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Abstract
A new three-parameter flexible version from the Nadarajah Haghighi model based on Lemonte

(2013) is proposed and studied. Statistical properties of the new version are derived. A numerical
analysis for the variance, skewness and kurtosis is presented as well as three-dimensional plots are
sketched for discovering the flexibility of the new model. A simple type copula based construction is
presented for deriving many bivariate and multivariate type distributions. Parameter estimates process
are conducted by the well-known method of maximum likelihood. Numerical illustration of real data
set is employed to compare the new model with other competitive models. A numerical simulations
are executed to test performance of the used method.

Keywords: Burr X family, Morgenstern family, Clayton copula, Nadarajah-Haghighi model, Mo-
mentsL modeling, simulations, failure rate, order statistics

1. Introduction
Lemonte (2013) proposed a new three-parameter exponential-type family of distributions which

can be used in modeling survival data called the exponentiated Nadarajah Haghighi (ENH). Focusing
on a special case of it, the cumulative distribution function (CDF) of the two-parameter ENH model
is given by.

Wβ,δ(x) =
{
1 − exp

[
1 − (1 + x)δ

]}β

and the corresponding probability density function (PDF) is

wβ,δ(x) = βδ(1 + x)δ−1exp
[
1− (1 + x)δ

]{
1− exp

[
1− (1 + x)δ

]}β−1
,

where β > 0 and δ > 0 are shape parameters. Clearly, when β = δ = 1, we have the standard
exponential (Exp) model. When δ = 1; we have the exponentiated exponential (ExpExp) model.
When β = 1, we have the one parameter Nadarajah and Haghighi (NH) model (Nadarajah and
Haghighi (2011)).

We will refer to the new distribution as the Burr X exponentiated Nadarajah Haghighi (BuX-
ENH) model. Following Yousof et al. (2017), the CDF and the PDF of the BuX-G class of distribu-
tions can be written as
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Fη,Ψ(x)=

1− exp

−(WΨ(x)

WΨ(x)

)2


η

, (1)

and

fη,Ψ(x) = 2η
wΨ(x)WΨ(x)

WΨ(x)3
exp
[
−

(
WΨ(x)

WΨ(x)

)2 ]

×

{
1− exp

[
−

(
WΨ(x)

WΨ(x)

)2 ]}η−1

,

(2)

respectively, where η > 0 is the shape parameter, wΨ(x) and WΨ(x) denote the PDF and the
CDF of any baseline model with parameter vector Ψ, WΨ(x) = 1 − WΨ(x) is the survival
(reliability) function (SF or RF) of the baseline model and wΨ(x) = d WΨ(x)/dx. Using
W β,δ(x), wβ,δ(x) and (1), we can obtain the new three-parameter BuXENH PDF as

F (x) =

{
1− exp

[
−

( {
1− exp[1− (1 + x)δ]

}β
1−

{
1− exp[1− (1 + x)δ]

}β
)2 ]η}∣∣∣

(x>0)
, (3)

with corresponding PDF

f(x) = 2 η β δ (1 + x)δ−1

×
{
1− exp[1− (1 + x)δ]

}2β−1

exp[1− (1 + x)δ]
({

1− exp[1− (1 + x)δ]
}β)3

×

{
1− exp

[
−
( {

1− exp[1− (1 + x)δ]
}β

1−
{
1− exp[1− (1 + x)δ]

}β)2]}η−1

× exp
[
−
( {

1− exp[1− (1 + x)δ]
}β

1−
{
1− exp[1− (1 + x)δ]

}β)2]∣∣∣
(x>0)

.

(4)

The RF, hazard rate function (HRF), reversed hazard rate function (RHRF) and cumulative haz-
ard rate function (CHRF) of X can be derived with the well-known relationships. For η = δ = 1,
we have the Rayleigh exponentiated exponential (REE) model. For δ = 1, we have the BuX expo-
nentiated exponential (BuXEE) model. For β = η = 1, we have the one-parameter Rayleigh NH
(RNH) model. For η = 1 we have the Rayleigh exponentiated (RENH) model. For β = δ = 1,
we have the BuX exponential (BuXE) model. The statistical literature review contains some useful
NH extensions such as Nascimento et. al. (2019) converted the NH model to NH family. Elsayed
and Yousof (2019) presented the Burr X Nadarajah Haghighi model which is a special case from
(3) when β = 1. Alizadeh et al., (2018) presented the extended exponentiated NH model relevant
properties, characterizations and applications. Finally, Ibrahim (2020) presented the generalized odd
Log-logistic NH distribution with statistical properties and different methods of estimation.

