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Abstract 

This paper compares the least-squares, maximum likelihood, and Bayesian methods for 

estimating an unknown parameter in the random coefficient autoregressive (RCA) model. The RCA 

model depends on the random coefficients and the time series data in terms of the autoregressive 

model. We mention estimating unknown parameters by using least-squares, maximum likelihood, and 

Bayesian methods. We concentrate on only the first-order models of the RCA model depending on 

the unknown parameter under time series data. The least-squares method is a widely used method by 

minimizing the sum of squared residuals and differential concerning unknown parameters. Next, the 

maximum likelihood method is another method that is well-known and often used for estimating 

parameters based on the likelihood function and observed data. Finally, the Bayesian method carries 

out Markov chain Monte Carlo (MCMC) method to generate samples from a posterior distribution, 

which, after being averaged, give the estimated value of the unknown parameter. We use a Gibbs 

sampling algorithm in our MCMC calculation. The efficiency of the three methods is to compare 

according to the average mean square error for simulation data. The least-squares method performs 

better than the maximum likelihood and Bayesian method except for the trend data for simulation data. 

The average mean square error of the least-squares method shows the minimum values that indicated 

their performance in most cases.  Lastly, we try these methods with the series of days of the gold price 

per one-baht weight on one year as actual data. The result shows that the least-squares method still 

worked better than the maximum likelihood and Bayesian method, similar to the simulation of test 

data. 

______________________________ 
Keywords: Bayesian method, least-squares method, maximum likelihood method. 

 

1. Introduction 

 In finance, the data are collected in the form of time series data applied for modeling from the 

past data and forecasting to the future data.  The time series data are the ordered sequence of 

observations taken at regular intervals such as daily exchange rate, weekly stock prices, monthly oil 

consumptions, and annual growth rates. Usually, the time series data exhibits changing data as a trend, 

volatility, stationary, nonstationary, and random walk, especially when the time- series data are 
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systematically collected over a long period. The time series models are beneficial models when users 

have serially correlated data.  However, it is also one of the time series models, which helps forecast 

the values in future time. 

A model widely used to fit the stationary data such as the autoregressive (AR) model, moving 

average (MA) model, and autoregressive moving average (ARMA) model. For nonstationary time 

series data, the autoregressive integrated moving average (ARIMA) model can use when the data has 

the trend. These models have some problems with over-specify the model and estimating the 

integration parameter. An alternative way to model by volatility is to use the conditional 

heteroscedastic autoregressive moving average (CHARMA) model (Tsay 1987). Nicholls and Quinn 

(1982) studied the random coefficient autoregressive (RCA) model. It is the class of autoregressive 

models whose coefficients are random. This model has unique among the non-linear model and time 

series data in that their analysis is quite tractable. It has been possible to find conditions stationarity 

and stability, to derive estimates of the unknown parameter. Aue et al. (2006) proposed the quasi-

maximum likelihood method to estimate parameters of the RCA model of order one that derived the 

strong consistency and the asymptotic normality of the estimators. Wang and Ghosh (2008) used the 

Bayesian estimation and unit root test of the first-order estimate on the RCA model. Benmoumen et 

al. (2019) elaborated an algorithm to estimate p-order random coefficient autoregressive model 

parameters. This algorithm combines the quasi-maximum likelihood method, the Kalman filter, and 

the simulated annealing method.  

The statistical principles associated with the least-squares and maximum likelihood methods 

underlie the parameter estimation. The least-squares method is the most popular method used to 

determine the best fit parameter by minimizing the sum of squares of the deviations of the values, such 

as the regression analysis. The least-squares method can apply to the time series model found in the 

paper of Khall and Moraes (2012), which used the linear least square method for time series analysis 

with application to the methane time series data. In addition, the maximum likelihood method involves 

defining a likelihood function of observing the data sample given the probability function. The 

modeling of time series can apply the maximum likelihood method for estimating parameters and 

forecasting future value. Andrews and Davis (2006) proposed the maximum likelihood estimation for 

autoregressive-moving average model in which all roots of the autoregressive polynomial are 

reciprocals of roots of the moving average polynomial and vice versa. To estimate an unknown 

parameter, the least-square and maximum likelihood methods can solve to estimate the parameter of 

several models depending on the past and present data for time series modeling. 

Furthermore, the Bayesian method is treated the random variables distributed according to the 

probability distribution for estimating unknown parameter which relates on the prior distribution. 

