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Abstract

The « -series stochastic process has special importance in many life areas. In this paper, the
particle swarm optimization (PSO) and the least squares (LS) methods are used to estimate
parameters of the o -series process. The real data results show that the PSO algorithm is better in
estimation compared to the LS method, in term of mean absolute error (MAE).
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1. Introduction
The o-series process is a stochastic process related to the geometric process, and it is also
monotone process which has special importance in the many of life areas. In addition, it has many
features, including the possible treatment of many problems in different areas and ease of procedures.
The model of the « -series stochastic process is an important tool for studying deteriorating
systems that can be repaired in maintenance problems, as a main tool in data analysis with a monotone
trend, and it has many uses as the optimal inspection repair replacement policy (Chen et al. 2010).
Swarm intelligence is a branch of artificial intelligence that is widely used for solving
optimization problems, and it took its inspiration from biology (Premalatha and Natarajan 2009).
Particle swarm optimization is a simple model of social learning whose nascent behavior gained
popularity as a technique to solve complex optimization problems in a reliable and simple manner.
In this paper, a least squares and particle swarm optimization algorithm are used to estimate the
« -series process parameters with application on a dataset. The results are compared between the two
using methods.

2. a-Series Process

The a-series process is a monotone stochastic process. Its idea belongs to Braun et al. (2005),
who studied their properties. It has many features including the executions and the possibility of its
application in reliability and stochastic scheduling, which explains the many uses for the model this
process. It is called the & -power process in which the constant process is raised to power.
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Consider the stochastic process {N (t).t 20} that is a counting process. x, is the time interval

between the two events times j and j—1. The counting process with random nonnegative variables
is the a-series process for the parameter «, if there a real value o such that (Aydogdu and Kara
2012)
y;=j%;, j=12,... (1
where y; is arenewal process (RP), which are independent and identically distributed (i.i.d.) random
variables. The cumulative distribution function can be expresses as (Braun et al. 2008)
F(x)=F(jx,), j=12,... )
By taking the derivative of (2) with respect to x, you can get the probability density function for
this process (Lam 1988).
OF, (x)
Ox
The « -series process is stochastically decreasing when o > 0 and stochastically increasing

=f,(0)=j f(j"%), -o<a<on @)

when o <0. When a =0, the « -series process reduces to a renewal process, and all the random
variables are identically distributed. If F' is an exponentiation distribution function and « =1, then

the o -series process is a linear birth process (Aydogdu et al. 2010, Braun et al. 2008, and Tang and
Liu 2006).

3. Parameters of a-Series Process

Assume that {xj ,j =12,.. } are events times for the « -series process. Then

xj. = (4)
where y, = j“x;, which is a sequence of random variables (i.i.d.), then

()= )

such that E(yj) = 4, then

E(x,)= ]i (5)
while the variance x ; can be expressed as
Var(y.
Var (x]. ) = % ,
such that Var ( Y, ) =o’, then
2
Var(xj)=;a . (6)

The main parameters for the o -series process are @, 4 and o because they specify the mean

and variance of x ; (Aydogdu and Kara 2012).
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4. Testing a-Series Process

Testing the « -series process is a good and necessary subject for studying processes. When
implementing this process on real data, we have many problems. The most important problem is the
appropriateness of the study data for this process. The procedure for testing can be performed in two
steps.

4.1. Testing for monotone trend of the data

To test the a-series process, we should first test if there is a monotone trend of data. If the test
proves that there is no monotone trend of data, the renewal process will be best for use. There are
many techniques used to test for the monotone trend of a stochastic process, including Laplace’s test,
technical graph and Mann test. Moreover, many techniques have been discussed, e.g., (Cox and
Lewis 1966) and (Ascher and Feingold 1984). In this paper, Laplace's test is used to test the monotone
trend in the data. Laplace's test is a nonparametric test, and it is commonly used to test the monotone
trend in a dataset according to these hypotheses. The null and alternative hypotheses are as follows:

H  : Data do not have monotone trend

H, : Data have a monotone trend.

