.240 77.1638 113.255 133.057 54.4258 35.7033 

 0.8 1 2.04246 0.77164 1.64629 1.73932 0.45360 0.38734 

  5 51.0603 19.2909 41.1575 43.4832 11.3378 9.68289 

  10 204.240 77.1638 164.629 173.932 45.3511 38.7316 

0.9 0.2 1 2.04246 0.54432 0.71536 0.76671 0.45360 0.17493 

  5 51.0603 13.6064 17.8825 19.1669 11.3378 4.36863 

  10 204.240 54.4258 71.5303 76.6678 45.3511 17.4744 

 0.5 1 2.04246 0.54432 1.13253 1.17274 0.35532 0.20737 

  5 51.0603 13.6064 28.3137 29.3172 8.88079 5.18017 

  10 204.240 54.4258 113.255 117.269 35.5233 20.7204 

 0.8 1 2.04246 0.54432 1.64629 1.66561 0.28644 0.23509 

  5 51.0603 13.6064 41.1575 41.6393 7.15659 5.87244 

  10 204.240 54.4258 164.629 166.556 28.6263 23.4896 

 

To get more information about this data you can see Woods et al. (1932). Some measures of this 

data are computed as: the variance inflation factors (VIFs) are 1 38.50,VIF   2 254.42,VIF   

3 46.87,VIF   4 282.51.VIF   The eigenvalues of S  are 1 44676.206,t   2 5965.422,t   

3 809.952,t   419.1054 t  and 5 0.001218,t   and the condition number (CN) of S  is approximately 

6056.344. The VIFs, the eigenvalues, and the CN tell us that severe multicollinearity appears in this 

data.  
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Table 3 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 3,p   9.0  and 100n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 0.11172 0.10836 0.10311 0.10899 0.10762 0.10500 

  5 2.79415 2.70826 2.57649 2.72538 2.69157 2.62552 

  10 11.1765 10.8330 10.3056 10.9013 10.7663 10.5018 

 0.5 1 0.11172 0.10836 0.10626 0.11004 0.10668 0.10500 

  5 2.79415 2.70826 2.65702 2.75100 2.66689 2.62594 

  10 11.1765 10.8330 10.6278 11.0041 10.6675 10.5034 

 0.8 1 0.11172 0.10836 0.10951 0.11109 0.10573 0.10510 

  5 2.79415 2.70826 2.73882 2.77683 2.64253 2.62626 

  10 11.1765 10.8330 10.9552 11.1073 10.5702 10.5050 

0.6 0.2 1 0.11172 0.10510 0.10311 0.10636 0.10384 0.09880 

  5 2.79415 2.62657 2.57649 2.65965 2.59497 2.47054 

  10 11.1765 10.5060 10.3056 10.6383 10.3796 9.88186 

 0.5 1 0.11172 0.10510 0.10626 0.10836 0.10195 0.09891 

  5 2.79415 2.62657 2.65702 2.70963 2.54866 2.47201 

  10 11.1765 10.5060 10.6278 10.8385 10.1944 9.88774 

 0.8 1 0.11172 0.10510 0.10951 0.11046 0.10017 0.09901 

  5 2.79415 2.62657 2.73882 2.76013 2.50362 2.47338 

  10 11.1765 10.5060 10.9552 11.0406 10.0143 9.89341 

0.9 0.2 1 0.11172 0.10195 0.10311 0.10384 0.10017 0.09313 

  5 2.79415 2.54866 2.57649 2.59675 2.50362 2.32785 

  10 11.1765 10.1944 10.3056 10.3870 10.0143 9.31108 

 0.5 1 0.11172 0.10195 0.10626 0.10678 0.09754 0.09324 

  5 2.79415 2.54866 2.65702 2.66994 2.43841 2.33079 

  10 11.1765 10.1944 10.6278 10.6795 9.75355 9.32295 

 0.8 1 0.11172 0.10195 0.10951 0.10972 0.09513 0.09345 

  5 2.79415 2.54866 2.73882 2.74407 2.37594 2.33373 

  10 11.1765 10.1944 10.9552 10.9762 9.50334 9.33460 

 

Using Equations (54), (55) and (56) to find the interval and the midpoint value of this interval for 

k̂  and then to get the corresponding value of d̂  for the proposed DBR estimator respectively  i.e., for 

