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Abstract
In this article, an extension of the inverse Lomax (IL) distribution with the log-logistic distribution

called iInverse Lomax log-logistic (IL-LL) distribution is considered. Various statistical properties of
IL-LL distribution which include moment generating function, order statistics, moments, and Rényi
entropy are derived. The results of a Monte Carlo simulation study to evaluate the performance of
the maximum likelihood parameter estimates of the model are presented. The IL-LL distribution
is applied to three different data sets comprising the proportion of toxicity for chromium in marine
waters; Number of air conditioning faults in jet aircraft; and relief times of patients being given an
analgesic. Using the maximum likelihood estimation method, the analytical criteria, suggests that the
new model fits the data sets better than the existing competitors.

Keywords: Inverse Lomax-G family, log-logistic distribution, inverse Lomax log-logistic distribu-
tion, Monte Carlo simulation, maximum likelihood estimation

1. Introduction
There are greater interests in developing new classes of continuous univariate distributions. The

inclusion of additional parameters has proved useful in exploring skewness and tail properties as well
improving the goodness-of - fit of the baseline distributions.

The established generators of distributions include: Inverse Lomax G by Falgore and Doguwa
(2020a), the Top-Leone Exponentiated G by Ibrahim et. al. (2020), the Inverse Lomax-Exponentiated
G by Falgore and Doguwa (2020b), the Burr X Exponential G by Sanusi et. al. (2020), Kumaraswamy-
Odd Rayleigh G by Falgore and Doguwa (2020c), the Power Lindley-G by Hassan and Nassr (2019),
the Odd Frechet G by UlHaq and Elgarhy (2018), the beta transmuted H by Afify et. al. (2017), the
New Weibull G by Tahir et. al. (2016), the transmuted geometric G by Afify et. al. (2016), the Ku-
maraswamy Marshal-Olkin by Alizadeh et. al. (2015), the Lomax G by Cordeiro et. al. (2014), the
transformed-transformer (T-X) by Alzaatreh et. al. (2013), the Kumaraswamy G by Cordeiro and de
Castro (2011), the beta G by Eugene et. al. (2002), as well as the Marshall-Olkin family by Marshall
and Olkin (1997), among others.

In the last few decades, the log-logistic (LL) distribution, known as the Risk distribution in
economics has been widely used especially for applications in survival and reliability analysis. Log-
logistic distribution is an alternative to the log-normal distribution because it provides an initially
increasing and decreasing fault rate function. The cumulative distribution function (cdf) and proba-
bility density function (pdf) of the Log-Logistic distribution are given by

G(x;λ) = xλ(1 + xλ)−1 x, λ > 0, (1)
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g(x;λ) = λxλ−1(1 + xλ)−2 x, λ > 0, (2)

where λ is the shape parameter. The motivation for this research is to extend the log-logistic distribu-
tion in order to improve its flexibility and characteristics, and increase its usage in modeling real life
applications.

The rest of the paper is organized as follows. Section 2 presents the proposed inverse Lomax
log logistic distribution. Some of the statistical properties of the IL-LL distribution like moments,
moment generating function, Renyi entrophy, and order statistics are considered in Section 3. While
the estimation technique is discussed in Section 4, Section 5 presents the results of the Monte Carlo
Simulation study which should numerically show the accuracy and consistency of the Maximum
Likelihood estimators. The application of the proposed distribution to three different data sets are
discussed in Section 6. Section 7 concludes the paper.

2. The Inverse Lomax-Log Logistic Distribution
Recently, Falgore and Doguwa (2020a) proposed inverse Lomax-G generator of distributions

with the cumulative density function (cdf) given by

F (x; ζ) =

(
1 +

βḠ(x;σ)

G(x;σ)

)−α

; x > 0, α, β, σ > 0 (3)

where ζ = (σ, α, β)T , Ḡ(x;σ) = 1 − G(x;σ) and also β and α are the two additional parameters
that are added to make the baseline distribution much more flexible. The corresponding pdf f(x; ζ)
of IL-G family obtained by differentiating Equation 3 as given below

f(x; ζ) =
βαg(x;σ)

[G(x;σ)]2

(
1 +

β (1−G(x;σ))

G(x;σ)

)−(1+α)

. (4)

Based on Equations (3) and (4), we can insert Equations (1) and (2) of the baseline log-logistic
distribution and come up with the Inverse Lomax-Log logistic (IL-LL) distribution. The cdf of IL-LL
is

