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Abstract 

This research article deals with the extension of exponentiated Rayleigh distribution introduced 
by Surles and Padgett (2001) by considering the power transformation of a random variable. The new 
distribution is referred to as power exponentiated Rayleigh distribution. We provide a comprehensive 
description of the statistical properties including ordinary and incomplete moments, mean residual 
life, mean deviations, information measures and order statistics of the subject distribution.  The 
estimation of the unknown parameters of the model is performed by the method of maximum 
likelihood estimation. Finally, the usefulness of the proposed model among other models is illustrated 
by means of real life and simulated data sets using some goodness-of-fit measures. 
______________________________ 
Keywords:  Exponentiated Rayleigh distribution, power transformation, mean deviations, mean residual life, 
simulation, estimation and data analysis. 
 

1. Introduction 
The Rayleigh distribution (Rayleigh 1880) is a well-known probability model of prominent 

importance and is used to study the problems in the field of communication theory, physical science, 
medical image analysis and survival analysis. It is a special case from two parameter Weibull 
distribution when the shape parameter is equal to 2. The important characteristic of Rayleigh 
distribution is that its hazard rate is an increasing function of time. Due to its significant applicability 
in the real life problems, numerous researchers have contributed to this model, among them are 
Siddiqui (1962) studied the genesis and origin of this model. Howlader and Hossain (1995) studied 
the Bayesian estimation of the Rayleigh distribution based on type-II censored data. Lalitha and 
Mishra (1996) discussed the modified maximum likelihood estimation for Rayleigh distribution. Abd 
Elfattah et al. (2006) discussed the efficiency of maximum likelihood estimators under different 
censored sampling schemes for Rayleigh distribution. Dev and Tanujit (2011) studied the Bayesian 
estimation of the scale parameter. Ardianti (2018) used classical and Bayesian methods to estimate 
the parameter of Rayleigh distribution. The probability density function (PDF) and cumulative 
distribution function (CDF) associated with random variable X  from Rayleigh distribution with scale 
parameter   is expressed as 

   2; 2 expf x x x     and    2; 1 exp .F x x     
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In recent years, several extensions of Rayleigh distribution have been made to increase its 
applicability in medical science, physical analysis and survival analysis. Numerous authors have 
worked on the generalization of Rayleigh distribution; among them are Voda (2007), Kundu and 
Raqab (2005), Raqab and Madi (2009), Merovci (2013), Dey et al. (2014), Merovci and Elbatal 
(2015), Ahmad et al. (2015), Saima et al. (2016), Ateeq et al. (2019), Sofi et al. (2019). Surles and 
Padgett (2001) proposed the two parameter Burr type X distribution and named it as exponentiated 
Rayleigh distribution or generalized Rayleigh distribution with PDF and CDF, respectively given as 

      1
2 2 ,; , 2 exp 1 expf x x x x


    


                                           (1) 

   2 .; , 1 expF x x


        

The main aim of this research paper is to enhance the flexibility of the model by inducing one 
extra shape parameter for improving its goodness-of-fit to real data. The advantage of the proposed 
model over exponentiated Rayleigh distribution is that the latter cannot model lifetime phenomenon 
showing various shapes of failure rates. We provide the comprehensive description of the 
mathematical properties of the powered distribution and estimate its parameters using maximum 
likelihood method. We will also provide the possible areas of applications. 
 
2. Power Exponentiated Rayleigh Distribution 

The section is devoted to construct the PDF and CDF of power exponentiated Rayleigh (PER) 

distribution by taking the power transformation 
1

V X   where X  follows exponentiated Rayleigh 

(ER) distribution with PDF given in (1). The PDF of the PER distribution with parameters ,     and 

  and 0v   is given as 

       1
2 1 2 2; , , 2 exp 1 exp ,f v v v v


       


                                   (2) 

where , 0    are the two shape parameters and 0   is the scale parameter. The CDF 

corresponding to (2) is given as 

    2; , , 1 exp . F v v


                                                        (3) 

The proposed model is very flexible in nature that approaches to different models when its 
parameters are changed. The flexibility of the proposed model is elucidated in Table 1 where it has 5 
sub-models when the value of parameters is chosen carefully. 
 

