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Abstract 

In this paper, we tend to acquire Bayes estimators for the unknown parameter of an inverse 
Rayleigh distribution (IRD). Bayes estimators are obtained beneath symmetric squared error loss 
function (SELF) and asymmetric loss functions by employing a non-informative prior. The 
performance of the estimators is assessed on the idea of their relative risk under the different loss 
functions. We also obtained the risk functions and risk efficiencies associated with the different Bayes 
estimators under the different loss functions and compared the performance of these estimators 
through simulation study. Finally, a numerical study is provided from which we concluded that 
minimum expected loss function is better than SELF, De-Groot loss function and precautionary loss 
function. 

______________________________ 
Keywords: Inverse Rayleigh distribution (IRD), Bayes estimator, squared error loss function, precautionary 
loss function, De-Groot loss function, minimum expected loss function, risk function, risk efficiency. 

 
1. Introduction 

The inverse Rayleigh distribution (IRD) plays a vital role in reliability and life testing study. It 
is also characterized as the failure time distribution. However, one parameter inverse Rayleigh 
distribution (IRD) with probability density function (pdf) and the reliability function is respectively 
given by 

  
2

1

3

2
, ; 0, 0.

xe
f x x

x



 




                 (1) 

     2

1

1 1 ; 0.tR t F t e t


                              (2) 

Voda (1972) mentioned that, the distribution of lifetimes of many sorts of experimental units is 
often approximated by the inverse Rayleigh distribution. The necessary feature of this distribution is 
that its variance and upper order moments don’t exist. Several authors have studied the estimation of 
inverse Rayleigh distribution. Some estimators and prediction results are developed by Abdel-
Monem (2003). Soliman et al. (2010) studied the estimation and prediction of inverse Rayleigh 
distribution based on lower record values and Bayes estimator have been developed under squared 
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error and zero-one loss functions. Dey (2012) discussed the Bayesian estimation of the parameter and 
reliability function of the inverse Rayleigh distribution by using squared error, linex loss function. 
Sindhua et al. (2013) studied the Bayes estimation of the parameters of the inverse Rayleigh 
distribution for left censored data under different loss functions (symmetric and asymmetric).  
Prakash (2013) discussed the Bayes estimation in the inverse Rayleigh model under two different 
loss functions (squared error, linex). Fan (2015) discussed Bayes estimation for the inverse Rayleigh 
model under different loss functions like squared error loss, linex loss function and entropy loss 
functions. Rasheed et al. (2015) discussed the comparison of the classical estimators with the Bayes 
estimator of one parameter inverse Rayleigh distribution under the generalized squared error loss 
function.  Abdullah and Aref (2016) discussed the Bayesian approach for estimating the scale 
parameter of inverse Rayleigh distribution under different loss functions. Fatima and Ahmed (2017) 
studied the estimation and prediction of inverse Rayleigh distribution depending on lower record 
values. Sharma et al. (2019) obtained entropy of the inverse Rayleigh distribution and its order 
statistics. 

The layout of the paper is as follows: In Section 2, we introduced the prior distribution and loss 
functions employed in this paper. In Section 3, Bayes estimators of the parameter of inverse Rayleigh 
distribution under different loss functions are obtained. In Section 4, we obtained the risk functions 
of all the estimators. In Section 5, the risk efficiencies of different estimators under different loss 
functions are obtained. In Section 6, a numerical example is provided using simulation and finally 
conclusion of the results is drawn in Section 7. 
 
2.  Prior and Loss Function 

The use of the symmetrical loss function is considered to be inappropriate for estimating the 
mean failure time or reliability function as it has been recognized that overestimation is more serious 
than underestimation (Basu and Ebrahimi 1991). Varian (1975) has suggested that linex loss function 
should be used in case the overestimation and underestimation are not equally serious. But, again the 
linex loss function is suitable for the estimation of the location parameter only and is not so 
appropriate in case we want to estimate the others parameter like shape and scale parameter. So, we 
use precautionary loss function, De-Groot loss function and minimum expected loss function along 
with the squared error loss function for estimating the scale parameter of the IRD. In this paper we 
have used both the symmetrical and asymmetrical loss functions for better comprehension of the 
Bayesian analysis.  

In Bayesian analysis there is a belief or idea that in most of the practical situations there is 
subjective prior information is available about the probable values of the parameter to be estimated. 
But, if there may arise a situation when the prior information about the parameter is not available, 
then we move towards the non-informative prior. Since, we don’t have prior information regarding 
the probable values of the scale parameter of IRD. That is why we have decided to use Jeffrey’s prior 
as a non-informative prior. 

