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Abstract
This paper has considered the estimation and testing of two reliability function e.g. R(t) =

P (X > t) and P = P (X > Y ) for one parameter generalized exponential distribution(GED).
Uniformly minimum variance unbiased estimators (UMVUES) and maximum likelihood estimators
(MLES)techniques are used to estimate the two reliability function under Type II and Type I cen-
soring scheme in point estimation. Asymptotic confidence interval for the parameter θ, based on
maximum likelihood estimators (MLES),with dispersion matrix is constructed. A hypothesis test-
ing procedure has been obtained for two parametric functions. Lastly, the simulation study of two
reliability procedures has been done and for the illustrative purposes real life data analysis is made.

Keywords: Generalized exponential distribution, point-estimation, interval-estimation, censoring
methods, testing of hypothesis

1. Introduction
In some life time situations the exponential distribution is not so good because of its memoryless

property. In the course of this process to study the life span of a product, the output will inevitably
change if there will be certain damages within its life span. As exponential distribution is not able
to withstand with these situations,a very significant distribution is introduced by Gupta and Kundu
(1999) known as generalized exponential distribution (GED(θ)). It overcomes the problems associ-
ated with one parameter exponential distribution without memory and GED also has many applica-
tions in engineering fields like mechanical reliability, survival analysis. GED has gained attention
among many distributions available in literature. In place of Weibull or Gamma distributions, Gupta
and Kundu (1999) has introduced GED as an alternative distribution in many problems. As is ana-
lyzed that the suggested GED posses various significant characteristics and in certain circumstances,
GED works better as compared to Weibull or Gamma distribution. Analysis of left censored data
from the generalized exponential distribution was considered by Mitra and Kundu (2008). Sarhan
(2007) has described the competing risk models of GED using censored and uncensored data. Kundu
and Gupta (2011) has modeled the reliability of the stress-strength model depending upon the GED.
Kundu and Pradhan (2009) has studied the performance of the GED parameter using hybrid censoring
scheme. Raqab and Ahsanullah (2001) has studied the GED parameters namely location and shape
with order statistics to analyses the performance. Kaushik et al. (2017) has considered the GED
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to the analyses the performance of parameters by using the progressive Type-I Censoring Scheme
possessing Random Removals and reference cited. We assume that, a complete sample is available
where the failure times of all n items are recorded. There are several situations, in which this is
neither possible nor desirable. The life testing experiment are destructive in nature and we cannot
reuse again. When we have failure censored samples, we put n products on trial and terminate the
trial when a preallocated count of products have failed say, r. When we have time censored samples,
putting n products on trial and terminate the trial at a preallocated time say, to. Many researchers
has discussed the modeling of R(t) as well as P under complete and censoring observations for the
point estimation in recent years. One can review, Pugh (1963), Bartholomew (1957, 1963), Johnson
(1975), Kelley et al. (1976), Tong (1974, 1975), Awad and Gharraf (1986), Chao (1982), Tyagi and
Bhattacharya (1989a,b), Chaturvedi and Rani (1997, 1998), , Chaturvedi et al. (2002), Chaturvedi
and Tomer (2002), Chaturvedi and Tomer (2002), Chaturvedi et al. (2019) and others.

The objective of the study is many-fold. Baklizi (2008) has worked on strength reliability to
obtain the likelihood as well as bayesian statistic on lower record values using one parameter gener-
alised exponential distribution and we have considered this distribution in our formulation. we have
incorporated point estimation procedure under two type of censoring viz., Type II and Type I. For
Type II censoring. authors have also derived UMVUEs and MLEs by new technique for calculating
both R(t) and Stress-Strength reliability. we have obtain confidence interval for Type II censoring for
θ, asymptotic confidence interval for P . In Bartholomew (1963) sampling technique, we have pro-
posed new technique for UMVUEs and MLEs for both R(t) and Stress-Strength reliability. we have
proposed hypothesis testing procedures. Section 2 includes the definitions and notations used in the
formation. In Section 3, we have considered the point estimation, derived the UMVUE and MLE for
power, R(t) and P under Type-II censoring, Exact confidence interval for θ and P are obtained. Type
I Censoring Scheme for Point Estimators under Bartholomew Scheme is considered, we deduced the
UMVUE and MLE for R(t) and P in Section 4. In Section 5, we have proposed hypothesis testing.
In Section 6, simulation results are drawn, validity of hypothesis testing procedures and practical and
real time values is considered, in Section 7 summary of results is presented and conclusion has been
done in Section 8.

2. Preliminaries, Notations and Definitions
Suppose X is random variable which follows one parameter generalized distribution having the

pdf and cdf as refereed in Baklizi (2008) can be defined

f(x; θ) = θe−x
(
1− e−x

)θ−1
, x > 0, θ > 0 (1)

and
F (x; θ) =

(
1− e−x

)θ
.

The reliability R(t) of an item, is the probability of failure free operation untill time t, reliability
function for a particular task at instant t is given by

R(t) = p(x > t)

= 1− F (t)

= 1−
(
1− e−t

)θ
. (2)

From (1) and (2), the hazard rate is given by

h(t) =
f (t)

R (t)

=
θe−x (1− e−x)

θ−1

1− (1− e−x)
θ

.
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In this paper, other reliability function is used which is described as the lifetime of an individual
under random strength variable X subjected to the random stress variable Y is called stress-strength
model. Whenever stress exceeds its strength then the failure of an item occurs, mathematically it is
expressed as P = P (X > Y ).In many practical situations like in engineering sciences, electrical and
electronic systems. Suppose X and Y follows GED(θ1) and GED(θ2). X and Y are independent,

P = P (X > Y )

=

∫ ∞

y=0

∫ ∞

x=y

f(x)f(y) dx dy

=
θ2

θ1 + θ2
.

3. Type II Censoring Scheme for Point Estimators
Consider n product under trial and after the first r product are recorded the trial is terminated. On

denoting 0 < X(1) ≤ X(2) ≤ ..... ≤ X(r), 0 < r < n, is taken as the first r product during lifetime.
Henceforth, (n-r) product retain until X(r). Before proving the main theorem of this section, we first
state Lemma.

Lemma 1 Let Sr =
∑r

i=1 yi+(n−r)yr. The Sr is complete and sufficient for the distribution which
is delineate in Eqn. (1). The pdf of Sr is

g(Sr, θ) =
Sr−1
r (θr) exp (−θSr)

Γ(r)
, Sr > 0. (3)

Proof: Rewrite Eqn. (1) as,

f(x; θ) = θ

(
e−x

1− e−x

)
e−θ(−ln(1−e−x)). (4)

From (4), the joint pdf of 0 < X(1) ≤ X(2) ≤ . . . ≤ X(n) is

f∗ (x(1), x(2), . . . , x(n); θ
)

= n!

n∏
i=1

θ

(
e−xi

1− e−xi

)
e−θ(−ln(1−e−xi))

f∗ (x(1), x(2), . . . , x(n); θ
)

= n!θn
n∏

i=1

(
e−xi

1− e−xi

)
e−θ

∑n
i=1(−ln(1−e−xi)).

