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Abstract
In the last few decades, copula distribution has become one of the most popular methods to

construct bivariate distributions in literature. This paper introduces a new bivariate Inverse Lindley
distribution based on the Farlie-Gumbel-Morgenstern (FGM) copula. We study essential mathemat-
ical properties and it’s application. We have been using the conditional copula distribution method
to generate random numbers. Estimation of the parameters for bivariate Inverse Lindley distribution
is obtained through maximum likelihood estimation. An example of a real data set is introduced to
illustrate the proposed model.

Keywords: Bivariate inverse Lindley distribution, copula, Farlie-Gumbel-Morgenstern copula,
maximum likelihood estimate

1. Introduction
It is essential to note that lifetime distributions play a vital role in analyzing the lifetime data

in several areas such as medical, engineering, hydrology, etc. Knowing that lifetime distribution’s
ability to fit the data is also different, the need appears to deal with varying lifetime distributions and
compare them based on various criteria to access the most suitable model that fits the data.

In some exceptional cases, we have to deal with two associated lifetime T1 and T2 whose
marginals are well defined; for example, it may be of interest in studying human organs associated
with such as kidney, eyes, lungs, for more detail you can refer Rinne (2008), Bhattacharjee and Misra
(2016) and Achcar et al. (2015). The importance of bivariate distributions arises from the ability
to cope with different kinds of data which has a parallel clustered system and more than one failure
without any order restriction Vincent Raja and Gopalakrishnan (2017). In general, we can notice from
the literature that authors derive the bivariate distributions from widespread baseline distribution like
Weibull, exponential, Gamma, Pareto, etc.

We can realize that using a standard baseline distribution like Weibull, exponential and Pareto
restricted to deal with data that shows non-monotone shapes such as an upside-down bathtub (UBT).
In contrast, the significance of inverse distribution raising from the capability to model the upside-
down bathtub since its hazard rate displayed the UBT shapes. Accordingly, several authors discussed
the inverse distribution and analyzed different data sets showing the (UBT) shapes for the hazard rate
for more details see Guo and Gui (2018) and Sharma et al. (2014).

There are various ways of eliciting the bivariate distributions such as Marginal Transformation
Method, Copula Method, Conditional Specification Method, and Frailty Approach; further details re-
garding the methods of establishing bivariate distribution can be found in Vincent Raja and Gopalakr-
ishnan (2017) and Pathak and Vellaisamy (2020).
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The copula function is one of the recent topics in statistics; the importance of copula arises
as an efficient tool for modeling bivariate and multivariate distributions with broad applications in
economics, financial, hydrology and medical data. A copula is a multivariate distribution function
whose one-dimension margins are uniform on the interval [0, 1]. Here our attention is exclusively on
the bivariate copula distribution.

Characterization: C : [0, 1]d → [0, 1] is a copula if and only if for every u, v ∈ [0, 1]
C(u, 0) = 0 = C(0, v) [Grounded minimum], C(u, 1) = u;C(1, v) = v [Grounded maximum],
for every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2
C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) > 0 (2 increasing).

Let X and Y be random variables with joint distribution function F , f density function and
marginals F (X) and F (Y ) respectively. Sklar (1959) defines copula as a function, which can join
or link the joint distribution function to its marginal distribution function via the relation F (x, y) =
P (X ≤ x, Y ≤ y) = C(F (x), F (y)) and the associated joint density is f(x, y) =
c(F (x), F (y))f(x)f(y), where c is copula density.

In the statistical literature, many authors used copula structure to establish and model bivari-
ate distribution. Kundu and Gupta (2011) construct an absolute continuous bivariate generalized
exponential distribution derived on the Clayton copula, also Kundu and Gupta (2017) proposed the
bivariate Birnbaum-Saunders distribution from Gaussian copula. Achcar et al. (2015) introduced a
Bayesian analysis for a bivariate generalized exponential distribution in the presence of censored data
and covariates based on FGM copula functions. Kundu (2015) introduced the bivariate Sinh-normal
distribution, based on a bivariate Gaussian copula. Coelho-Barros et al. (2016) used the FGM and
Gumbel copula functions to construct bivariate Weibull distributions in the presence of cure fraction
and censored data. Elaal and Jarwan (2017) studied a bivariate generalized exponential distribution
(BVGE) derived from FGM and Plackett copula functions; they explained two illustrative examples
to compare between the estimation methods maximum likelihood, inference functions for marginal
and canonical maximum likelihood for the two proposed models using simulated and real data sets.
A bivariate modified Weibull distribution embedded by Peres et al. (2018) via a generalized Farlie-
Gumbel-Morgenstern copula, taking into consideration the presence of non censored data and cen-
sored data, they discussed maximum likelihood and Bayesian approaches for the estimation of the
model parameters, Markov chain Monte Carlo (MCMC) methodology used in the Bayesian analysis;
estimated the parameters of the posterior distributions by using an example of a real data set to illus-
trate the proposed methodology. Almetwally et al. (2020) introduced bivariate Weibull derived from
FGM copula and discussed essential properties for the bivariate distribution; conducted a simulation
study and application of real data for the proposed model.