Table 1 Sub-models of the PER distribution 

Distribution       PDF 

Exponentiated Rayleigh (ERD) 1     
12 22 exp( ) 1 exp( )v v v


  


      

Rayleigh (RD) 1 1   22 exp( )v v   

Weibull (WD) 2
  1   1 exp( )v v     

Generalized Exponential (GED) 0.5         1
exp 1 expv v


  


      

Exponential (ED) 0.5 1   exp( )v   

Figure 1 provides plots of the PDF curves for some values of the shape and scale parameters of 
the PER distribution. 
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Figure 1 PDF plots of  , ,PERD     for varying values of shape and scale parameters 

 
It is clearly from the plots of the PDF curves that the proposed model is unimodal, decreasing and 

right skewed in nature. 
 
3.    Reliability Analysis 

In this section, the expression for the reliability function R(v), hazard rate function h(v), reverse 
hazard rate function r(v), cumulative hazard rate function H(v), mills ratio (M.R) are acquired and are 
respectively given as 

   2 ,1 1 expR v v


         
    

 

1
2 1 2 2

2

2 exp 1 exp
,

1 1 exp

v v v
h v

v


  




  




   


    

 

 
 

 
2 1 2

2

2 exp
,

1 exp

v v
r v

v

 



 



 


   

    2ln 1 1 exp ,H v v


         
    

 
 

2

2

1 exp
. . .

1 1 exp

v
M R

v











   
    

 

 
From Figure 2, we conclude that the hazard rate of PER distribution can be decreasing, bathtub, 

Increasing, constant and j-shaped. The advantage of PER distribution over ER distribution is that the 
latter cannot model lifetime phenomenon exhibiting various shapes of failure rates such as J-shaped 
and bathtub. 
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Figure 2 Hazard Rate Function plots of  , ,PERD     for varying values of shape and scale 

parameters 
 

Useful Expansion 
The mixture representation of PDF and CDF of the PER distribution is presented by using the 

series expansion 

  1

0

1 , 1 and 0,
c k

k
k

d a d d k






     
0

1 , 1 and 0,
c j

j
j

d b d d j




   

where 

 
   
   

1 Γ

Γ Γ 1

k

k

c
a

c k k




 
    and   

   
   

1 Γ 1
.

Γ 1 Γ 1

j

j

c
b

c j j

 


  
               (4) 

Thus, the PDF of PER distribution in (2) can be expressed in the mixture form as 

    2 1 2

0

2 exp 1 .k
k

f v v a v k  






                    (5) 

The CDF in (3) can be expressed in the mixture form as 

 2

0

( ) exp .j
j

F v b j v 




                                                       (6) 

 
4. Some Properties of PER distribution 

This section presents some of the mathematical and statistical properties of the PER distribution 
including quantile function, moments, mean deviations, mean residual life, mean waiting time and 
generating functions. 
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4.1. Quantile function and simulation 
The quantile function for any distribution defined by Hyndman and Fan (1996) can be written in 

the form of 

   1 .qQ u V F u   

where  Q u  is the quantile function of a random variable V  for the given distribution function  F v  

and u  is the uniform random variable defined on the unit interval 0 1.u   Inverting the distribution 

function of the PER distribution given in (3) as defined above will give the quantile function as follows  

 

1
1 21

log 1 .Q u u






  
        

                                                (7) 

This above equation is very helpful to obtain moments like skewness and kurtosis as well as the 
median and can be used for generation of random variables of the PER distribution. The median of 
the distribution is obtained by setting 0.5u   in (7) as 

 
1

1 21
log 1 0.5 .Median





      

  
 

Accordingly, the random samples can be simulated from PER distribution by setting  Q u V  

and this procedure is called inverse transformation method of simulation. Thus  
1

1 21
log 1 .V u






  
        

 

Bowley’s measure of skewness based on quartiles is given as 

     
   

3 1 124 2 4 .
3 1

4 4

Q Q Q
B

Q Q

 



 

Similarly, the Moors measure of kurtosis based on octiles is given as 

       
   

3 7 51
8 8 8 8 .