FIL−LL(x;λ, α, β) =
(
1 + βx−λ

)−α
x, α, β, λ > 0 (5)

lim
x→0

FIL−LL(x;α, β, λ) = 0

lim
x→∞

FIL−LL(x;λ, α, β) = 1,

where λ, α > 0 are the shape parameters and β > 0 is the scale parameter, respectively. These shows
that

0 ≤ FIL−LL(x;λ, α, β) ≤ 1

∀ x. And the pdf of IL-LL is given by

fIL−LL(x;λ, α, β) = αλβx−λ−1
(
1 + βx−λ

)−α−1
x > 0, α, β, λ > 0. (6)

2.1. Validity of IL-LL distribution∫ ∞

0

fIL−LL(x;λ, α, β)dx =

∫ ∞

0

αβλx−(λ+1)
(
1 + βx−λ

)−α−1
dx (7)

let y = βx−λ, and dx = − dy
βλx−λ−1 . By considering the limits and to substitute for x and dx in

Equation 7

α

∫ ∞

0

dy

(1 + y)1+α
= α

(
1

α

)
= 1.
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Figure 1 The IL-IL distribution pdf and hazard function plots with varying parameter values.

Figure 2 The cdf and survival function plots of IL-IL distribution with various parameter values.

3. Statistical Properties of Inverse Lomax-Log Logistic (IL-LL) Distribution
In this section, we considered some of the statistical properties of the IL-LL distribution like

moments, moment generating function, Rényi entrophy, and order statistics.

3.1. Moments
Suppose X is a random variable with density function defined in Equation (6), the rth non-central

moments of X is given by

E(Xr) =

∫ ∞

−∞
xrfIL−LL(x;α, β, λ)dx (8)

= αβ
r
λ
Γ
(
1− r

λ

)
Γ
(
α+ r

λ

)
Γ (1 + α)

, r = 1, 2, 3, 4, ...

where r
λ < 1 and r < λ.

The first non-central moment is given by µ′
1 = αβ

1
λ
Γ
(
1− 1

λ

)
Γ
(
α+ 1

λ

)
Γ (1 + α)

,

The second non-central moment is given by µ′
2 = αβ

2
λ
Γ
(
1− 2

λ

)
Γ
(
α+ 2

λ

)
Γ (1 + α)

,
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The third non-central moment is given by µ′
3 = αβ

3
λ
Γ
(
1− 3

λ

)
Γ
(
α+ 3

λ

)
Γ (1 + α)

,

The fourth non-central moment is given by µ′
4 = αβ

4
λ
Γ
(
1− 3

λ

)
Γ
(
α+ 3

λ

)
Γ (1 + α)

.

Table 1 The Variance, skewness, mean, and kutosis based on the moments of IL-LL distribution for
some parameter values

parameters mean variance skewness kurtosis
α=3, β= 0.4, λ= 8 1.0939 0.0457 1.1376 1.2072
α=3, β= 0.8, λ= 8 1.1929 0.0543 1.1376 1.2072
α=4, β= 4, λ= 15 1.2449 0.0146 1.0304 1.0422
α=1, β= 0.5, λ= 23 0.9733 0.0059 1.0191 1.0256
α=0.5, β= 5, λ= 20 1.0193 0.0157 1.0438 1.0577
α=0.5, β= 5, λ= 9 1.0647 0.0803 1.2158 1.2975
α=2, β= 1, λ= 5 1.2828 0.2044 1.5887 2.2492
α=1, β= 1, λ= 5 1.0689 0.1786 1.7029 2.4491
α=0.1, β= 0.4, λ= 5 0.3048 0.0994 4.2888 6.6989
α=0.5, β= 0.5, λ= 5 0.7423 0.1295 1.9584 2.8836

Table 2 The Variance, skewness, mean, and kutosis based on the moments of LL distribution for
some parameter values

parameters mean variance skewness kurtosis
λ= 8 1.0262 0.0577 1.1866 1.2732
λ= 8 1.0262 0.0577 1.1866 1.2732
λ= 15 1.0073 0.0151 1.0462 1.0629
λ= 23 1.0031 0.0063 1.0191 1.0256
λ= 20 1.0041 0.0084 1.0254 1.0343
λ= 9 1.0206 0.0445 1.1413 1.2019
λ= 5 1.0689 0.1786 1.7029 2.4491
λ= 5 1.0689 0.1786 1.7029 2.4491
λ= 5 1.0689 0.1786 1.7029 2.4491
λ= 5 1.0689 0.1786 1.7029 2.4491

Tables 1 and 2 presents the mean, variances, skewness, and kurtosis for the IL-LL and LL
distributions, respectively. The mean for the IL-LL distribution ranges from 0.3048 to 1.2828 while
that of LL ranges from 1.0031 to 1.0689, the variance of IL-LL is as small as 0.0059 while that
of LL is 0.0084. For the skewness, IL-LL distribution ranges from 1.0191 to 4.2888. Whereas,
LL distribution ranges from 1.0191 to 1.7029. Lastly, the kurtosis of IL-LL distribution ranges from
1.0256 to 6.6989, while LL distribution ranges from 1.0256 to 2.4491, respectively. All these indicate
the strength of distribution of IL-LL over distribution of LL.