Taking the transformation yi = −ln (1− e−xi). The Jacobian transformation is given by |J | =
1−e−xi

e−xi
. Then the joint pdf of Y(1), Y(2), . . . , Y(n) is

f∗∗ (y(1), y(2), . . . , y(n); θ) = n!θn
n∏

i=1

|J |
(

e−xi

1− e−xi

)
e−θyi

= n!θne(−θ
∑n

i=1 yi). (5)

By integrating the y(r+1), y(r+2), . . . , y(n) form Eqn. (5) for the region y(r) ≤ y(r+1) ≤ . . . ≤
y(n), the joint pdf of 0 < y(1) ≤ y(2) ≤ . . . ≤ y(r) is of the form Sinha (1968),

f∗∗∗ (y(1), y(2), . . . , y(r); θ) = n!

(n− r)!
θr
(
e−θSr

)
.

From Fisher-Neyman fractorization theorem Rohtagi (1976) and Eqn. (4) the value of Sr is suffi-
cient for the θ. Considering the transformation, U = −ln (1− e−xi), the pdf of U follows Exp( 1

α ).
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Suppose the modification is taken as Zi = (n− i+ 1)
(
U(i) − U(i−1)

)
, i = 1, 2, . . . , r,. Since∑r

i=1 Zi = Sr, Zi′s are independent and identically distributed random variable each having Exp(1).
Eqn. (4) follows the additive property of Gamma(Sr, θ) Johnson (1970). Although the distribution
of Sr belongs to the exponential family of distributions and is complete Rohtagi and Saleh (2012).

3.1. UMVUE

Theorem 1 For q∈ (−∞,∞), the UMVUE of θq is

θ̂qII =

{
Γ(r)

Γ(r−q)S
−q
r , r − q > 0

0 otherwise.
(6)

Proof: Using (3),

E
(
S−q
r

)
=

1

θΓ(r)

∫ ∞

0

Sr−q−1
r e(−θSr)dsr

=
θqΓ(r − q)

Γ(r)
, r > q

Lehmann-Scheffe theorem gives Rohtagi and Saleh (2012) and which follows Eqn. (6).

Theorem 2 The UMVUE of R(t) during instant t is

R̂II(t) =

 1− [

(
1 +

ln(1−e−t)
Sr

)r−1

], −ln (1− e−t) < Sr

0 otherwise

(7)

Proof: By the definition of reliability,

R(t) = 1− F (t)

= 1− (1− e−t)

= 1− e(θln(1− e−t))

= 1−
∞∑
i=0

(ln(1− e−t))i

i!
θiII .

Using the result of Theorem 1,

R̂II(t) = 1−
r−1∑
i=0

(ln(1− e−t))i

i!
θ̂iII

= 1−
r−1∑
i=0

(ln(1− e−t))i

i!

Γ(r)

Γ(r − i)
S−i
r

= 1−
r−1∑
i=0

(
r − 1

i

)
[
ln(1− e−t)

Sr
]i,

and hence the theorem is derived.

Corollary 1 The UMVUE of f (x; θ) at a particular point x is

f̂II(x; θ) =

{
(r − 1) [1 +

ln(1−e−x)
Sr

]r−2 e−x

Sr(1−e−x) , −ln (1− e−t) < Sr

0, otherwise.
(8)
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Proof: As F (x, Sr) = f (x, θ) g (Sr, θ) being a continuous function of (X,Sr) on rectangle [t,∞)
x [0,∞), using the Fubini’s theorem Bilodeau et al. (2010) the conditions are satisfied for the change

of order of integration. Suppose the expectation of the integral are considered
∫ ∞

t

f̂II (x; θ) dx w.r.t.

Sr then,

R̂II(t) =

∫ ∞

t

f̂II (x; θ) dx

or
−dR̂II(t)

dt
= f̂II(t; θ) (9)

applying Theorem 2 and Eqn. (9) and theorem follows.
Let X ∼ f1 (x; θ1) and Y ∼ f2 (y; θ2) be two I.D. random variables following the distributions

of classes respectively, where

f1II (x; θ1) =
θ1e

−x

1− e−x
e−θ1(−ln(1−e−x)), ;x > 0, θ1 > 0

and f2II (y; θ2) =
θ2e

−y

1− e−y
e−θ2(−ln(1−e−y)), ; y > 0, θ2 > 0.

Suppose n is the product of X and m is the product of Y which are kept on trial and r, s are the
stopping limits for X and Y , respectively.

Sr =

r∑
i=1

y1(i) + (n− r)y1(r)

Ts =

s∑
j=1

y2(j) + (m− s)y2(s).

By making the transformation,

Y1(i) = − ln
(
1− e−xi

)
; i = 1, 2, ..., r

Y2(j) = − ln
(
1− e−yj

)
; j = 1, 2, ..., s,

which determines the UMVUE of P in the following theorem.

Theorem 3 The UMVUE of P is given by

P̂II =


(s− 1)

∫ (ln(1−e−Ts ))−1
ln(1−e−Sr )

0
[1−

(
1−

zTs

Sr

)r−1

] (1− z)s−2 dz; − ln(1− e−Sr ) > − ln(1− e−Ts )

(s− 1)

∫ 1

0
[1−

(
1−

zTs

Sr

)r−1

] (1− z)s−2 dz; − ln(1− e−Sr ) < − ln(1− e−Ts ).

Proof: From Corollary 1,

f̂1II(x; θ1) = (r − 1) [1 +
ln (1− ex)

Sr
]r−2 ex

Sr (1− ex)
;− ln (1− ex) < Sr

and f̂2II(y; θ2) = (s− 1) [1 +
ln (1− ey)

Ts
]s−2 ey

Ts (1− ey)
;− ln (1− ey) < Ts
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using the similar argument adopted in Corollary 1,

P̂II =

∫ ∞

y=0

∫ ∞

x=y

f̂1II(x; θ1)f̂2II(y; θ2) dx dy

=

∫ ∞

y=0

R̂1II(y; θ1)

{
− d

dy
R̂2II(y; θ2)

}
dy

= (s− 1)

∫ ∞

M

[1− [

(
1 +

ln (1− e−y)

Sr

)r−1

]][1 +
ln (1− ey)

Ts
]s−2 ey

Ts (1− ey)
dy, (10)

where, M = max
(
−ln

(
1− e−Sr

)
,−ln

(
1− e−Ts

))
.

Using Theorem 2 and Eqn. (10) and putting z = ln(1−ey)
Ts

and hence Theorem 3 is derived.

Corollary 2 When X and Y belongs to the same families of distributions

P̂II =


(s− 1)

∫ Sr
Ts

0

[1−
(
1− zTs

Sr

)r−1

] (1− z)
s−2

dz; Sr < Ts

(s− 1)

∫ 1

0

[1−
(
1− zTs

Sr

)r−1

] (1− z)
s−2

dz; Sr > Ts.

3.2. MLE
From Eqn. (6) , the MLE of θ under Type II censoring is

θ̃ =
r

Sr
. (11)

Now, MLE is derived from the following theorem for power θ.

Theorem 4 The MLE of θ̃q , qϵ (−∞,+∞) is given by

θ̃qII =

(
r

Sr

)q

.

