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Abstract

This paper proposes a new combination of the inverse Pareto distribution as a three-parameter
distribution—the Poisson inverse Pareto distribution—derived from the concept of a unified model
for long-term survival analyses. This work derives the proposed distribution’s probability properties,
including the survival, cumulative distribution, probability density, and hazard functions. Moreover,
some properties of the Poisson inverse Pareto distribution are presented, such as the value-at-risk, tail
behavior, quantile function, and order statistics. The maximum likelihood estimation is then studied
to obtain a parameter estimation. This study’s simulation revealed that the estimated parameter’s
mean-squared errors decreased when the sample size increased. Finally, this work illustrates the
Poisson inverse Pareto distribution’s application using two real datasets to demonstrate that the
proposed distribution provides a superior fit to that of other models.
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1. Introduction
The inverse Pareto distribution (IPD) originates from an inverse transformation of the Pareto type

II distribution (PD), also called the Lomax distribution. The probability density function (PDF) of a

random variable X from the PD is

L/

(x+)""’

where the scale parameter 4 >0 and shape parameter 77 >0. The IPD has a decreasing hazard

fPD (x)= >0,

function and a heavy tail distribution (Dankunprasert et al. 2021), and is frequently applied to claim
modeling for estimating or forecasting the behavior of claims that will occur in the future (Klugman
etal., 2012). If X is a random variable from the IPD, then the PDF of the IPD with scale parameter
F and shape parameter « is defined as

ﬂaxa—l

Siep(X) = W’

x>0,8>0,a>0. (1)
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The corresponding cumulative distribution function (CDF) and survival function are respectively
given as:

F,PD(x)=(ﬁj , x>0, 8>0,a>0, 2)

SH,D(x)=1—[LJ x>0, >0, a>0. 3)
x+p

Recently, new models or distributions have been developed from combined models to fitting to
data that cannot be fit by a commonly used distribution. However, the developed models should be
sufficient for most modeling situations. The general methods for this combined distribution include
the finite (McLachlan and Peel 2000, Hall and Zhou 2003, Balakrishnan et al. 2009, Erisoglu et al.
2013) and infinite mixture distributions (Bulmer 1974, Emilio et al. 2008, Withers and Nadarajah
2011). Nevertheless, to the best of our knowledge, only a few studies related to the IPD exist thus far.
This paper proposes a new IPD mixture distribution through a unified approach in a long-term survival
analysis: the Poisson inverse Pareto distribution (PIPD).

The remainder of this paper is organized as follows. Section 2 presents a type of mixture
distribution originally derived from a unified approach in a long-term survival analysis as proposed
by Rodrigues et al. (2009); this is observed as a useful way to generate a new distribution. Section 3
presents the PIPD and derives its survival function, CDF, PDF, and hazard function. Additionally,
Section 4 presents some properties of the PIPD, such as its value-at-risk, tail behavior, quantile
function, and order statistics. Section 5 provides a parameter estimation using the maximum likelihood
method for the PIPD. Section 6 discusses the results of a Monte Carlo simulation of the maximum
likelihood estimates’ behavior. Section 7 illustrates the PIPD using two real datasets, and Section 8
concludes the paper.

2. Method of Mixture Distribution

Rodrigues et al. (2009) first proposed a unified long-term survival model, also known as a cured
model. Their model combined the long-term survival models proposed by Berkson and Gage (1952)
and Chen et al. (1999) by using the generating function of a real sequence as introduced by Feller
(1968), as follows:

Let N be an unobserved random variable denoting the number of competing causes related to

the occurrence of a noteworthy event with a probability distribution p, = P(N =n) of n=0,1,2,3,....
Given that N = n, the random variables Z,,i =1,2,...,n denote the time to the event for the i"™ cause
and are Z, independent of N.To include individuals that are not sensitive to the event of interest, the
observable time to the occurrence is definedas X =min{Z,, Z,, ..., Z,} if N 21, and P(Z, =) =1
if N=0.
The long-term survival function of the random variable X, denoted by §,,(x), is given by
S,;(x) =P(N=0)+P(Z, >x,Z,>x,...,Z, >x, N=1)
=P(N = 0)+iP(N =n)P(Z >x,Z,>x, .., Z, >Xx)