From Bayes’ theorem, the posterior distribution depends on the prior distribution and probability 

distribution of random variables or a hierarchical model. However, it is hard to see what the posterior 

distribution might look like, and it is impossible to solve the analytical problem because it contains 

several parameters. 

This study is interested in estimating the RCA model parameter based on the least-squares, 

maximum likelihood, and Bayesian methods. The performance of these methods looks at the minimum 

of the average of the mean square error (MSE) method for several situations of simulated data and 

MSE for actual data. 
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2. The RCA Model 

The general class of random coefficient autoregressive (RCA) model of order ,p  that is given 

by 

 1
1

, 2,3,..., .
p

t ti t t
i

x x t n  


     (1) 

Wang and Ghosh (2008) suggested ,ti tu     where 
 

is the scalar of constant, 

,ti tu     is a sequence of independent random vectors with mean 1 2( , ,..., ) 't t tp     and 

covariance matrix .  It is assumed that t ’s are the sequence of i.i.d. (independent and identically 

distributed random variables) from distribution mean zero and unit variance. 

In this paper, we focus on the simplicity case study of the first order on RCA(1) following 

 1 , 2,3,..., ,t t t tx x t n        and ,t tu                                 (2) 

where t ’s are i.i.d. random variables with mean ,  and variance 2 ,   t ’s are i.i.d. random 

variables with mean zero and variance 2.  The RCA(1) model can be rewritten as 

 1 1 ,t t t t t tx x x u            (3) 

where 1 ,t t t tu v x    then tv  is a random variable with mean zero and variance one and 

independent of .t  

 

3. Method of Parameter Estimation 

To estimate the parameter of the RCA(1) model, we propose the concept of least-squares criterion, 

maximum likelihood method, and Bayesian method based on the MCMC method. 

 

3.1. Least-squares method 

The first estimated method, we propose the least-squares criterion to estimate parameter 

( , )    by minimizing sum of squared residuals. Let t  be the information set up to time ,t  and 

1,t t tu x x    then it can see that 1( ) 0,t tE u     2 2 2 2
1 1( ) ,t t tE u x       and 

2 2 2
1 1( ) .t t tVar u x       

Given a sample 1 2, , , ,nx x x  the parameter ( , )    is to estimate by minimizing 2

1

n

t
t

u

 with 

respect to ( , ),    thus the least-squares estimator ,
ˆ ˆ ˆ( , )LS LS LS    is given by 

  
22

1
2 2

( ) .
n n

t t t
t t

u x x  
 

     (4) 

Differential concerning parameter ˆ
LS , ,

ˆ :LS  

 
22

1
1 1

( ) 0,
n n

t t t
t t

u x x 
  

 

 
   

 
 

 

and   
22

1
1 1

( ) 0.
n n

t t t
t t

u x x
 

 
 


 

 
   

 
   

Then, we get 
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1

1 2ˆ ,

n n

t t
t t

LS

x x

n n
 


  
 

 (5) 

and 
1 1

2 2
,

2
1

2

ˆ .

n n

t t t
t t

LS n

t
t

x x x

x





 

 







 


 (6) 

From (6), let us replace in (5) and the solution of ˆ
LS  is  

2
1 1 1

2 1 2 2

2

2
1 1

2 2

ˆ ,

n n n n

t t t t t
t t t t

LS
n n

t t
t t

x x x x x

n x x


  

   

 
 




  

     

   

 

 

or ,
ˆ

LS  can rewrite as  

1 1
2 1 2

, 2

2
1 1

2 2

ˆ .

n n n

t t t t
t t t

LS
n n

t t
t t

n x x x x

n x x


 

  

 
 




  

     

  

 

 

For RCA(1) model, it can be fitted model as , 1
ˆˆ ˆ , 2,3,... .t LS LS tx x t n    

 
 

3.2.  Maximum likelihood method 

The maximum likelihood method extends from the least-squares method by considering the 

observations  1,..., nx x  and the probability distribution function. From (2), we know that 

1 .t t t tx x      Then we assume that the observed data is the normal distribution, then 

1 1( | )t t tE x x x     and 2 2
1 1( | ) .t t tVar x x x      Now, the likelihood function is defined by 

 
/ 2 2

1/2 12 2 2
1 1 1 2 2 2

22 2 1

( )1 1
( ) ( | ) ( | ) exp .