3.2. The moment generating function
Moment generating function (mgf) of the IL-LL distribution can be given in terms of (8) as

Mx(t) =

∞∑
r=0

tr

r!
αβ

r
λ
Γ
(
1− r

λ

)
Γ
(
α+ r

λ

)
Γ (1 + α)

.
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3.3. Rényi entrophy
If X is random variable with density function f(x) defined in Equation (6), then the Rényi

entropy of X is given by

Rτ (x) =
1

1− τ

[∫ ∞

−∞
f(x)τdx

]
, τ > 0, τ ̸= 1;x ∈ ℜ. (9)

The function f(x)τ in Equation (9) can be

f(x)τ = (αβλ)
τ
x−τ(λ+1)

(
1 + βx−λ

)−τ(1+α)
. (10)

By inserting Equation (10) back in Equation (9), we have∫ ∞

−∞
f(x)τdx = (αβλ)

τ
∫ ∞

0

x−τ(λ+1)
(
1 + βx−λ

)−τ(1+α)
dx.

Let w = βx−λ and substituting back. Then,

∫ ∞

−∞
f(x)τdx =

(αβλ)

βλ

∫ ∞

0

(
w
β

)[τλ+τ−λ]−1

(1 + w)
τ+ατ dw.

Finally, the Rényi entropy is given by

Rτ (x) = αλτ−1βλ−τλΓ (τλ+ τ − λ) Γ (2ατ + τ + λ− τλ)

Γ (2ατ + 2τ)
.

3.4. Order statistic
Let X1, X2, X3, . . . , Xn be the random samples of size n from probability distribution with pdf

f(x) and cdf F (x) as defined in Equations (6) and (5), respectively. Suppose X1:n, X2:n, X3:n, . . . , Xn:n

denoted the corresponding order statistics derived from this samples. Then, the pth order statistic can
be defined as

fp:n(x) =
n!f(x)

(p− 1)!(n− p)!
F (x)p−1 [1− F (x)]

n−p
. (11)

Equation (11) can be

fp:n(x) =
2αβλn!f(x)F (x)i(p−1)

(p− 1)!(n− p)!

n∑
i=1

(−1)i
(
n− p

i

)
.

Therefore, the order statistics can be given by

fp:n(x) = Ωix
−λ−1

(
1 + βx−λ

)−(α+i+1)+ip
,

where Ωj =
2αβλn!

(p−1)!(n−p)!

∑n
i=1(−1)i

(
n−p
i

)
.

4. Estimation
In this section, the parameters of the proposed IL-LL distribution will be estimated using max-

imum likelihood method. Let x1, x2, x3, . . . , xn be random samples of n observations drawn from
the IL-LL distribution with vector of parameter Θ = (α, β, λ)T . Then the log-likelihood function of
Equation (6) denoted by L(η) can be written as

l(Θ) = n log(αβλ)− (λ+ 1)

n∑
i=1

log(x)− (α+ 1)

n∑
i=1

log(1 + βx−λ). (12)



42 Thailand Statistician, 2023; 21(1): 37-47

By differentiating Equation (12) partially with respect to α, β, and λ, we derived the components
of score vector U(Θ) presented as follows

Uα(Θ) =
n

α
−

n∑
i=1

log(1 + βx−λ) (13)

Uβ(Θ) =
n

β
− (α+ 1)

n∑
i=1

x−λ

(1 + βx−λ)
(14)

Uλ(Θ) =
n

λ
−

n∑
i=1

log(x) + (1 + α)β

n∑
i=1

x−λlog(x)

(1 + βx−λ)
. (15)

By setting Equations (13), (14), and (15) to zero and also solving them simultaneously yields
the maximum likelihood estimators of the IL-IL distribution. However, the above equations are not
tractable and cannot be solved analytically. As such, appropriate statistical software can be used to
solve them numerically using iterative technique.

5. Monte Carlo Simulation
Here, a Monte Carlo simulation study is conducted and the results presented to show the param-

eter estimates performance at various true parameter values. The study is described as follows:

1. For known parameter values i.e Θ = (α, β, λ)T , we simulated a random sample of size n is
simulated from the IL-LL distribution using Equation (16).