=0+ 30, [S0] =X p,[S0] = A[S(0], @

where 4 [] is a generating function of the sequence p

n?

which converges if 0 < §(x) <1, as defined



112 Thailand Statistician, 2023; 21(1): 110-124

by Feller (1968), and S (x) is a survival function. Further, S, (x) is an improper survival function,
since lljl;l S, (x)=p,-
Moreover, Rodrigues et al. (2009) had demonstrated §,,(x) in the form of
Sir(x)=py + (1= py)S,, (%), ©)

0

2.2 [S™]

n=_

where S, (x) = - is the proper survival function, and limS,, (x) =0. The long-term
pO X—>0

survival function in Equation (5) can be noted as the long-term survival model first proposed by
Berkson and Gage (1952), also known as a mixture cure model. This paper redefines this concept of a
unified model as a survival function for creating a new distribution, as in the following Theorem 1.

Theorem 1. Let N be a random variable denoting the number of occurrences of a noteworthy event
with the following probability distribution p = P(N =n) for n=0,1,2,3,.... Subsequently, the

mixture survival function, denoted as S,, (x), is

A[S(xX)|-p,
Sy (%) =@, (6)
1-p,
where p, =P(N =0), A[] is a probability-generating function of N, and S(x) is a survival

function.

Proof: From Rodrigues et al. (2009) in Equation (5), we have

oo
5 Suw=p_ZPEOTR alseo)-

1-p, 1-p, 1-p,

The mixture survival function in Equation (6) is perhaps called a “proper” survival function given
the non-cured population in the long-term survival model. The literature mentions various mixed
models, such as the geometric Birnbaum-Saunders and odd Birnbaum-Saunders geometric survival
functions as presented by Cancho et al. (2012) and Ortega et al. (2017), respectively.

3. The Poisson Inverse Pareto Distribution
This section proposes a new mixture distribution of the Poisson distribution and IPD by using the
mixed survival function from unifying long-term survival models as noted in Section 2.

Definition 1. Let N be a random variable of the Poisson distribution with a parameter 6. The
probability-generating function (PGF) of the Poisson distribution is defined as

A,(s) = exp[-0(1-5)], (7

where 6 > 0, and it converges for |s| <1.

Definition 2. Let X be a random variable of the PIPD with parameters 8,/ and o, denoted as
X ~ PIPD(0, B,) with x>0,60>0, >0, and « > 0.
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Theorem 2. The PIPD'’s survival function is

Spipp (X) = T’ ®)

where x>0,0>0,8>0 and a > 0.

Proof: From Theorem 1, let A[S (x)] indicate the PGF of the Poisson distribution from Definition 1;
the mixture survival function can be derived as

exp[—H(I—S(X))]—pO exp[-0F (x)]-exp(-0)
SM (x) = = >
1-p, 1-exp(-0)
where F(x)=1-S(x) and p, = P(N =0)=exp(-0). Thus, we replace F(x) with F,,(x) in

Equation (2), and the PIPD survival function is expressed as

[z _ o
exp[—0F,, (x)]-exp(-0) e ) —e
Spipp (X) = = 0 .
1—exp(-0) l1-e
Figure 1 illustrates the survival curves for the PIPD(6, 3,a) selected values of parameters 6, f,

and «. This figure indicates that the survival curves are initially decreasing functions.
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Figure 1 The PIPD’s survival function with some specified parameter values

The corresponding CDF can be written as

FP]PD () =1- SPIPD (x)= 7‘ )

Figure 2 displays the CDF curves for the PIPD(0, f,«) selected values for the parameters 6,

p, and «. This figure demonstrates that the CDF curves are initially increasing functions.
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Figure 2 The PIPD’s CDF with some specified parameter values

Theorem 3. The PIPD’s PDF is

x+p
(e’ =Dx(x+ )

Hﬂa( al j“ e(gie('ij

Seipp (%) = (10)

where x>0,0>0,>0, and a > 0.