In this paper we use the following non-informative prior viz: Jeffrey’s prior 
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Taking under consideration the Jeffrey’s prior, we make use of four different loss functions for 
the considered model: 

(i) Squared error loss function (SELF) which is symmetrical in the nature, 
(ii) Precautionary loss function that is asymmetric loss function, 
(iii) De-Groot loss function,  
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(iv) Minimum expected loss function, 
(v) The squared error loss function is given by 

    2, , ,L          (4) 

which is symmetric and   is an estimate of .  The squared error loss function is used in estimators 

like linear regression, calculation of unbiased statistics, and many areas of machine learning. 
(vi) The precautionary loss function is given by  
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which is asymmetric,   and   represent the true and estimated values of the parameter. This loss 

function is used when the under estimation is more serious consequences. 
(vii)  The third loss function is the De-Groot loss function and it is given by 
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DeGroot (1970) discussed this asymmetric loss function defined for the positive values of the 
parameter. 

(viii) The minimum expected loss function is given by 
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3.  Bayesian Estimation 

Let  1 2, ,..., nx x x x  be a random sample of size n  having the probability density function as  
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The likelihood function of the random sample  1 2, ,..., nx x x x  is given by 
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The maximum likelihood estimator of   is  
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The prior distribution is Jeffrey’s prior which is given by  
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The posterior density function is given by 
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On solving (11) by using (8) and (10), we get 
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3.1.  Bayes estimator of   by using the squared error loss function  

Under the squared error loss function    2

, ,L       the Bayes estimator is obtained by 

minimizing   , ,E L    where  
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and hence the Bayes estimator under SELF is  
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3.2.  Bayes estimator of   by using the precautionary loss function 

Under the precautionary loss function  
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The Bayes estimator under the precautionary loss function is 
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3.3.  Bayes estimator of   by using the De-Groot loss function 

Under the De-Groot loss function  
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The Bayes estimator under the De-Groot loss function is 
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3.4.  Bayes Estimator of   by using the minimum expected loss function 

Under the minimum expected loss function  
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The Bayes estimator under the minimum expected loss function is 
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4.  Risk Function 

In decision theory, a good decision function is that one which is having a small value of the risk 
function. The risk function is defined as 
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4.1.  The risk function of the estimator  SB  under SELF  

The risk function of the estimator  SB  under SELF is 
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4.2.  The risk function of  PB  under the precautionary loss function 

The risk function of  PB under the precautionary loss function is  
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4.3.  The risk function of  DG  under the De-Groot loss function 

The risk function of DG under the De-Groot loss function is   
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4.4.  The risk function of ME  under the minimum expected loss function 

The risk function of ME under the minimum expected loss function is 
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5.  Risk Efficiencies 

The risk efficiencies of the  ,SB  ,PB 
DG  and ME   with respect to each other under different 

loss functions are summarized below:  
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Now,  



82 Thailand Statistician, 2023; 21(1): 76-92 

 

           
 

 
2

2
2

0

12
, , 1 ,

2 2

         
   

DG DG DGS

n nn
R E L h s ds

n n
              (24) 

           
 
 

2
2

2
0

12
, , 1 .

1 1

         
   

ME ME MES

n nn
R E L h s ds

n n
               (25) 
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5.2. The risk efficiencies of  ,SB  ,PB 
DG  and 

ME  with respect to each other under the 

precautionary loss function 

In this section, we obtained the risk efficiencies of  ,SB  ,PB 
DG  and ME  relative to the 

precautionary loss function. For that our risk functions are given as 
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The risk efficiencies of  ,SB  ,PB 
DG  and ME  with respect to each other under the 

precautionary loss function are as under 
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5.3. The risk efficiencies of  ,SB  ,PB 
DG  and 

ME  with respect to each other under the  

De-Groot loss function 

In this section, we are going to find the risk efficiencies of  ,SB  ,PB 
DG  and ME  relative to 

the De-Groot loss function. For that our risk functions are given as 
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Now, the risk efficiencies of  ,SB  ,PB 
DG  and ME  under the De-Groot loss function are as 

under  
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5.4. The risk efficiencies of  ,SB  ,PB 
DG  and 

ME  with respect to each other under the 

minimum expected loss function 
Under this section, we obtained the risk efficiencies of different Bayes estimators. For that firstly 

we obtain the risk functions of different Bayes estimator under the minimum expected loss function 
which are as under 
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Now, the risk efficiencies of  ,SB  ,PB 
DG  and ME  with respect to each other under the 

minimum expected loss function which are as follows 
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6.  Simulation Study and Results 

In order to check the statistical performance of Bayes estimators, a simulation study is conducted. 
The random samples are generated from (1) with value of the parameter 1   for various samples 

of sizes ( n  = 20, 40, 60, 80, 100 120, 140, 160). We tend to use MATLAB package to get these 

samples. The results of simulation study are supported by 500 repetitions. Here, Bayes estimators, 
risk functions and risk efficiencies of Bayes estimators are computed under completely different loss 
functions. The estimators for the parameter and the risk functions and risk efficiencies are averaged 
over the total number of repetitions. The results of the simulation study are summarized through the 
tables from 1 to 8. Graphs are plotted by taking risk along the y-axis and sample size along the x-axis 
under the different loss functions to see the behavior of risk function of Bayes estimators and to find 
an admissible estimator under SELF, precautionary loss function, De-Groot loss function and 
minimum expected loss function. 