Proof: Using the Eqn. (11), invariant property of MLEs and the theorem follows.

Obtaining the MLE of R(t) is as follows.

Theorem 5 The MLE of R̃II(t) is delineate as,

R̃II(t) = 1−
(
1− e−t

) r
Sr .

Corollary 3

f̃II(x; θ) =
re−x

Sr(1− e−x)
e−

r
Sr

(−ln(1−e−x)).

Proof: Using the fact that
−d

dt
R̃II(t) = f̃II(x; θ)

and hence the theorem is derived.
MLE is derived from the following theorem for P .

Theorem 6 The MLE of P is given by

P̃II =
s

Ts

∫ ∞

0

(1− e
r
Sr

ln(y))z
s
Ts

−1dz.
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Proof: Using the similar argument as in Eqn. (10) and then theorem follows.

Theorem 7 The MLE of the pdf f(x; θ) at particular point x is delineate as

f̃(x; θ) =
r

Sr
e−x(1− ee

−x

).

Proof: Eqn. (9) has been used to solve the following theorem.

Corollary 4 When X and Y belong to same distribution, then the MLE of P

P̃II =
s
Ts

r
Sr

+ s
Ts

.

3.3. Under Type II censoring scheme: Exact confidence interval for MLE and UMVUE
In this section, we construct the problem of two-sided confidence interval for MLE of θ, using

the pivotal quantity 2θSr. By the definition chi-square which is mathematically written as

P
(
χ2 > χ2

α

)
=

∫ ∞

χ2
α

p
(
χ2
)
dχ2 = α, (12)

where p
(
χ2
)

is the probability distribution function of χ2−distribution with 2r degree of freedom.
We know that, 2θSr ∼ χ2

(2r) (.)

P
[
χ2
(2r)

(α
2

)
≤ χ2

(2r) ≤ χ2
(2r)

(
1− α

2

)]
= 1− α

P
[
χ2
(2r)

(α
2

)
≤ 2θSr ≤ χ2

(2r)

(
1− α

2

)]
= 1− α

P

[
2θr

χ2
(2r)

(
1− α

2

) ≤ r

Sr
≤ 2θr

χ2
(2r)

(
α
2

)] = 1− α.

Using Eqn. (12) one can find χ2
(2r)

(
1− α

2

)
and χ2

(2r)

(
α
2

)
with 2r df. Therefore, 100(1− α)%

confidence interval for MLE of θ is[
2θr

χ2
(2r)

(
1− α

2

) , 2θr

χ2
(2r)

(
α
2

)] .
Also we construct the confidence interval for MLE of reliability function, R(t). From Eqn.

(2), we know that, R(t; θ) is an increasing function θ and R̃II(t) = 1 − exp
(
θ̃MLEln (1− e−t)

)
.

Hence, 100(1− α)% confidence interval for MLE of R(t) is delineate as[
(1− (exp( 2rθ

χ2
2r(

α
2 )
ln(1− e−t)))), (1− (exp( 2rθ

χ2
2r(1−

α
2 )
ln(1− e−t))))

]
.

In order to construct the problem of two-sided confidence interval for UMVUE of θ, the unbiased
estimator of θ for UMVUE is given as θ̂ = r−1

Sr
. Proceeding in similar way as above, 100(1 − α)%

confidence interval for UMVUE of θ is of the form[
2(r−1)θ

χ2
2r(1−

α
2 )
, 2(r−1)θ

χ2
2r(

α
2 )

]
.

According to Theorem 2, we have

R̂UMV UE(t) = 1−

[(
1 +

ln (1− e−t)

Sr

)r−1
]

= 1−

[(
1 +

θ

r − 1
ln
(
1− e−t

))r−1
]
.
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Thus, 100(1− α)% confidence interval for UMVUE of R(t) is delineate as[
(1−

(
1 + 2θ

χ2
2r(

α
2 )
ln (1− e−t)

)r−1

), (1−
(
1 + 2θ

χ2
2r(1−

α
2 )
ln (1− e−t)

)r−1

)

]
.

Now we will next derive confidence interval for UMVUE and MLE for P .
Since θ̃1 = r

Sr
and θ̃2 = s

Ts
, and also P = θ2

θ1+θ2
⇒ P̃MLE = 1

θ̃1
θ̃2

+1
. By the independent

of two random quantities we have, θ̃1
Sr
r

θ̃2
Ts
s

∼ F2r,2s a scaled F distribution. It follows that P̃MLE =

1
θ̃1
θ̃2

F2r,2s+1
, by simple transformation techniques we obtained confidence interval for MLE of P as

P
[
F2r,2s

(
1− α

2

)
≤ F2r,2s ≤ F2r,2s

(α
2

)]
= 1− α

P

[
F2r,2s

(
1− α

2

)
≤

θ1
Sr

r

θ2
Ts

s

≤ F2r,2s

(α
2

)]
= 1− α

P

(rTsF2r,2s

(
α
2

)
sSr

+ 1

)−1

≤ θ2
θ1 + θ2

≤

(
rTsF2r,2s

(
1− α

2

)
sSr

+ 1

)−1
 = 1− α.

Therefore, 100(1− α)% confidence interval for MLE of P is delineate as(rTsF2r,2s

(
α
2

)
sSr

+ 1

)−1

,

(
rTsF2r,2s

(
1− α

2

)
sSr

+ 1

)−1
 .

Now we considered the problem of confidence interval for UMVUE of P , we know that

(s− 1)

∫ 1

0

[
1−

(
1− zTs

Sr

)r−1
]
(1− z)

s−2
dz; Sr > Ts.

Also,

θ̃1
Sr

r

θ̃2
Ts

s

∼ F2r,2s

P

[
F2r,2s

(
1− α

2

)
≤ θ1sSr

θ2rTs
≤ F2r,2s

(α
2

)]
= 1− α

or

P

[
θ2r

θ1s
F2r,2s

(
1− α

2

)
z ≤ Sr

Ts
z ≤ θ2r

θ1s
F2r,2s

(α
2

)
z

]
= 1− α

or

P

 (1− z)
s−2

[
1−

(
1− θ2r

θ1s
F2r,2s

(
1− α

2

)
z
)r−1

]
≤ (1− z)

s−2
(
1− Sr

Ts
z
)
≤

(1− z)
s−2

[
1−

(
1− θ2r

θ1s
F2r,2s

(
α
2

)
z
)r−1

]
 = 1− α.

Thus, 100(1− α)% confidence interval for UMVUE of P is delineate as (s− 1)

∫ 1

0

(1− z)
s−2

[1−
(
1− θ2r

θ1s
F2s,2r(1−

α

2
)z

)r−1

],

(s− 1)

∫ 1

0

(1− z)
s−2

[1−
(
1− θ2r

θ1s
F2s,2r(

α

2
)z

)r−1

]

 .

