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Abstract

This research article deals with the extension of exponentiated Rayleigh distribution introduced
by Surles and Padgett (2001) by considering the power transformation of a random variable. The new
distribution is referred to as power exponentiated Rayleigh distribution. We provide a comprehensive
description of the statistical properties including ordinary and incomplete moments, mean residual
life, mean deviations, information measures and order statistics of the subject distribution. The
estimation of the unknown parameters of the model is performed by the method of maximum
likelihood estimation. Finally, the usefulness of the proposed model among other models is illustrated
by means of real life and simulated data sets using some goodness-of-fit measures.

Keywords: Exponentiated Rayleigh distribution, power transformation, mean deviations, mean residual life,
simulation, estimation and data analysis.

1. Introduction

The Rayleigh distribution (Rayleigh 1880) is a well-known probability model of prominent
importance and is used to study the problems in the field of communication theory, physical science,
medical image analysis and survival analysis. It is a special case from two parameter Weibull
distribution when the shape parameter is equal to 2. The important characteristic of Rayleigh
distribution is that its hazard rate is an increasing function of time. Due to its significant applicability
in the real life problems, numerous researchers have contributed to this model, among them are
Siddiqui (1962) studied the genesis and origin of this model. Howlader and Hossain (1995) studied
the Bayesian estimation of the Rayleigh distribution based on type-II censored data. Lalitha and
Mishra (1996) discussed the modified maximum likelihood estimation for Rayleigh distribution. Abd
Elfattah et al. (2006) discussed the efficiency of maximum likelihood estimators under different
censored sampling schemes for Rayleigh distribution. Dev and Tanujit (2011) studied the Bayesian
estimation of the scale parameter. Ardianti (2018) used classical and Bayesian methods to estimate
the parameter of Rayleigh distribution. The probability density function (PDF) and cumulative
distribution function (CDF) associated with random variable X from Rayleigh distribution with scale
parameter & is expressed as

f(x:6)= 29xexp(—9x2) and F(x;0)= l—exp(—é’xz).
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In recent years, several extensions of Rayleigh distribution have been made to increase its
applicability in medical science, physical analysis and survival analysis. Numerous authors have
worked on the generalization of Rayleigh distribution; among them are Voda (2007), Kundu and
Ragab (2005), Ragab and Madi (2009), Merovci (2013), Dey et al. (2014), Merovci and Elbatal
(2015), Ahmad et al. (2015), Saima et al. (2016), Ateeq et al. (2019), Sofi et al. (2019). Surles and
Padgett (2001) proposed the two parameter Burr type X distribution and named it as exponentiated
Rayleigh distribution or generalized Rayleigh distribution with PDF and CDF, respectively given as

£ (x:.6) = 2p6xexp (-0 ) [1-exp(-0x°) )
F(X;ﬂ, 19) = [l—exp(_gxz ):|ﬂ .

The main aim of this research paper is to enhance the flexibility of the model by inducing one
extra shape parameter for improving its goodness-of-fit to real data. The advantage of the proposed
model over exponentiated Rayleigh distribution is that the latter cannot model lifetime phenomenon
showing various shapes of failure rates. We provide the comprehensive description of the
mathematical properties of the powered distribution and estimate its parameters using maximum
likelihood method. We will also provide the possible areas of applications.

2. Power Exponentiated Rayleigh Distribution
The section is devoted to construct the PDF and CDF of power exponentiated Rayleigh (PER)

1
distribution by taking the power transformation V' = X* where X follows exponentiated Rayleigh

(ER) distribution with PDF given in (1). The PDF of the PER distribution with parameters «, and

6 and v>0 is given as

B-1
f(va,B.0)=2ap0v"" exp(—ﬁvza )(1 - exp(—é?vz‘Z )) , )
where «,f >0 are the two shape parameters and 6 >0 is the scale parameter. The CDF
corresponding to (2) is given as
B
F(va, ﬁ,H)z(l—exp(—va )) . 3)

The proposed model is very flexible in nature that approaches to different models when its
parameters are changed. The flexibility of the proposed model is elucidated in Table 1 where it has 5
sub-models when the value of parameters is chosen carefully.

Table 1 Sub-models of the PER distribution
Distribution a p o PDF

Exponentiated Rayleigh (ERD) 1 B0 2 B0vexp(—0v*) [1 —exp(-6v’ )T -
Rayleigh (RD) 1 1 0 260vexp(—6v*)
Weibull (WD) a9 1 0 S exp(-0v?)

