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Abstract 
The  -series stochastic process has special importance in many life areas. In this paper, the 

particle swarm optimization (PSO) and the least squares (LS) methods are used to estimate 
parameters of the  -series process. The real data results show that the PSO algorithm is better in 

estimation compared to the LS method, in term of mean absolute error (MAE). 
______________________________ 
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1.  Introduction  

The α-series process is a stochastic process related to the geometric process, and it is also 
monotone process which has special importance in the many of life areas. In addition, it has many 
features, including the possible treatment of many problems in different areas and ease of procedures. 

The model of the  -series stochastic process is an important tool for studying deteriorating 

systems that can be repaired in maintenance problems, as a main tool in data analysis with a monotone 
trend, and it has many uses as the optimal inspection repair replacement policy (Chen et al. 2010). 

Swarm intelligence is a branch of artificial intelligence that is widely used for solving 
optimization problems, and it took its inspiration from biology (Premalatha and Natarajan 2009). 
Particle swarm optimization is a simple model of social learning whose nascent behavior gained 
popularity as a technique to solve complex optimization problems in a reliable and simple manner. 

In this paper, a least squares and particle swarm optimization algorithm are used to estimate the 
 -series process parameters with application on a dataset. The results are compared between the two 

using methods. 
 

2.  α-Series Process 
The α-series process is a monotone stochastic process.  Its idea belongs to Braun et al. (2005), 

who studied their properties. It has many features including the executions and the possibility of its 
application in reliability and stochastic scheduling, which explains the many uses for the model this 
process. It is called the  -power process in which the constant process is raised to power. 
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Consider the stochastic process   , 0N t t   that is a counting process. jx  is the time interval 

between the two events times j and 1.j   The counting process with random nonnegative variables 

is the α-series process for the parameter ,  if there a real value   such that (Aydoğdu and Kara 

2012) 

                                           , 1,2,j jy j x j    (1) 

where jy  is a renewal process (RP), which are independent and identically distributed (i.i.d.) random 

variables. The cumulative distribution function can be expresses as (Braun et al. 2008) 

     , 1, 2,  j jF x F j x j      (2) 

By taking the derivative of (2) with respect to ,x  you can get the probability density function for 

this process (Lam 1988). 
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The  -series process is stochastically decreasing when 0  and stochastically increasing 

when 0.   When 0,   the  -series process reduces to a renewal process, and all the random 

variables are identically distributed. If F  is an exponentiation distribution function and 1,   then 

the  -series process is a linear birth process (Aydogdu et al. 2010, Braun et al. 2008, and Tang and 

Liu 2006). 
 

3.  Parameters of α-Series Process 

Assume that  , 1, 2, .jx j    are events times for the  -series process. Then  
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 where ,j jy j x  which is a sequence of random variables (i.i.d.), then  
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while  the variance jx  can be expressed as 
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The main parameters for the  -series process are ,   and 2  because they specify the mean 

and variance of jx  (Aydoğdu and Kara 2012). 
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4.  Testing α-Series Process 
Testing the  -series process is a good and necessary subject for studying processes. When 

implementing this process on real data, we have many problems. The most important problem is the 
appropriateness of the study data for this process. The procedure for testing can be performed in two 
steps. 
 
4.1. Testing for monotone trend of the data 

To test the α-series process, we should first test if there is a monotone trend of data. If the test 
proves that there is no monotone trend of data, the renewal process will be best for use. There are 
many techniques used to test for the monotone trend of a stochastic process, including Laplace’s test, 
technical graph and Mann test. Moreover, many techniques have been discussed, e.g., (Cox and 
Lewis 1966) and (Ascher and Feingold 1984). In this paper, Laplace's test is used to test the monotone 
trend in the data. Laplace's test is a nonparametric test, and it is commonly used to test the monotone 
trend in a dataset according to these hypotheses. The null and alternative hypotheses are as follows: 

0H : Data do not have monotone trend 

1H : Data have a monotone trend. 