Figure 1 proves that the new PDF can be a unimodal, symmetric and the right (left) skewed.
Figure 2 proves that the HRF can be decreasing or increasing or J- shape or bathtub (U) failure rate
function.
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Figure 1 Plots of the BuXENH PDF at some parameters value.

Figure 2 Plots of the BuXENH HRF at some parameters value.

2. Useful Representation
In this section, we provide a very useful linear representation for the BuXENH density function.

If |ω| < 1 and ϑ > 0 is a real non-integer, the power series holds

(1− ω)ϑ =

∞∑
ℓ3=0

(−ω)ℓ3Γ(1 + ϑ)

ℓ3!Γ(1 + ϑ− ℓ3)
. (5)

Applying (5) to term

A(x) =

{
1− exp

[
−

( {
1− exp[1− (1 + x)δ]

}β
1−

{
1− exp[1− (1 + x)δ]

}β
)2 ]}η−1

,

in (4) we have

A(x) =

∞∑
ℓ3=0

(−)ℓ3Γ(η)

ℓ3!Γ(η − 1)
exp
[
− ℓ3

( {
1− exp[1− (1 + x)δ]

}β
1−

{
1− exp[1− (1 + x)δ]

}β
)2 ]

,

compiling A(x) with (4) we get
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f(x) = 2 η β δ (1 + x)δ−1exp[1− (1 + x)δ]

×
∞∑

ℓ3=0

(−)ℓ3Γ(η)

ℓ3!Γ(η − ℓ3)

{
1− exp[1− (1 + x)δ]

}2β−1

(1−
{
1− exp[1− (1 + x)δ]

}β
)3

× exp
[
− ℓ·3

( {
1− exp[1− (1 + x)δ]

}β
1−

{
1− exp[1− (1 + x)δ]

}β
)2 ]

.

(6)

Applying the power series to the term

B(x) = exp
[
− ℓ·3

( {
1− exp[1− (1 + x)δ]

}β
1−

{
1− exp[1− (1 + x)δ]

}β
)2 ]

,

then,

B(x) =

∞∑
ℓ1=0

[−ℓ·3]
ℓ1

ℓ1!

( {
1− exp[1− (1 + x)δ]

}β
1−

{
1− exp[1− (1 + x)δ]

}β
)2ℓ1

.

Equation (6) becomes

f(x) = 2 η β δ (1 + x)δ−1exp[1− (1 + x)δ]

×
∞∑

ℓ3,ℓ1=0

(−1)ℓ3+ℓ1(ℓ·3)
ℓ1Γ(η)

ℓ3!ℓ1!Γ(η − ℓ3)

×
(
{
1− exp[1− (1 + x)δ]

}
)β(2ℓ1+2)−1

(1−
{
1− exp[1− (1 + x)δ]

}β
)2ℓ1+3

.

(7)

Consider the series expansion

(1− ω)−ϑ =

∞∑
ℓ2=0

Γ(ϑ+ ℓ2)

ℓ2!Γ(ϑ)
ωℓ2 |(|ω|<1 andϑ>0). (8)

Applying the expansion in (8) to (7) for the term

C(x) = (1−
{
1− exp[1− (1 + x)δ]

}β
)(2ℓ1+3),

then,

C(x) =

∞∑
ℓ2=0

Γ(2ℓ1 + 3 + ℓ2)

ℓ2!Γ(2ℓ1 + 3)

{
1− exp

[
1− (1 + x)δ

]}βℓ2 .
Inserting C(x) ; Equation (7) becomes

f(x) = 2η

∞∑
ℓ3,ℓ1,ℓ2=0

(−1)ℓ3+ℓ1 (ℓ·3)
ℓ1 Γ (η) Γ (2ℓ1 + ℓ2 + 3)

ℓ3! ℓ1!ℓ2!Γ (η − ℓ3) Γ (2ℓ1 + 3)β∗

×

 β∗δβ
(1 + x)δ−1exp

[
1− (1 + x)δ

]{
1− exp

[
1− (1 + x)δ

]}β∗−1


︸ ︷︷ ︸

wβ∗ (x;δ,β)

|β∗=[β(2ℓ1+ℓ2+2)].
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This can be written as

f(x) =

∞∑
ℓ1,ℓ2=0

ϕ(ℓ1,ℓ2)ωβ∗,δ,β(x), (9)

where

ϕ(ℓ1,ℓ2) =
2η(−1)ℓ1Γ(η)Γ(2ℓ1 + ℓ2 + 3)

ℓ1!ℓ2!Γ(2ℓ1 + 3)(2ℓ1 + ℓ2 + 2)

