
Thailand Statistician 
January 2023; 21(1): 110-124 
http://statassoc.or.th   
Contributed paper 

 

The Poisson Inverse Pareto Distribution and Its Application 
Sirithip Wasinrat [a] and Boonyarit Choopradit* [b] 
[a] Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand. 
[b] Department of Mathematics and Statistics, Faculty of Science and Technology,  
 Thammasat University, Pathumthani, Thailand. 
*Corresponding author; e-mail: boonyarit@mathstat.sci.tu.ac.th 
 

Received: 7 November 2021 
Revised: 8 July 2022 

Accepted: 27 July 2022 
 
Abstract 

This paper proposes a new combination of the inverse Pareto distribution as a three-parameter 
distribution—the Poisson inverse Pareto distribution—derived from the concept of a unified model 
for long-term survival analyses. This work derives the proposed distribution’s probability properties, 
including the survival, cumulative distribution, probability density, and hazard functions. Moreover, 
some properties of the Poisson inverse Pareto distribution are presented, such as the value-at-risk, tail 
behavior, quantile function, and order statistics. The maximum likelihood estimation is then studied 
to obtain a parameter estimation. This study’s simulation revealed that the estimated parameter’s 
mean-squared errors decreased when the sample size increased. Finally, this work illustrates the 
Poisson inverse Pareto distribution’s application using two real datasets to demonstrate that the 
proposed distribution provides a superior fit to that of other models. 
______________________________ 
Keywords: Unified model, long-term survival model, mixture distribution, value-at-risk, tail behavior. 
 

1. Introduction 
The inverse Pareto distribution (IPD) originates from an inverse transformation of the Pareto type 

II distribution (PD), also called the Lomax distribution. The probability density function (PDF) of a 
random variable X from the PD is 
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where the scale parameter 0   and shape parameter 0.   The IPD has a decreasing hazard 

function and a heavy tail distribution (Dankunprasert et al. 2021), and is frequently applied to claim 
modeling for estimating or forecasting the behavior of claims that will occur in the future (Klugman 
et al., 2012). If X  is a random variable from the IPD, then the PDF of the IPD with scale parameter 
  and shape parameter   is defined as 
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The corresponding cumulative distribution function (CDF) and survival function are respectively 
given as: 
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Recently, new models or distributions have been developed from combined models to fitting to 
data that cannot be fit by a commonly used distribution. However, the developed models should be 
sufficient for most modeling situations. The general methods for this combined distribution include 
the finite (McLachlan and Peel 2000, Hall and Zhou 2003, Balakrishnan et al. 2009, Erisoglu et al. 
2013) and infinite mixture distributions (Bulmer 1974, Emilio et al. 2008, Withers and Nadarajah 
2011). Nevertheless, to the best of our knowledge, only a few studies related to the IPD exist thus far. 
This paper proposes a new IPD mixture distribution through a unified approach in a long-term survival 
analysis: the Poisson inverse Pareto distribution (PIPD). 

The remainder of this paper is organized as follows. Section 2 presents a type of mixture 
distribution originally derived from a unified approach in a long-term survival analysis as proposed 
by Rodrigues et al. (2009); this is observed as a useful way to generate a new distribution. Section 3 
presents the PIPD and derives its survival function, CDF, PDF, and hazard function. Additionally, 
Section 4 presents some properties of the PIPD, such as its value-at-risk, tail behavior, quantile 
function, and order statistics. Section 5 provides a parameter estimation using the maximum likelihood 
method for the PIPD. Section 6 discusses the results of a Monte Carlo simulation of the maximum 
likelihood estimates’ behavior. Section 7 illustrates the PIPD using two real datasets, and Section 8 
concludes the paper. 