2 2

nn n n
t t

t t t t t
tt t t

x x
L L x x f x x x

x



 

 

 
   

  

 

  
  

    
      

    
   

It is more convenient to work by setting parameter 
2

2
,









  so it can be written by 

  
/ 2 2

1/2 12 2
1 2 2

22 1

( )1 1
( ) 1 exp .

2 2 1

n n n
t t

t
tt t

x x
L x

x





 
  

  

 


 

    
    

    
  (7) 

Take ln on likelihood function following; 

  
22

12
1 2 2

2 2 1

( )1
ln ( ) ln 2 ln(1 ) .

2 2 2 1

n n
t t

t
t t t

x xn
L x

x





 
  

 



  

 
    


   (8) 

Differential with respect to parameter   and ,  

1

2 2
2 1

( )1
ln ( ) ,

2 1

n
t t

t t

x x
L

x





 


  


 

 


 
   1 1

2 2
2 1

( )1
ln ( ) .

2 1

n
t t t

t t

x x x
L

x



 

 


  
 

 

 
 

 
  
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Let ln ( ) 0.
( , )

L



 





 The ̂  is approximated by  

1

2 2 2
2 2 21 1 1

1
ln ( ) 0,

1 1 1

n n n
t t

t t tt t t

x x
L

x x x
  

   


    


   

   
     

then 

 

1
2 2

2 21 1

2
2 1

1 1
ˆ .

1

1

n n
t t

t tt t

n

t t

x x

x

x

 






  

 


 





 


 (9) 

Similarly, the ˆ
  is approximated by  

2
1 1 1

2 2 2
2 2 21 1 1

ln ( ) 0,
1 1 1

n n n
t t t t

t t tt t t

x x x x
L

x x x




  
   

  

    


   

   
    

then  

 

1 1
2 2

2 21 1

2
1

2
2 1

1 1
ˆ .

1

n n
t t t

t tt t

n
t

t t

x x x

x x

x

x




 





 

  



 


 





 


 (10) 

From (9) and (10), it can be rewritten as  

1 2

3

ˆ
ˆ
c c

c




  and 4 2

5

ˆ
ˆ ,

c c

c






  

where  
2

1 1 1
1 2 3 4 52 2 2 2 2

2 2 2 2 21 1 1 1 1

1
, , ,  ,  .

1 1 1 1 1

n n n n n
t t t t t

t t t t tt t t t t

x x x x x
c c c c c

x x x x x    
  

        

    
    

      

Finally, we obtain the estimator, 1 5 2 4

2
3 5 2

ˆ
ML

c c c c

c c c






 and 3 5 1 2

, 2
3 4 2

ˆ .ML

c c c c

c c c






 For observed fitting 

values of RCA(1) model, it can be written as , 1
ˆˆ ˆ , 2,3,... .t ML ML tx x t n      

 

3.3.  Bayesian method 

For the Bayesian method, the Markov chain Monte Carlo (MCMC) method allows estimating the 

shape of the posterior distribution. Morton and Finkenstadt (2005) used the Markov chain Monte Carlo 

method to model the susceptible-infected-recovered model for infectious disease. For convenience, 

the Bayesian estimator has computed the parameter on the model from the mean of posterior 

distribution by the MCMC method (Gilks et al. 1996). We also carry out the Gibbs sampling algorithm 

(Geman and Geman 1984) from the MCMC method by rjags package of R program to estimate an 

unknown parameter.  

In Bayesian estimation for RCA(1) model, we proposed a three-level hierarchical model. At the 

first level is the conditional distribution of the data ’stx  given the observed random variables 1,tx   

coefficient , ,t   and 2.  The second level consists of the conditional distribution t  given the 

parameter   and 2 .  Finally the last level shows the prior distribution of  , .  

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Consequently, given the sample variables 1 2, , , ,nx x x  we are able to express the RCA(1) model in 

the following hierarchical structure, 

  2
1

2
1, ~ ,, ,| , tt tt tx Nx x         2 2~| ,, ,t N          , ~ ,,p       

(11) 

where  p   is the prior density of   which reflects our prior about the unknown parameters. 