1,i   ˆ143.910936 144.142719,k   the midpoint value of this interval is 026828.144ˆ k  and the 

corresponding ˆ 0.499999,d   then ˆ( ) 3892.2163,DBRMSE    for 2,i   

ˆ281.405584 288.042927,k   the midpoint value of this interval is 724256.284ˆ k  and the 

corresponding ˆ 0.499934,d   then ˆ( ) 3892.9157,DBRMSE    for 3,i   ˆ11.413290 11.493704,k   

the midpoint value of this interval is 453497.11ˆ k  and the corresponding ˆ 0.499994,d   then 

ˆ( ) 3890.0616,DBRMSE    for 4,i   ˆ1.236135 1.243382,k   the midpoint value of this interval is 
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239759.1ˆ k  and the corresponding ˆ 0.499996,d   then ˆ( ) 3887.6948,DBRMSE    finally for 5,i   

ˆ0.000614 0.000768,k   the midpoint value of this interval is 000691.0ˆ k  and the corresponding 

ˆ 0.494889,d   then ˆ( ) 2170.9595.DBRMSE    Then, the best value is for 9595.2170)ˆ( DBRMSE   

when  000691.0ˆ k  and 494889.0ˆ d  i.e., the best MSE value of the proposed DBR estimator goes 

for the lowest interval 000768.0ˆ000614.0  k  and the midpoint of this interval is ˆ 0.000691.k   

Moreover, the estimated parameters and the MSEs of the estimators using the given estimates of their 

biasing parameters are stated in Table 9. It appears that the proposed DBR estimator outperforms the 

best. 

 

Table 4 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 3,p  99.0  and 100n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 1.04086 0.78183 0.55524 0.83065 0.74203 0.59335 

  5 26.0211 19.5465 13.8818 20.7655 18.5506 14.8333 

  10 104.084 78.1862 55.5270 83.0623 74.2024 59.3333 

 0.5 1 1.04086 0.78183 0.71925 0.90657 0.68785 0.59997 

  5 26.0211 19.5465 17.9818 22.6653 17.1963 15.0002 

  10 104.084 78.1862 71.9275 90.6609 68.7856 60.0006 

 0.8 1 1.04086 0.78183 0.90499 0.98605 0.63955 0.60627 

  5 26.0211 19.5465 22.6245 24.6503 15.9880 15.1554 

  10 104.084 78.1862 90.4982 98.6012 63.9522 60.6220 

0.6 0.2 1 1.04086 0.61015 0.55524 0.68691 0.55723 0.37012 

  5 26.0211 15.2532 13.8818 17.1726 13.9305 9.25165 

  10 104.084 61.0130 55.5270 68.6906 55.7221 37.0065 

 0.5 1 1.04086 0.61015 0.71925 0.81081 0.49014 0.38346 

  5 26.0211 15.2532 17.9818 20.2713 12.2521 9.58597 

  10 104.084 61.0130 71.9275 81.0851 49.0086 38.3438 

 0.8 1 1.04086 0.61015 0.90499 0.94531 0.43459 0.39543 

  5 26.0211 15.2532 22.6245 23.6334 10.8643 9.88533 

  10 104.084 61.0130 90.4982 94.5333 43.4570 39.5413 

0.9 0.2 1 1.04086 0.49014 0.55524 0.58348 0.43459 0.24654 

  5 26.0211 12.2521 13.8818 14.5867 10.8643 6.16234 

  10 104.084 49.0086 55.5270 58.3469 43.4570 24.6490 

 0.5 1 1.04086 0.49014 0.71925 0.73930 0.36771 0.26323 

  5 26.0211 12.2521 17.9818 18.4815 9.19201 6.57877 

  10 104.084 49.0086 71.9275 73.9264 36.7679 26.3150 

 0.8 1 1.04086 0.49014 0.90499 0.91392 0.31531 0.27783 

  5 26.0211 12.2521 22.6245 22.8481 7.88308 6.94344 

  10 104.084 49.0086 90.4982 91.3924 31.5323 27.7736 

 



854                                                                   Thailand Statistician, 2022; 20(4): 842-859 

Table 5 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 7,p   9.0  and 50n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 0.78078 0.70276 0.60753 0.71788 0.68890 0.63546 