Proof. As f,p,(X) =—

ds,
B () , this completes the proof of the theorem.
x

Figure 3 notes the PDF curves for the PIPD(6, 5,«) selected values for the parameters 6, S,

and a. The curves reveal the PIPD’s positively skewed distribution. Moreover, the curves reveal that
the PDF of the PIPD can have unimodal and decreasing shapes.
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Figure 3 The PIPD’s PDF with some specified parameter values
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Theorem 4. The hazard function of the PIPD is

aﬂe(l—eg)( " J )

x+p

(11

Dy (X) =

(¢’ —1)x(x+ﬁ)[e6["jﬂja —e”’} |

where x> 0,0 >0,6>0,and a > 0.

Spiep (%)

Proof: As h,,, (x) =
Spiep (X

, substituting f,,,,(x) with Equation (10) and S,,,,(x) using Equation

(8) reveals the results.

Figure 4 presents the hazard curves for the PIPD(0, 5,a) selected values of parameters 6, f3,

and «a. The curves illustrate that the PIPD’s hazard function can have unimodal and decreasing shapes.
It shown that heavy-tailed distribution.
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Figure 4 The PIPD’s hazard function with some specified parameter values

4. Properties of the Poisson Inverse Pareto Distribution
This section derives some basic properties of the PIPD, such as its limiting behavior, value-at-
risk, tail behavior, and quantile function. We also derived the density of the kth-order statistics.

Proposition 1. The limit of the Poisson inverse Pareto density function x — o is 0, and the limit of

the Poisson inverse Pareto hazard function x — o is 0.

Proof: Let f,,, (x) and i, (x) as given in Equations (10) and (11), respectively. As
lim x/ (x +p ) =1, and by applying L’Hdpital’s rule, the proposition is proved.

xX—0

4.1. Value-at-risk
Theorem S. Let X be a random loss variable. The value-at-risk (VaR; Klugman et al. 2012) of X at

the 100% level—denoted as VaR (X ) or TT,—Is the 100p percentile of the distribution of X.
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Consider a PIPD with parameters 6>0,>0,a >0, and PDF as shown in Theorem 3.
Subsequently, the VaR of the PIPD takes the form of

ﬂ{l—;ln[lJr(l—p)(eg —1)]}W
1—{1—;ln[l+(l—p)(e‘9 —1)]}1/a |

VaR,(X)=7, =

P

Proof: The PDF of the PIPD is given in Equation (10). The value of 7, is expressed as follows:

2 (] _
P(X>77,,)= J‘fPIPD(x)dxzeég—lzl_p'

-1

Hence, solving for 7, produces

4.2. Tail behavior
This section presents the PIPD’s tail properties.

Proposition 2. The PDF f,,,(x) of X ~ PIPD(0, B,a) is decreasing if

aﬂ{l—&[xfﬂja}/2x+ﬁ)<l.

Proof: The first derivative of f,,,(x) is given by

aﬂ@(xj:ﬂ]a egie(“xﬂj { B+2x+ aﬂ[@(xfﬁ]a - 1}}

(e¢9 —l)x2 (x+,B)2

Sopp (X) ==

If aﬂ{l—g( xﬂj :|%2x+ﬂ)<l, then fp,,(x)<0 for x>0,0>0,8>0, and a>0, or

X+

specifically, the function f,,,(x) is decreasing.