The statistical test for this hypothesis test will be the following (Xavier et al. 2013):
n—-1

z:’:lti’l _ tn

v=—=nzl 2 ©

)

U is Laplace’stest; U ~ N (0, 1). Considering the p-value in P(|Z| > U) , then if the p-value is

bigger than 0.05, then we accept H, and refuse H,.

4.2. Testing data for the a-series process
The second step after knowing the trend is to test whether data are accepted for the o -series
process. To solve this problem, assume (Aydogdu and Kara 2012)
y; =Jjx, j=L2,...
By taking the logarithm, we obtain

Iny, =alnj+Inx,. ®)

The y, arei.id. random variables, and the simple linear regression model can be used with
Iny, =y+e,,j =12,... )
E(lny,)=y. (10)

The e, are the sequence of i.i.d. random variables with mean 0 and variance o’. From (8), we can
obtain the model.
Inx, =Iny, —aln . (11)
Using (9) and (11), we get
Inx, =(y+e,)-al . (12)
Repeating (12), we get the model
Inx, =y-alnj+e,j=12,... (13)
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The plot of Inx; against In j, can be used to note whether there is a linear relationship between

them or not. If the plot shows that there is a linear relationship between them, we conclude that the
data x ; come from an a-series process.

5. Parameter Estimation of a-series Process
As we know, the o -series process has three important parameters, o, and o>. When

applying this process on real data, we need to estimate these parameters. There are many methods
suggested to estimate these parameters, including nonparametric, parametric and other methods
(Aydogdu et al. 2010).

In this paper, we use the nonparametric least squares method, which is known method in
estimation, and particle swarm optimization algorithm, which is an intelligent technique method.

5.1. Least squares method

The least squares method is one of the important nonparametric methods in estimation. The time
rate for events in the a-series process is good with this method. This method depends on decreasing
the sum of squares error to get the best to estimator parameters in this process. Assuming that the
stochastic process (x;,j=1,2,...) represents the event times of the « -series process, the sum of

squares error with the logarithm is

n

SSE:Z[lnyj—E(lnyj)]z. (14)
J=1
Using (8), (10) and (14), we obtain
SEE:Zn:[lnxj+(xlnj—yT. (15)
j=1

To find the minimum of the sum of squares error, take the first partial derivative of (15) with
respect to the parameters « and y, and set it equal zero shown in Equations (16) and (17):

OSEE

— =2]Z:l:[]nxj+alnj—)/Jlnj=0 (16)
aSﬂ:—2Zn:[lnxf+(;¢1nj—;/J:O. a7
oy I=] ‘

The procedure of the counting process and simplification of the least squares estimator for
parameters o and y can be expressed in Equations (18) and (19) (Braun et al. 2005)

z;:llnsz"_: lnj—nz;lnx/ In j

G- K (18)
nz 11’1] (ijllnj)
Zj h’ljz Inx; Inj— Z 11’1] z Inx;
(Z’; 11n]) _"Z an
The estimator parameters £ and o’ can be obtained from the following equations (Aydogdu
and Kara 2012)

7= (19)
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R — TR (20)
N I &G 72
6 =—>(5,-3) . 1)
j}j:j&xj9 ﬁ:nilz)’}i'

=

5.2. Particle swarm optimization algorithm

Particle swarm optimization (PSO) is one of the intelligent techniques for solving optimization
issues and this algorithm. This algorithm was considered by Kennedy and Eberhart (1995). Consider
an unconstrained minimization issue (Bai 2010):

Minimize f(h) , H' <H <H",

where as H'and H" indicate the lower and upper bounds on H. The steps of the PSO algorithm
can be implemented as follows.

1. The volume of the swarm number of particles is N. To decrease the total number of function
evaluations needed to discover a solution, we must assume a smaller volume of the swarm. In this

situation, it can take a long time to discover the perfect solution. Ordinarily a volume of 20 to 30
particles is assumed for the swarm as a compromise.

2. Generate the initial population of H in the extent [H ' H “Jrandomly assigned like
H,H,,....,.H,. After that, the position of j and its velocity in iteration i are indicated H (i )
and Q, (z) Thus, the particles generated initially are indicated by H, (()),H2 (0),. v Hy, (O) The

vectors H ; (O), j=12,....,N are called particles. Then, evaluate the objective function values

corresponding to the particles as f[ H,(0) ], f[ H,(0)].....f[ H, (0)].