Following (11), we can express the likelihood function of   as, 

  1 2 1, , , , , , ,| n nL x x x        1 1
2

2

2 2
1; , ; , ,

n

t t tt
i

x xx x         


   (12) 

where  ; ,x    denotes the density function of a normal distribution with mean   and standard 

deviation .  Therefore, the joint posterior density of the parameters is given by, 

     1 2 1 2|| , , , , , , ,n nf x x x L x x x p     

where  p   is a prior density of .  For the parameter estimation of RCA(1) model, the prior 

distribution of  ,   


 are considered to be a continuous random variable in the set of real 

numbers following normal distribution. From the hierarchical structure in (12), the joint posterior 

density can be written as 

   2 2 2 2
1 2 1 2| , , , , , , ,, , | ,n nf x x x f x x x d d d              

and 

   2
2

1 2
2

1
2 2,| , , , , , ,, .,|n nf x x x f x x x d dd               

The joint posterior distribution of  and ,  via the normal distribution so that features of 

distribution are often possible to specify lower and upper bounds for these parameters which can be 

accurately determined.  

To manage Bayesian analysis for RCA(1), we interested in the properties of the density of 

 , .  


 Deriving the joint posterior density for   amounts to integrating out the unobserved 

coefficients  and .  We can perform the likelihood function to obtain posterior estimator. The 

complicated likelihood function, we used the so-called Markov chain Monte Carlo (MCMC) method 

(Gilk el al. 1996) to generate samples from the posterior distribution of  , .  


 We will carry 

out the Gibbs sampler (Gelfand et al. 1990), a widely used MCMC method, to obtain the parameter 

from the posterior distribution using the software R on package rjags. 

The condition densities of parameter in RCA(1) model is  2 2,| ,, ,f x     
 

and

 2 2, ,| , xf       as the full conditional densities of   and ,  respectively. The Gibbs sampling 

algorithm is 

1. Initialize  0  and  0 ,  for 1,2, , .k m M   

2. Draw  k  from       1 2 1 2 1| , , , .k k kf x         

3. Draw  k
  from       2 1 2 1| , , , .k k kf x        
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where m  2,000 are burn-in and M  5,000 are the number of samples generated after burn-in. 

Repeating the above sampling steps, we obtain a discrete-time Markov chain      , ; 1,2,
k k

k   

whose stationary distribution is the joint posterior density of the parameters.  

A Markov chain of parameters of  and ,  are constructed by computing the mean sampling 

from the joint posterior density as standard distribution following:  

( )

1ˆ

M
k

k
Bayes

M



 


  and  

( )

1
,

ˆ .

M
k

k
Bayes

M







 


 

For observed fitting values of RCA(1) model, it can be written as  

, 1
ˆˆ ˆ , 2, 3, ... .t Bayes Bayes tx x t n      

 

4.  Simulation Study      

This study’s objective is to estimate parameters ( , )    from RCA(1) by using the least-

squares, maximum likelihood, and Bayesian methods. The results have shown to compare the average 

estimators in the sample sizes 100, 300, and 500. The mean square error (MSE) evaluates the 

difference between the estimated values and simulated values. We also computed the MSE as the 

criterion defined following: 

2

2

ˆ( )

,
1

n

t t
t

x x

MSE
n









 

where tx  denotes the simulated values, and ˆ
tx  denotes the estimated values. The simulation study is 

divided in three parts. At the first process, we generated data , 1, 2,...,tx t n  from RCA(1) as 
 

2 2 2 2 2
1 1, (0, ), .t t t t u u tx x u u N x              

The parameter of RCA(1) model is mentioned on four cases as; 

1. 2 20.5, 1, 1, 0,          

2.
 

2 20, 0.99, 1, 0.01,          

3.
 

2 20, 0.01, 1, 0.99,          

4. 2 20, 0.6, 1, 0.4.          

The goal of the four cases is to see the different data depending on the different parameters, and 

the type of data is essential to fit the parameter of these methods. Figures 1-3 depict the 100, 300, and 

500 sample sizes.   
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Figure 1 The time series plot for generated data (100 sample sizes) 

 

 Figure 1 shows the generating data of 100 sample sizes. It should note that Case 1 is the trend 

data, Case 2 displays as the random walk, and Cases 3 and 4 also tend to oscillate around their mean 

zero. 

 
Figure 2 The time series plot for generated data (300 sample sizes) 

 

Also, the generated data of 300 sample sizes provide the trend and random walk process in Cases 

1 and 2, but the stationary process is displayed in Cases 3 and 4 in Figure 2. 
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Figure 3 The time series plot for generated data (500 sample sizes) 

 

The impact of the large sample sizes (500) also identified the oscillation in Cases 3 and 4 provided 

in Figure 3.  