Proposition 3. Let X ~ PIPD(O, ,«) with x> 0,0 >0, >0, and « >0 with the PDF as given in
Equation (10). If A— B >0, then the PIPD has a heavy tail, where

A= aﬁ[ xﬂ]a Lg[":ﬂ}a —eg}

X+

and
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a-[ 2 ] (zxm)L"[xfﬂJa_eeLaﬂe(%fﬂﬁﬂf

x+p + 0

Proof: The hazard function is shown in Equation (11). The first derivative of #,,,,(x) is then given
by

Hpypp (x) = ~ e’ (A_B){X(M)Lﬂ[;ﬂf —}} :

where

Azaﬂ( ol ja[eg("fﬁ] —eg},

x+p

X

B=(x: ﬂ]a (2x+ﬂ)Lg[”J —eg}+aﬂ9(ﬁja eg[xfﬁ]a

If A-B>0, then hppp(x)<0 for x>0,0>0,8>0, and a >0; specifically, the hazard

function for the PIPD is decreasing and the PIPD has a heavy tail. The ratio of the two survival
functions can be used to indicate if one distribution has a heavier tail than another, as this ratio should
diverge to infinity when x — o0 (Klugman et al., 2012).

Proposition 4. The PIPD has a heavier tail than the exponential distribution (ED).

Proof: As observed by applying L Hopital’s rule,
im Spipp (X) —lim S;{PD () - lim —frien (%) ]
20 Spp(x) o0 Spp(x) e = fip(x)
The PDF of the PIPD is defined by Equation (10). Subsequently, the required limit is

Ofa (xj”‘ ewe[ﬁ] [(eg —l)x(x+,3)]1 ax-0 = :
im L2220 i P - clin—* i

where ¢ is constant and the exponentials progress to infinity faster than the polynomials; the limit is
infinity.

Proposition S. The PIPD exhibits a heavier tail than the gamma distribution (GD).

Proof: Equation (10) defines the PDF of the PIPD, while 7 and § will be used for the GD parameters
instead of the typical & and f. The remaining proof is similar to that of Proposition 4; the required
limit is

a

eﬂa( . ja egfe[ﬁ] (eg—l)X(x+ﬂ) -1 S5x—0 f&
I GO BN C : ] o

X0 x—o® r -1 _-ox -1 >C1i‘1>13) T+l 2
Jop (%) 5 x"e T (1) (x+pB)
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where ¢ is constant. Therefore, the limit is infinity.

4.3. Quantile function
Let X ~ PIPD(6, B,a) with x> 0,0 >0, >0, and > 0. The quantile function (QF; Gilchrist

2000) is denoted by 0(p) and O(p)=F "'(p), where pe(0,1).

Proposition 6. If X ~ PIPD(6, B,), then the QF of X is given as

| e

-0 -0
Specifically, the median of X ~ PIPD(0, f,x) is given as

0(05)= ﬂ{m[l_o's(l‘egﬂ}w [1_{111[1—0.5(1 e )]}V“J

-0 -6

-1

-1

Proof. Since Q(p)=F - (p), p €(0,1). This implies that F(Q(p)) = p. As X ~ PIPD(0, B, ), or
the CDF of X as noted in Equation (9), we can obtain

o) Y
BE e""[ww]

F(Q(p))

Hence, we can solve for O(p) to obtain

o) :ﬂ{ln[l—p(l—egﬂ}w {1_{ln|:1—p(l—egﬂ}l/a}1.

-0 -0

4.4. Order statistics
Let X ~ PIPD(0, f,cx) with x>0,0>0, >0, and « >0 with PDF and CDF and as given in

Equations (10) and (9), respectively. The density of the kth-order statistic in a random sample of size

n! k-1 n—k
n,or X, X X, is fi, (%) =—k)!f(x)[F(x)] [1-F(x)]".

(k—1)1(n-

Therefore, the kth-order statistic of random variable X ~ PIPD(0, ,«) is

@ g x) . k-1 ek
o) T Tt

n! l1-e
. = . 1—
Sea () (k=1)!(n—k)! € —Dx(x+p) 1-e” 1-e”
In simplifying this, we obtain
" o k-1 n—k
n!Hﬂaegiﬁ[;ﬂ] e’ —egig[x; ] eeig(”ﬂ] -1