Generalized Exponential (GED) 0.5 S o SO exp(- 6\/)[1 —exp(— HV)J[H

Exponential (ED) 05 1 12 O exp(—0v)

Figure 1 provides plots of the PDF curves for some values of the shape and scale parameters of
the PER distribution.
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Figure 1 PDF plots of PERD(a, 5, 6) for varying values of shape and scale parameters

It is clearly from the plots of the PDF curves that the proposed model is unimodal, decreasing and
right skewed in nature.

3. Reliability Analysis

In this section, the expression for the reliability function R(v), hazard rate function h(v), reverse
hazard rate function r(v), cumulative hazard rate function H(v), mills ratio (M.R) are acquired and are
respectively given as

206V 'exp (—sz" ) (1 —exp (—9\/2" ))ﬂil

1- [1 —exp (—Hvz” )T
S S By
[l exp Hvz" ]

1- [1 exp( )]ﬁ

From Figure 2, we conclude that the hazard rate of PER distribution can be decreasing, bathtub,
Increasing, constant and j-shaped. The advantage of PER distribution over ER distribution is that the
latter cannot model lifetime phenomenon exhibiting various shapes of failure rates such as J-shaped
and bathtub.

>

R(v)=1 —[l—exp(—é’vz‘Z )T , h(v)=

r(v)=

MR =
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Figure 2 Hazard Rate Function plots of PERD(a, 5, 9) for varying values of shape and scale

parameters

Useful Expansion

The mixture representation of PDF and CDF of the PER distribution is presented by using the

series expansion
(1-d)" = iakd",|d|<1andk>0, (1-ad) = ib/.d/,|d|<1and )0,
k=0 Jj=0

where

(T ()T
Y T(c—k)D(k+1) " T(c—j+)T(j+1)

Thus, the PDF of PER distribution in (2) can be expressed in the mixture form as
£ (v)=2aB0v** " Y a, exp| -0v** (k+1)].
k=0
The CDF in (3) can be expressed in the mixture form as

F(v)= ibj exp(—jé’vz“ )
=0

4. Some Properties of PER distribution

4)

)

(6)

This section presents some of the mathematical and statistical properties of the PER distribution
including quantile function, moments, mean deviations, mean residual life, mean waiting time and

generating functions.
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4.1. Quantile function and simulation
The quantile function for any distribution defined by Hyndman and Fan (1996) can be written in
the form of

O(u) =¥, =F"(u).
where Q(u) is the quantile function of a random variable V for the given distribution function F (v)

and u is the uniform random variable defined on the unit interval 0 <u <1. Inverting the distribution
function of the PER distribution given in (3) as defined above will give the quantile function as follows

Q(u):[—%log[l—u;ﬂz}a. (7)

This above equation is very helpful to obtain moments like skewness and kurtosis as well as the
median and can be used for generation of random variables of the PER distribution. The median of
the distribution is obtained by setting « = 0.5 in (7) as

1
1Y |2a
Median = {—%log[l -(0.5)7 H .
Accordingly, the random samples can be simulated from PER distribution by setting Q(u) =V

and this procedure is called inverse transformation method of simulation. Thus
1

V= [—%log[l —u;]rz .
Bowley’s measure of skewness based on quartiles is given as
_o(2a)-20()3)+o(14)
o(%)-ell)
Similarly, the Moors measure of kurtosis based on octiles is given as
_o%)-e(s)+ells)-2%)
o(%)-ol%)

where Q() is given in (7).

4.2. Ordinary moments
Moments are the constants of a population and help to determine the various properties of the
probability model such as mean, variance, skewness and kurtosis. Suppose V' is a continuous random

variable, then the s" ordinary moment about origin (non-central moment) of ¥ is defined as
' =E(V~V)=jwf(v)dv, ®)
0
where [ (v) is the PDF of the PER distribution and is stated from (5) as

£ (v)=2apov**" iak exp| -0v*" (k+1)]. (€))

where a, is defined in (4). Inserting (9) in (8), we obtain
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u = Zaﬂﬁiak Tv”z"”l exp (—Hvz"’ (k+ 1)) dv. (10)
k=0 0

Using integration by substitution method in Equation (10) leads to the following operations: Let
1

v (k+1)=u= V{L)r :

O(k+1

1
— 1
2a
which implies that dv = ————— du. Substituting for v,u and dv in (10) and simplifying; we
2a] 0(k+1) ]

have

H = s Z S 4
g2 O (k+1)’

where F() is the gamma function. In particular, the mean and variance of PER distribution are

respectively, obtained as

ﬁl"[zlﬂj .