  5 19.5182 17.5687 15.1886 17.9480 17.2233 15.8858 

  10 78.0728 70.2750 60.7546 71.7920 68.8934 63.5433 

 0.5 1 0.78078 0.70276 0.66927 0.74109 0.66916 0.63661 

  5 19.5182 17.5687 16.7319 18.5269 16.7291 15.9158 

  10 78.0728 70.2750 66.9277 74.1075 66.9164 63.6633 

 0.8 1 0.78078 0.70276 0.73489 0.76471 0.65047 0.63777 

  5 19.5182 17.5687 18.3715 19.1176 16.2613 15.9446 

  10 78.0728 70.2750 73.4862 76.4707 65.0455 63.7785 

0.6 0.2 1 0.78078 0.63850 0.60753 0.66549 0.61593 0.53046 

  5 19.5182 15.9631 15.1886 16.6374 15.3971 13.2620 

  10 78.0728 63.8528 60.7546 66.5497 61.5882 53.0482 

 0.5 1 0.78078 0.63850 0.66927 0.70728 0.58464 0.53371 

  5 19.5182 15.9631 16.7319 17.6832 14.6159 13.3435 

  10 78.0728 63.8528 66.9277 70.7330 58.4635 53.3742 

 0.8 1 0.78078 0.63850 0.73489 0.75085 0.55629 0.53676 

  5 19.5182 15.9631 18.3715 18.7704 13.9061 13.4196 

  10 78.0728 63.8528 73.4862 75.0818 55.6243 53.6787 

0.9 0.2 1 0.78078 0.58464 0.60753 0.62097 0.55629 0.45150 

  5 19.5182 14.6159 15.1886 15.5239 13.9061 11.2876 

  10 78.0728 58.4635 60.7546 62.0958 55.6243 45.1502 

 0.5 1 0.78078 0.58464 0.66927 0.67819 0.51817 0.45675 

  5 19.5182 14.6159 16.7319 16.9539 12.9546 11.4178 

  10 78.0728 58.4635 66.9277 67.8157 51.8185 45.6713 

 0.8 1 0.78078 0.58464 0.73489 0.73857 0.48468 0.46147 

  5 19.5182 14.6159 18.3715 18.4654 12.1167 11.5373 

  10 78.0728 58.4635 73.4862 73.8614 48.4671 46.1488 

 

Also, to show the prediction performance of the proposed DBR estimator and other existing 

estimators with their biasing parameter estimators’ values stated in Table 9, we calculate the prediction 

mean squared error (PMSE) and the mean absolute error (MAE) criteria which are defined respectively 

as  



n

i

ii xy
n

PMSE
1

2)
~

(
1

  and 

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n

i

ii xy
n

MAE
1

|
~

|
1

  where ix  is the thi  row vector of the 

matrix X  and 
~

 is any estimator of .  So, the PMSE results of the above estimators are 

ˆ( ) 3.6818,PMSE   ˆ( ) 3.9533,kPMSE    ˆ( ) 3.7957,dPMSE    ˆ( ) 3.7952,TPPMSE    

ˆ( ) 3.7953MRTPMSE    and ˆ( ) 3.7950,DBRPMSE    which indicate that the OLS and the proposed 

DBR estimators are better than others by the PMSE criterion. Moreover, the MAE results of the above 
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estimators are ˆ( ) 1.5871,MAE    ˆ( ) 1.5427,kMAE    ˆ( ) 1.5617,dMAE    ˆ( ) 1.5581,TPMAE    

ˆ( ) 1.5582MRTMAE    and ˆ( ) 1.5579,DBRMAE    which indicate that the ORR and the proposed DBR 

estimators are better than others by the MAE criterion. As a result, we can say that the proposed DBR 

estimator is the best by the MSE criterion and is better than most of other estimators by the PMSE and 

the MAE criteria because the performance of the estimators depends almost on the selection of the 

biasing parameters. 