We can get the result when Sr < Ts in similar manner.
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4. Type I Censoring Scheme for Point Estimators
Let us denote 0 < X(1) ≤ X(2) ≤ . . . ≤ X(n) be the failure time of n product on trial from

equation (1). The trial starts instantly at X(0) = 0 and an organized scheme works till X(1) = x(1),
when the earliest failure occurs. The failed product is changed with a fresh product and the system
runs till the succeeding failure happens instantly at X(2) = x(2) and so on. The trial is terminated
instantly at particular t0. According to Bartholomew (1963), the count of failures that occurred in the
period 0 to to only were considered and neglected the duration when failures happened, it was also
denoted that the count of failures N (t0), under such plan, during the interval 0 to to has Pois(λ).
Before proving the main theorem of this section, we first state lemma.

Lemma 2 If N (t0) be the count of failures during the period 0 to to, then

P [N (t0) = r|t0] =
(
−nθ ln

(
1− e−t0

))r exp(−nθ ln (1− e−t0))

r!
. (13)

Proof: Let us make the transformation W1 = Y(1),W2 = Y(2) − Y(1), ...,Wn = Y(n) − Y(n−1).
The pdf of W1 is h(w1) = nθ ln(−nθw1). Although w2, w3, ..., wn are independent and identically
distributed as w1, using the monotonic property of − ln (1− e−x),

P [N (t0) = r|t0] = P
(
X(r) ≤ t0

)
− P

(
X(r+1) ≤ t0

)
= P [Yr ≤ −ln

(
1− e−t0

)
]− P [Yr+1 ≤ − ln

(
1− e−t0

)
]

= P [nθ

r+1∑
i=1

Wi ≥ −nθ ln
(
1− e−t0

)
]

−P [nθ

r∑
i=1

Wi ≥ −nθ ln
(
1− e−t0

)
]. (14)

According to the additive property of Expo(θ), Johnson and Kotz (1970), U = nθ
∑r

i=1 Wi follows
Gamma(u) with pdf

g(u) =
1

Γr
ur−1e−u;u > 0. (15)

By taking the result of Patel et. al. (1976) and (14), authors attain from (15) as

P [N (t0) = r|t0] =
1

Γ (r + 1)

∫ ∞

−nθ ln(1−e−t0 )

e−rurdu− 1

Γ (r)

∫ ∞

−nθ ln(1−e−t0 )

e−rur−1du

= exp
(
−nθ ln

(
1− e−t0

)) r∑
j=0

[−nθ ln (1− e−t0)]j

j!
−

r−1∑
j=0

(−nθ ln (1− e−t0))j

j!


and hence the lemma is obtained.

4.1. UMVUE

Theorem 8 For q∈ (0,∞), the UMVUE of θq is

θ̂qI =

{ r!
(r−q)! [−nθ ln (1− e−t0)]−q, r − q > 0

0 otherwise.
(16)

Proof: By using Neyman-Factorization theorem Rohtagi (1976) and Lemma 2 it signifies that r is
sufficient for evaluating θ. Also r is complete as the distribution of r pertains to exponential family
Rohtagi and Saleh (2012). Using the result as described below

E (r (r − 1) ... (r − q + 1)) =
(
−nθ ln

(
1− e−t0

))q
,

the theorem follows.
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Theorem 9 The UMVUE of R(t) at instant t is

R̂I(t) =


(
1−

(
1− ln(1−e−t)

n ln(1−e−t0 )

)r)
, ln (1− e−t) > n ln (1− e−t0)

0 otherwise.
(17)

Proof: By the definition of reliability, we have,

R(t) = 1−
(
1− e−t

)θ
= 1− exp

(
θ ln

(
1− e−t

))
= 1−

∞∑
j=0

θj (ln (1− e−t))
j

j!
.

Now, R̂I(t) = 1−
∞∑
j=0

θ̂jI (ln (1− e−t))
j

j!
.

Using Eqn. (16)we get,

R̂I(t) = 1−
r∑

j=0

(−1)
j

(
r

j

)(
ln (1− e−t)

n ln (1− e−t0)

)j

.

and the theorem is derived.

Corollary 5 The UMVUE of the sampled pdf at a particular point

f̂I(x; θ) =

 −re−x

n(1−e−x) ln(1−e−x)

(
1− ln(1−e−t)

n ln(1−e−t0 )

)r−1

, ln (1− e−x) > n ln (1− e−t0)

0 otherwise.

Proof: Theorem follows after adopting the similar fact as used in the proof of Corollary 1.
Now we discuss X and Y as two classes of distribution f̂I(x; θ1) and f̂I(y; θ2). Suppose n

product put on trial for X and m for Y . Termination time to for X and too for Y , before these
termination time r, s are the counts of failures respectively, where,

f̂I(x; θ1) =

 −re−x

n(1−e−x) ln(1−e−t0 )

(
1− ln(1−e−x)

n ln(1−e−t0 )

)r−1

, ln (1− e−x) > n ln (1− e−t0)

0 otherwise

and

f̂I(y; θ2) =

 −se−y

m(1−e−y) ln(1−e−t00 )

(
1− ln(1−e−y)

m ln(1−e−t00 )

)s−1

, ln (1− e−y) > m ln (1− e−t00)

0 otherwise.

The following theorem is based on UMVUE of P under Type I censoring scheme.

Theorem 10 The UMVUE of P is given by

P̂I =



s

∫ n ln(1−e−t0)(m ln(1−e−t00))
−1

0

(1− z)
s−1

(
1−

(
1− m ln (1− e−t00) z

n ln (1− e−t0)

)r)
dz;

n ln (1− e−t0) > m ln (1− e−t00)

s

∫ 1

0

(1− z)
s−1

(
1−

(
1− m ln (1− e−t00) z

n ln (1− e−t0)

)r)
dz;

n ln (1− e−t0) < m ln (1− e−t00)
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Proof: Using the similar arguments which are adopted in Theorem 3, we have

P̂I =

∫ ∞

y=0

∫ ∞

x=y

f̂1I(x; θ1)f̂2I(y; θ2) dx dy

=

∫ ∞

y=0

R̂1I(y; θ1)

{
− d

dy
R̂2I(y; θ2)

}
dy

= (s− 1)

∫ ∞

max(n ln(1−e−t0 ),m ln(1−e−t00 ))

(
1−

(
1− ln (1− e−y)

n ln (1− e−t0)

)r)
−se−y

m (1− e−y) ln (1− e−t00)

(
1− ln (1− e−y)

m ln (1− e−t00)

)s−1

dy

Putting z =
ln(1−e−y)

m ln(1−e−t00 )
we get the two cases and theorem follows.

Corollary 6 When t0 = t00, X and Y belong to same distribution is delineate as

P̂I =


s

∫ n
m

0

(1− z)
s−1

(
1−

(
1− mz

n

)r)
dz; m > n

s

∫ 1

0

(1− z)
s−1

(
1−

(
1− mz

n

)r)
dz; m < n

Proof: When m is greater than n and m is less than n, using Theorem 10 and both the assertion
follows.

4.2. MLE
Under the sampling scheme of Bartholomew (1963), it follows from Eqn. (12) that

θ̃I =

(
−r

n ln (1− e−t0)

)
. (18)

The following theorem of MLE of power is as under

Theorem 11 For q∈ (−∞,∞), the MLE of θq is

θ̃qI =

(
−r

n ln (1− e−t0)

)
.