, a a

M= 1 Z : >
02 k= (k+l)2a

Pl r(iﬂjj__ﬂ (ot )s

ge| ¢ I (k+1)e 20 Ji (k1)

The classical measures of skewness and kurtosis based on non-central moments can be calculated

by using the following expressions
’ [ "3 ror N2 N4
O e G N _ My A+ 6(p) w =3(4)

1 ()" ’ ()’

4.3. Incomplete moments
The s incomplete moment, denoted by ¢, (v), of ¥ is mathematically defined as

:Ivsf(v)dv. (11

Inserting (5) in (11) and using lower incomplete gamma function, we obtain

i} ak}/[[s+1j,9(k+l)v2“}
(v) _ﬁz 2a , (12)

g 0 (k+1)2

where j/(a, b) is the lower incomplete gamma function. By setting s =1, the first incomplete moment

of V can be obtained as
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aky{(;[ﬂj,a(kﬂ)w}

1
g2a *=0 (l’chl)E+1
The first incomplete moment can be used to construct the Lorenz and Bonferroni inequality curves
as well as the mean deviation from mean and mean deviation from median. The Lorenz curve (LC)

for PER distribution calculated as
1
—+1[,8(k+1)v*
o aU/KZa j ( )v }

Zk:O

(13)

1,
o= _ (k+1)”
#H akr(;+lj
© o
Zk:O L
(k+1)2

Similarly, the expression for Bonferroni curve (BC) of PER distribution is obtained as

) ak}/{(zlo(+lj,6(k+l)v2“}

Zk:O

Fvap.0) akr(;+lj
© h 2a o a
Z;:objexp(_jgvz )Zk:O L
(k+1)2

4.4. Mean deviations
The mean deviation about mean, denoted by D ( ,u) is defined by

D(p)=2pF (1) =26, (u)-
where 4 is the mean of the distribution, F ( ,u) is the distribution function and ¢, ( y) is the first
incomplete moment defined in (13).

Using the value of u, F (,u) and (ﬂl( ,u) in the above expression, we obtain the required

expression of mean deviation about mean for PER distribution as
1
2[8 o » akbjr Z"‘l
D (,u ) T ZZ

ak7/|:(2la+lj,0(k+l),u2“}
—lexp(—jﬁ,uz“)— )

g2 | 70 (k+1)2a” k=0 (k+ 1)i*l

The mean deviation about median, denoted by D(M ) is defined by
D(M)=pu-2¢,(M).

Using the value of x and ¢, (M ) in the above expression, we obtain the required result as
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D(M) :Ll i akr(zlalﬂ) —Zi a"y[(;a“)ﬁ(kﬂ)M“} |

g2 | F0 (k+1)2a”

L.

k=0 (k+1)2

4.5. Conditional moments
For the prediction in lifetime models, the conditional moments are very important. Suppose V is

a random variable from PER distribution, then the s™ conditional moment is given by

- ﬁ'[v £ (v)dv

where R(w) is the reliability function. Thus, the required expression for the conditional moments of

E(VS 14

the PER distribution is obtained as

akr{(s+1j,9(k+l)w2“}
E(V:|V)w)=— B i 20 | |
o [1_2j=obfexP(—j9w2“ )] k=0 (k+1)2"

Similarly, the s” reversed conditional moment is given by

E(V |V <w)

where F (w) is the distribution function. Thus, the s™ reversed conditional moment of PER

s glaer]

HEZj:Ob,.exp(—jé’wz“)k:O (k+l)i+1

distribution is obtained as

4.6. Probability weighted moments (PWM)
The general formula for probability weighted moments (PWM) is defined by

PWM = j W[F(v ]
Using (2) and (3), we have
P =2apofe e (-0v ) 1-cxp 00 )|
0

Solving the integral, we obtain the required expression as

. wkl"(—i-lj
PWM = iz 2

s

gra ¥=0 (k+1)
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4.7. Residual and reversed residual life functions

This sub-section presents some of the statistical properties related to residual and reversed residual
life functions including mean related to residual and reversed residual life functions of the PER
distribution.

