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Abstract

This paper compares the least-squares, maximum likelihood, and Bayesian methods for
estimating an unknown parameter in the random coefficient autoregressive (RCA) model. The RCA
model depends on the random coefficients and the time series data in terms of the autoregressive
model. We mention estimating unknown parameters by using least-squares, maximum likelihood, and
Bayesian methods. We concentrate on only the first-order models of the RCA model depending on
the unknown parameter under time series data. The least-squares method is a widely used method by
minimizing the sum of squared residuals and differential concerning unknown parameters. Next, the
maximum likelihood method is another method that is well-known and often used for estimating
parameters based on the likelihood function and observed data. Finally, the Bayesian method carries
out Markov chain Monte Carlo (MCMC) method to generate samples from a posterior distribution,
which, after being averaged, give the estimated value of the unknown parameter. We use a Gibbs
sampling algorithm in our MCMC calculation. The efficiency of the three methods is to compare
according to the average mean square error for simulation data. The least-squares method performs
better than the maximum likelihood and Bayesian method except for the trend data for simulation data.
The average mean square error of the least-squares method shows the minimum values that indicated
their performance in most cases. Lastly, we try these methods with the series of days of the gold price
per one-baht weight on one year as actual data. The result shows that the least-squares method still
worked better than the maximum likelihood and Bayesian method, similar to the simulation of test
data.

Keywords: Bayesian method, least-squares method, maximum likelihood method.

1. Introduction

In finance, the data are collected in the form of time series data applied for modeling from the
past data and forecasting to the future data. The time series data are the ordered sequence of
observations taken at regular intervals such as daily exchange rate, weekly stock prices, monthly oil
consumptions, and annual growth rates. Usually, the time series data exhibits changing data as a trend,
volatility, stationary, nonstationary, and random walk, especially when the time- series data are
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systematically collected over a long period. The time series models are beneficial models when users
have serially correlated data. However, it is also one of the time series models, which helps forecast
the values in future time.

A model widely used to fit the stationary data such as the autoregressive (AR) model, moving
average (MA) model, and autoregressive moving average (ARMA) model. For nonstationary time
series data, the autoregressive integrated moving average (ARIMA) model can use when the data has
the trend. These models have some problems with over-specify the model and estimating the
integration parameter. An alternative way to model by volatility is to use the conditional
heteroscedastic autoregressive moving average (CHARMA) model (Tsay 1987). Nicholls and Quinn
(1982) studied the random coefficient autoregressive (RCA) model. It is the class of autoregressive
models whose coefficients are random. This model has unique among the non-linear model and time
series data in that their analysis is quite tractable. It has been possible to find conditions stationarity
and stability, to derive estimates of the unknown parameter. Aue et al. (2006) proposed the quasi-
maximum likelihood method to estimate parameters of the RCA model of order one that derived the
strong consistency and the asymptotic normality of the estimators. Wang and Ghosh (2008) used the
Bayesian estimation and unit root test of the first-order estimate on the RCA model. Benmoumen et
al. (2019) elaborated an algorithm to estimate p-order random coefficient autoregressive model
parameters. This algorithm combines the quasi-maximum likelihood method, the Kalman filter, and
the simulated annealing method.

The statistical principles associated with the least-squares and maximum likelihood methods
underlie the parameter estimation. The least-squares method is the most popular method used to
determine the best fit parameter by minimizing the sum of squares of the deviations of the values, such
as the regression analysis. The least-squares method can apply to the time series model found in the
paper of Khall and Moraes (2012), which used the linear least square method for time series analysis
with application to the methane time series data. In addition, the maximum likelihood method involves
defining a likelihood function of observing the data sample given the probability function. The
modeling of time series can apply the maximum likelihood method for estimating parameters and
forecasting future value. Andrews and Davis (2006) proposed the maximum likelihood estimation for
autoregressive-moving average model in which all roots of the autoregressive polynomial are
reciprocals of roots of the moving average polynomial and vice versa. To estimate an unknown
parameter, the least-square and maximum likelihood methods can solve to estimate the parameter of
several models depending on the past and present data for time series modeling.