Proof: To obtain the power estimate we differentiate w.r.t. θ and equate it to zero after taking
logarithm of Lemma 2.

In preceding theorem the MLE of R (t) is proved.

Theorem 12 The MLE of R(t) is given by

R̃I(t) =

1−
(
1− e−t

)( −r

n ln(1−e−t0)

) .

Proof: Using Eqn. (18), one-to-one and invariant property of MLE and hence the theorem is
derived.

Corollary 7 At a particular point x, the MLE of f (x; θ) is given as

f̃I (x; θ) =

{
re−x

n ln(1−e−t0 )
(1− e−x)

(
r

[−n ln(1−e−t0)]

)
−1

.
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The MLE of P is proved in the following theorem.

Theorem 13 The MLE of P is given by

P̃I =
s

m ln (1− e−t00)

∫ ∞

0

1− z

(
r

[−n ln(1−e−t0)]

) z

(
r

[−n ln(1−e−t0)]

)
−1

.

Proof: Here,

P̃I =

∫ ∞

y=0

∫ ∞

x=y

f̃1I(x; θ1)f̃2I(y; θ2) dx dy

=

∫ ∞

y=0

R̃1I(y; θ1)

{
− d

dy
R̃2I(y; θ2)

}
dy

=
s

m ln(1− e−t00)

∫ ∞

y=0

(
1−

(
1− e−y

) r

[−n ln(1−e−t0)]
)
e−y

(
1− e−y

) s

[−m ln(1−e−t00)]
−1

dy

Putting 1− e−y = z, the theorem follows.

Corollary 8 When X and Y have same family of distribution, we have

P̃I =

{ s

mln(1−e−t00)
r

nln(1−e−t0)
+ s

mln(1−e−t00)
.

5. Hypotheses Testing
In the following section, we consider an essential hypothesis in life testing experiments, H0 :

θ = θ0 against H1 : θ ̸= θ0. Based on Eqn. (6) the likelihood function observing θ, Sinha (1968) is
given by

L (θ|x) = n!

(n− r)!
θrexp (−θSr) . ∀x =

(
x(1), x(2), ....., x(r)

)
Under H0,

sup
Θ0

L (θ|x) = n!

(n− r)!
θr0exp (−θ0Sr)

and when θ = r
Sr

then,

sup
Θ

L (θ|x) = n!

(n− r)!

(
r

Sr

)r

exp (−r) .

The likelihood ratio is delineate as

λ (x) =
supΘ0

L (θ|x)
supΘ L (θ|x)

=

(
θ0Sr

r

)r

exp (−θ0Sr + r) . (19)

It is seemed from term Ist and 2nd on the right hand side of Eqn. (19) are monotonically increasing
and decreasing in Sr respectively. χ2

2r (.), is indicated as the test statistic chi-square having degrees
of freedom 2r and furthermore 2θ0Sr ∼ χ2

2r, the critical region is delineate as

{0 < Sr < k0}
∪{

k
′

0 < Sr < ∞
}
,
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where k0 = 1
2θ0

χ2
2r

(
1− α

2

)
and k

′

0 = 1
2θ0

χ2
2r

(
α
2

)
are obtained such that

P
[
χ2
2r < 2θ0k0 or 2θ0k

′

0 < χ2
2r

]
= α.

Likewise, it can be shown that under Type I censoring Bartholomew (1963) sampling scheme, the
uniform most powerful critical region for testing H0 : θ = θ0 vs H1 : θ ̸= θ0 is given

(r < k1 or r > ḱ1), r ∼ Poisson
(
−nθ ln

(
1− e−t0

))
.

Further, let we test the null hypothesis H0 : θ ≤ θ0 against H1 : θ > θ0.
For θ1 < θ2, using Eqn. (6) we have,

λ (x) =

(
θ2
θ1

)r

exp (− (θ2 − θ1)Sr) . (20)

It has been observed from Eqn. (20) that the family of sampled pdf has monotonic likelihood in (Sr).
Hence, the uniformly most powerful critical region for testing H0 against H1 is given by Lehmann
(1959)

λ
(
x(1), x(2), . . . , x(r)

)
=

{
1, Sr ≤ ´́

k0
0 otherwise.

where ´́
k0 =

(
1

2θ0
χ2
(2r)

(
1− ´́α

))
is achieved such that P

[
χ2
(2r) < θ02

´́
k0

]
= ´́α.

Similarly, it is shown by using Eqn. (13), the uniformly most powerful critical region for testing
H0 : θ ≤ θ0 against H1 : θ > θ0 under Type I censoring scheme as,

λ (r) =

{
1, r ≤ ´́

k1
0 otherwise

where ´́
k1 is obtained such that P

[
r <

´́
k1

]
= β.

In order to test the null hypothesis P0 : θ = θ0 against P1 : θ ̸= θ0 under Type II censoring. It
shows that H0 : θ1 = δθ2 against H1 : θ1 ̸= δθ2. Under H0, θ̂1II = δ(r+s)

δSr+Ts
and θ̂2II = r+s

δSr+Ts
.

For generic constant η, the likelihood of sampled observation x =
(
x(1), x(2), . . . , x(r)

)
and y =(

y(1), y(2), . . . , y(r)
)

is

L (θ1, θ2|xy) = Kθr1θ
r
2exp (− (θ1Sr + θ2Ts)) .

Under H0,

sup
Θ0

L (θ1, θ2|xy) =
Kexp (− (r + s))(

Sr +
Ts

δ

)r+s (21)

Also for whole parametric space Θ={(θ1, θ2) /θ1, θ2 > 0},

sup
Θ

L (θ1, θ2|xy) =
Kexp (− (r + s))

Sr
rT

s
s

. (22)

Using Eqns. (21) and (22), the likelihood ratio criterion is

λ∗ (θ1, θ2|xy) = K

(
Sr

δTs

)r
1(

δ Sr

Ts
+ 1
)r+s .
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Furthermore,

Sr

Ts
∼ rθ2

sθ1
F2r,2s (.) ,

where Fa,b (.), is the statistic for F having degree of freedom (a, b) .

The critical region is delineate as
({

Sr

Tr
< k2

}∪{Sr

Tr
> ḱ2

})
, where k2 and ḱ2 are achieve so

that

P

(
δsSr

rTs
< F2r,2s

∪ δsSr

rTs
> F2r,2s

)
= ´́α,

where, ´́
k2 = r

δsF2r,2s

(
1− ´́α

2

)
and

´́
ḱ2 = r

δsF2r,2s

(
´́α
2

)
.

Now, considering the case when, H0 : θ = θ0 against H1 : θ = θ1. Based on Eqn. (6) the
likelihood function observing θ is delineate as

L (θ|x) = n!

(n− r)!
θrexp (−θSr) . ∀x =

(
x(1), x(2), ....., x(r)

)
Under H0,

L (θ0|x) =
n!

(n− r)!
θr0exp (−θ0Sr)

and under H1, then,

L (θ1|x) =
n!

(n− r)!
θr1exp (−θ1Sr) .