 
2. Method of Mixture Distribution 

Rodrigues et al. (2009) first proposed a unified long-term survival model, also known as a cured 
model. Their model combined the long-term survival models proposed by Berkson and Gage (1952) 
and Chen et al. (1999) by using the generating function of a real sequence as introduced by Feller 
(1968), as follows: 

Let N  be an unobserved random variable denoting the number of competing causes related to 

the occurrence of a noteworthy event with a probability distribution ( )np P N n   of 0,1,2,3, .n    

Given that ,N n  the random variables , 1,2,...,iZ i n  denote the time to the event for the thi  cause 

and are iZ  independent of .N To include individuals that are not sensitive to the event of interest, the 

observable time to the occurrence is defined as  1 2min , , ..., NX Z Z Z  if 1,N  and 0(Z ) 1P     

if 0.N  

The long-term survival function of the random variable ,X  denoted by ( ),LTS x  is given by 
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where  A   is a generating function of the sequence ,np  which converges if  0 1, S x  as defined 
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by Feller (1968), and  S x  is a survival function. Further, ( )LTS x  is an improper survival function, 

since 0lim ( ) .LT
x

S x p


  

Moreover, Rodrigues et al. (2009) had demonstrated ( )LTS x  in the form of 

   0 0(1 ) ( ),LT MS x p p S x    (5) 
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 is the proper survival function, and lim ( ) 0.M

x
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survival function in Equation (5) can be noted as the long-term survival model first proposed by 
Berkson and Gage (1952), also known as a mixture cure model. This paper redefines this concept of a 
unified model as a survival function for creating a new distribution, as in the following Theorem 1. 
 
Theorem 1. Let N  be a random variable denoting the number of occurrences of a noteworthy event 

with the following probability distribution ( )np P N n   for 0,1,2,3, .n    Subsequently, the 

mixture survival function, denoted as   ,MS x  is 
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where 0 ( 0), p P N   A   is a probability-generating function of ,N  and ( )S x  is a survival 

function. 
 
Proof: From Rodrigues et al. (2009) in Equation (5), we have 
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The mixture survival function in Equation (6) is perhaps called a “proper” survival function given 
the non-cured population in the long-term survival model. The literature mentions various mixed 
models, such as the geometric Birnbaum-Saunders and odd Birnbaum-Saunders geometric survival 
functions as presented by Cancho et al. (2012) and Ortega et al. (2017), respectively. 
 
3. The Poisson Inverse Pareto Distribution 

This section proposes a new mixture distribution of the Poisson distribution and IPD by using the 
mixed survival function from unifying long-term survival models as noted in Section 2. 
 
Definition 1. Let N be a random variable of the Poisson distribution with a parameter .  The 

probability-generating function (PGF) of the Poisson distribution is defined as 

  ( ) exp (1 ) ,PA s s    (7) 

where 0,  and it converges for 1.s   

 
Definition 2. Let X  be a random variable of the PIPD with parameters ,   and ,  denoted as 

( , , )X PIPD     with 0, 0, 0,x      and 0.   
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Theorem 2. The PIPD’s survival function is 
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where 0, 0, 0  x    and 0.   

 

Proof: From Theorem 1, let  ( )A S x  indicate the PGF of the Poisson distribution from Definition 1; 

the mixture survival function can be derived as 
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where    1 SF x x   and    0 0 exp .p P N      Thus, we replace ( )F x  with ( )IPDF x  in 

Equation (2), and the PIPD survival function is expressed as 
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Figure 1 illustrates the survival curves for the ( , , )PIPD     selected values of parameters ,  ,  

and .  This figure indicates that the survival curves are initially decreasing functions. 

 
Figure 1 The PIPD’s survival function with some specified parameter values 

 
The corresponding CDF can be written as 
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Figure 2 displays the CDF curves for the ( , , )PIPD     selected values for the parameters ,  

,  and .  This figure demonstrates that the CDF curves are initially increasing functions. 
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Figure 2 The PIPD’s CDF with some specified parameter values 

 
Theorem 3. The PIPD’s PDF is  
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where 0, 0, 0,  x    and 0.   

 

Proof. As 
( )

( ) PIPD
PIPD

dS x
f x

dx
  , this completes the proof of the theorem. 

 

Figure 3 notes the PDF curves for the ( , , )PIPD     selected values for the parameters , ,  

and .  The curves reveal the PIPD’s positively skewed distribution. Moreover, the curves reveal that 

the PDF of the PIPD can have unimodal and decreasing shapes. 
 

 
Figure 3 The PIPD’s PDF with some specified parameter values 
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Theorem 4. The hazard function of the PIPD is 
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where 0, 0, 0,  x   and 0.   
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 , substituting ( )PIPDf x  with Equation (10) and ( )PIPDS x  using Equation 

(8) reveals the results. 
 