6 2
8 8

Q Q Q Q
M

Q Q

  



 

where  .Q  is given in (7). 

 
4.2. Ordinary moments 

Moments are the constants of a population and help to determine the various properties of the 
probability model such as mean, variance, skewness and kurtosis. Suppose V  is a continuous random 

variable, then the ths  ordinary moment about origin (non-central moment) of V  is defined as 

    
0

,s s
s E V v f v dv



                    (8) 

where  f v  is the PDF of the PER distribution and is stated from (5) as 

   2 1 2

0

2 exp 1 .k
k

f v v a v k  






        (9) 

where ka  is defined in (4). Inserting (9) in (8), we obtain 
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  2 1 2

0 0

2 exp 1 .s
s k

k

a v v k dv   


 



                                         (10) 

Using integration by substitution method in Equation (10) leads to the following operations: Let  

   

1

2
2 1 , 

1

u
v k u v

k





 

     
  

 

which implies that 

 

1
1

2

1

2

.

2 1

u
dv du

k



 




  

 Substituting for , v u  and dv  in (10) and simplifying; we 

have 

  102 2

Γ 1
2

,
1

k
s s s

k

s
a

k 










  
  


  

where  Γ .  is the gamma function. In particular, the mean and variance of PER distribution are 

respectively, obtained as 

 
1 1 1

102 2

1
Γ 1

2
,

1

k

k

a

k 










  
  


  

   

2

2
2 1 1 1

1 10 0 2

1 1
Γ 1 Γ 1 .

21 1

k k

k k

a a

k k  

  
 



 

  

  
                      

   

The classical measures of skewness and kurtosis based on non-central moments can be calculated 
by using the following expressions 

 
 

3

3 1 2 1
1 3

2
2

3 2   




    
  and 

   
 

2 4'
4 1 3 1 2 1

2 2

2

4 6 3
3.

     




      
   

 
4.3. Incomplete moments 

The ths  incomplete moment, denoted by   ,s v  of V  is mathematically defined as 

    
0

.
v

s
s vv f v dv                  (11) 

Inserting (5) in (11) and using lower incomplete gamma function, we obtain 

 
 

 

2

102 2

1 , 1
2

,
1

k

s s s
k

s
a k v

k
v



 

 








     
  


                                   (12) 

where  ,a b  is the lower incomplete gamma function. By setting 1,s   the first incomplete moment 

of V can be obtained as 
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 
 

 

2

1 1 1
102 2

1
1 , 1

2
.

1

k

k k
v

a k v 

 

 








     
  


                                  (13) 

The first incomplete moment can be used to construct the Lorenz and Bonferroni inequality curves 
as well as the mean deviation from mean and mean deviation from median. The Lorenz curve (LC) 
for PER distribution calculated as 

 

 

 

 

2

10 1
2

1

10 1
2

1
1 , 1

2

1
.

1
Γ 1

2

1

k

k

k

k

a k v

k
LC

a

k

v







 









 



 

     
  


 

  
 







 

Similarly, the expression for Bonferroni curve (BC) of PER distribution is obtained as 

 

 

 

 
 

2

10 1
2

2
10 0 1

2

1
1 , 1

2

1
.

1; , ,
Γ 1

2

1

k

k

k

jj k

a k v

kLC
BC

F v
a

b exp j v
k









 


  




 

 

  

     
  


 

  
 




 

 

 
4.4. Mean deviations 

The mean deviation about mean, denoted by  D   is defined by 

     12 2 .D F       

where   is the mean of the distribution,  F   is the distribution function and  1   is the first 

incomplete moment defined in (13). 