Tables 1-4 shows that the Bayes estimator and the risk associated with the minimum expected 
loss function is minimum as compared to the precautionary, De-Groot and SELF and risk goes on 
decreasing as the sample size increases. 
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Table 1 Bayes estimators of   and the risk functions of Bayes estimator with 1   

n  
mle  

SB  
PB  

DG  
ME  

 ,SBSR    ,PBSR     ,DGSR    ,MESR  

20 0.4374 0.4605 0.4731 0.4861 0.4166 0.0005 0.0012 0.0023 0.0004
40 0.4085 0.4190 0.4244 0.4300 0.3985 0.0001 0.0002 0.0004 0.00009
60 0.4215 0.4286 0.4323 0.4360 0.4145 0.00005 0.00011 0.0002 0.00004
80 0.4960 0.5022 0.5054 0.5087 0.4898 0.00003 0.00009 0.0001 0.00003

100 0.5195 0.5247 0.5274 0.5301 0.5143 0.00002 0.00006 0.0001 0.00002
120 0.4303 0.4339 0.4358 0.4376 0.4268 0.00001 0.00002 0.00005 0.00001
140 0.4518 0.4550 0.4567 0.4583 0.4486 0.00001 0.00002 0.00004 0.00001
160 0.5529 0.5563 0.5581 0.5599 0.5494 0.00001 0.00002 0.00004 0.00001

 
Table 2 The risk functions of Bayes estimator with 1   

n   ,SBPR     ,PBPR     ,DGPR     ,MEPR    

20 0.0011 0.0026 0.0048 0.0010 
40 0.0002 0.0005 0.0010 0.0002 
60 0.0001 0.0002 0.0004 0.0001 
80 0.00007 0.0001 0.0003 0.00007 

100 0.00005 0.0001 0.0002 0.00005 
120 0.00003 0.00006 0.0001 0.00002 
140 0.00002 0.00005 0.00009 0.00002 
160 0.00002 0.00004 0.00008 0.00002 

 
Table 3 The risk functions of Bayes estimator with 1   

n   ,SBDR     ,PBDR     ,DGER     ,MEER    

20 0.0024 0.0056 0.0100 0.0024 
40 0.0006 0.0014 0.0025 0.0006 
60 0.0002 0.0006 0.0011 0.0002 
80 0.00015 0.00035 0.00062 0.00015 

100 0.00010 0.00022 0.00039 0.00010 
120 0.00006 0.00015 0.00027 0.00006 
140 0.00005 0.00011 0.00020 0.00005 
160 0.00003 0.00008 0.00015 0.00003 

 
Table 4 The risk functions of Bayes estimator with 1   

n   ,SBER     ,PBER     ,DGER     ,MEER    

20 0.0024 0.0056 0.0100 0.0024 
40 0.0006 0.0014 0.0025 0.0006 
60 0.0002 0.0006 0.0011 0.0002 
80 0.00015 0.00035 0.00062 0.00015 

100 0.00010 0.00022 0.00039 0.00010 
120 0.00006 0.00015 0.00027 0.00006 
140 0.00005 0.00011 0.00020 0.00005 
160 0.00003 0.00008 0.00015 0.00003 
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Table 5 Risk efficiencies of Bayes estimators under squared error loss function with 1   

n    ,ME DGSRE      ,PB MESRE      ,ME DGSRE      ,SB DGSRE      ,ME SBSRE    

20 0.5377 0.3415 0.1836 0.2243 0.8185 
40 0.5504 0.3901 0.2147 0.2373 0.9048 
60 0.5545 0.4075 0.2260 0.2415 0.9355 
80 0.5565 0.4165 0.2318 0.2437 0.9512 

100 0.5577 0.4219 0.2353 0.2449 0.9607 
120 0.5585 0.4256 0.2377 0.2458 0.9672 
140 0.5591 0.4283 0.2394 0.2464 0.9718 
160 0.5595 0.4302 0.2407 0.2468 0.9753 

 
Table 5 shows that the risk efficiencies of Bayes estimator under squared error loss function are 

increasing as the sample size increases. 
 