Furthermore, the Bayesian method is treated the random variables distributed according to the
probability distribution for estimating unknown parameter which relates on the prior distribution.
From Bayes’ theorem, the posterior distribution depends on the prior distribution and probability
distribution of random variables or a hierarchical model. However, it is hard to see what the posterior
distribution might look like, and it is impossible to solve the analytical problem because it contains
several parameters.

This study is interested in estimating the RCA model parameter based on the least-squares,
maximum likelihood, and Bayesian methods. The performance of these methods looks at the minimum
of the average of the mean square error (MSE) method for several situations of simulated data and
MSE for actual data.
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2. The RCA Model
The general class of random coefficient autoregressive (RCA) model of order p, that is given

by
P
X, :a+2ﬂﬁx,_l+8t,t:2,3,...,n. (1)
i=1

Wang and Ghosh (2008) suggested S, =y, +€Q,u,, where « is the scalar of constant,
B = Hy +Q,u,, is asequence of independent random vectors with mean 4, = (44, 5., #4,,)" and

covariance matrix €. It is assumed that ¢, ’s are the sequence of i.i.d. (independent and identically

distributed random variables) from distribution mean zero and unit variance.
In this paper, we focus on the simplicity case study of the first order on RCA(1) following
x, =a+pfx  +e, t=23,..n andf =u,+o,u, )

where S ’s are i.i.d. random variables with mean Hg, and variance 0';,,

g, ’s are 1.1.d. random
variables with mean zero and variance . The RCA(1) model can be rewritten as

X, :a+ﬂ’,x,71+gl:a+yﬁx,71+u1, 3)
where u, =0,v,x,,+¢&,, then v, is a random variable with mean zero and variance one and

independent of &,.

3. Method of Parameter Estimation
To estimate the parameter of the RCA(1) model, we propose the concept of least-squares criterion,
maximum likelihood method, and Bayesian method based on the MCMC method.

3.1. Least-squares method
The first estimated method, we propose the least-squares criterion to estimate parameter
0 =(a, u,) by minimizing sum of squared residuals. Let y, be the information set up to time ¢, and
u =x,—pyx,_, then it can see that E(u, |7/H)=O, E(u; |7/H)=ag2 +a§ x,, and
Var(u, |7171)=U§ + G; X0
Given a sample x,,x,,...,x,, the parameter 6 = (a, 1,) is to estimate by minimizing Zuf with
=1
respect to 0 = (a, 44,), thus the least-squares estimator éLS =(a,, ,[zﬂ’ .s) 1s given by
n 5 n 2
2w )= (v —a—px ) 4)
=2 =2

Differential concerning parameter &, , fl, g
0 < , 0 2
— D> () =—) (x,—a—pu,x = 0,
oa ,Z:I:( ) aa;( ! Ho H)
and iZ(u, )zzi (x,—a—,uﬂx[fl)z = 0.

aﬂﬁ =1 a,u/; =1
Then, we get
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n
25 K

G = = —Hg = ) (5)
n n
n n
thxr—l _azxt—l
and I[l/i,LS = = A = . (6)

2
Z Xia1
t=2

From (6), let us replace in (5) and the solution of &, is

_,zi Zx —Zx,x,IZx »

n n
Z XX = 2% D K

t=1 t=2

For RCA(1) model, it can be fitted model as X, = &, + i, X, | ,t=2,3,..n.

aLS

or fl, s canrewrite as

Hp s =

3.2. Maximum likelihood method
The maximum likelihood method extends from the least-squares method by considering the

observations {xl,...,xn} and the probability distribution function. From (2), we know that
x,=a+px,_ +&, Then we assume that the observed data is the normal distribution, then

E(x,|x_) = a+ux,_, and Var(x, |x,_) = o,x,_ +0,. Now, the likelihood function is defined by