Using the value of  ,  F   and  1   in the above expression, we obtain the required 

expression of mean deviation about mean for PER distribution as 

 
 

 
 

 

2

2
1 1 1

1 10 0 02 2 2

11 1 , 1Γ 1
22 2

.
1 1

kk j

j k k

a ka b
D exp j

k k





  

  
  



  

   

                   
  

  

   

The mean deviation about median, denoted by  D M  is defined by 

   12 .D M M    

Using the value of   and  1 M  in the above expression, we obtain the required result as 
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 
 

 

 

2

1 1 1
1 10 02 2 2

11 1 , 1Γ 1
22

2 .
1 1

kk

k k

a k Ma
D M

k k



  

 
 



 

  

                  
  

  

   

 
4.5. Conditional moments 

For the prediction in lifetime models, the conditional moments are very important. Suppose V  is 

a random variable from PER distribution, then the ths  conditional moment is given by 

     1
,s s

w

E V V w v f v dv
R w



   

where  R w  is the reliability function. Thus, the required expression for the conditional moments of 

the PER distribution is obtained as 

 
 

 

 

2

1022 2
0

Γ 1 , 1
2

.
11

k
s

s s
k

jj

s
a k w

E V V w
kb exp j w




 




 
 



     
  

   
 




 

Similarly, the ths  reversed conditional moment is given by 

     
0

1
| ,

w
s sE V V w v f v dv

F w
    

where  F w  is the distribution function. Thus, the ths  reversed conditional moment of PER 

distribution is obtained as 

 
 

 

 

2

1022 2
0

1 , 1
2

| .
1

k
s

s s
k

jj

s
a k w

E V V w
kb exp j w



 
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
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4.6. Probability weighted moments (PWM) 

The general formula for probability weighted moments (PWM) is defined by  

   
0

.
tsPWM v f v F v dv



     

Using (2) and (3), we have 
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Solving the integral, we obtain the required expression as 
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4.7. Residual and reversed residual life functions 
This sub-section presents some of the statistical properties related to residual and reversed residual 

life functions including mean related to residual and reversed residual life functions of the PER 
distribution. 

 
4.7.1. Residual life function 

The conditional random variable     ; 0tR V t V t t    is used to explain the residual life of a 

lifetime component and interpreted as the period from time t  until the time of failure. The survival 

function of residual lifetime  tR  of PER distribution is given by 

 
   

 
  
 
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         
    

 

The corresponding PDF of  tR  will be 
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Consequently, the hazard rate function of  tR  is given by 
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4.7.2. Mean residual life (MRL) function 

The MRL function is defined as the expected life of an item to survive after the age .t  It provides 

information about the whole interval in which the item will survive is to be believed. The MRL 

function denoted by    1 ,t E V t V t    is given by 

     
 

 1 2 2
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2 0

1
2 exp 1 .

1 1
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   

Solving the integral yields, the result as 
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 
                   

  

 
4.7.3. Reversed residual life function 

The conditional random variable    | ; 0tR t V V t t     is used to explain the reversed 

residual life of a lifetime component and is interpreted as the time elapsed from the failure of an item 

given that its life  .t  The survival function of reversed residual lifetime  tR  of PER distribution is 

given as 
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The corresponding PDF of  tR  will be 
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Accordingly, the associated failure rate of    ; 0tR t   is given as 
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4.7.4.  Mean reversed residual life (MRRL) function 
The MRRL function, also known as mean past lifetime, is very useful to presage the actual time 

of failure of an already failed component. The MRRL function denoted by    2 | ,t E t V V t     

is given by 
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,
t

t t F t vf v dv

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Inserting (2) and (3) and solving the integral yields the result as 
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4.8. Generating functions 

For PER distribution, by the definition of moment generating function of ,V  we have 

     
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Using power series expansion, 
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Inserting (5) in the above expression, we obtain the required result as 
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Using the well- known relation     ,V Vt M it   we obtain the characteristic function of PER 

distribution as  
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5. Measures of Information 

This section presents some of the well-known measures of the entropy.  The loss of information 
or existence of randomness in a random variable is measured by entropy.  Two measures of entropy 
including Renyi entropy and beta entropy are discussed in this section. 
 