Jea(x) = (k=) (n=k)(’ =D)"(x+ )"
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5. Parameter Estimation of the Poisson Inverse Pareto Distribution
A maximum likelihood estimation (MLE) was presented to calculate the PIPD’s parameters, with

the likelihood function as follows
@ gl )
2] 4
X. +
I1 : )

€’ —=Dx,(x, + B)

The log-likelihood function of above expression is given by

L(O,p,a) =

LL(O,B,a) =nlog0+nlogﬁ+nloga—nlog(eg —1)+(a—1)210gx,.

i=1

_(a+1)Zlog x +ﬂ +n¢9 92{ +ﬂj
X,

The log-likelihood function leads to the following partial derivatives relative to 6, #, and «, by

which the parameters’ optimal values can be obtained. The score equations were derived as follows:

M_L a

Y, —9 Z(x +ﬂj

aLL(QJ IB’ a) n n 1 n XFZ

ALOS@) _n o) | — =
v 5T );Lwﬂ} a;[(’“f*ﬂ)ml

ALOSa) n &, L e x Y X,
R e e

The derivatives of these equations relative to 0, #, and « are set equal to zero to estimate the

parameters, and the following equations are obtained:
OLLO.f.o) _y LLO.fa) ) OLL(O.fo)
00 op oa
The MLE solutions for @, 5, and & can be obtained by simultaneously solving the resulting

=0.

equations using a numerical procedure, such as the Newton-Raphson method. This study obtains the
MLE estimates of 6, ﬁ’, and @ by using the “fitdist” function in the R software suite’s “fitdistrplus”
package (Delignette-Muller and Dutang 2015).

6. Simulation Study
This section presents the results of a simulation study to assess the effectiveness of the MLE of
the parameters 0, f, and « in the previous section. The estimates of 0, f, and « are obtained

using the “fitdist” function in the R software suite’s “fitdistrplus” package (Delignette-Muller and
Dutang 2015).
The study was based on 2,000 simulated samples from the PIPD with different sample sizes:
n =130, 50, 100, and 200. We generate the random variables from the PIPD by using the inverse of the
distribution function. Consider the identity
F(X)=U=X=F"'(U),
where U is the standard uniform distribution, or the uniform (0,1). Let X ~ PIPD(0, 3, «); the random

variable can be generated from
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B :ﬁ{ln[l—U(l—e‘g)J}w [1_{ln[l—U(l—eQ)J}l/aJl'

-0 -6

Table 1 Mean estimates, standard deviation, and mean-squared errors of 4, £, and o

Distributions n Parameter Mean Estimate SD MSE
PIPD(5, 5, 2) 30 0 5.67804 1.35501 2.29488
s 4.96627 234392 5.49237

a 2.40112 0.78609 0.77854

50 ] 5.75277 1.23825 2.09918

B 531546 2.16483 4.78367

a 2.23798 0.62319 0.44481

100 ] 5.89390 0.99168 1.78200

B 6.04580 1.88722 4.65354

a 2.02301 0.38744 0.15056

200 0 5.92425 0.74619 1.41076

s 6.34906 1.56491 426770

a 1.92699 0.24149 0.06362

PIPD(10, 5, 2) 30 0 11.28234 3.56331 14.33524
s 531141 3.01654 9.19193

a 2.43390 0.93418 1.06052

50 0 11.21392 3.36491 12.79054

B 5.45110 2.75342 7.78101

a 2.25388 0.69790 0.55127

100 0 11.08144 2.96769 9.97230

s 5.53198 230517 5.59418

a 2.10218 0.42845 0.19392

200 0 10.87044 2.53463 7.17879

s 5.48472 1.94123 4.00144

a 2.04358 0.28125 0.08096

Table 1 presents the mean of the parameter estimates as well as the standard deviation (SD) and
mean-squared errors (MSEs) of the parameter estimates for different sample sizes. It is observed that
the estimates of 8, 3, and « are close to true values. Further, the MSE values for the estimates of

0, B, and o decrease when the sample size n increases.