Figure 4 presents the hazard curves for the ( , , )PIPD     selected values of parameters , ,

and .  The curves illustrate that the PIPD’s hazard function can have unimodal and decreasing shapes. 

It shown that heavy-tailed distribution. 
 

 
Figure 4 The PIPD’s hazard function with some specified parameter values 

 
4. Properties of the Poisson Inverse Pareto Distribution 

This section derives some basic properties of the PIPD, such as its limiting behavior, value-at-
risk, tail behavior, and quantile function. We also derived the density of the kth-order statistics. 
 
Proposition 1. The limit of the Poisson inverse Pareto density function x   is 0, and the limit of 

the Poisson inverse Pareto hazard function x   is 0. 

 

Proof: Let  PIPDf x  and  PIPDh x  as given in Equations (10) and (11), respectively. As 

 lim 1,
x

x x 


   and by applying L’Hôpital’s rule, the proposition is proved. 

 
4.1. Value-at-risk 
Theorem 5. Let X  be a random loss variable. The value-at-risk (VaR; Klugman et al. 2012) of X  at 

the 100% level—denoted as  VaR p X  or  p —is the 100p percentile of the distribution of X. 
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Consider a PIPD with parameters 0, 0, 0,      and PDF as shown in Theorem 3. 

Subsequently, the VaR of the PIPD takes the form of 
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Proof: The PDF of the PIPD is given in Equation (10). The value of p  is expressed as follows: 
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4.2. Tail behavior 

This section presents the PIPD’s tail properties.  
 

Proposition 2. The PDF ( )PIPDf x  of ( , , )X PIPD     is decreasing if 
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Proposition 3. Let ( , , )X PIPD     with 0, 0, 0,x      and 0   with the PDF as given in 
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Proof: The hazard function is shown in Equation (11). The first derivative of ( )PIPDh x  is then given 
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If 0,A B   then   0PIPDh x   for 0, 0, 0,x      and 0;   specifically, the hazard 

function for the PIPD is decreasing and the PIPD has a heavy tail. The ratio of the two survival 
functions can be used to indicate if one distribution has a heavier tail than another, as this ratio should 
diverge to infinity when x   (Klugman et al., 2012).  

 
Proposition 4. The PIPD has a heavier tail than the exponential distribution (ED). 
 
Proof: As observed by applying L’Hôpital’s rule, 
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The PDF of the PIPD is defined by Equation (10). Subsequently, the required limit is 
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where c  is constant and the exponentials progress to infinity faster than the polynomials; the limit is 

infinity. 
 
Proposition 5. The PIPD exhibits a heavier tail than the gamma distribution (GD). 
 
Proof: Equation (10) defines the PDF of the PIPD, while   and   will be used for the GD parameters 

instead of the typical   and .  The remaining proof is similar to that of Proposition 4; the required 
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where c  is constant. Therefore, the limit is infinity. 

 
4.3. Quantile function 

Let ( , , )X PIPD     with 0, 0, 0,x      and 0.   The quantile function (QF; Gilchrist 

2000) is denoted by  Q p  and    1
,

Q p F p  where  0,1 .p  

 

Proposition 6. If ( , , ),X PIPD     then the QF of X  is given as 
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Specifically, the median of ( , , )X PIPD     is given as 
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Proof. Since      1
, 0,1 .Q p F p p

   This implies that    .F Q p p  As ( , , ),X PIPD     or 

the CDF of X  as noted in Equation (9), we can obtain 
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Hence, we can solve for  Q p  to obtain 
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4.4. Order statistics 

Let ( , , )X PIPD     with 0, 0, 0,x      and 0   with PDF and CDF and as given in 

Equations (10) and (9), respectively. The density of the kth-order statistic in a random sample of size 