∞∑
ℓ3=0

(−1)ℓ3(1 + ℓ3)
ℓ1

(ℓ3!)Γ(η − ℓ3)

and

ω[β(2j+ℓ2+2)],δ,β(x) = β∗δβ

× (1 + x)δ−1exp
[
1− (1 + x)δ

]
×
{
1− exp[1− (1 + x)δ]

}β∗−1
,

is the PDF of the ENH model with power parameter β∗. (9) reveals that the density of X can be
expressed as a linear mixture of ENH densities. So, several mathematical properties of the new family
can be obtained by knowing those of the ENH distribution. Similarly, the CDF of the BuXENH model
can also be expressed as a mixture of ENH CDFs given by

F (x) =

∞∑
ℓ1,ℓ2=0

ϕ(ℓ1,ℓ2)W β∗,δ,β(x), (10)

where
W β∗,δ,β(x) =

{
1− exp[1− (1 + x)δ]

}β∗

is the CDF of the ENH model with power parameter β∗.

3. Statistical Properties
The rth ordinary moment of X is given by

µ́r = E(Xr) =

∫ ∞

−∞
f(x)xrdx.

Then we obtain

µ́r =

∞∑
ℓ1,ℓ2,ℓ3=0

r∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
|ℓ·3=1+ℓ3 , (11)

where
Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
= ϕ(ℓ1,ℓ2)C

β∗

ℓ3,ℓ4
,

C(ω,r)
ℓ3,ℓ4

= ωβ−r (−1)r+ℓ3−ℓ4 exp (ℓ·3)

(ℓ·3)
1+

ℓ4
ω

(
r

ℓ4

)(
−1 + ω

ℓ3

)
,

or

µ́r =

∞∑
ℓ1,ℓ2=0

β∗−1∑
ζ=0

r∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
|(β∗>0 and integer).

Setting r = 1 in (11), we have the mean of X

µ́1 =

∞∑
ℓ1,ℓ2,ℓ3=0

1∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
,



6 Thailand Statistician, 2023; 21(1): 1-18

where

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
, = ϕ(ℓ1,ℓ2)C

β∗

ℓ3,ℓ4
,

C[η,1]
ℓ3,ℓ4

=
η

β

(−1)r+ℓ3−ℓ4 exp (ℓ·3)

(ℓ·3)
1+

ℓ4
δ

(
−1 + η

ℓ3

)(
1

ℓ4

)
,

and

µ́r =

∞∑
ℓ1,ℓ2=0

β∗−1∑
ℓ3=0

1∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
|(β∗>0 and integer),

where

Γ(η, ν) =

∫ ∞

ν
z−1+η exp(z)dz

denotes the complementary incomplete gamma function, which can be evaluated in MATHEMAT-
ICA, R, etc. The variance (V(X)), skewness (S(X)) and kurtosis (Ku(X)) measures can be calculated
from the ordinary moments using well-known relationships (see the numerical analysis given in Table
1).

Figure 3 3-D plot for skewness of the new model when δ = 1.25

Figure 4 3-D plot for kurtosis of the new model when δ = 1.25

Here, we provide a formula for the moment generating function (MGF) MX (t) = E
(
etX

)
of X . Clearly, the MGF can be derived from (9) as

Mx(t) =

∞∑
ℓ1,ℓ2,ℓ3,r=0

r∑
ℓ4=0

tr

r!
Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
,
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and

Mx(t) =

∞∑
ℓ1,ℓ2,r=0

β∗−1∑
ℓ3=0

r∑
ℓ4=0

tr

r!
Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
|(β∗>0 and integer).

3.1. Incomplete moments
The sth incomplete moment, say Υs (t), of X can be expressed from (9) as

Υs (t) =

∫ t

−∞
xsf(x)dx =

∞∑
ℓ1,ℓ2,ℓ3,r=0

s∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4

×
[

Γ(1 + ℓ4
δ , ℓ

·
3)

−Γ(1 + ℓ4
δ , ℓ

·
3(1 + βt)δ)

]
,

(12)

and

Υs (t) =

∫ t

−∞
xsf(x)dx =

∞∑
ℓ1,ℓ2=0

β∗−1∑
ζ=0

s∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4

×
[

Γ(1 + ℓ4
δ , ℓ

·
3)

−Γ(1 + ℓ4
δ , ℓ

·
3(1 + βt)δ)

]
|(β∗>0 and integer).