4.7.1. Residual life function

The conditional random variable R(t) = (V —t| V)t) ;¢ 20 isused to explain the residual life of a

lifetime component and interpreted as the period from time ¢ until the time of failure. The survival
function of residual lifetime R(,) of PER distribution is given by

S (v): S(V+t) _ 1—[1—exp(_g(v+t)za):|ﬂ
7 S(1) 1-[1-exp (-0 )j|ﬂ

The corresponding PDF of R(,) will be

,v>0.

20p0(v+1)"" expl-0(v+1) [ 1-exp(-0(v+0)) [

1- [1 —exp (—BIZ“ )T

Consequently, the hazard rate function of R(t) is given by

fR(,) (V) =

2050 (v+1)"" exp| -0(v+1 )M}[l‘e"p(‘g(v” )’ )]ﬂil '
1_[1_exp(_9(v+,)2a )T

hRm (v) =

4.7.2. Mean residual life (MRL) function
The MRL function is defined as the expected life of an item to survive after the age ¢. It provides
information about the whole interval in which the item will survive is to be believed. The MRL

function denoted by 7, (t) = E(V —t|V>t), is given by

)=[R(1)] T V)dv—t = ! ﬂ{mﬂeiak?vz“exp[—ev“(ml)]dv}t.

1-[1-exp (-0 ) =

Solving the integral yields, the result as

()= ! A S [(Lﬂj,(kﬂ)et“} ~

1—[l—exp(—6’t2“ )} g2ra k=0 (k+l)2a 2a

4.7.3. Reversed residual life function

The conditional random variable ﬁm :(t—V|VSt);t20 is used to explain the reversed

residual life of a lifetime component and is interpreted as the time elapsed from the failure of an item

given that its life <. The survival function of reversed residual lifetime I_Q(t) of PER distribution is

given as
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2a s
F(r-v) [1 —exp(—ﬁ(t -v) )}
SE(’)(V): I = 5
(t) [l—exp(—gtz" )J
The corresponding PDF of E(,) will be
Zaﬁﬁ(t - v)za_l exp[—@ (t - v)za J[l —exp (—49(t - v)za )}
) |:1—exp(—<9t2" )]ﬁ
Accordingly, the associated failure rate of E(t) ;¢ >0 is given as
ﬂ,
Zaﬂﬁ(t - v)zmil exp [—H(I - v)za J[l —exp (—H(t - V)M )} 1
= v .
[1 —exp (—H(t - v)za )}

4.7.4. Mean reversed residual life (MRRL) function
The MRRL function, also known as mean past lifetime, is very useful to presage the actual time

of failure of an already failed component. The MRRL function denoted by 7, (t) =F (t -Viv< t),

p-1

hs, (v)

is given by
m,(t)=t-[F ()] [of (v)av,
0
Inserting (2) and (3) and solving the integral yields the result as
1 a
y ii aky/[(za+ 1},6’(k+1)t2 }

a LH
gra *=0 (k-l,—l)Zo(

T (t) =1t —[1 —exp (—th" )}

4.8. Generating functions
For PER distribution, by the definition of moment generating function of ¥, we have

M, (t) = E(e’V ) = J.e’Vf(v) dv.
0
Using power series expansion,

0

=3 - (:H)vs and M, (1) =3 (:+1)IVX £ (v)dv.

s=0 5=0

Inserting (5) in the above expression, we obtain the required result as

P ﬂr(;auj .
Mv(f):ZZF(S_H) gi (k+1)i+l.

§=0k=0

Using the well- known relation ¢, (t):MV (it), we obtain the characteristic function of PER

distribution as
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ii .t)s ﬁl"[;aﬂj a

C(s+1) o (/Hl)i”

s=0k

5. Measures of Information

This section presents some of the well-known measures of the entropy. The loss of information
or existence of randomness in a random variable is measured by entropy. Two measures of entropy
including Renyi entropy and beta entropy are discussed in this section.