The statistical test for this hypothesis test will be the following (Xavier et al. 2013): 
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U is Laplace’s test;  ~ 0,1 .U N  Considering the p-value in   ,P Z U  then if the p-value is 

bigger than 0.05, then we accept 0H  and refuse 1.H  

 
4.2. Testing data for the α-series process 

The second step after knowing the trend is to test whether data are accepted for the  -series 

process. To solve this problem, assume (Aydoğdu and Kara 2012) 

                                                  1,2, .  ,j jy j x j    

By taking the logarithm, we obtain 

 ln ln ln .j jy j x   (8) 

The jy  are i.i.d. random variables, and the simple linear regression model can be used with 

 ln , 1,2,j jy e j     (9) 

  ln .jE y       (10) 

The je  are the sequence of i.i.d. random variables with mean 0 and variance 2 .e  From (8), we can 

obtain the model. 
                                         ln ln ln .j jx y j   (11) 

Using (9) and (11), we get  

  ln ln  .j jx e j     (12) 

Repeating (12), we get the model  

 ln ln , 1, 2,j jx j e j       (13) 
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The plot of ln jx  against ln ,j  can be used to note whether there is a linear relationship between 

them or not. If the plot shows that there is a linear relationship between them, we conclude that the 

data jx  come from an α-series process. 

 
5.   Parameter Estimation of α-series Process 

As we know, the  -series process has three important parameters, ,   and 2 .  When 

applying this process on real data, we need to estimate these parameters. There are many methods 
suggested to estimate these parameters, including nonparametric, parametric and other methods 
(Aydogdu et al. 2010). 

In this paper, we use the nonparametric least squares method, which is known method in 
estimation, and particle swarm optimization algorithm, which is an intelligent technique method.  
 
5.1. Least squares method 

The least squares method is one of the important nonparametric methods in estimation. The time 
rate for events in the α-series process is good with this method. This method depends on decreasing 
the sum of squares error to get the best to estimator parameters in this process. Assuming that the 

stochastic process ( , 1, 2, )jx j    represents the event times of the  -series process, the sum of 

squares error with the logarithm is 
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Using (8), (10) and (14), we obtain  

 
2

1

ln n  .l
n

j
j

SEE x j 


      (15) 

To find the minimum of the sum of squares error, take the first partial derivative of (15) with 
respect to the parameters   and ,  and set it equal zero shown in Equations (16) and (17): 
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The procedure of the counting process and simplification of the least squares estimator for 
parameters  and  can be expressed in Equations (18) and (19) (Braun et al. 2005) 
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The estimator parameters   and 2  can be obtained from the following equations (Aydoğdu 

and Kara 2012) 
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5.2.  Particle swarm optimization algorithm 

Particle swarm optimization (PSO) is one of the intelligent techniques for solving optimization 
issues and this algorithm. This algorithm was considered by Kennedy and Eberhart (1995). Consider 
an unconstrained minimization issue (Bai 2010):  

             Minimize    ,  , l uf H Hh H   

where as lH and  uH indicate the lower and upper bounds on .H  The steps of the PSO algorithm 

can be implemented as follows. 
1. The volume of the swarm number of particles is .N  To decrease the total number of function 

evaluations needed to discover a solution, we must assume a smaller volume of the swarm. In this 
situation, it can take a long time to discover the perfect solution. Ordinarily a volume of 20 to 30 
particles is assumed for the swarm as a compromise. 

2. Generate the initial population of H  in the extent ,l uH H   randomly assigned like

1 2, , . ., NH H H  After that, the position of j  and its velocity in iteration i  are indicated  jH i

and  .jQ i  Thus, the particles generated initially are indicated by      1 20 , 0 , .., 0 .NH H H  The 

vectors  0 ,  1,2, .,jH j N   are called particles. Then, evaluate the objective function values 

corresponding to the particles as      1 20 , 0 , ., 0 .Nf H f H f H            

3. Find the velocity of particles. All particles will be moving to the optimal point with velocity. 
Initially, all particle velocities are supposed to be 0. Set the iteration number 1.i   

4. In the th i iteration, we discover the two important parameters used by particle :j  

a. the best position for the particle, 

b. the speed of particle j  in the th i  iteration as in 

        1 1 2 21  1 1  , 1,2,...,  ,j j best j best jQ i Q i c r P H i c r G H i j N                (22) 

where 

 jQ i  is the particle velocity in th i  iteration; 

1 2, c c  are the acceleration coefficients, ordinarily take value 2; 

1 2, r r  are the random values in the extent 0 to 1; 

bestP  is the best position to the particle swarm;  

bestG  is the best position to the particle including the entire swarm; and 

c. Find the position of the th j  particle in th i  iteration. 