The mean deviations about the mean[ℓ11 = E(|X − µ́1|)] and about the median
[ℓ12 = E(|X −Q(12)|)] of X are given by

ℓ11 = −2Υ1(µ́1) + 2µ́1F (µ́1) and ℓ12 = −2Υ2

(
Q

(
1

2

))
+ µ́1,

respectively, where µ́1 = E(X), Median (X) = Q(12) is the median, F (µ́1) is easily calculated
from (3) and Υ1 (t) is the first incomplete moment given by (12) with s = 1. The Υ1 (t) can be
derived from (12) as

Υ1 (t) =

∞∑
ℓ1,ℓ2,ℓ3=0

1∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
×
[

Γ(1 + ℓ4
δ , ℓ

·
3)

−Γ(1 + ℓ4
δ , ℓ

·
3(1 + βt)δ)

]
,

and

Υ1 (t) =

∞∑
ℓ1,ℓ2=0

β∗−1∑
ℓ3=0

1∑
ℓ4=0

Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
×
[

Γ(1 + ℓ4
δ , ℓ

·
3)

−Γ(1 + ℓ4
δ , ℓ

·
3(1 + βt)δ)

]
|(β∗>0 and integer).

3.2. Probability weighted moments (PWMs)
The (s, r)th PWM of X following the BuXENH, say µs,r is formally defined by

µs,r = E
{
XsF (X)r

}
=

∫ ∞

−∞
xsF (x)rf(x)dx.

Using equations (3) and (4), we can write

f(x)F (X)r =

∞∑
ℓ1,ℓ2=0

qℓ1,ℓ2ωβ∗,δ,β(x),
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where

qℓ1,ℓ2 =
2η(−1)ℓ1Γ(2ℓ1 + ℓ2 + 3)

ℓ1!ℓ2!Γ(2ℓ1 + 3)β∗ ×
∞∑

m=0

(−1)m(1 +m)ℓ1
(
η(r+ 1)− 1

m

)
.

Then, the (s, r)th PWM of X can be expressed as

µs,r =

∞∑
ℓ1,ℓ2,ℓ3=0

r∑
ℓ4=0

V β∗

ℓ3,ℓ4
Γ(1 +

ℓ4
δ
, ℓ·3),

where
V β∗

ℓ3,ℓ4
= qℓ1,ℓ2C

β∗

ℓ3,ℓ4

and also

µs,r =

∞∑
ℓ1,ℓ2=0

β∗−1∑
ℓ3=0

r∑
ℓ4=0

V β∗

ℓ3,ℓ4
× Γ(1 +

ℓ4
δ
, ℓ·3) |(β∗>0 and integer).

3.3. Residual and reversed residual life
The nth moment of the residual life, say

η(t) = E[(X − t)n]|(X>t andn=1,2,··· ),

which uniquely determine the F (x). The nth moment of the residual life of X is given by

ηn(t) =

∫∞
t (x− t)ndF (x)

1− F (t)
.

Therefore,

ηn(t) =
1

1− F (t)

∞∑
ℓ1,ℓ2,ℓ3=0

n∑
ℓ4=0

n∑
r=0

(
n

r

)
(−t)n−r × Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
,

or

ηn(t) =
1

1− F (t)

∞∑
ℓ1,ℓ2=0

n∑
ℓ4=0

n∑
r=0

(
n

r

)
(−t)n−r × Cβ∗

ℓ1,ℓ2,ℓ3,ℓ4
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
|(β∗>0 and integer).

The mean residual life (MRL) function or the life expectation at age t can be defined by

ηn=1(t) = E[(X − t)|X > t],

which represents the expected additional life length for a unit which is alive at age t. The MRL of X
can be obtained by setting n = 1 in the last equation.

The nth moment of the reversed residual life, say

ηn(t) = E[(t−X)n]|(X≤t, t>0 andn=1,2,··· ),

then, we obtain

ηn(t) =
1

F (t)

∫ t

0
(t− x)ndF (x).
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Then, the nth moment of the reversed residual life of X becomes

ηn(t) =
1

F (t)

∞∑
ℓ1,ℓ2,ℓ3=0

n∑
ℓ4=0

n∑
r=0

(−1)r
(
n

r

)
tn−rCβ∗

ℓ1,ℓ2,ℓ3,ℓ4

×
[
Γ

(
1 +

ℓ4
δ
, ℓ·3

)
− Γ

(
1 +

ℓ4
δ
, ℓ·3(1 + βt)δ

)]
,

or

ηn(t) =
1

F (t)

∞∑
ℓ1,ℓ2=0

β∗−1∑
ℓ3=0

n∑
ℓ4=0

n∑
r=0

(−1)r
(
n

r

)
tn−rCβ∗

ℓ1,ℓ2,ℓ3,ℓ4

×
[

Γ(1 + ℓ4
δ , ℓ

·
3)

−Γ(1 + ℓ4
δ , ℓ

·
3(1 + βt)δ)

]
|(β∗>0 and integer).