5.1. Renyi ntropy of PERD 

The extended form of Shannon entropy is Renyi entropy as 1.   Suppose V  be a random 

variable with PDF   ,f v  then Renyi entropy (1960) is defined by 
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1 ;   0 and 1.I v log f v dv
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
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Replacing  f v  with (2), we have 
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 Hence, simple mathematical calculation reduces the Renyi 

entropy as follows 
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5.2. Harvda and Charvat entropy 

The Harvda and Charvat entropy (1967) of a random variable V  is defined by 
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Thus, the Harvda and Charvat entropy for PER distribution is obtained as  
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6.    General Order Statistics 
 
Theorem 1. The PDF of the general order statistics of PER distribution is given by 
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Proof: Suppose      1 2, , , , nV V V  be the order statistics of a random sample follows PER distribution 

with PDF  Vf v  and CDF  .VF v  Then, the PDF of ths  order statistics, denoted by  SV  is given by 
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Prior to incorporate (2) and (3) in (14), we use binomial expansion of  1
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Thus, we obtain 
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Incorporating (2) and (3) in (15), we get 
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Again, using Binomial expansion of   1
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We obtain the general order statistics of PER distribution as 
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7.    Estimation and Simulation 
7.1. Maximum likelihood estimation 

Let 1 2, , , nV V V  be a random sample drawn from the PER distribution with parameter vector 

  ., , 
T     Then, the log-likelihood function of n  observations for   is given by 
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The components of the score vector,    , , ,
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The ML estimates  ˆ, ,ˆ  ˆˆ
T

     of the parameters  , , 
T     are investigated by equating 

the above non-linear system of equations 0        and solving them simultaneously. For 

doing this, the statistical software R can be used to obtain the desired results.  
Since, all the second order derivatives exist. Therefore, for interval estimation of the parameters, 

we obtain the 3 3  observed information matrix    
2

; for , , , ,x y
x y

   
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 

  whose elements 

can be computed numerically. 
 

7.2. Simulation 
Here, we perform the Monte Carlo simulation study to investigate the performance of ML 

estimators of the unknown parameters for the PER distribution. The random numbers are generated 
from PER distribution using inverse transformation method of simulation. The values of parameters 

are chosen to be 1.5, 2.5 and  1.3.      The R-software is used to generate data sets of different 

samples sizes 20, 40, 75 and 150. The summary of the results is presented in Tables 2 to 5. 
 

Table 2 ML estimates and comparison of distributions using simulated data set of size 20 

Model ML Estimates 2   AIC SIC AICC HQIC 

PERD ˆ 2.435   1.769 7.769 10.756 9.269 8.352 

 ˆ 0.217        

 ˆ 1.882        

ERD ˆ 0.558   6.475 10.475 12.466 11.181 10.864 

 ˆ 2.105        

RD ˆ 2.980   11.118 13.118 14.114 13.340 13.312 

WD ˆ 1.526   9.080 13.080 15.071 13.786 13.469 

 ˆ 2.483        

GED ˆ 1.382   11.798 15.798 17.789 16.504 16.187 

 ˆ 2.379        

ED ˆ 1.968   12.919 14.919 15.915 15.141 15.113 
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Table 3 ML estimates and comparison of distributions using simulated data set of size 40 

Model ML Estimates 2   AIC SIC AICC HQIC 

PERD ˆ 2.549   3.352 9.352 14.419 10.018 11.184 

 ˆ 0.267        

 ˆ 2.121        

ERD ˆ 0.855   9.245 13.245 16.623 13.569 14.466 

 ˆ 2.558        

RD ˆ 2.827   9.892 11.892 13.581 11.997 12.503 

WD ˆ 1.937   9.833 13.833 17.211 14.157 15.054 

 ˆ 2.768        

GED ˆ 2.478   15.892 19.892 23.270 20.216 21.113 

 ˆ 3.125        

ED ˆ 1.895   28.859 30.859 32.548 30.964 31.470 

 
Table 4 ML estimates and comparison of distributions using simulated data set of size 75 