,n  or      1 2, ,..., ,nX X X  is            1
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Therefore, the kth-order statistic of random variable ( , , )X PIPD     is 
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In simplifying this, we obtain 
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5. Parameter Estimation of the Poisson Inverse Pareto Distribution 
A maximum likelihood estimation (MLE) was presented to calculate the PIPD’s parameters, with 

the likelihood function as follows 
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The log-likelihood function of above expression is given by 
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The log-likelihood function leads to the following partial derivatives relative to , ,   and ,  by 

which the parameters’ optimal values can be obtained. The score equations were derived as follows: 
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The derivatives of these equations relative to , ,   and   are set equal to zero to estimate the 

parameters, and the following equations are obtained: 
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The MLE solutions for , ,   and   can be obtained by simultaneously solving the resulting 

equations using a numerical procedure, such as the Newton-Raphson method. This study obtains the 

MLE estimates of ˆ ˆ, ,   and ̂  by using the “fitdist” function in the R software suite’s “fitdistrplus” 

package (Delignette-Muller and Dutang 2015). 
 
6. Simulation Study 

This section presents the results of a simulation study to assess the effectiveness of the MLE of 
the parameters , ,   and   in the previous section. The estimates of , ,   and   are obtained 

using the “fitdist” function in the R software suite’s “fitdistrplus” package (Delignette-Muller and 
Dutang 2015). 

The study was based on 2,000 simulated samples from the PIPD with different sample sizes:  
n = 30, 50, 100, and 200. We generate the random variables from the PIPD by using the inverse of the 
distribution function. Consider the identity 

 1( ) ( ),F X U X F U    

where U is the standard uniform distribution, or the uniform (0,1). Let ( , , );X PIPD     the random 

variable can be generated from 
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Table 1 Mean estimates, standard deviation, and mean-squared errors of , ,   and   

Distributions n  Parameter Mean Estimate SD MSE 

PIPD(5, 5, 2) 30   5.67804 1.35501 2.29488 

    4.96627 2.34392 5.49237 

    2.40112 0.78609 0.77854 

 50   5.75277 1.23825 2.09918 

    5.31546 2.16483 4.78367 

    2.23798 0.62319 0.44481 

 100   5.89390 0.99168 1.78200 

    6.04580 1.88722 4.65354 

    2.02301 0.38744 0.15056 

 200   5.92425 0.74619 1.41076 

    6.34906 1.56491 4.26770 

    1.92699 0.24149 0.06362 

PIPD(10, 5, 2) 30   11.28234 3.56331 14.33524 

    5.31141 3.01654 9.19193 

    2.43390 0.93418 1.06052 

 50   11.21392 3.36491 12.79054 

    5.45110 2.75342 7.78101 

    2.25388 0.69790 0.55127 

 100   11.08144 2.96769 9.97230 

    5.53198 2.30517 5.59418 

    2.10218 0.42845 0.19392 

 200   10.87044 2.53463 7.17879 

    5.48472 1.94123 4.00144 

    2.04358 0.28125 0.08096 

 
Table 1 presents the mean of the parameter estimates as well as the standard deviation (SD) and 

mean-squared errors (MSEs) of the parameter estimates for different sample sizes. It is observed that 
the estimates of , ,   and   are close to true values. Further, the MSE values for the estimates of 

, ,   and   decrease when the sample size n  increases. 

 
7. Applications 

This section evaluates the proposed model’s efficiency by applying it to two real datasets. 
Specifically, we consider two datasets for Danish reinsurance claims and bladder cancer patients, 
which are applied in insurance and survival analyses, respectively. These datasets were fitted to the 
PIPD, PD, and IPD. The MLE was then used to estimate parameters in the PIPD and other comparative 
models. 
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The model comparison is conducted using Akaike’s information criterion (AIC) and Bayesian 
information criterion (BIC), given by 

ˆ2 ( ) 2AIC LL k  δ  and  ˆ2 ( ) log ,BIC LL k n  δ  

where ˆ( )LL δ  denotes the log-likelihood function with a vector estimated parameter δ̂ , k  is the 

number of estimated parameters, and n  is the sample size. The model with the smallest value for these 

criteria was used as the preferred model to describe the dataset. 
 
7.1. Danish reinsurance claims  

The Danish reinsurance claims dataset includes 2,167 industrial fire losses gathered from the 
Copenhagen Reinsurance Company from 1980 to 1990. The data have been made publicly available 
from the “fitdistrplus” package in R programming language (Delignette-Muller and Dutang 2015), 
under the dataset name as danishuni. We list some descriptive statistics in Table 2. 
 