The mean waiting time (MWT) or the mean inactivity time (MIT) which also called the mean
reversed residual life function, is given by

ηn=1(t) = E[(t−X)n]|(X≤t, t>0 andn=1),

and it represents the waiting time elapsed since the failure of an item on condition had occurred in
(0, t). The MIT of the BuXENH distribution can be obtained easily by setting n = 1 in the above
equation of ηn(t).

3.4. Order statistics
Let X1, X2, · · · , Xn be any random sample (RS) from the BuXENH of distribution and let

X(1:n), X(2:n), · · · , X(n:n) be the corresponding order statistics. The PDF of ℓth4 order statistic,
say X(i:n), can be written as

f(xi:n) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

)
F j+i−1(x), (13)

where β(·, ·) is the beta function. Using (3) , (4) in Equation (13) we get

f(x)F (x)j+i−1 =

∞∑
ℓ1,ℓ2=0

Υℓ1,ℓ2ωβ∗,δ,β(x),

where

Υℓ1,ℓ2 =
2η(−1)ℓ1Γ(2ℓ1 + ℓ2 + 3)

ℓ1!ℓ2!Γ(2ℓ1 + 3)β∗

×
∞∑

m=0

(−1)m(1 +m)ℓ1

(
η(j + i)− 1

m

)
.

The PDF of Xi:n can be expressed as

f(xi:n) =

∞∑
ℓ1,ℓ2=0

n−i∑
j=0

(−1)j
(
n−i
j

)
Υℓ1,ℓ2

B(i, n− i+ 1)
ωβ∗,δ,β(x). (14)
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Then, the density function of the BuXENH order statistics is a mixture of ENH density. Based
on (14), the moments of Xi:n can be expressed as

E(Xq
i:n) =

∞∑
ℓ1,ℓ2,h=0

r∑
d=0

n−i∑
j=0

(−1)j
(
n−i
j

)
B(i, n− i+ 1)

W
[β∗,q]
ℓ1,ℓ2,h,d

Γ(1 + δ−1d, 1 + h),

where
W

[β∗,q]
ℓ1,ℓ2,h,d

= Υℓ1,ℓ2C
[β∗,q]
h,d .

Or

E(Xq
i:n) =

∞∑
ℓ1,ℓ2=0

β∗−1∑
h=0

r∑
d=0

n−i∑
j=0

(−1)j
(
n−i
j

)
B(i, n− i+ 1)

×W
[β∗,q]
ℓ1,ℓ2,h,d

Γ(1 + δ−1d, 1 + h)|(β∗>0 and integer).

4. Numerical Calculations
Numerical calculations for the E(X); V(X), S(X) and K(X) are listed in Table 1. Based on Table

1, we note that:
1) The S(X) of the BuXENH distribution is always positive.
2) The K(X) of the BuXENH distribution is only more than 3.
3) The mean of the BuXENH distribution increases as η increases.
4) The mean of the BuXENH distribution increases as β increases.
5) The mean of the proposed model decreases as δ increases.

Table 1 E(X), V(X), S(X) and K(X) of the BuXENH distribution

η β δ E(X) V (X) S(X) K(X)

0.1 1.2 0.25 1.825306 12.9764 3.240258 16.17459
0.5 6.180584 30.77811 1.419628 5.318784
1 9.101343 34.88533 1.034272 4.220169

10 19.73202 27.84087 0.708228 3.824648
50 26.26252 21.2879 0.7626281 4.016543

100 28.81213 19.20417 0.7906129 4.098009
500 34.25282 15.60443 0.8460061 4.261613
10 0.1 0.5 0.02196148 0.00029232 1.898168 8.825817

0.2 0.2185484 0.00852704 0.9203215 4.295162
0.3 0.5312317 0.02878662 0.6748841 3.68801
0.4 0.8821722 0.05651321 0.5615921 3.473251
0.5 1.241497 0.08827399 0.4938769 3.364005

5 0.5 0.1 46.36367 1884.3660 3.097874 21.31205
0.2 5.365082 6.8494040 1.231972 5.521063
0.3 2.375216 0.8218181 0.7939127 3.960367
0.4 1.473930 0.2447502 0.5918894 3.47713
0.5 1.057536 0.1075985 0.4745227 3.262254

5. Simple Type Copula Based Construction
In this Section, we consider several approaches to construct the bivariate and the multivariate

BuXENH type distributions via copula (or with straightforward bivariate CDFs form, in which we
just need to consider two different BuXENHCDFs).For more details Farlie (1960), Gumbel (1961&
1960), Johnson and Kotz (1975 & 1977), Al-babtain et al. (2020), Mansour et al. (2020 a-f), Elgohari
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and Yousof (2020 a,b), Salah et al. (2020), Yousof et al. (2020), Ibrahim et al. (2020) and Ali et al.
(2021 a,b).