LO)=L(0|xx, )= H fx | x, )= (ij ﬁ(a voiat 1)—1/2 exp {—12%}

1=2 2 =2 o, + O'/), X,

2
%

25

£

L(6)= ( jn 0H(1+Vx )/zex{ 122 i ﬂﬂ”)} (7

512 1+Vx

It is more convenient to work by setting parameter v = so it can be written by

Take In on likelihood function following;

1 X (xt _a_luﬂxtf])z
t— l) 2

2
20, 15 I+vx,

InL(O) = —Eln 27r

®)

Differential with respect to parameter o and g,

L Omamlyi) = 0y gy - L (0O M ey

0
—InL(0)=— 5 5
oa 207 5 I+vx,, Oy 20,15 1+vx’,
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Let a—lnL(H):O. The & is approximated by
ot 1)
-
Vx>, ,Z;‘Hv ﬂzl+v X2
then
n xr

. ,Z;‘l+vt 1 ﬂzl+vx

a=
- 1
Sl+vx,

Similarly, the ﬂﬂ is approximated by

a n
——InL(@ —-a
Oty ©)= Z vxt1 ,Z;l+vx ﬁzl+vx
then
N xfxtfl N xf*l
-«
. ;Hvxil ;Hvxil
'Llﬂ = n 2
Z X
Sl+vx’,

From (9) and (10), it can be rewritten as

~ G _,[l ¢ ~ c,—dc
a= £2 and fy =——2,
G Cs
where
n
G=2 TGS Z Z Z
ry 1+v 1+v 1+v 1+v
. . , R . C4¢s — ¢
Finally, we obtain the estimator, &,, =————=* and f,,, =———2-:*
CiC5 —C, ’ ¢, —C

values of RCA(1) model, it can be written as X, = &, + f; ,, %, > t =2,3,..n.

3.3. Bayesian method

)

(10)

Z XX

1+vx

-=. For observed fitting

For the Bayesian method, the Markov chain Monte Carlo (MCMC) method allows estimating the
shape of the posterior distribution. Morton and Finkenstadt (2005) used the Markov chain Monte Carlo
method to model the susceptible-infected-recovered model for infectious disease. For convenience,
the Bayesian estimator has computed the parameter on the model from the mean of posterior
distribution by the MCMC method (Gilks et al. 1996). We also carry out the Gibbs sampling algorithm
(Geman and Geman 1984) from the MCMC method by rjags package of R program to estimate an

unknown parameter.

In Bayesian estimation for RCA(1) model, we proposed a three-level hierarchical model. At the

first level is the conditional distribution of the data x,’s given the observed random variables x, ,,

coefficient «, 3, and o.. The second level consists of the conditional distribution S, given the

parameter 1, and 0';. Finally the last level shows the prior distribution of Hz(a,,ttﬂ )T.
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Consequently, given the sample variables x,,x,,...,x,, we are able to express the RCA(1) model in
the following hierarchical structure,
X | xt—l7a7ﬂtﬂo-sz NN(a +18txt—17o-gz)7 ﬂr | ,Llﬂ,O'; NN(:uﬂao-;)a (a:luﬂ)Np(asluﬂ)’
(11)

where p() is the prior density of € which reflects our prior about the unknown parameters.

Following (11), we can express the likelihood function of 4 as,

. . . [ 2 2 2
L(aﬂluﬂ|xl"xl”"’xnﬂgl"":gn):¢(x1’a’UE)H¢(‘xt’a+ﬂt‘xt—l’ o, +Uﬁxt—l)’ (12)
i=2

where ¢(x; ,u,O') denotes the density function of a normal distribution with mean g and standard

deviation o. Therefore, the joint posterior density of the parameters is given by,
F(01x,%,,...,x,)c L(0] x,,x,,...,x,) p(6),

where p(H) is a prior density of #. For the parameter estimation of RCA(1) model, the prior

distribution of 4= (a, ,u/,) are considered to be a continuous random variable in the set of real

numbers following normal distribution. From the hierarchical structure in (12), the joint posterior
density can be written as