7. Applications

This section evaluates the proposed model’s efficiency by applying it to two real datasets.
Specifically, we consider two datasets for Danish reinsurance claims and bladder cancer patients,
which are applied in insurance and survival analyses, respectively. These datasets were fitted to the
PIPD, PD, and IPD. The MLE was then used to estimate parameters in the PIPD and other comparative
models.
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The model comparison is conducted using Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC), given by

AIC = —2LL(S)+2k and BIC =—2LL(S)+k10g(”)’

where LL(S) denotes the log-likelihood function with a vector estimated parameter 3, k is the

number of estimated parameters, and # is the sample size. The model with the smallest value for these
criteria was used as the preferred model to describe the dataset.

7.1. Danish reinsurance claims

The Danish reinsurance claims dataset includes 2,167 industrial fire losses gathered from the
Copenhagen Reinsurance Company from 1980 to 1990. The data have been made publicly available
from the “fitdistrplus” package in R programming language (Delignette-Muller and Dutang 2015),
under the dataset name as danishuni. We list some descriptive statistics in Table 2.

Table 2 Descriptive statistics of Danish reinsurance claims
n minimum  maximum median mean SD
2,167 1 263.25 1.778 3.385 8.507452

Table 3 presents the estimated parameters from the comparative models’ MLE, AIC, and BIC
values, and reveals that the PIPD fits the data better than the other related models. Moreover, the PIPD
provides a better fit to this dataset than the others, as illustrated in Figure 5.

Table 3 Parameter estimates (standard deviations in parentheses), AIC, and BIC
from Danish reinsurance claims dataset

Distributions Estimate AIC BIC
PD  } —13.84482 5 =5.36944 9,249.666  9,261.029
(1.43131) (0.48191)
IPD 3 0014523 @ = 12631754 8,548.378  8,559.741
(0.00242) (21.04974)
PIPD 6=539849 B =004431 G =92.81334 3.084.084  3,101.128
(0.15788) (0.00851) (17.52509)

7.2. Bladder cancer patients

We consider an uncensored dataset corresponding to remission times (in months) of a random
sample of 128 bladder cancer patients as reported by Lee and Wang (2003). We list some descriptive
statistics in Table 4.

Table 4 Descriptive statistics of bladder cancer patients

n minimum  maximum median mean SD
128 0.080 79.050 6.395 9.366 10.50833

It can be observed from Table 5 that the PIPD provides the best fit for these data among all the
models considered. Figure 6 presents the probability—probability plots for all the models considered
for such data, indicating that the PIPD provides a better fit to this dataset than the others.
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Figure 5 The probability—probability plots from the Danish reinsurance claims dataset

Additionally, Gharib et al. (2017) studied this dataset’s fit to the Marshall-Olkin extended inverse
Pareto distribution. Their results indicate that this distribution’s AIC value is 831.5835, which is
greater than that of the PIPD. Hence, the PIPD is a better fit than this distribution.

Table 5 Parameter estimates (standard deviations in parentheses), AIC, and BIC
from bladder cancer patient dataset

Distributions Estimate AIC BIC
PD 1 =12.08017 7 =13.9122 831.6658  837.3698
(142.08126) (15.31263)
IPD £ =2.00351 G =2.461103 853.3514  859.0555
(0.63189) (0.59331)
PIPD 6=9.15170  f =3.784981 G =143878  S09.8726  578.4287
(3.11380) (17.28320) (0.20197)
2 2 o =
g 31 f g; 2 f g o
g £ 7 g
ER f;f 54 @ej“ ER
o | §jg o | ’ o |
N “Tneorenn‘ca\ pro;:mhnes” b " U?heorennc‘a\pmbe:;mnes N " “Theore[ln::a\ pro;:mm\es” b

Figure 6 The probability—probability plots from the bladder cancer patient dataset