5.1. Via Morgenstern family
First, we start with CDF for Morgenstern family of two random variables(X1, X2) which has

the following form

Fθ(x1, x2)|(|θ|≤1) = F1(x1)F2(x2)
{
1 + θ[1− F1(x1)][1− F2(x2)]

}
,

setting

Fδ1,β1,η1
(x1) =

({
1− exp

[
−
( {

1− exp[1− (x1 + 1)δ1 ]
}β1

1−
{
1− exp[1− (x1 + 1)δ1 ]

}β1

)2]})η1

,

and

Fδ2,β2,η2(x2) =

({
1− exp

[
−
( {

1− exp[1− (x2 + 1)δ2 ]
}β2

1−
{
1− exp[1− (x2 + 1)δ2 ]

}β2

)2]})η2

,

then we have a five dimension parameter model.

5.2. Via Clayton copula
5.2.1 The bivariate extension

The bivariate extension via Clayton copula can be considered as a weighted version of the Clay-
ton copula, which is of the form

Cθ(ℓ2(x),υ(y)) =
[
ℓ2

−(θ1+θ2)
(x) + υ

−(δ1+δ2)
(y) − 1

]− 1
θ1+θ2 .

This is indeed a valid copula. Next, let us assume that X ∼ BuXENH(β1, δ1, η1) and Y ∼
BuXENH(β2, δ2, η2) .Then, setting

ℓ2(x) =

({
1− exp

[
−
( {

1− exp[1− (x+ 1)δ1 ]
}β1

1−
{
1− exp[1− (x+ 1)δ1 ]

}β1

)2]})η1

,

and

υ(y) =

({
1− exp

[
−
( {

1− exp[1− (y + 1)δ2 ]
}β2

1−
{
1− exp[1− (y + 1)δ2 ]

}β2

)2]})η2

,

the associated CDF bivariate BuXENH type distribution will be

Cθ(x, y) =



[({
1− exp

[
−
(

{1−exp[1−( x+1)δ1 ]}β1

1−{1−exp[1−( x+1)δ1 ]}β1

)2
]})η1

]−(δ1+δ2)

+

[({
1− exp

[
−
(

{1−exp[1−(y+1)δ2 ]}β2

1−{1−exp[1−(y+1)δ2 ]}β2

)2
]})η2

]−(δ1+δ2)

−1



− 1
θ1+θ2

.
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5.2.2 The multivariate extension
A straightforward m-dimensional extension IRom the above will be

H(X) =


∑m

i=1





1−

exp

[
−
(

{1−exp[1−(xi+1)δi ]}βi

1−{1−exp[1−(xi+1)δi ]}βi

)2
] 


ηi

−(θ1+θ2)

+1−m


−1/(θ1+θ2)

,

where X = x1, x2, · · · , xm Further future works could be allocated for studying the bivariate and
the multivariate extensions of the BuXENH model.

6. Maximum Likelihood Estimation
Let x1, x2, . . . , xn be a rs from BuXENH distribution with parameter vector Ψ = (η, δ, β)T .

The log-likelihood function for Ψ,sayℓ(Ψ) is given by

ℓ(Ψ) = n log η + n log β + n log δ

+
(
2β − 1

) n∑
i=0

log
{
1− exp[1− (βxi + 1)δ]

}
+ n log 2− 3

n∑
i=0

log
{
1− exp[1− (βxi + 1)δ]

}
+ (η − 1)

n∑
i=0

log

({
1− exp

[
−
( {

1− exp[1− (βxi + 1)δ]
}β

1−
{
1− exp[1− (βxi + 1)δ]

}β)2]})

+

n∑
i=0

[(1 + x)δ − 1] +

n∑
i=0

[
−
( {

1− exp[1− (βxi + 1)δ]
}β

1−
{
1− exp[1− (βxi + 1)δ]

}β)2]
.

(15)

The function ℓ(Ψ) can be maximized either by using the different programs like R (optim function),
SAS (PROC NLMIXED) or by solving the nonlinear likelihood equations obtained by differentiating
15. The score vector elements,

U(Ψ) =

(
∂ℓ
(
Ψ
)

∂η
,
∂ℓ
(
Ψ
)

∂β
,
∂ℓ
(
Ψ
)

∂δ

)T

,

are easily to be derived.