2 2 2 2
f(a | xl,xz,...,xn)oc J.f(a,,uﬁ,aﬂ,ag |x1,x2,...,xn)d,uﬂ dO'ﬂ do;,
and
F (51 x.5y,000x, ) o Jf(a,yﬂ,of,,af |xl,x2,...,xn)dad0'; do?.
The joint posterior distribution of « and u,, via the normal distribution so that features of

distribution are often possible to specify lower and upper bounds for these parameters which can be
accurately determined.
To manage Bayesian analysis for RCA(1), we interested in the properties of the density of

-
0= (a, ,u/,) . Deriving the joint posterior density for & amounts to integrating out the unobserved

coefficients & and u,. We can perform the likelihood function to obtain posterior estimator. The

complicated likelihood function, we used the so-called Markov chain Monte Carlo (MCMC) method
(Gilk el al. 1996) to generate samples from the posterior distribution of 6 = (a, My )T . We will carry

out the Gibbs sampler (Gelfand et al. 1990), a widely used MCMC method, to obtain the parameter
from the posterior distribution using the software R on package rjags.

The condition densities of parameter in RCA(1) model is f (a|,uﬁ,0';,af,§), and

f ( Hy | a,a;,of,g) as the full conditional densities of & and 4, respectively. The Gibbs sampling
algorithm is

1. Initialize «'” and ,u(ﬁo), for k=12,....m+M.

2 Draw a(k) from f(a | /ll(l}k—l)’o.;(k—l)’O_Z(k—l)’E).

&

2k-1) _2(k-1)

3. Draw ,uf,k) from f(,uﬂ |a(k),0'ﬂ Nop ,1).
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where m =2,000 are burn-in and M =5,000 are the number of samples generated after burn-in.
Repeating the above sampling steps, we obtain a discrete-time Markov chain {(a(k) , ,u(ﬁk) ) k=1,2,.. }

whose stationary distribution is the joint posterior density of the parameters.

A Markov chain of parameters of « and ,, are constructed by computing the mean sampling
from the joint posterior density as standard distribution following:
S k < k
A ; a® ; ﬂ} )
aBayex = M and Iuﬂ,Bayes = M N
For observed fitting values of RCA(1) model, it can be written as

xt = aBayes + :uﬁ,BayeSxtfl ’t = 253""”'

4. Simulation Study
This study’s objective is to estimate parameters 6 =(a, u,) from RCA(1) by using the least-

squares, maximum likelihood, and Bayesian methods. The results have shown to compare the average
estimators in the sample sizes 100, 300, and 500. The mean square error (MSE) evaluates the
difference between the estimated values and simulated values. We also computed the MSE as the
criterion defined following:

Z (xt - )er )2
MSE="*2
n—1
where x, denotes the simulated values, and X, denotes the estimated values. The simulation study is
divided in three parts. At the first process, we generated data x,,t=1,2,...,n from RCA(1) as
X, =+, X, U, U~ N(0,02), o.=o0. +0'; X,

The parameter of RCA(1) model is mentioned on four cases as;

1. «=0.5, Hy = 1,0'3 = 1,0'; =0,

2. a=0, u;, =0.99,0, =1,0,=0.01,

3.a=0, u, =0.0l,07 = 1,0; =0.99,

4. a=0, My = 0.6, 0}2 = 1,0; =0.4.

The goal of the four cases is to see the different data depending on the different parameters, and
the type of data is essential to fit the parameter of these methods. Figures 1-3 depict the 100, 300, and
500 sample sizes.
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Figure 1 The time series plot for generated data (100 sample sizes)

Figure 1 shows the generating data of 100 sample sizes. It should note that Case 1 is the trend
data, Case 2 displays as the random walk, and Cases 3 and 4 also tend to oscillate around their mean
ZEero.
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Figure 2 The time series plot for generated data (300 sample sizes)

Also, the generated data of 300 sample sizes provide the trend and random walk process in Cases
1 and 2, but the stationary process is displayed in Cases 3 and 4 in Figure 2.
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Figure 3 The time series plot for generated data (500 sample sizes)

The impact of the large sample sizes (500) also identified the oscillation in Cases 3 and 4 provided
in Figure 3.