Suppose m be any positive number. Let C be the set of points where

L (θ0|x)
L (θ1|x)

which provide,

Sr ≤ log(m)

(θ1 − θ0)
+

rlog
(

θ1
θ0

)
(θ1 − θ0)

.

When θ1 > θ0,

Sr ≥ 1

(θ1 − θ0)

(
log(m) + rlog

(
θ1
θ0

))
= a, (23)

and when θ1 < θ0,

Sr ≤ 1

(θ1 − θ0)

(
log(m) + rlog

(
θ1
θ0

))
= b. (24)

Considering case when θ1 > θ0, form (23), the set C = {(x1, x2, ..., xn) : Sr ≥ a} is a best
critical region (BCR)for testing H0 against H1. The constant a can be determined so that the size of
BCR is α. Using the fact that 2θSr ∼ χ2

2r,
∴

{Sr ≥ c} =
{
χ2
2r ≥ 2θc

}
. (25)
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Determine the size of the test α and power of test (1− β). Let F be the CDF of χ2
2r then using (25)

α = P {Xϵc|H0} = 1− F (2θ0a), (26)
also, 1− β = P {Xϵc|H1} = 1− F (2θ1a). (27)

Knowing α, 2θ0a is determined and hence a form (26). This value of a then determine power
of the test from (27). Now, case when θ1 < θ0, form (24), the set C = {(x1, x2, ..., xn) : Sr ≤ b} is
a best critical region (BCR)for testing H0 against H1. The constant b can be determined so that the
size of BCR is α. Using the fact that 2θSr ∼ χ2

2r,
∴

{Sr ≤ c} =
{
χ2
2r ≤ 2θc

}
.

Determine the size of the test α and power of test (1− β). Let F be the CDF of χ2
2r then using (25)

α = P {Xϵc|H0} = 1− F (2θ0b), (28)
also, 1− β = P {Xϵc|H1} = 1− F (2θ1b). (29)

Knowing α, 2θ0b is determined and hence b form (28). This value of b then determine power of the
test from (29). Using χ2

n variate table.

6. Simulation Result
In this simulation section, Figures 1, 2, 3, demonstrate the shape of the proposed density func-

tion, cdf and its hazard function for different parameter values. Authors have preformed simulation
to investigate and make a comparative analysis for UMVUE & MLE of power, reliability R(t) and
stress-strength reliability P (X > Y ) estimates under Type II & I censoring schemes. Firstly, con-
sidering Type II censoring scheme, taking n = 50, θ = 1, using inverse transformation method and
Eqn. (2) we generate 10000 random samples to obtain an average estimate, average bias and mean
square error(MSEs) for power, reliability R(t) and stress-strength reliability P (X > Y ) is construct
on the UMVUE and MLE under types II and I censoring schemes. Taking q = 0.5, r = 35, power
estimate for UMVUE and MLE under Type II censoring scheme, true value = 1.0000, UMVUE
(0.9988,−0.0012, 0.0073) and MLE (1.0097, 0.0097, 0.0075). Note that in parentheses first term is
average estimate, second term is average bias and third term is MSE. Again, for different values of
r = 10, 20, 35, t = 1, 1.5, 2, 2.5, we obtain the reliability estimate for UMVUE and MLE under Type
II censoring scheme and its result is shown in Table 1.

Now, by generating the 10000 random samples, form each population of X and Y with (n =
m = 50) sizes, by considering the inverse transformation technique and Eqn. (2) for (θ1, θ2) =
(1, 1), (1, 1.5), (1, 2), (1.5, 2), (2, 1.5). We compute the stress-strength reliability for UMVUE and
MLE under Type II censoring scheme for different values of r = s = 10, 20, 35, see Table 2. In the
similar manner, we have preformed the simulation of power, reliability and stress- strength reliability
estimates for UMVUE & MLE under Type I censoring scheme. Power estimate under Type I cen-
soring scheme, we compute as the true value = 1.0000, UMVUE (1.0048, 0.0048, 0.0038) and MLE
(1.0003, 0.0003, 0.0038) for n = 50, θ = 1, to = 0.84, q = 0.5. Again, computing the reliability
function R(t) for UMVUE & MLE under Type I censoring scheme, we considered the parameter as
n = 50, θ = 1.5, t = 1, 0.5, 2, 2.5, to = 0.65, 0.80, 1, where to is the termination time which is
fixed. If to is the instant termination and also fixed then we get the r value. Also replace the failure
by operating a new value, see Table 3.

In order to investigate the strength reliability for UMVUE & MLE under Type I censoring
scheme, we introduce two cases as (n > m) i.e., n = 50,m = 40, (n < m) i.e., n = 40,m = 50.
The 10000 random sample are generated from Eqn. (2) & using inverse transformation method with
θ1 = θ2 = (1, 1), (1, 1.5), (1, 2), (1.5, 2), (2, 1.5). The value of r (before time to the number of
failures in X) is obtained by fixing the termination time to and replacing the failure by operating
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a new one. Similarly the values of s is evaluated by fixing the termination time at too in Y. Tak-
ing to = too = 0.65, 0.80, 1, we find the average estimate, average bias and MSE for case I when
(n > m) and case II (n < m) as shown in Tables 4 and 5.

Table 1 Performance of the R(t) estimates under Type II when θ = 1

r 10 20 35

t RII(t) R̂II(t) R̃II(t) R̂II(t) R̃II(t) R̂II(t) R̃II(t)

1 0.3679 0.3671 0.3895 0.3679 0.3791 0.3675 0.3739
-8e-04 0.0216 0.0000 0.0112 -4e-04 0.006
0.0095 0.0101 0.0045 0.0047 0.0025 0.0025

1.5 0.2231 0.2229 0.2409 0.2238 0.2326 0.2227 0.2277
-2e-04 0.0178 6e-04 0.0094 -4e-04 0.0045
0.0044 0.0052 0.0021 0.0023 0.0011 0.0012

2 0.1353 0.1345 0.147 0.1351 0.1411 0.1351 0.1385
-8e-04 0.0117 -2e-04 0.0058 -3e-04 0.0031
0.0018 0.0022 0.0012 0.0015 0.0010 0.0009

2.5 0.0821 0.0828 0.091 0.0819 0.0858 0.0821 0.0843
7e-04 0.0089 -2e-04 0.0037 0.000 0.0022
0.0015 0.0019 0.0011 0.0014 0.0007 0.0005

Note: Second column represents the true value while third, fifth, seventh
column corresponds the results for UMVUE and forth, sixth, eight column
corresponds the results for MLE. In each cell, the average length, average
bias are provided and the corresponding MSE (in bold) respectively.