Table 2 Descriptive statistics of Danish reinsurance claims 
n  minimum maximum median mean SD 

2,167 1 263.25 1.778 3.385 8.507452 
 

Table 3 presents the estimated parameters from the comparative models’ MLE, AIC, and BIC 
values, and reveals that the PIPD fits the data better than the other related models. Moreover, the PIPD 
provides a better fit to this dataset than the others, as illustrated in Figure 5. 

 
Table 3 Parameter estimates (standard deviations in parentheses), AIC, and BIC 

from Danish reinsurance claims dataset 

Distributions Estimate AIC BIC 
PD ̂  = 13.84482 

(1.43131) 

̂  = 5.36944 

(0.48191) 
 

9,249.666 9,261.029 

IPD ˆ    = 0.014523 

(0.00242) 

̂  = 126.31754 

(21.04974) 
 

8,548.378 8,559.741 

PIPD ̂  = 5.39849 

(0.15788) 

ˆ    = 0.04431 

(0.00851) 

̂  = 92.81334 

(17.52509) 

3,084.084 3,101.128 

 
7.2. Bladder cancer patients  

We consider an uncensored dataset corresponding to remission times (in months) of a random 
sample of 128 bladder cancer patients as reported by Lee and Wang (2003). We list some descriptive 
statistics in Table 4. 
 

Table 4 Descriptive statistics of bladder cancer patients 
n minimum maximum median mean SD 

128 0.080 79.050 6.395 9.366 10.50833 
 

It can be observed from Table 5 that the PIPD provides the best fit for these data among all the 
models considered. Figure 6 presents the probability–probability plots for all the models considered 
for such data, indicating that the PIPD provides a better fit to this dataset than the others. 
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Figure 5 The probability–probability plots from the Danish reinsurance claims dataset 

 

Additionally, Gharib et al. (2017) studied this dataset’s fit to the Marshall-Olkin extended inverse 
Pareto distribution. Their results indicate that this distribution’s AIC value is 831.5835, which is 
greater than that of the PIPD. Hence, the PIPD is a better fit than this distribution. 
 

Table 5 Parameter estimates (standard deviations in parentheses), AIC, and BIC 
from bladder cancer patient dataset 

Distributions Estimate AIC BIC 
PD ̂  = 12.08017 

(142.08126) 

̂  = 13.9122 

(15.31263) 
 

831.6658 837.3698 

IPD ˆ    = 2.00351 

(0.63189) 

̂  = 2.461103 

(0.59331) 
 

853.3514 859.0555 

PIPD ̂  = 9.15170 

(3.11380) 

ˆ    = 3.784981 

(17.28320) 

̂  = 1.43878 

(0.20197) 

569.8726 578.4287 

 

 
 

Figure 6 The probability–probability plots from the bladder cancer patient dataset 
 
8. Conclusions 

This paper provides a new combined inverse Pareto distribution called the Poisson inverse Pareto 
distribution. Its basic statistical properties as established in this work include the probability density, 
cumulative distribution, survival, and hazard functions. The results of this research indicate that the 
PIPD’s VaR exists, while the tail behavior study revealed that the PIPD has a heavy tail and a heavier 
tail than the exponential and gamma distributions. Further, this work derived expressions for the QF 
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and order statistics, with parameters estimated using the maximum likelihood method. The simulation 
study demonstrated that the PIPD parameters are approximate to the true parameter values; the mean-
squared error values also decrease as the sample size increases. An application to the two real datasets 
reveals that the PIPD is more efficient than the Pareto and inverse Pareto distributions for both the 
Danish reinsurance claims and bladder cancer patient datasets. As it increases the parameter, it makes 
the distribution more flexible. The results indicate that PIPD may be used for a wider range of 
statistical applications. Further studies can examine a new mixture distribution given the introduced 
approach. Researchers can also study various other methods to estimate PIPD parameters, such as the 
Bayesian approach. The parameters of the proposed distribution can be estimated based on censored 
data. Furthermore, a study on the effect of covariates can be conducted based on the proposed 
distribution as the regression model. 
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