In the second part, we obtain the estimator éLS = (a5, fy,5) from least-squares method,

6,y =Gy » g,y ) from maximum likelihood method and 6

bayes = (amm, Ay, Bayes) from Bayesian

method based on MCMC method. From least-squares method, we get X, from

X, =@+ fy,6% ,1=2,3,.,n, The estimated values from maximum likelihood method are

computed by and x, from Bayesian analysis is approximated by %, = &, + &, ,, %, ;> t =2,3,..n, and
X, = Qs F Mg puyesXi 15 1 = 2,3,

Finally part, we simulated data at 500 replications from RCA(1). We also compute the Monte
Carlo mean and standard deviation for each parameter and sample size. To see this, we compute the
average of MSE (AMSE) to compare the valuable estimation between the least-squares, maximum
likelihood, and Bayesian methods, as shown in Tables 1-3.

From Table 1, the AMSE of the least-squares method shows the minimum values for Cases 2, 3,
and 4. When the sample sizes are increasing, the standard deviation of the parameter is decreasing too.
Meanwhile, the absolute standard deviation of the least-squares method presents the lowest values;
thus, this method is consistent for estimating parameters.
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Table 1 The mean (sd) and AMSE of parameter estimation on least-squares method
Case Parameter =100 Sample ;1ie§ 00 =500
1 a=0.5 0.5672 0.5177 0.5098
(0.1932) (0.1078) (0.0884)
My =1 0.9979 0.9997 0.9999
(0.0071) (0.0013) (0.0006)
AMSE 0.9889 0.9943 0.9950
2 a=0 0.0115 —-0.0035 0.0007
(0.3444) (0.1525) (0.1079)
ty =099 0.9322 0.9690 0.9763
(0.0474) (0.0189) (0.0126)
AMSE 1.3587 1.5577 1.7165
3 a=0 0.0063 -0.0014 0.0003
(0.1092) (0.0583) (0.0472)
uy; =0.01 —-0.0007 0.0053 0.0078
(0.1081) (0.0595) (0.0463)
AMSE 1.0875 1.0917 1.0931
4 a=0 0.0071 —-0.0038 -0.0004
(0.1640) (0.0885) (0.0723)
Uy =0.6 0.5282 0.5632 0.5752
(0.1257) (0.0935) (0.0764)
AMSE 2.5280 2.5440 2.5409

Table 2 The mean (sd) and AMSE of parameter estimation on maximum likelihood method

Sample sizes

Case Parameter =100 =300 =500
1 a=0.5 0.5871 0.5244 0.5132
(0.1975) (0.1096) (0.0889)

wy =1 0.9973 0.9997 0.9999

(0.0073) (0.0013) (0.0006)

AMSE 0.9884 0.9942 0.9949

2 a=0 0.0110 —-0.0030 0.0031
(0.3181) (0.1348) (0.0969)

ty =099 0.9365 0.9728 0.9793

(0.0492) (0.0196) (0.0133)

AMSE 1.3609 1.5594 1.7185

3 a=0 0.0067 -0.0014 0.0026
(0.1088) (0.0581) (0.1399)

uy =0.01 0.0007 0.0046 —0.0008

(0.1079) (0.0591) (0.1657)

AMSE 1.0879 1.0919 1.1911

4 a=0 0.00845 -0.0011 0.0009
(0.1305) (0.0683) (0.0550)

Hy =0.6 0.5795 0.5924 0.5947

(0.1132) (0.0630) (0.0487)

AMSE 2.6053 2.5816 2.5686

The maximum likelihood is a good performance at Case 1 as the trend data in Table 2. The AMSE

has represented the minimum values for all sample sizes.
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Table 3 The mean (sd) and AMSE of parameter estimation on Bayesian method
Sample sizes

Case Parameter =100 =300 =500
1 a=0.5 0.5876 0.5244 0.5130
(0.1975) (0.1094) (0.0889)

My =1 0.9969 0.9995 1.0021

(0.0243) (0.0216) (0.0226)