5.1. Renyi ntropy of PERD
The extended form of Shannon entropy is Renyi entropy as ¢ — 1. Suppose V' be a random

variable with PDF f (v), then Renyi entropy (1960) is defined by
I, (v)=(1-08) "log[f° (v)dv; &>0and5 #1.
0
Replacing f (v) with (2), we have

Ia( ):(1 5 logj 2aﬂ9 et exp( 59v2a)[1—exp(_¢9vm )T(ﬂil) dv.

s(4-1)

. . 20 B .
Using the expansion of [1 - exp(—@v )} as given by

[1—exp(—6’v2")T( ) =i xp( k9v2")
(-1)' T[8(B-1)+1]

where € = Plk+1]T[8(B—1)-k+1]

. Hence, simple mathematical calculation reduces the Renyi

entropy as follows

ekr{a(za—l)ﬂ}

-1 -1 S @ h za
Ia‘(v):(l_é‘) log (20() B0 > Z 5(2a-1)+1
S (k+o) =

5.2. Harvda and Charvat entropy
The Harvda and Charvat entropy (1967) of a random variable V' is defined by

I,(v)=(5-1) { jf }5>0 and §#1,

I (v) = (6 - 1)_1 [1 —]:(Zaﬁﬁ)d po e exp( -5V )[1 - exp(—9v2“ )T(ﬁ_l) dv}.

Thus, the Harvda and Charvat entropy for PER distribution is obtained as
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ekl{§(2a—l)+l}

. (0 2a
Id(v)=(5_l) 1 1_( ﬂ 0 > 5(2a-1)+1
5 (kvo) w

6. General Order Statistics

Theorem 1. The PDF of the general order statistics of PER distribution is given by

£ ()= 2N (" _,Sj(ﬁj +kﬂs _ljexp[—(ml)ev“].

,B(s,n—s+1) ) Jj

Proof: Suppose ViV ¥ be the order statistics of a random sample follows PER distribution

with PDF f, (v) and CDF F, (v) Then, the PDF of s™ order statistics, denoted by V(S) is given by

Iy (v)= W [F } " [I—FV (v)]H. (14)

Prior to incorporate (2) and (3) in (14), we use binomial expansion of [1 -F, (v)}n " as

A0 Ve el IO

Jj=0

Thus, we obtain

fv(\) (@:Ai(_l)/‘ [n_SJ[F(V)JjHI. (15)

ﬁ(s,n—s+1)j:0 i
Incorporating (2) and (3) in (15), we get

200V &, ifn— po \ VP Bs 1 v
1, (v):h;(—l)[ jsj[l—exp(—ﬁv )} exp(—&v )

: . . . . 20 \ P/HPs
Again, using Binomial expansion of [1 - exp(—&v )] as

[1 - exp(—ﬁvz"’ )Tﬁﬁkl = g(—l)k (ﬂj +kﬂS - 1} exp (—kﬁvza )

We obtain the general order statistics of PER distribution as

£ (v)= 205 (—1)‘Hk{n_.Sj(ﬁj+fs_ljexp[—(k+l)9v2a}

,B(s,n—s+1) ) Jj

7. Estimation and Simulation
7.1. Maximum likelihood estimation
Let V,,V,,...,V, be a random sample drawn from the PER distribution with parameter vector

Q= (a, ,B,H)T . Then, the log-likelihood function of n observations for ¢ is given by

(@) =mlog(2a86)+(2a —1)ilog(v[)—92i:vf“ +(ﬁ—l)ilog[1 —exp(—vaa )}

J=1
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The components of the score vector, U (¢)= S—Z B (Z/Ia Uy U, )T , are given by
4

3 S n exp(—6v; )vi* log (v,
“a=ﬂ+2210g(v,-)—02vf“1og(v,)+(ﬂ—1)eze"p( L)
a

= = = [1 —exp (—Hv[z“ )}

U, = %+ ilog[l—exp(—ﬁvf“ )]

J=1

and

m m _0 .Za ?a
Uy =3y +(ﬂ_1)zm

0 ‘I =1 [l—exp(—é’v,.z" )]

A A~\T
The ML estimates ¢ = (o?, ﬂ,H) of the parameters ¢ = (a, ﬂ,@)T are investigated by equating

the above non-linear system of equations U, =U, =U, =0 and solving them simultaneously. For

doing this, the statistical software R can be used to obtain the desired results.
Since, all the second order derivatives exist. Therefore, for interval estimation of the parameters,

2
we obtain the 3x3 observed information matrix 7 (¢)= %;(for x,y=a,,0), whose elements
X

can be computed numerically.