 

Table 6 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 7,p  99.0  and 50n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 7.39074 3.50878 2.14221 4.14540 3.15052 1.93935 

  5 184.769 87.7200 53.5558 103.634 78.7625 48.4841 

  10 739.078 350.879 214.223 414.539 315.049 193.936 

 0.5 1 7.39074 3.50878 3.70303 5.23131 2.71834 2.04277 

  5 184.769 87.7200 92.5765 130.782 67.9594 51.0684 

  10 739.078 350.879 370.305 523.134 271.837 204.273 

 0.8 1 7.39074 3.50878 5.75274 6.47461 2.37741 2.13328 

  5 184.769 87.7200 143.818 161.863 59.4358 53.3332 

  10 739.078 350.879 575.274 647.457 237.743 213.332 

0.6 0.2 1 7.39074 2.18767 2.14221 2.93958 1.87509 0.88672 

  5 184.769 54.6919 53.5558 73.4891 46.8780 22.1678 

  10 739.078 218.767 214.223 293.955 187.512 88.6710 

 0.5 1 7.39074 2.18767 3.70303 4.33807 1.52481 0.99057 

  5 184.769 54.6919 92.5765 108.451 38.1209 24.7642 

  10 739.078 218.767 370.305 433.808 152.483 99.0570 

 0.8 1 7.39074 2.18767 5.75274 6.06144 1.26850 1.08034 

  5 184.769 54.6919 143.818 151.535 31.7124 27.0082 

  10 739.078 218.767 575.274 606.143 126.849 108.032 

0.9 0.2 1 7.39074 1.52481 2.14221 2.29530 1.26850 0.49245 

  5 184.769 38.1209 53.5558 57.3828 31.7124 12.3113 

  10 739.078 152.483 214.223 229.531 126.849 49.2452 

 0.5 1 7.39074 1.52481 3.70303 3.82861 0.99393 0.58191 

  5 184.769 38.1209 92.5765 95.7143 24.8479 14.5476 

  10 739.078 152.483 370.305 382.856 99.3916 58.1906 

 0.8 1 7.39074 1.52481 5.75274 5.81490 0.80209 0.65898 

  5 184.769 38.1209 143.818 145.371 20.0508 16.4733 

  10 739.078 152.483 575.274 581.487 80.2033 65.8933 
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Table 7 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 7,p  9.0  and 100n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 0.34272 0.33085 0.31290 0.33327 0.32854 0.31951 

  5 8.56810 8.27190 7.82292 8.33059 8.21467 7.98787 

  10 34.2722 33.0873 31.2916 33.3225 32.8584 31.9516 

 0.5 1 0.34272 0.33085 0.32392 0.33673 0.32518 0.31962 

  5 8.56810 8.27190 8.09802 8.41921 8.12994 7.98945 

  10 34.2722 33.0873 32.3920 33.6769 32.5199 31.9579 

 0.8 1 0.34272 0.33085 0.33516 0.34030 0.32182 0.31962 

  5 8.56810 8.27190 8.37826 8.50836 8.04678 7.99102 

  10 34.2722 33.0873 33.5132 34.0334 32.1871 31.9642 

0.6 0.2 1 0.34272 0.31972 0.31290 0.32424 0.31542 0.29851 

  5 8.56810 7.99207 7.82292 8.10547 7.88445 7.46203 

  10 34.2722 31.9683 31.2916 32.4221 31.5379 29.8480 

 0.5 1 0.34272 0.31972 0.32392 0.33106 0.30912 0.29872 

  5 8.56810 7.99207 8.09802 8.27736 7.72747 7.46760 

  10 34.2722 31.9683 32.3920 33.1093 30.9098 29.8706 

 0.8 1 0.34272 0.31972 0.33516 0.33799 0.30303 0.29893 

  5 8.56810 7.99207 8.37826 8.45113 7.57543 7.47316 

  10 34.2722 31.9683 33.5132 33.8044 30.3018 29.8927 

0.9 0.2 1 0.34272 0.30912 0.31290 0.31563 0.30303 0.27940 

  5 8.56810 7.72747 7.82292 7.89180 7.57543 6.98386 

  10 34.2722 30.9098 31.2916 31.5671 30.3018 27.9355 

 0.5 1 0.34272 0.30912 0.32392 0.32571 0.29421 0.27982 

  5 8.56810 7.72747 8.09802 8.14180 7.35640 6.99531 

  10 34.2722 30.9098 32.3920 32.5673 29.4256 27.9812 

 0.8 1 0.34272 0.30912 0.33516 0.33589 0.28591 0.28024 

  5 8.56810 7.72747 8.37826 8.39611 7.14745 7.00633 

  10 34.2722 30.9098 33.5132 33.5845 28.5899 28.0253 
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Table 8 Estimated MSE for OLS, ORR, Liu, TP, MRT and DBR when 7,p   99.0  and 100n  