7. Simulation Studies
In this Section, we simulate the BuXENH model by taking n = 50; 100; 250; 500 and 1000:

For each sample size (n), we evaluate the ML estimations (MLEs) of the parameters. Then, we
repeat the process 1000 times (i.e. N = 1000) and compute the averages of the estimates (AEs) and
the mean squared errors (MSEs). Table 3 gives all numerical results of the simulation experiments.
The numerical results in Table 3 indicate that the MSEs and the bias of η̂, δ̂ and β̂ decay towards
zero when n increases for all settings of η, δ and β as expected under the asymptotic theory or large
sample theory. The AEs of the parameters tend to be closer to the true parameter values

I : η = 3.5, β = 2, δ = 3.5

II : η = 0.5, β = 4, δ = 0.5

when n increases. These results support that the asymptotic normal model provides good approxima-
tion to the finite sample model of the MLEs.
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Table 2 AEs and MSE for N = 1000

n Θ AE MSE Θ AE MSE
I II

50 η 3.9140431 0.4946601 η 0.8072650 0.4467096
β 1.7987872 1.5511413 β 3.7729865 0.5562624
δ 3.3611143 0.8064241 δ 0.8968461 1.2250001

100 η 3.8350883 0.3895662 η 0.7467954 0.3020398
β 1.8402122 1.3076565 β 3.7900983 0.5000916
δ 3.4522802 0.3918004 δ 0.7450011 0.4888196

250 η 3.7601383 0.3007621 η 0.5952243 0.1509002
β 1.9127442 0.3632541 β 3.8587660 0.2671801
δ 3.4922332 0.0931274 δ 0.6297001 0.2990991
β 0.9609656 0.1054192 β 4.6400833 0.3281886

500 η 3.5134365 0.0031623 η 0.5013011 0.0022600
β 1.9897431 0.0019876 β 3.9590981 0.0011198
δ 3.5004343 0.0076872 δ 0.5009512 0.0099211

1000 η 3.5000231 0.0001421 η 0.5000661 0.0002461
β 1.9998776 0.0001923 β 3.9911910 0.0012630
δ 3.5004311 0.0000650 δ 0.5002443 0.0004702

8. Data Analysis
In this section, we present an application based on the real data set to show the flexibility of

the BuXENH distribution. First, we compare BuXENH with the RNH, the odd Lindley NH distri-
bution (OLNH) (Yousof et al., (2017)), Proportional reversed hazard rate (PRHRNH) (new), expo-
nentiated Weibull NH (New), the Gamma-NH (GaNH) (Ortega et al., (2015)), Marshall-Olkin NH
(MONH) (Lemonte et al., (2016)), generalized NH (ENH) (Lemonte (2013)), beta-NH (BNH ) (Dias
et al., (2018)), the standard NH distributions. Other useful extension of the NH model such as the
Topp-Leone NH distribution (Yousof and Korkmaz (2017)) and extended exponentiated NH model
(Alizadeh et al., (2018)). The model selection is applied using the estimated log-likelihood

(
ℓ̂ (Ψ)

)
,

Kolmogorov-Smirnov (K-S) statistics, Akaike information criterion (AIC), Consistent Akaike infor-
mation criteria (CAIC), Bayesian information criterion (BIC), and Hannan-Quinn information crite-
rion (HQIC). AIC, CAIC, BIC and HQIC.

AIC = −2ℓ̂(Ψ) + 2n(p),

CAIC = −2ℓ̂(Ψ) +
2n(p)

n− [n(p)]− 1
,

BIC = −2ℓ̂(Ψ) + p log[n(p)],

and
HQIC = −2ℓ̂(Ψ) + 2[n(p)] log(log n)

where n(p) is the number of the estimated model parameters and n is sample size. In general, the
smaller values of AIC, CAIC, BIC, HQIC and K-S indicate to the better fit to the data set and the
biggest log-likelihood and p values of the K-S statistics is chosen. The used data corresponds to
the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory,
Canada. These data consist of 72 exceedances for the years 1958–1984, rounded to one decimal
place (see Choulakian and Stephens (2001)). This data also have been applied by Lemonte (2013)
for the ENH distribution. Second, total time on test (TTT) plot (see Aarset (1987)) is given for the
used data set (see Figure 5 (left)). The TTT plot for the exceedances of flood peaks data in Figure 5
denotes that the failure rate function of these data is a bathtub-shaped (U) function. The box plot is
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plotted in Figure 5 (right). Finally, we present the estimated PDF, estimated CDF, estimated HRF in
Figure 6. The probability-probability (P-P) plot and the Kaplan-Meier survival plot are a graphical
technique for assessing whether or not a data set follows a given distribution. Figure 7 (left) gives the
probability-probability (P-P). Based on Figure 7 (left) it is noted that the exceedances data follows a
the BuXENH distribution. Figure 7 (right) gives the Kaplan-Meier survival plot. Based on Figure 7
(right) it is noted that the exceedances data follows a the BuXENH distribution.