7.2. Simulation

Here, we perform the Monte Carlo simulation study to investigate the performance of ML
estimators of the unknown parameters for the PER distribution. The random numbers are generated
from PER distribution using inverse transformation method of simulation. The values of parameters
are chosento be o =1.5,4 =2.5and & =1.3. The R-software is used to generate data sets of different

samples sizes 20, 40, 75 and 150. The summary of the results is presented in Tables 2 to 5.

Table 2 ML estimates and comparison of distributions using simulated data set of size 20
Model ML Estimates -2/ AIC SIC AICC HQIC
PERD a=2435 1.769  7.769 10.756  9.269  8.352

B=0217
0=1.882

ERD p=0558 6475 10475 12466 11181 10.864
0=2.105

RD f—20980 11118 13.118 14.114 13340 13312
WD §-152 9080 13.080 15.071 13.786 13.469
6

GED  p_13gp 11798 15798 17.789 16504 16.187

ED f=1968 12919 14919 15915 15.141 15.113
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Table 3 ML estimates and comparison of distributions using simulated data set of size 40

Model ML Estimates -2/ AIC SIC AICC HQIC

PERD a=2549 3352 9352 14419 10.018 11.184
B=0.267
6=2.121

ERD 'g —0855 9.245 13.245 16.623 13.569 14.466
4 =2.558

RD 0=2.827 9.892 11.892 13.581 11.997 12.503

WD 5=1.937 9833 13.833 17.211 14.157 15.054

0=2.768

GED p=2478 15892 19.892 23270 20216 21.113
0=3.125

ED H=1895 28859 30.859 32.548 30.964 31.470

Table 4 ML estimates and comparison of distributions using simulated data set of size 75
Model ML Estimates -2/ AIC SIC AICC HQIC
PERD a=2429 8.519 14519 21.471 14.857 17.295

B=0.193
0=1.682

ERD p=0523 22199 26199 30834 26366 28.049
0=2.025

RD d=3.125 49.489 51489 53806 51.544 52414

WD S=1346 31416 35316 40.051 35.583 37.267
0 =2.450

GED p=1287 36571 40571 45206 40.738 42422
0=2.435

ED d=2004 39.162 41.162 43479 41217 42.087

8. Data Analysis

This section is devoted to illustrate the practical applications of the proposed PER distribution. In
order to assess the flexibility of the new model, we analyze three real life data sets taken from literature
and the numerical results of PER distribution are compared with its sub-models, namely ER
distribution, Rayleigh distribution (RD), Weibull distribution (WD), exponential distribution (ED) and
generalized exponential distribution (GED). The model selection is carried out by using different
model selection criterions including the negative log-likelihood, Akaike information criteria (AIC)
(Akaike 1974), Schwarz Information Criteria (SIC) (Schwarz 1978), Corrected Akaike information
criteria (AICC) (Bazdogan 1987) and Hannan-Quinn information criteria (HQIC) (Hanna and Quinn
1979). Also, Kolmogorov-Simonov test statistics along with corresponding p-value has been
calculated.
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Table 5 ML estimates and comparison of distributions using simulated data set of size 150
Model ML Estimates -2/ AIC SIC AICC HQIC
PERD a=2419 11.074 17.074 26.106 17.238 20.743
B=0.267
6=2.124
ERD B=0.803 31.508 35508 41529 33.590 37.954

RD f—3125 236426 38426 41437 38453 39.649
WD §-1876 35525 39525 45546 39.607 41.971
6

=2.850

GED f=2164 62759 66759 72780 66.841 69.205
0=2.987

ED §—10943 10074 10274 10576 102,77 103.97

The descriptive synopsis of the three real life data sets is presented in Table 2. The ML estimates
with their corresponding standard errors in parenthesis for the three data sets are presented in Tables
3, 5 and 7 respectively whilst the Tables 4, 6 and 8 lists the numerical values of the negative log-
likelihood, AIC, SIC, AICC, HQIC, Kolmogorov-Smirnov distance along with corresponding p-value,
respectively. These numerical results are acquired using R program. Based on the model selection
criterions, we infer that the proposed model fits better than its sub-models to these data sets. Figure
(4) displays the fitted density and distribution plots of the PER distribution to the three data sets. It is
clear from these plots that PER distribution provide close fit to the three real life data sets.