k  d    OLS ORR Liu TP MRT DBR 

0.3 0.2 1 3.25321 2.38717 1.67674 2.54887 2.25834 1.78122 

  5 81.3297 59.6791 41.9197 63.7208 56.4591 44.5297 

  10 325.318 238.716 167.678 254.883 225.836 178.118 

 0.5 1 3.25321 2.38717 2.20405 2.80213 2.08488 1.80432 

  5 81.3297 59.6791 55.1021 70.0538 52.1226 45.1093 

  10 325.318 238.716 220.407 280.214 208.490 180.437 

 0.8 1 3.25321 2.38717 2.80801 3.06841 1.93168 1.82574 

  5 81.3297 59.6791 70.2000 76.7111 48.2920 45.6447 

  10 325.318 238.716 280.799 306.844 193.167 182.578 

0.6 0.2 1 3.25321 1.83918 1.67674 2.08771 1.67391 1.09441 

  5 81.3297 45.9796 41.9197 52.1938 41.8476 27.3594 

  10 325.318 183.918 167.678 208.774 167.390 109.437 

 0.5 1 3.25321 1.83918 2.20405 2.49270 1.46632 1.13757 

  5 81.3297 45.9796 55.1021 62.3174 36.6575 28.4385 

  10 325.318 183.918 220.407 249.269 146.629 113.753 

 0.8 1 3.25321 1.83918 2.80801 2.93611 1.29622 1.17600 

  5 81.3297 45.9796 70.2000 73.4038 32.4066 29.3992 

  10 325.318 183.918 280.799 293.614 129.626 117.596 

0.9 0.2 1 3.25321 1.46632 1.67674 1.76400 1.29622 0.72492 

  5 81.3297 36.6575 41.9197 44.1010 32.4066 18.1217 

  10 325.318 146.629 167.678 176.403 129.626 72.4871 

 0.5 1 3.25321 1.46632 2.20405 2.26653 1.09315 0.77658 

  5 81.3297 36.6575 55.1021 56.6639 27.3284 19.4145 

  10 325.318 146.629 220.407 226.655 109.313 77.6582 

 0.8 1 3.25321 1.46632 2.80801 2.83615 0.93534 0.82173 

  5 81.3297 36.6575 70.2000 70.9043 23.3826 20.5433 

  10 325.318 146.629 280.799 283.616 93.5308 82.1733 

 

Table 9 The results of the regression coe�cients and the corresponding MSEs 

Coef. OLS ORR
 

Liu
 

TP MRT DBR 

0  62.4053 8.58715 27.6657 27.6200 27.6229 27.6204 

1  1.55110 2.10461 1.90080 1.9089 1.9089 1.90891 

2  0.51016 1.06484 0.86996 0.8687 0.8686 0.86867 

3  0.10190 0.66808 0.46192 0.4679 0.4679 0.467889 

4  −0.14406 0.39959 0.20801 0.2073 0.2073 0.207317 

MSE  4912.0902 2989.8202 2170.9669 2170.9600 2170.9601 2170.9595 

k  − 0.007676 − 0.0015419 0.001534 0.000691 

d
 

− − 0.442224 0.001536 0.001536 0.494889 
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5. Concluding Remarks 

In this paper, we proposed a new kind of two-parameter regression estimator, namely, the Dawoud 

Biased Regression (DBR) estimator to tackle the multicollinearity problem. We theoretically 

compared the proposed DBR estimator with some existing estimators, for examples, the ordinary least 

squares (OLS), the ordinary ridge regression (ORR), the Liu, the two-parameter (TP) of Ozkale and 

Kaçiranlar (2007), and the modified ridge type (MRT) estimators and then we found the biasing 

parameters k  and .d  A simulation study is done for comparing the proposed DBR estimator 

performance with other mentioned estimators. The main finding of the performed simulation is that 

the proposed DBR estimator gives better results than other estimators under some specific conditions.  

Also, real-life data is used and analyzed for confirming the DBR estimator performance and the 

mentioned estimators using the mean squares error criterion and then we calculated the prediction 

mean squared error and the mean absolute error criteria to clarify the prediction performance of the 

proposed DBR estimator and other estimators. Finally, we can say that the proposed DBR estimator 

is the best among others in many cases by using different criteria and the performance of the estimators 

depends almost on the selection of the biasing parameters. So, we encourage authors to propose many 

different estimators of the biasing parameters for the proposed DBR estimator and discuss their 

performances for future studies. 
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