8. Conclusions

This paper provides a new combined inverse Pareto distribution called the Poisson inverse Pareto
distribution. Its basic statistical properties as established in this work include the probability density,
cumulative distribution, survival, and hazard functions. The results of this research indicate that the
PIPD’s VaR exists, while the tail behavior study revealed that the PIPD has a heavy tail and a heavier
tail than the exponential and gamma distributions. Further, this work derived expressions for the QF
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and order statistics, with parameters estimated using the maximum likelihood method. The simulation
study demonstrated that the PIPD parameters are approximate to the true parameter values; the mean-
squared error values also decrease as the sample size increases. An application to the two real datasets
reveals that the PIPD is more efficient than the Pareto and inverse Pareto distributions for both the
Danish reinsurance claims and bladder cancer patient datasets. As it increases the parameter, it makes
the distribution more flexible. The results indicate that PIPD may be used for a wider range of
statistical applications. Further studies can examine a new mixture distribution given the introduced
approach. Researchers can also study various other methods to estimate PIPD parameters, such as the
Bayesian approach. The parameters of the proposed distribution can be estimated based on censored
data. Furthermore, a study on the effect of covariates can be conducted based on the proposed
distribution as the regression model.

Funding details. This work did not receive any financial support.
Disclosure statement. The authors declare no conflict of interest.

References

Balakrishnan N, Leiva V, Sanhueza A, Cabrera E. Mixture inverse Gaussian distributions and its
transformations, moments and applications. Statistics. 2009; 43(1): 91-104.

Berkson J, Gage RP. Survival curve for cancer patients following treatment. J] Am Stat Assoc. 1952;
47(259): 501-515.

Bulmer MG. On fitting the Poisson lognormal distribution to species abundance data. Biometrics.
1974; 30(1): 101-110.

Cancho VG, Louzada F, Barriga GDC. The geometric Birnbaum-Saunders regression model with cure
rate. J Stat Plan Inference. 2012; 142: 993-1000.

Chen MH, Ibrahim JG, Sinha D. A new Bayesian model for survival data with a surviving fraction.
J Am Stat Assoc. 1999; 94(447): 909-919.

Dankunprasert S, Jaroengeratikun U, Talangtam T. The properties of inverse Pareto distribution and
its application to extreme events. Thail Stat. 2021; 19(1): 1-13.

Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting Distributions. J Stat Softw.
2015; 64(4): 1-34.

Emilio GD, Sarabia JM, Enrique CO. Univariate and multivariate versions of the negative binomial-
inverse Gaussian distributions with applications. Insur Math Econ. 2008; 42(1): 39-49.

Erisoglu M, Servi T, Erisoglu U, Calis N. Mixture gamma distribution for estimation of wind power
potential. Int J Appl Math Stat. 2013; 40(10): 223-231.

Feller W. An introduction to probability theory and its applications, volume 1. New York: John Wiley
& Sons; 1968.

Gharib M, Mohammed BI, Aghel WER. Marshall-Olkin extended inverse Pareto distribution and its
application. Int J Stat Prob. 2017; 6(6): 71-84.

Gilchrist WG. Statistical modelling with quantile functions. Florida: Chapman & Hall/CRC; 2000.

Hall P, Zhou X. Nonparametric estimation of component distributions in a multivariate mixture. Ann
Stat. 2003; 31(1): 201-224.

Klugman SA, Panjer HH, Willmot GE. Loss models: from data to decisions, New York: John Wiley
& Sons; 2012.

Lee ET, Wang JW. Statistical methods for survival data analysis. New York: John Wiley & Sons;
2003.



124 Thailand Statistician, 2023; 21(1): 110-124

McLachlan GJ, Peel D. Finite mixture models. New York: John Wiley & Sons; 2000.

Ortega EMM, Cordeiro GM, Suzuki AK, Ramires TG. A new extended Birnbaum-Saunders model
with cure fraction: classical and Bayesian approach. Commun Stat Appl Methods. 2017; 24: 397-
419.

Rodrigues J, Cancho VG, de Castro M, Louzada-Neto F. On the unification of long-term survival
models. Stat Probab Lett. 2009; 79(6): 753-759.

Withers CS, Nadarajah S. On the compound Poisson gamma distribution. Kybernetika. 2011; 14(1):

15-37.