Data set 1: The data set due to Smith and Naylor (1987) consists of 63 observations of the
strengths of 1.5 cm glass fibres, originally obtained by workers at the UK National Physical
Laboratory. This data set was also analysed by Oguntunde et al. (2015) to demonstrate the applicability
of Weibull-Exponential distribution. The data are:

0.55,0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39,
1.42,1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61,
1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67,1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76,
1.77,1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24.

Data set 2: This data set as a second real life application consists of 66 observations represents
the breaking stress of carbon fibres of 50 mm gauge length is taken from Nichols and Padgett (2006)
and recently Alzaatreh et al. (2014) analysed this data for Gamma Normal distribution. The data set is
given as

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12,
2.35,2.41,2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87,
2.88,2.93,2.95,2.96,2.97,3.09,3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33,
3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90

Data set 3: This data set taken from the literature of Badar and Priest (1982) represent the strength
data measured in GPa, of 69 single carbon fibres tested under tension at gauge lengths of 20 mm. The
data is presented as follows:

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021,
2.027,2.055, 2.063, 2.098,2.140, 2.179, 2.224, 2.240, 2.253, 2.270,2.272,2.274, 2.301, 2.301, 2.359,
2.382,2.382,2.426,2.434,2.435,2.478,2.490, 2.511,2.514, 2.535,2.554, 2.566, 2.570, 2.586, 2.629,
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2.633,2.642,2.648,2.684,2.697,2.726,2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954,

3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

Table 6 ML Estimates and the statistics —2¢, AIC, SIC, AICC and HQIC using data set 1

Model ML Estimates -2/ AIC SIC AICC HQIC

PERD a=2419 30682 36.682 43.111 37.089 39.211
B=0.267
0=2.124

ERD B=0803 48442 52442 56728 52642 54.127
0=2.591

RD H—3125 99.582 101.582 103.725 101.648 102.424

WD S-1876 37741 41741  46.027 41.941  43.426
0 =2.850

GED p=2164 68889 72889 77175 73.089  74.575
0=2.987

ED H—1943 177.661 179.661 181.804 179.727 180.504

Table 7 ML Estimates and the statistics —2¢, AIC, SIC, AICC and HQIC using data set 2

Model ML Estimates -2/ AIC SIC AICC HQIC

PERD 4=1498 172902 178.902 185471 179.289 181.498
B=1.270
0=0.042

ERD p=1637 180.875 184875 189.254 185066 186.605
0=0.159

RD H—-0119 196417 198417 200.607 198.480 199.282

WD S=253] 180.824 184.824 189.203 185.015 186.554
0 =0.064

GED p=5784 194439 198439 202818 198.630 200.169
0 =0.844

ED H—0362 265989 267.989 270.179 268.052 268.854
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Table 8 ML Estimates and the statistics —2/¢, AIC,

SIC, AICC and HQIC using data set 3

Model ML Estimates -2/ AlIC SIC AICC HQIC

PERD 4=1498 104459 110459 117.161 110.828 113.118
B=1.270
0 =0.042

ERD f=1637 113622 117622 122090 117.804 119.395
0=0.159

RD f6-0119 174493 176493 178.727 176.553 177379

WD S=02531 127910 131910 136378 132.092 133.683
0=0.064

GED p=5784 137023 141.023 145491 141.205 142.796
0 =0.844

ED H—0362 261735 263.735 265969 263.795 264.621
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Figure 5 Estimated PDF and CDF plots of PER distribution and other competitive models for the
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Figure 7 Estimated PDF and CDF plots of PER distribution and other competitive models for the
data set 3

9. Concluding Remarks

In this article, we propose a new model called the power exponentiated Rayleigh distribution
which extends the exponentiated Rayleigh distribution in the analysis of data with real support. An
obvious reason for generalizing a standard distribution is because the generalized form provides larger
flexibility in modeling real data. We derive expansions for the moments; mean residual life, moment
generating function, characteristic function and Order statistics. The new model is capable of modeling
data sets with non-monotone hazard rate. A simulation study is carried out to investigate the behavior
of ML estimates for finite sample size. The estimation of parameters is approached by the method of
maximum likelihood estimation. The applications of the power exponentiated Rayleigh distribution
to real data are provided which show that the new distribution can be used quite effectively to provide
better fits than the other competing distributions. We prospect that the proposed model will draw wider
applications in statistics.
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