AMSE 1.4461 4.4543 11.9705

2 a=0 0.0115 —-0.0035 0.0006
(0.3506) (0.1531) (0.1082)

Hy =0.99 0.9327 0.9674 0.9771

(0.0532) (0.0310) (0.0258)

AMSE 1.3825 1.5894 1.7649

3 a=0 0.0063 -0.0014 0.0002
(0.1092) (0.0583) (0.0472)

uy; =0.01 —0.0008 0.0023 0.0057

(0.1112) (0.0629) (0.0519)

AMSE 1.0889 1.0922 1.0936

4 a=0 0.0069 —-0.0038 —0.0006
(0.1647) (0.0887) (0.0725)

Uy =0.6 0.5279 0.5622 0.5746

(0.1276) (0.0949) (0.0798)

AMSE 2.5298 2.5460 2.5428

From Table 3, the Bayesian AMSE’s are larger than the other method, but this method
outperforms the maximum likelihood method at Case 4 as it wildly oscillates around its mean zero. It
can seem that the prior distribution of the Bayesian method is not affected to estimate parameters on
the RCA model.

5. Application in Actual Data

In this section, we will consider applying the RCA(1) model using the least-squares, maximum
likelihood, and Bayesian methods that we developed from the previous section. As a set of actual data,
we play on the time series data, namely the daily gold price per one-baht weight (one-baht weight:
15.244 grams) from October 2019 to September 2020, which consists of 314 records and shown in
Figure 4. The gold price data is interesting in this period because it gathered momentum during the
coronavirus pandemic and looked like the simulation data on Case 2. These data are obtained from
https://Igp.go.th/index.php?p=22&month=09&year=2019.

Figure 4 shows the random walk process of 314 records and looks like the increasing trend. The
modeling steps as follows. At the first, we focus on the daily gold price per one-baht weight denoted
x,,t=1,2,3,..,314. Then, we estimate the parameters from three methods and obtain @, = ¢,

Crp s Apayes A fly g = fly 16 Ly s fly 5. Finally, we use these estimators for predicting future

values on October 2020 (27 days) as X, = &, + [, ,x, ,, t =315,316,...,341.

s
The mean square error (MSE) evaluates the difference between the real values and forecasting
values. We also compute the MSE as the criterion defined following:

27
Z(xz - )%z )2
t=1

27 ’

MSE =
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Figure 4 The time series plot for daily gold price per one-baht weight since October, 2019 to

September 2020

where x, denotes the real values, and X, denotes the forecasting values. Figure 5 gives the plot of the

gold price where the dashed line is presented of the least-squares method, the dotted line is presented
the maximum likelihood method, and the line is presented the Bayesian method.

Gold Price (Baht)

27500 28000 28500 29000

27000

LS, ML and Bayes Methods

Day

Figure 5 The plot of daily gold price per one-baht weight and forecasting of least-squares (LS),
maximum likelihood (ML), and Bayesian (Bayes) methods

Compared with Figure 5, and it can see that the forecasting values of the least-squares method are
relatively close to the observed series. Therefore, we should be more convinced by the MSE of the
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least-squares method given 93,460.5, the MSE of maximum likelihood given 372,465.2, and the
Bayesian method is maximum as 176,833.8.

6. Conclusions

This paper studied the least-squares, maximum likelihood, and Bayesian methods for estimating
the first order in RCA or called RCA(1) model. Through a Monte Carlo simulation, we evaluated the
performance of these methods, showed the mean and standard deviation of parameters, and played the
AMSEs of various data and sample sizes. It appears that most cases of the least-squares method
perform well in picking up the correct model to see the AMSE is minimum. It is indicated that the
RCA(1) model is affected on past observed data more than the informative prior to Bayesian Analysis.
The maximum likelihood method outperforms the other methods for the trend data, but it is slightly
different from the least-squares method. We are also interested in the power of estimating by the mean
square error for application in actual data. We can see that the least-squares method outperforms the
maximum likelihood and Bayesian method similar to the simulation study results. We would
recommend fitting RCA(1) model on time series data by the least-squares method where stationary
and non-stationary data are expected.
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