Table 2 Performance of the P (X > Y ) estimates under Type II

r=s 10 20 35

[θ1, θ2] PII P̂II P̃II P̂II P̃II P̂II P̃II

[1, 1] 0.5 0.4987 0.4996 0.4997 0.4997 0.5003 0.5003
-0.0013 -4e-04 -3e-04 -3e-04 3e-04 3e-04
0.0129 0.0121 0.0064 0.0061 0.0036 0.0035

[1,1.5] 0.6 0.6487 0.6542 0.6173 0.6146 0.5818 0.5807
0.0487 0.0542 0.0173 0.0146 -0.0182 -0.0193
0.0081 0.0107 0.0049 0.0046 0.0032 0.0031

[1,2] 0.6667 0.7000 0.7294 0.6791 0.6754 0.6310 0.6292
0.0334 0.0627 0.0125 0.0088 -0.0357 -0.0374
0.0032 0.0091 0.0036 0.0035 0.0036 0.0037

[1.5,2] 0.5714 0.5920 0.5889 0.5683 0.5666 0.5506 0.5499
0.0205 0.0174 -0.0031 -0.0048 -0.0208 -0.0215
0.0059 0.0056 0.0032 0.0031 0.0024 0.0024

[2,1.5] 0.4286 0.4070 0.4117 0.4325 0.4342 0.4494 0.4501
-0.0215 -0.0169 0.0040 0.0057 0.0208 0.0215
0.0063 0.0056 0.0032 0.0030 0.0025 0.0025

Note: Second column represents the true value while third, fifth, seventh column corre-
sponds the results for UMVUE and forth, sixth, eight column corresponds the results for
MLE. In each cell, the average length, average bias are provided and the corresponding
MSE (in bold) respectively.
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Table 3 Performance of the R(t) estimates under Type I when θ = 1.5

to 0.65 0.80 1

t RI(t) R̂I(t) R̃I(t) R̂I(t) R̃I(t) R̂I(t) R̃I(t)

1 0.4974 0.1857 0.1847 0.2709 0.2692 0.3971 0.3940
-0.3117 -0.3128 -0.2265 -0.2283 -0.1003 -0.1034
0.0983 0.0990 0.0529 0.0537 0.0119 0.0125

1.5 0.3153 0.1072 0.1068 0.1586 0.1580 0.2424 0.2413
-0.2081 -0.2084 -0.1566 -0.1572 -0.0728 -0.0740
0.0437 0.0439 0.0251 0.0253 0.0062 0.0063

2 0.1960 0.0629 0.0628 0.0950 0.0948 0.1472 0.1468
-0.1331 -0.1332 -0.1010 -0.1012 -0.0488 -0.0492
0.0179 0.0179 0.0104 0.0105 0.0027 0.0028

2.5 0.1206 0.0376 0.0376 0.0570 0.0570 0.0897 0.0896
-0.0829 -0.0830 -0.0636 -0.0636 -0.0308 -0.0310
0.0069 0.0069 0.0041 0.0041 0.0011 0.0011

Note: Second column represents the true value while third, fifth, seventh column cor-
responds the results for UMVUE and forth, sixth, eight column corresponds the results
for MLE. In each cell, the average length, average bias are provided and the corre-
sponding MSE (in bold) respectively.

Table 4 Performance of the P (X > Y ) estimates under Type I when (n > m)

to = too 0.65 0.80 1

[θ1, θ2] PI P̂I P̃I P̂I P̃I P̂I P̃I

[1,1] 0.5 0.4982 0.4994 0.4995 0.5005 0.5000 0.5009
-0.0018 -6e-04 -5e-04 5e-04 0.0000 9e-04
0.0040 0.0040 0.0031 0.0031 0.0024 0.0024

[1,1.5] 0.6 0.6114 0.6128 0.5993 0.6004 0.5862 0.5872
0.0114 0.0128 -7e-04 4e-04 -0.0138 -0.0128
0.0048 0.0048 0.0036 0.0035 0.0029 0.0029

[1,2] 0.6667 0.7002 0.7016 0.6750 0.6762 0.6513 0.6522
0.0336 0.0349 0.0083 0.0095 -0.0154 -0.0144
0.0062 0.0063 0.0041 0.0041 0.0033 0.0032

[1.5,2] 0.5714 0.5978 0.5999 0.5835 0.5851 0.5689 0.5702
0.0263 0.0285 0.0120 0.0137 -0.0025 -0.0012
0.0086 0.0087 0.0056 0.0056 0.0039 0.0039

[2,1.5] 0.4286 0.4017 0.4039 0.4156 0.4173 0.4307 0.4320
-0.0269 -0.0247 -0.0129 -0.0112 0.0021 0.0034
0.0082 0.0081 0.0054 0.0054 0.0037 0.0037

Note: Second column represents the true value while third, fifth, seventh column corre-
sponds the results for UMVUE and forth, sixth, eight column corresponds the results for
MLE. In each cell, the average length, average bias are provided and the corresponding
MSE (in bold) respectively.
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Table 5 Performance of the P (X > Y ) estimates under Type I when (n < m)

to = too 0.65 0.80 1

[θ1, θ2] PI P̂I P̃I P̂I P̃I P̂I P̃I

[1,1] 0.5 0.5010 0.4998 0.5006 0.4996 0.5009 0.5001
0.0010 -2e-04 6e-04 -4e-04 9e-04 1e-04
0.0039 0.0039 0.0031 0.0031 0.0024 0.0024

[1,1.5] 0.6 0.6114 0.6101 0.5982 0.5971 0.5863 0.5854
0.0114 0.0101 -0.0018 -0.0029 -0.0137 -0.0146
0.0045 0.0045 0.0035 0.0035 0.0028 0.0028

[1,2] 0.6667 0.7028 0.7014 0.6762 0.6750 0.6510 0.6500
0.0361 0.0347 0.0095 0.0084 -0.0157 -0.0166
0.0059 0.0058 0.0038 0.0038 0.0030 0.0031

[1.5,2] 0.5714 0.5978 0.5956 0.5824 0.5807 0.5699 0.5686
0.0264 0.0242 0.0109 0.0093 -0.0015 -0.0028
0.0082 0.0081 0.0054 0.0054 0.0036 0.0037

[2,1.5] 0.4286 0.4022 0.4000 0.4167 0.4150 0.4318 0.4304
-0.0264 -0.0286 -0.0119 -0.0136 0.0032 0.0019
0.0086 0.0087 0.0057 0.0057 0.0038 0.0038

Note: Second column represents the true value while third, fifth, seventh column corre-
sponds the results for UMVUE and forth, sixth, eight column corresponds the results for
MLE. In each cell, the average length, average bias are provided and the corresponding
MSE (in bold) respectively.

6.1. Validation of hypothesis testing
In this section we build out the validation of the theory which is derived in Section 5. Suppose

first we want to test the hypothesis under Type II censoring scheme as H0 : θ = θ0 against H1 : θ ̸=
θ0, sample are generated from Eqn. (1) taking n = 40, r = 30, θ1 = 1.5 as follows

Table 6 Generated Sample 1

0.0478, 0.0529, 0.1260, 0.1642, 0.1709, 0.1806, 0.3640, 0.3785, 0.3931, 0.4144, 0.4864, 0.5448,
0.6121, 0.6481, 0.6716, 0.6974, 0.7229, 0.8168, 0.9850, 1.0325, 1.0645, 1.1104, 1.1837, 1.1948,
1.2401, 1.2920, 1.4009, 1.4258, 1.5010, 1.5619, 1.6153, 1.9643, 2.0013, 2.1749, 2.2443, 2.3357,
2.6386, 2.7677, 2.7728, 5.3331.