In the second part, we obtain the estimator ,
ˆ ˆ ˆ( , )LS LS LS    from least-squares method, 

,
ˆ ˆ ˆ( , )ML ML ML    from maximum likelihood method and ,

ˆ ˆ ˆ( , )Bayes Bayes Bayes    from Bayesian 

method based on MCMC method. From least-squares method, we get tx from 

, 1
ˆˆ ˆ , 2,3,..., ,t LS LS tx x t n      The estimated values from maximum likelihood method are 

computed by and tx  from Bayesian analysis is approximated by , 1
ˆˆ ˆ , 2,3,... ,t ML ML tx x t n      and 

, 1
ˆˆ ˆ , 2,3,..., .t Bayes Bayes tx x t n      

Finally part, we simulated data at 500 replications from RCA(1). We also compute the Monte 

Carlo mean and standard deviation for each parameter and sample size. To see this, we compute the 

average of MSE (AMSE) to compare the valuable estimation between the least-squares, maximum 

likelihood, and Bayesian methods, as shown in Tables 1-3. 

From Table 1, the AMSE of the least-squares method shows the minimum values for Cases 2, 3, 

and 4. When the sample sizes are increasing, the standard deviation of the parameter is decreasing too. 

Meanwhile, the absolute standard deviation of the least-squares method presents the lowest values; 

thus, this method is consistent for estimating parameters. 
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Table 1 The mean (sd) and AMSE of parameter estimation on least-squares method 

Case Parameter 
Sample sizes 

n = 100 n = 300 n = 500 
1 0.5   0.5672 

(0.1932) 
0.5177 

(0.1078) 
0.5098 

(0.0884) 

1   0.9979 
(0.0071) 

0.9997 
(0.0013) 

0.9999 
(0.0006) 

AMSE 0.9889 0.9943 0.9950 
2 0   0.0115 

(0.3444) 
0.0035 
(0.1525) 

0.0007 
(0.1079) 

0.99   0.9322 
(0.0474) 

0.9690 
(0.0189) 

0.9763 
(0.0126) 

AMSE 1.3587 1.5577 1.7165 
3 0   0.0063 

(0.1092) 
0.0014 
(0.0583) 

0.0003 
(0.0472) 

0.01   0.0007 
(0.1081) 

0.0053 
(0.0595) 

0.0078 
(0.0463) 

AMSE 1.0875 1.0917 1.0931 
4 0   0.0071 

(0.1640) 
0.0038 
(0.0885) 

-0.0004 
(0.0723) 

0.6   0.5282 
(0.1257) 

0.5632 
(0.0935) 

0.5752 
(0.0764) 

AMSE 2.5280 2.5440 2.5409 
 

Table 2 The mean (sd) and AMSE of parameter estimation on maximum likelihood method 

Case Parameter 
Sample sizes 

n = 100 n = 300 n = 500 
1 0.5   0.5871 

(0.1975) 
0.5244 

(0.1096) 
0.5132 

(0.0889) 

1   0.9973 
(0.0073) 

0.9997 
(0.0013) 

0.9999 
(0.0006) 

AMSE 0.9884 0.9942 0.9949 
2 0   0.0110 

(0.3181) 
0.0030 
(0.1348) 

0.0031 
(0.0969) 

0.99   0.9365 
(0.0492) 

0.9728 
(0.0196) 

0.9793 
(0.0133) 

AMSE 1.3609 1.5594 1.7185 
3 0   0.0067 

(0.1088) 
0.0014 
(0.0581) 

0.0026 
(0.1399) 

0.01   0.0007 
(0.1079) 

0.0046 
(0.0591) 

0.0008 
(0.1657) 

AMSE 1.0879 1.0919 1.1911 
4 0   0.00845 

(0.1305) 
0.0011 
(0.0683) 

0.0009 
(0.0550) 

0.6   0.5795 
(0.1132) 

0.5924 
(0.0630) 

0.5947 
(0.0487) 

AMSE 2.6053 2.5816 2.5686 
 

The maximum likelihood is a good performance at Case 1 as the trend data in Table 2. The AMSE 

has represented the minimum values for all sample sizes. 
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Table 3 The mean (sd) and AMSE of parameter estimation on Bayesian method 

Case Parameter 
Sample sizes 

n = 100 n = 300 n = 500 
1 0.5   0.5876 

(0.1975) 
0.5244 

(0.1094) 
0.5130 

(0.0889) 