3. Find the velocity of particles. All particles will be moving to the optimal point with velocity.
Initially, all particle velocities are supposed to be 0. Set the iteration number i =1.

4. In the ;™ iteration, we discover the two important parameters used by particle j :

a. the best position for the particle,

b. the speed of particle j inthe ™ iteration as in

0,())=0, (i-1)+cn[ By —H,(i-1) |+ e[ Gy = H, (i-1) ] .j = 1.2....N , (22)

where

0, (i ) is the particle velocity in i" iteration;

¢,,c, are the acceleration coefficients, ordinarily take value 2;

r,,7, are the random values in the extent 0 to 1;

Pbest
G

c. Find the position of the ;" particle in ;™ iteration.

H,(i)=H, (i-1)+0,(i),j=12,....N. (23)

J

is the best position to the particle swarm;

is the best position to the particle including the entire swarm; and

best
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Then, evaluate the objective function values corresponding to the particle as

PTG ()] [, 0]

5. Test the convergence of the current solution. If the position of all particles converges to itself
as a set of values, then the method is assumed to have converged. If the convergence criterion is not
satisfied, step 4 is repeated updating the iteration number to bei =i +1, and by computing the new

and G,

values of P, st

st The iterative process is continued until all particles converge to the same

optimum solution.

6. Goodness of Fit Test
There are many measures used to test goodness of fit. In this paper, mean absolute error (MAE)
is used. To compare a particle swarm optimization with the least squares, it is defined as

MAE:lZ"]xj—fcj : (24)
n4g

7. Application

In this section, two datasets with different sample sizes are used, the first dataset is operating
times (hours) for machine building (Al-Saffawy and Al-Jammal 2006). The second dataset is the
operating times between two stops (Ramadan 2017). For PSO, the swarm number was 30, and the
number of iterations was 500. The first step in the statistical analysis for the a-series stochastic
process on the two datasets is to test whether the process has a monotone trend, Laplace's test is used
to ensure existence of the monotone trend for this data according to the hypotheses.
H , : Data do not have a monotone trend.

H | : Data have a monotone trend.

Table 1 shows the value of Laplace's test U and P, for the two datasets.

Table 1 Laplace's test for two datasets

Data U P,
Data 1 3.4095 0.0006
Data 2 2.1286 0.034

From Table 1, we note that the P, values for the two datasets are less than 0.05. We reject the

null hypothesis and accept the alternative hypothesis that the data have a monotone trend. The second
step for analysis after knowing the monotone general trend of the data is testing whether the data
come from an a-series process through plotting the logarithm for data with logarithm for time as
shown in Figure 1.
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a) Data 1 b) Data 2
Figure 1 Testing two datasets for a-series process

We can see that there are linear relationships between the logarithm for data and logarithm for
time, and therefore we consider the two datasets as coming from a-series processes. We using
nonparametric (LS) and intelligent technique (PSO) methods in estimating parameters of these

processes, with «, ¢ and o for both sets as shown in Table 2.

Table 2 LS and PSO estimators to the a-series process parameters
Data A g G5 Upso Hpso S pso
Data 1 0.538 333.826 146843.144 0.2706 178.7363 47550.8898
Data 2 0.469 89.5584 7976.91098 0.4417 84.0082 6734.8639

To compare the PSO algorithm with least squares, MAE is used as a comparison criterion as
shown in Table 3.

Table 3 MAE values of estimation methods for a-series process parameters

Data LS PSO
Data 1 70.2357 67.8431
Data 2 17.8925 16.0025

From Table 3, we note that the MAE values for the two datasets in PSO are less than that of LS.
Therefore, the PSO algorithm is the best as compared with the LS method in estimation of
parameters.

8. Conclusions

From the logarithm plot for the two datasets with the logarithm for time, the a value which is
greater than zero for all the estimation methods used in this study. This shows that the data belong
to the a-series process decreasing with the time. Through MAE values, we conclude that the PSO
algorithm is the best as compared with the LS method in estimation of parameters.
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