2. We then Estimate the parameters of the IL-LL distribution using MLE.

3. Perform N= 1,000 replications of steps 1 through 2.

4. For each of the three estimated parameters of the IL-LL, we compute the Bias, MSE, from the
1,000 replicates for thr true α = 0.3, β = 0.4, and λ = 0.5. The statistics are given by

Θ̂ =
1

N

N∑
i=1

Θ̂i, Bias(Θ̂) = Θ̂−Θ, MSE(Θ̂) =

N∑
i=1

(
Θ̂i −Θ

)2
where Θ̂i = (λ̂, α̂, β̂) are the maximum likelihood estimates for the ith iteration and chosen
sample size n (n = 30, 70, 150, 300, 500, 1000).The quantile function for IL-LL is giving as

QIL−LL(u) =

(
u

−1
α − 1

β

)− 1
λ

. (16)

The numerical results are presented in Tables 3, 4, and 5. The simulation study has shown that
irrespective of the parameter values chosen, the Bias and MSE of the parameter estimates decay as
the sample size n increases. Thus, the larger the sample size, the more accurate and consistent are
the parameter estimates. The estimates are good as they approach the true parameter values as the
sample size increases.
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Table 3 A Monte Carlo simulation results for IL-LL distribution at λ = 0.5 , β = 0.4, and α = 0.3

Parameter n Bias MSE Estimate
α 30 0.0592 0.1282 0.3592

70 0.0178 0.0199 0.3178
150 0.0071 0.0079 0.3071
300 0.0017 0.0033 0.3017
500 0.0005 0.0019 0.3005

1000 0.0004 0.0009 0.3004
β 30 0.3835 1.9855 0.7835

70 0.064 0.1952 0.464
150 0.0174 0.0254 0.4174
300 0.0091 0.0097 0.4091
500 0.0069 0.0059 0.4069

1000 0.0032 0.0029 0.4032
λ 30 0.3047 0.7818 0.8047

70 0.0633 0.0463 0.5633
150 0.0256 0.0128 0.5256
300 0.0136 0.0049 0.5136
500 0.0081 0.0027 0.5081

1000 0.0039 0.0012 0.5039

Table 4 A Monte Carlo simulation results for IL-LL distribution at λ = 1 , β = 0.4, and α = 0.3

Parameter n Bias MSE Estimate
α 30 0.0748 0.2044 0.3748

70 0.0179 0.0203 0.3179
150 0.0074 0.0081 0.3074
300 0.0015 0.0033 0.3015
500 0.0007 0.0018 0.3007

1000 -5.7478 0.0008 0.2999
β 30 0.3664 1.7470 0.7664

70 0.0631 0.1781 0.4631
150 0.0179 0.0258 0.4179
300 0.0087 0.0096 0.4087
500 0.0066 0.0058 0.4066

1000 0.0036 0.0029 0.4036
λ 30 0.4786 1.4829 1.4786

70 .1265 .1838 1.1265
150 0.0517 0.0523 1.0517
300 0.0278 0.0199 1.0278
500 0.0158 0.0106 1.0158

1000 0.0087 0.0047 1.0087
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Table 5 A Monte Carlo simulation results for IL-LL distribution at λ = 1.5 , β = 0.4, and α = 0.3

Parameter n Bias MSE Estimate
α 30 0.0682 0.1619 0.3682

70 0.0180 0.0202 0.3180
150 0.0066 0.0079 0.3066
300 0.0019 0.0033 0.3019
500 0.0012 0.0018 0.3012

1000 0.0 0.0008 0.3006
β 30 0.3669 1.8558 0.7669

70 0.0644 0.2022 0.4644
150 0.0190 0.0257 0.4190
300 0.0084 0.0095 0.4084
500 0.0053 0.0058 0.4053

1000 0.0032 0.0028 0.4032
λ 30 0.6402 2.4253 2.1402

70 0.1886 0.4095 1.6886
150 0.0793 0.1169 1.5793
300 0.0406 0.0444 1.5406
500 0.0225 0.0239 1.5225

1000 0.0129 0.0105 1.5129

6. Application

We demonstrate the applicability of the IL-IL distribution to three data sets. The first data
set represents 36 proportion of toxicity for chromium in marine waters. The data has an outliers.
Details about the data can be seen in Shao (2000) and Wang and Lee (2011). The second data set
reflect the amount of failures for the air conditioning system of jet airplanes as reported by Cordeiro
and Lemonte (2011). The third data set represents the Relief Times of some patients receiving an
analgesic as reported by Clark and Gross (1975) and Shanker et. al. (1975). The summary of the
three data sets are in Table 6.