Model ML Estimates 2   AIC SIC AICC HQIC 

PERD ˆ 2.429   8.519 14.519 21.471 14.857 17.295 

 ˆ 0.193        

 ˆ 1.682        

ERD ˆ 0.523   22.199 26.199 30.834 26.366 28.049 

 ˆ 2.025        

RD ˆ 3.125   49.489 51.489 53.806 51.544 52.414 

WD ˆ 1.346   31.416 35.316 40.051 35.583 37.267 

 ˆ 2.450        

GED ˆ 1.287   36.571 40.571 45.206 40.738 42.422 

 ˆ 2.435        

ED ˆ 2.094   39.162 41.162 43.479 41.217 42.087 

 
8. Data Analysis 

This section is devoted to illustrate the practical applications of the proposed PER distribution. In 
order to assess the flexibility of the new model, we analyze three real life data sets taken from literature 
and the numerical results of PER distribution are compared with its sub-models, namely ER 
distribution, Rayleigh distribution (RD), Weibull distribution (WD), exponential distribution (ED) and 
generalized exponential distribution (GED). The model selection is carried out by using different 
model selection criterions including the negative log-likelihood, Akaike information criteria (AIC) 
(Akaike 1974), Schwarz Information Criteria (SIC) (Schwarz 1978), Corrected Akaike information 
criteria (AICC) (Bazdogan 1987) and Hannan-Quinn information criteria (HQIC) (Hanna and Quinn 
1979). Also, Kolmogorov-Simonov test statistics along with corresponding p-value has been 
calculated.  
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Table 5 ML estimates and comparison of distributions using simulated data set of size 150 

Model ML Estimates 2   AIC SIC AICC HQIC 

PERD ˆ 2.419   11.074 17.074 26.106 17.238 20.743 

 ˆ 0.267        

 ˆ 2.124        

ERD ˆ 0.803   31.508 35.508 41.529 33.590 37.954 

 ˆ 2.591        

RD ˆ 3.125   36.426 38.426 41.437 38.453 39.649 

WD ˆ 1.876   35.525 39.525 45,546 39.607 41.971 

 ˆ 2.850        

GED ˆ 2.164   62.759 66.759 72.780 66.841 69.205 

 ˆ 2.987        

ED ˆ 1.943   100.74 102.74 105.76 102.77 103.97 

 
The descriptive synopsis of the three real life data sets is presented in Table 2. The ML estimates 

with their corresponding standard errors in parenthesis for the three data sets are presented in Tables 
3, 5 and 7 respectively whilst the Tables 4, 6 and 8 lists the numerical values of the negative log-
likelihood, AIC, SIC, AICC, HQIC, Kolmogorov-Smirnov distance along with corresponding p-value, 
respectively.  These numerical results are acquired using R program.  Based on the model selection 
criterions, we infer that the proposed model fits better than its sub-models to these data sets.  Figure 
(4) displays the fitted density and distribution plots of the PER distribution to the three data sets. It is 
clear from these plots that PER distribution provide close fit to the three real life data sets. 

Data set 1: The data set due to Smith and Naylor (1987) consists of 63 observations of the 
strengths of 1.5 cm glass fibres, originally obtained by workers at the UK National Physical 
Laboratory. This data set was also analysed by Oguntunde et al. (2015) to demonstrate the applicability 
of Weibull-Exponential distribution. The data are:  

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 
1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 
1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67,1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 
1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. 