Figure 5 TTT plot and box plot of the exceedances of flood peaks data

Figure 6 The estimated PDF, CDF, and HRF for the BuXENH model
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Figure 7 P-P and Kaplan-Meier survival plots for the BuXENH model

All results of this application are listed in Table 4 and Table 5. These results show that the OLNH
distribution has the lowest values for AIC, CAIC, BIC, HQIC and K-S values and also has the biggest
estimated log-likelihood and p-value for the K-S statistics among all the fitted models. Thus, it could
be chosen as the best model under these criteria and compared to the other fitted models. Finally, we
plot estimated functions for the density, CDF, P-P, Kaplan-Meier survival plots of the BuXENH for
the exceedances of flood peaks data in Figure 4. Clearly, the BuXENH distribution provides a closer
fit to the empirical PDF and CDF. Also, from these figures, we get a bathtub-shaped (U-shaped) for
the estimated HRF for the exceedances of flood peaks data, which coincide with the TTT plot given
in Figure 3.

Table 3 Estimates of the competitive models fitted to the Choulakian and Stephens data

Model Estimates (SD)
NH(β, δ) 0.841 0.1094

(0.259) (0.059)
RNH(β, δ) 0.125 6.28

(0.012) (2.919)
OLNH(η, δ, β) 0.7293 0.2519 1.8065

(0.6059) (0.052) (3.355)
PRHRNH(η, δ, β) 0.364 1.714 0.031

(0.068) (1.191) (0.031)
GaNH(η, δ, β) 0.7286 1.9299 0.0242

(0.1385) (1.7591) (0.0312)
MONH(η, δ, β) 23.77 0.0011 0.2660

(5.5053) (0.0003) (0.0895)
ENH(η, β, δ) 0.7289 1.7126 0.0309

(0.1404) (1.2607) (0.0330)
BNH(η, β, δ) 0.8381 316.0285 0.6396 0.0003

(0.1215) (4.2194) (0.8227) (0.0004)
EWNH(η, β, δ) 2.7591 0.3989 0.4732 0.6129

(1.742) (0.167) (0.158) (0.959)
BuXENH(η, β, δ) 0.21107 3.09625 0.27634

(0.155) (2.642) (0.0616)
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Table 4 Statistics of the competitive models fitted to the Choulakian and Stephens data

Model loglike AIC CAIC BIC HQIC K-S(p-value)
BuXENH −249.2157 504.43 504.78 511.26 507.15 0.07945

(0.7537)
RNH −251.722 507.44 507.62 513.99 509.7 0.10629

(0.3901)
NH −251.9874 507.97 508.15 515.53 509.79 0.12444

(0.2148)
OLNH −250.589 507.18 507.53 514.01 509.9 0.1009

(0.4565)
PRHRNH −300.83 607.66 608.02 614.49 610.38 0.24985

(0.0003)
GaNH −250.917 507.834 508.187 514.66 510.55 0.1065

(0.3880)
MONH −251.087 508.175 508.53 515.005 510.894 0.1074

(0.377)
EWNH −250.032 508.064 508.66 517.17 511.69 0.0974

(0.50)
ENH −250.925 507.849 508.202 514.679 510.57 0.1067

(0.386)
BNH −251.356 510.713 511.31 519.82 514.34 0.1044

(0.4127)

9. Conclusions
A new three-parameter flexible version from the Nadarajah Haghighi model based on (Lemonte,

2013) is proposed and studied. Statistical properties of the new version are derived. A numerical
analysis for the variance, skewness and kurtosis is presented and we found that:

1) The S(X) of the BuXENH distribution is always positive.
2) The K(X) of the BuXENH distribution is only more than 3.
3) The mean of the BuXENH distribution increases as η increases.
4) The mean of the BuXENH distribution increases as β increases.
5) The mean of the proposed model decreases as δ increases.
As well as three-dimensional plots are sketched for discovering the flexibility of the new model.

A simple type Copula based construction is presented for deriving many bivariate and multivariate
type distributions using the Morgen- stern family and Clayton copula. Parameter estimates process
are conducted by the well-known method of maximum likelihood. Numerical illustration of real data
set is employed to compare the new model with other competitive models. A numerical simulations
are executed to test performance of the used method.

As a future work, we can apply many new useful goodness-of-fit tests for right censored valida-
tion such as the Nikulin-Rao-Robson goodness-of-fit test, modified Nikulin-Rao-Robson goodness-
of-fit test, Bagdonaviius-Nikulin goodness-of-fit test, modified Bagdonaviius-Nikulin goodness-of-fit
test, to the new BuXENH model as performed by Ibrahim et al. (2019), Goual et al. (2019, 2020),
Mansour et al. (2020 a,d), Yadav et al. (2020) and Goual and Yousof (2020), among others.
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