1   0.9969 
(0.0243) 

0.9995 
(0.0216) 

1.0021 
(0.0226) 

AMSE 1.4461 4.4543 11.9705 
2  0.0115 

(0.3506) 
0.0035 
(0.1531) 

0.0006 
(0.1082) 

0.99   0.9327 
(0.0532) 

0.9674 
(0.0310) 

0.9771 
(0.0258) 

AMSE 1.3825 1.5894 1.7649 
3  0.0063 

(0.1092) 
0.0014 
(0.0583) 

0.0002 
(0.0472) 

0.01   0.0008 
(0.1112) 

0.0023 
(0.0629) 

0.0057 
(0.0519) 

AMSE 1.0889 1.0922 1.0936 
4  0.0069 

(0.1647) 
0.0038 
(0.0887) 

0.0006 
(0.0725) 

0.6   0.5279 
(0.1276) 

0.5622 
(0.0949) 

0.5746 
(0.0798) 

AMSE 2.5298 2.5460 2.5428 
 

From Table 3, the Bayesian AMSE’s are larger than the other method, but this method 

outperforms the maximum likelihood method at Case 4 as it wildly oscillates around its mean zero. It 

can seem that the prior distribution of the Bayesian method is not affected to estimate parameters on 

the RCA model. 

 

5. Application in Actual Data 

In this section, we will consider applying the RCA(1) model using the least-squares, maximum 

likelihood, and Bayesian methods that we developed from the previous section. As a set of actual data, 

we play on the time series data, namely the daily gold price per one-baht weight (one-baht weight: 

15.244 grams) from October 2019 to September 2020, which consists of 314 records and shown in 

Figure 4. The gold price data is interesting in this period because it gathered momentum during the 

coronavirus pandemic and looked like the simulation data on Case 2. These data are obtained from 

https://lgp.go.th/index.php?p=22&month=09&year=2019. 

Figure 4 shows the random walk process of 314 records and looks like the increasing trend. The 

modeling steps as follows. At the first, we focus on the daily gold price per one-baht weight denoted 

, 1,2,3,...,314.tx t   Then, we estimate the parameters from three methods and obtain ˆ ˆ ,LS   

ˆ ˆ,ML Bayes   and , , , ,
ˆ ˆ ˆ ˆ, , .LS ML Bayes         Finally, we use these estimators for predicting future 

values on October 2020 (27 days) as , 1
ˆˆ ˆ , 315,316,...,341.t tx x t        

The mean square error (MSE) evaluates the difference between the real values and forecasting 

values. We also compute the MSE as the criterion defined following: 
27

2

1

ˆ( )

,
27

t t
t

x x
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
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
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Figure 4 The time series plot for daily gold price per one-baht weight since October, 2019 to  

September 2020 

 

where tx  denotes the real values, and ˆ
tx  denotes the forecasting values. Figure 5 gives the plot of the 

gold price where the dashed line is presented of the least-squares method, the dotted line is presented 

the maximum likelihood method, and the line is presented the Bayesian method. 

 

 
Figure 5 The plot of daily gold price per one-baht weight and forecasting of least-squares (LS),  

maximum likelihood (ML), and Bayesian (Bayes) methods 

 

Compared with Figure 5, and it can see that the forecasting values of the least-squares method are 

relatively close to the observed series. Therefore, we should be more convinced by the MSE of the 
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least-squares method given 93,460.5, the MSE of maximum likelihood given 372,465.2, and the 

Bayesian method is maximum as 176,833.8. 

 

6.  Conclusions 

This paper studied the least-squares, maximum likelihood, and Bayesian methods for estimating 

the first order in RCA or called RCA(1) model. Through a Monte Carlo simulation, we evaluated the 

performance of these methods, showed the mean and standard deviation of parameters, and played the 

AMSEs of various data and sample sizes. It appears that most cases of the least-squares method 

perform well in picking up the correct model to see the AMSE is minimum. It is indicated that the 

RCA(1) model is affected on past observed data more than the informative prior to Bayesian Analysis. 

The maximum likelihood method outperforms the other methods for the trend data, but it is slightly 

different from the least-squares method. We are also interested in the power of estimating by the mean 

square error for application in actual data. We can see that the least-squares method outperforms the 

maximum likelihood and Bayesian method similar to the simulation study results. We would 

recommend fitting RCA(1) model on time series data by the least-squares method where stationary 

and non-stationary data are expected. 
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