Table 6 The summary of the three data sets analyzed

Data n Maximum Minimum Mean Median Mode Skewness Kurtosis
Relief 20 4.1 1.1 1.9 1.7 1.75 1.7198 2.9241
Marine 36 10000 2.4 1374.284 602.56 1000 2.8443 8.0032
Air condition 179 603 1 89.1341 51 14 2.2333 5.7353

We used Adequacy Model package by Marinho et. al. (2019) in R software developed by Core
Team (2017). The goodness of fit statistics used in comparing the performances are as reported
by Marinho et. al. (2019). The smaller the value of the goodness of fit measures the better the fit to
the data.

As comparators, we use the Marshall-Olkin Log-logistic (MLL) distribution by Gui (2013); the
Zografos-Blakrishnan Log-logistic (ZBLL) distribution by Hamedani (2013); and the odds exponen-
tial log-logistic (OELL) distribution by Rosaiah et. al. (2017). The cdf of these three comparators are
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Table 7 MLEs and log-likelihoods for the data sets

MLEs
Data Sets Models α β λ -ll

Relief IL-LL 12.5319 0.4739 4.0031 15.5088
MLL 1.3178 5.9358 5.4093 16.4787
ZBLL 1.7857 1.9162 0.6894 29.9657
OELL 1.9107 1.7118 1.7325 23.5664

Marine Data IL-LL 2.1991 11.1509 0.5698 292.872
MLL 1.8154 0.4146 7.0095 300.6979
ZBLL 0.7134 3.4282 3.8476 294.7173
OELL 0.321 9.6098 0.7086 295.9606

Air Condition Data IL-LL 2.5874 12.1413 0.9729 988.8015
MLL 1.7794 0.7905 6.6285 1034.731
ZBLL 1.07 1.9286 9.2974 995.4114
OELL 0.535 1.9286 9.2974 1031.363

Table 8 The Goodness-of-fit statistics for the data sets

Data Sets Models AIC CAIC BIC HQIC
Relief IL-LL 37.0176 38.5176 40.0048 37.6007

MLL 38.9551 40.4551 41.9423 39.5382
ZBLL 65.9313 67.4313 68.9185 66.5144
OELL 53.1329 54.6329 56.12 53.7159

Marine Data IL-LL 591.7441 592.4941 596.4946 593.4021
MLL 607.3959 608.1459 612.1464 609.054
ZBLL 595.8346 596.5846 596.5846 600.5851
OELL 597.9213 598.6713 602.6718 599.5793

Air Condition Data IL-LL 1983.603 1983.74 1993.165 1987.48
MLL 2075.462 2075.599 2085.024 2079.34
ZBLL 1996.823 1996.96 2006.385 2000.7
OELL 2068.726 2068.864 2078.289 20772.6

respectively given as:

FMLL(x;α, β, λ) = 1− βαλ

xα + βαλ
x, λ, β, α > 0

FZBLL(x, β, λ, α) =
γ
(
β, log

[
1 +

(
x
λ

)α])
Γ (β)

x, β, α, λ > 0

FOELL(x;β, λ, α) = 1− exp

{
1

β

(x
λ

)α
}

α, λ, β, x > 0.

As shown in Table 8, the IL-IL model has the best fit with minimum values of the analytical
criteria, thus outperforming the other comparator models.

7. Discussion
The estimates of the parameters are good and also follows the law of large number; as the

sample size increases, the estimates approaches the true values. This is clear from Tables 3, 4, and
5, respectively. The inverse Lomax log-logistic distribution has proven to be more flexible compared
with the other comparators with a minimum values of the goodness-of-fit statistics as shown in Table
8.
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Figure 3 Fitted densities plots for the three data sets.

8. Conclusion
In conclusion, we proposed and study a new model based on inverse Lomax-G family called

the inverse Lomax-log logistic (IL-IL) distribution. We investigated some of the IL-LL’s statistical
properties including Moments and Moment generating function, entropy and order statistics. We esti-
mated the parameters using maximum likelihood method and showed numerically through simulation
that the parameter estimates are consistent. The pdf plots in Figiure 1 indicates that the shape can
be skewed to the right whereas, the hazard function plots explains the shape as skewed to the right
and decreasing. An application to the three datasets namely: the proportion of toxicity for chromium
in marine waters; the number of failures for the air conditioning system of jet airplanes; and relief-
times of patients receiving an analgesic empirically showed the significance and relevance of the new
model.
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