Table 6 Risk efficiencies of Bayes estimators under precautionary loss function with 1   

n    ,SB DGPRE      ,DG MEPRE      ,ME PBPRE      ,SB PBPRE    

20 0.2368 0.2142 0.3878 0.4287 
40 0.2435 0.2317 0.4155 0.4368 
60 0.2457 0.2377 0.4250 0.4394 
80 0.2468   0.2407 0.4298 0.4406 

100 0.2474 0.2425 0.4327 0.4414 
120 0.2478 0.2438 0.4346 0.4419 
140 0.2482 0.2446 0.4360 0.4423 
160 0.2484 0.2453 0.4370 0.4425 

 
Table 6 shows that in some cases the risk efficiencies under De-Groot loss function increases 

with the increase of the sample size whereas in some cases the risk efficiencies decreases. 
 

Table 7 Risk efficiencies of Bayes estimators under De-Groot loss function with 1   

n    ,SB MEERE      ,PB DGERE      ,PB MEERE      ,ME DGERE      ,SB PBERE      ,SB DGERE    

20 1.2216 0.5377 2.9275 0.1836 0.4172 0.2243 
40 1.1051 0.5504 2.5631 0.2147 0.4311 0.2373 
60 1.0689 0.5545 2.4535 0.2260 0.4356 0.2415 
80 1.0512 0.5565 2.4007 0.2318 0.4378 0.2437 

100 1.0408 0.5577 2.3697 0.2353 0.4392 0.2449 
120 1.0338 0.5585 2.3492 0.2377 0.4400 0.2458 
140 1.0289 0.5591 2.3347 0.2394 0.4407 0.2464 
160 1.0253 0.5595 2.3240 0.2407 0.4411 0.2468 

 
Table 7 shows that in some cases the risk efficiencies under De-Groot loss function increases 

with the increase of the sample size whereas in some cases the risk efficiencies decreases. 
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Table 8 Risk efficiencies of Bayes estimators under minimum expected loss function with 1   

n    ,SB MEERE     ,PB DGERE     ,PB MEERE     ,ME DGERE     ,SB PBERE     ,SB DGERE  

20 1.2216 0.5377 2.9275 0.1836 0.4172 0.2243
40 1.1051 0.5504 2.5631 0.2147 0.4311 0.2373
60 1.0689 0.5545 2.4535 0.2260 0.4356 0.2415
80 1.0512 0.5565 2.4007 0.2318 0.4378 0.2437

100 1.0408 0.5577 2.3697 0.2353 0.4392 0.2449
120 1.0338 0.5585 2.3492 0.2377 0.4400 0.2458
140 1.0289 0.5591 2.3347 0.2394 0.4407 0.2464
160 1.0253 0.5595 2.3240 0.2407 0.4411 0.2468

 
Table 8 shows that in some cases the risk efficiencies under minimum expected loss function 

increases with the increase of the sample size whereas in some cases the risk efficiencies decreases. 

 

Figure 1 Behavior of risk function of Bayes estimator under squared error loss function for 1   

 
From Figure 1, we can see that the risk associated with the minimum expected loss function is 

minimum under the SELF as compared to the other loss functions and at the same time we can also 
observe that as the sample size increases risk goes on decreasing. 

 

 
Figure 2 Behavior of risk function of Bayes estimator under precautionary loss function for 1   

 
From Figure 2, we can see that the risk associated with the minimum expected loss function is 

minimum under the precautionary loss function as compared to the other loss functions and at the 
same time we can also observe that as the sample size increases risk goes on decreasing. 
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Figure 3 Behavior of risk function of Bayes estimator under De-Groot loss function for 1   

 
From Figure 3, we can see that the risk associated with the minimum expected loss function is 

minimum under the De-Groot loss function as compared to the other loss functions and at the same 
time we can also observe that as the sample size increases risk goes on decreasing. 

 

 
Figure 4 Behavior of risk function of Bayes estimator under minimum expected loss function 

for 1   

 
From Figure 4, we can see that the risk associated with the minimum expected loss function is 

minimum under the minimum expected loss function as compared to the other loss functions and at 
the same time we can also observe that as the sample size increases risk goes on decreasing. 

 
7.  Conclusions  

In this paper we obtained the Bayes estimators of parameter of inverse Rayleigh distribution 
using four different loss functions: SELF, precautionary loss function, De-Groot loss function and 
minimum expected loss function. From the simulation study, we observed that the Bayes estimators 
under the minimum expected loss function shows better performance as there is less risk involved 
during estimation as compare to other loss functions under non-informative prior. So, it is suggested 
to use Bayesian approach under the minimum expected loss function for estimating the scale 
parameter of inverse Rayleigh distribution under non-informative prior. 
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