      1  , 1,2, , .j j jH i H i Q i j N      (23) 
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Then, evaluate the objective function values corresponding to the particle as

     1 2, , ., .Nf H i f H i f H i            

5. Test the convergence of the current solution. If the position of all particles converges to itself 
as a set of values, then the method is assumed to have converged. If the convergence criterion is not 
satisfied, step 4 is repeated updating the iteration number to be 1,i i   and by computing the new 

values of bestP  and .bestG  The iterative process is continued until all particles converge to the same 

optimum solution. 
 
6.   Goodness of Fit Test 

There are many measures used to test goodness of fit. In this paper, mean absolute error (MAE) 
is used. To compare a particle swarm optimization with the least squares, it is defined as 

 
1

 .ˆ
1 n

j j
j
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7.   Application 

In this section, two datasets with different sample sizes are used, the first dataset is operating 
times (hours) for machine building (Al-Saffawy and Al-Jammal 2006). The second dataset is the 
operating times between two stops (Ramadan 2017). For PSO, the swarm number was 30, and the 
number of iterations was 500. The first step in the statistical analysis for the α-series stochastic 
process on the two datasets is to test whether the process has a monotone trend, Laplace's test is used 
to ensure existence of the monotone trend for this data according to the hypotheses.  

0H : Data do not have a monotone trend. 

1H : Data have a monotone trend. 

Table 1 shows the value of Laplace's test U and  UP for the two datasets.  

 
Table 1 Laplace's test for two datasets 

Data U  UP  

Data 1 3.4095 0.0006 

Data 2 2.1286 0.034 

           

From Table 1, we note that the UP values for the two datasets are less than 0.05. We reject the 

null hypothesis and accept the alternative hypothesis that the data have a monotone trend. The second 
step for analysis after knowing the monotone general trend of the data is testing whether the data 
come from an α-series process through plotting the logarithm for data with logarithm for time as 
shown in Figure 1. 
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                                   a) Data 1                                                                   b) Data 2 

Figure 1 Testing two datasets for α-series process 
 

We can see that there are linear relationships between the logarithm for data and logarithm for 
time, and therefore we consider the two datasets as coming from α-series processes. We using 
nonparametric (LS) and intelligent technique (PSO) methods in estimating parameters of these 

processes, with ,  and 2 for both sets as shown in Table 2.  

 
Table 2 LS and PSO estimators to the α-series process parameters 

Data ˆ
LS  ˆLS  2ˆ LS  ˆ

PSO  ˆPSO  2ˆ PSO  

Data 1 0.538 333.826 146843.144 0.2706 178.7363 47550.8898 

Data 2 0.469 89.5584 7976.91098 0.4417 84.0082 6734.8639 

 
To compare the PSO algorithm with least squares, MAE is used as a comparison criterion as 

shown in Table 3. 
 

Table 3 MAE values of estimation methods for α-series process parameters 
 
 
 
  
 

From Table 3, we note that the MAE values for the two datasets in PSO are less than that of LS. 
Therefore, the PSO algorithm is the best as compared with the LS method in estimation of 
parameters. 

 
8.   Conclusions 

From the logarithm plot for the two datasets with the logarithm for time, the α value which is 
greater than zero for all the estimation methods used in this study. This shows that the data belong 
to the α-series process decreasing with the time. Through MAE values, we conclude that the PSO 
algorithm is the best as compared with the LS method in estimation of parameters. 

 
  

Data LS PSO 

Data 1 70.2357 67.8431 

Data 2 17.8925 16.0025 
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