Data set 2: This data set as a second real life application consists of 66 observations represents 
the breaking stress of carbon fibres of 50 mm gauge length is taken from Nichols and Padgett (2006) 
and recently Alzaatreh et al. (2014) analysed this data for Gamma Normal distribution. The data set is 
given as 

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 
2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 
2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 
3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90 

Data set 3: This data set taken from the literature of Badar and Priest (1982) represent the strength 
data measured in GPa, of 69 single carbon fibres tested under tension at gauge lengths of 20 mm. The 
data is presented as follows:  

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 
2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 
2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 
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2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 
3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585. 
 

Table 6 ML Estimates and the statistics 2 ,   AIC, SIC, AICC and HQIC using data set 1 

Model ML Estimates 2   AIC SIC AICC HQIC 

PERD ˆ 2.419   30.682 36.682 43.111 37.089 39.211 

 ˆ 0.267        

 ˆ 2.124        

ERD ˆ 0.803   48.442 52.442 56.728 52.642 54.127 

 ˆ 2.591        

RD ˆ 3.125   99.582 101.582 103.725 101.648 102.424 

WD ˆ 1.876   37.741 41.741 46.027 41.941 43.426 

 ˆ 2.850        

GED ˆ 2.164   68.889 72.889 77.175 73.089 74.575 

 ˆ 2.987        

ED ˆ 1.943   177.661 179.661 181.804 179.727 180.504 

 
Table 7 ML Estimates and the statistics 2 ,   AIC, SIC, AICC and HQIC using data set 2 

Model ML Estimates 2   AIC SIC AICC HQIC 

PERD ˆ 1.498   172.902 178.902 185.471 179.289 181.498 

 ˆ 1.270        

 ˆ 0.042        

ERD ˆ 1.637   180.875 184.875 189.254 185.066 186.605 

 ˆ 0.159        

RD ˆ 0.119   196.417 198.417 200.607 198.480 199.282 

WD ˆ 2.531   180.824 184.824 189.203 185.015 186.554 

 ˆ 0.064        

GED ˆ 5.784   194.439 198.439 202.818 198.630 200.169 

 ˆ 0.844        

ED ˆ 0.362   265.989 267.989 270.179 268.052 268.854 
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Table 8 ML Estimates and the statistics 2 ,  AIC, SIC, AICC and HQIC using data set 3 

Model ML Estimates 2   AIC SIC AICC HQIC 

PERD ˆ 1.498   104.459 110.459 117.161 110.828 113.118 

 ˆ 1.270        

 ˆ 0.042        

ERD ˆ 1.637   113.622 117.622 122.090 117.804 119.395 

 ˆ 0.159        

RD ˆ 0.119   174.493 176.493 178.727 176.553 177.379 

WD ˆ 2.531   127.910 131.910 136.378 132.092 133.683 

 ˆ 0.064        

GED ˆ 5.784   137.023 141.023 145.491 141.205 142.796 

 ˆ 0.844        

ED ˆ 0.362   261.735 263.735 265.969 263.795 264.621 

 

 
Figure 5 Estimated PDF and CDF plots of PER distribution and other competitive models for the 

data set 1 

 
Figure 6 Estimated PDF and CDF plots of PER distribution and other competitive models for the 

data set 2 
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Figure 7 Estimated PDF and CDF plots of PER distribution and other competitive models for the 
data set 3 

 
9.    Concluding Remarks 

In this article, we propose a new model called the power exponentiated Rayleigh distribution 
which extends the exponentiated Rayleigh distribution in the analysis of data with real support.  An 
obvious reason for generalizing a standard distribution is because the generalized form provides larger 
flexibility in modeling real data.  We derive expansions for the moments; mean residual life, moment 
generating function, characteristic function and Order statistics. The new model is capable of modeling 
data sets with non-monotone hazard rate. A simulation study is carried out to investigate the behavior 
of ML estimates for finite sample size.  The estimation of parameters is approached by the method of 
maximum likelihood estimation.  The applications of the power exponentiated Rayleigh distribution 
to real data are provided which show that the new distribution can be used quite effectively to provide 
better fits than the other competing distributions. We prospect that the proposed model will draw wider 
applications in statistics. 
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