Using Table 6, it has been seen that after finding k0 = 20.24 and ḱ0 = 41.65 from the tabulated
value of chi-square with significance level at 5%, we accept H0 as S35 = 38.5338 lie between k0
and ḱ0. Further from Table 6, considered the hypothesis test as H0 : θ ≤ θ0 against H1 : θ > θ0,

we accept the null hypothesis H0 as S35 = 38.5338 lie between ´́
k0 and ḱ0 whereas the value of

´́
k0 = 21.595 using tabulated value of chi-square with significance level at 5%. Now, considered the
hypothesis test as P0 : θ = θ0 against P1 : θ ̸= θ0 under Type II censoring scheme, sample are
generated from equation (1) taking m = 50, s = 35, θ2 = 2 as follows
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Table 7 Generated Sample 2

0.0979, 0.3288, 0.4216, 0.4366, 0.4587, 0.6391, 0.6541, 0.6673, 0.7028, 0.7318, 0.9147, 0.9235,
0.9796, 1.0132, 1.0385, 1.1037, 1.3259, 1.3926, 1.4049, 1.4109, 1.4627, 1.5054, 1.5434, 1.6129,
1.7311, 1.7328, 1.8159, 1.8532, 1.9057, 1.9151, 1.9665, 1.9877, 2.0265, 2.0302, 2.1835, 2.2211,
2.2614, 2.2678, 2.3347, 2.5671, 2.6678, 2.6773, 3.0340, 3.1324,3.3520, 3.4555, 3.6034, 3.6691,
4.3513, 4.8568.

From Tables 6 and 7, the ratio S30/T35 = 0.5028 is lie between ´́
k2 = 0.2314 and

´́
ḱ2 = 0.6183,

we accept the null hypothesis H0 using F-table at 5% level of significance as Ts = 76.6353.

6.2. Real data
In this section, authors has analyzed two real data sets. Firstly, considering the data set 1 which

is used by Nichols and Padgett (2006) formally after that many authors introduced this data set in
their study. The data consisting of 100 observations on breaking stress of carbon fibers (in Gba) as
follows

Table 8 Real Data Set I

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87,
3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31,
3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36,
0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17,
5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,
1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65.

Table 9 Real Data Set II

0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11,
0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52,
0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,
0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33,
1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81,
2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

Ramos and Louzada (2016) has considered this data set 1 for the EIW distribution. In this
context, we have considered data set 1 to check whether the one parameter generalized exponential
distribution fits or not by utilizing the Kolmogorov-Smirnov (K-S)test which gives us, the MLE of
unknown parameter (θ̃), Log-Likelihood, Kolmogorov-Smirnov (K-S)distances and p-value are pre-
sented as (7.5976, -146.1937, 0.09563, 0.3198). It shows that one parameter generalized exponential
distribution fits the data set 1. Furthermore, the plot of the empirical cumulative distribution and the
fitted one parameter generalized exponential distribution for data set 1 as shown in Figure 4.

For Real Data analysis given in Table 8, power estimate and reliability estimate under Type
II censoring scheme, true estimate (1.0000), UMVUE (0.9828, -0.0172, 0.0003), MLE (0.9830, -
0.0170, 0.0003) and true estimate (0.0821), UMVUE (0.0810, -0.0692, 0.0048), MLE (0.0801, -
0.0689, 0.0047). Similarly, power estimate and reliability estimate under Type I censoring scheme,
true estimate (1.0000), UMVUE (1.0264, 0.0264, 0.0007), MLE (1.0203, 0.0203, 0.0004) and true
estimate (0.1206), UMVUE (0.1035, -0.0170, 0.0003), MLE (0.1033, -0.0173, 0.0003). Similarly, for
data set 2 which is given in Table 9, is describe the stress rupture life of kevlar 49 per epoxy stands



Sumit Koul and Ajit Chaturvedi 287

failure at 90 percent stress level used by Andrews and Herzberg (1985) and Barlow et al. (1984).
GED has fit well as the MLE of unknown parameter (θ̃), Log-Likelihood, Kolmogorov-Smirnov
(K-S)distances and p-value are presented as (0.9289, -103.2288, 0.09152, 0.2390). Graphical repre-
sentation of data set 2 is shown in Figure 5. For Real Data analysis given in Table 9, power estimate
and reliability estimate under Type II censoring scheme, true estimate (1.0000), UMVUE (1.0013,
0.0013, 0.0003), MLE (1.0029, 0.0029, 0.0002) and true estimate (0.0821), UMVUE (0.0832, 0.0011,
0.0003), MLE (0.0855, 0.0034, 0.0002). Similarly, power estimate and reliability estimate under
Type I censoring scheme, true estimate (1.0000), UMVUE (0.9177, -0.0823, 0.0068), MLE (0.9155,
-0.0845, 0.0071) and true estimate (0.1206), UMVUE (0.1143, -0.0062, 0.1e-03), MLE (0.1141,
-0.0063, 1e-04).

7. Summary of Results
The analysis of various estimators has been considered in this study which is based on the MSEs.

The Table 1 depicts that for lesser values of t, the result of UMVUE is preforming better than the
MLE of R(t) under Type II censoring scheme. This is also analyzed that the bigger values of t MLE is
giving better results than UMVUE of R(t) under Type II censoring scheme, while this also analyzed
that in case of larger value of r both estimators have same performance. Table 1 shows that with the
increase in the value of r the value of MSEs with respect to both estimators is decreasing. As describe
in Table 2 the performance of UMVUE is not better as compare to the results of MLE for different
values of (r, s). As far as the results of Type I censoring scheme are concerned, a very important
sampling scheme is introduced in this censoring scheme known as Bartholomew (1963). According
to this Type I censoring scheme as depicted from Table 3 for lesser values of t and different values
of to (termination time), UMVUE gives better results as that of MLE. Similarly, for lesser values
of to i.e. termination time and different values of t. UMVUE and MLE are equally efficient. It is
also shown from Table 3 that when the to is equal to one and for different values of t, the bias and
MSEs showing far better result than other values of to. Hence proves the significance of Bartholomew
(1963) scheme. In Table 4 it is inferred that at the larger values of too and to, the MSEs shows better
result for Stress-strength reliability for UMVUE and MLE, when n= 50 and the value of m is small.
Also in Table 5 same results have been discussed that at the larger values of too and to, the MSEs
shows better result for Stress-strength reliability for UMVUE and MLE, when value of n is small and
m = 50.

8. Conclusion
The contribution of this paper deals with the the estimation and testing procedures for two reli-

ability functions viz., R(t) and P = P (X > Y ) of one parameter of Generalized Exponential Dis-
tribution(GED)under Type II and Type I censoring scheme. As far as point estimation is concerned,
the two reliability measures namely as R(t) and P = P (X > Y ) are derived for UMVUE and MLE
under Type II and I censoring scheme.The exact confidence interval are obtained under Type II cen-
soring scheme.Developing different hypothesis procedures under both types of censoring scheme. In
this study an estimators are derived from UMVUE and MLE under Type II and Type I censoring
scheme and the comparison has been made among these estimators using Manto Carlo simulation.
The validity of various hypothesis procedures has been done and real data study is analyzed.
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