The article is organized as follows: In Section 2, we recall some notes for the inverse Lindley
distribution. In Section 3, we introduce the bivariate inverse Lindley distribution derived from FGM
copula (BILD). Several properties have been discussed in Section 4. Estimation of bivariate inverse
Lindley distribution has been discussed in Section 5. The simulation study is illustrated in Section
6. Application of real data analysis and a comparison study is presented in Section 7. Finally, some
consequences and conclusions are addressed in Section 8.

2. Inverse Lindley Distribution

IA continuous random variable Z is said to follow Inverse Lindley distribution if the probability
density function (PDF) is of the form

f(z) =
η2e

−η
z (1 + z)

(1 + η)z3
; z, η > 0, (1)

and is denoted by ILD (η).
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The cumulative density fuction (CDF) of Z is given by

F (z) = e−
η
z

(
1 +

η

(1 + η)z

)
; z, η > 0, (2)

for z ≥ 0 and 0 otherwise.
The hazard function is defined as

h(z) =
η2(1 + z)

z2
[
(1 + η)z

(
eη/z − 1

)
− η

] ; z, η > 0. (3)
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Figure 1 Hazard rate function for IL(η) for different values of the parameter η

3. Model
As previously described in the introduction a copula C is a multivariate cummulative distribu-

tion function on [0, 1]d with uniform (0, 1) marginals. There are several kinds of copula discussed in
the literature with different properties and featured, here we are using FGM copula to represent the
bivariate inverse Lindley distribution. FGM copula one of the most popular family. It had been intro-
duced primarily by Morgenstern (1956); the expression of the joint distribution function considering
the FGM copula,

C(u, v) = uv[1 + θ(1− u)(1− v)] (4)

where the marginal function u = F (x) and v = F (y) ∈ I , θ ∈ [−1, 1] is a dependence parameter
and the density function is given by c(u, v) = [1 + θ(1− 2u)(1− 2v)].

3.1. Bivariate inverse Lindley distribution
Bivariate inverse Lindley distribution based on FGM copula and by used Skalar’s theorem and

from Eqn. (4).

F (x, y) = C(F (x), F (y))

= e
− η

x
− β

y

[
1 +

η

x+ ηx

] [
1 +

β

y + βy

]
×
[
1 + θ

(
1− e−

η
x

[
1 +

η

x+ ηx

])(
1− e

− β
y

[
1 +

β

y + βy

])]
.
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The bivariate inverse Lindley density based on FGM copula and by used Skalar’s theorem.

f(x, y) = f(x)f(y)c(F (x), (F (y))

=
η2β2e

− η
x
− β

y (1 + x)(1 + y)
[
1 + θ

(
1− 2e−

η
x

(
1 + η

x+ηx

))(
1− 2e

− β
y

(
1 + β

y+βy

))]
(1 + η)(1 + β)x3y3

. (5)

3.2. Reliability function
There are several ways to construct the reliability function for the bivariate distribution. We

prefer to use the copula approach to express the reliability function for the BILD by using the marginal
reliability function S(x) and S(y) where X and Y the random variable and selection dependence
structure, i.e., copula, see Nelsen (2006) for details.

The joint reliability function for the copula is as following

S(x, y) = Ĉ(S(x), S(y)),

where the marginal reliability function u = S(x) and v = S(y). The reliability function S(x, y) of
BILD

S(x, y) = 1− e−
η
x

(
1 +

η

x+ ηx

)
− e

− β
y

(
1 +

β

y + βy

)
+e

− η
x
− β

y

(
1 +

η

x+ ηx

)(
1 +

β

y + βy

)[
1 + e

− η
x
− β

y θ

(
1 +

η

x+ ηx

)(
1 +

β

y + βy

)]
in the next Figures 2 - 5 three dimension graphs have been reported for the CDF, PDF, reliability
and hazard functions of BILD, for the numerous values parameter η = 0.4(pink), 0.8(red), 1.3(blue),
1.6(green), numerous values of β = 0.5(pink), 0.2(red), 1.2(blue), 0.4(green) and numerous values of
copula parameter θ = 0.1(pink), 0.7(red), -0.1(blue), -0.5(green).

Figure 2 CDF FGM-BILD Figure 3 PDF FGM-BILD
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Figure 4 Reliability FGM-BILD Figure 5 Hazard FGM-BILD

4. Materials and Methods
4.1. Some statistical properties

Some statistical properties have been reported for the bivariate inverse Lindley distribution
derived from FGM copula with η > 0, β > 0, θ ∈ [−1, 1] as shown in the following: Let
(X,Y ) ∼ BILD(η, β, θ), X ∼ IL(η) and Y ∼ IL(β), then the following result can be easily de-
rived:

(i) the marginal distribution of X and Y can be found by solving the integral of the BILD density
from Eqn. (5)

f(x, η) =

∫ ∞

0

f (x, y) dy =
η2e

−η
x (1 + x)

(1 + η)x3
;x > 0, η > 0

f(y, β) =

∫ ∞

0

f (x, y) dx =
β2e

−β
y (1 + y)

(1 + β)y3
; y > 0, β > 0

(ii) the conditional density of X given Y is

f(x|y) =
η2e−

η
x (1 + x)

[
1 + θ

(
1− 2e−

η
x

(
1 + η

x+ηx

))(
1− 2e

− β
y

(
1 + β

y+βy

))]
(1 + η)x3

(iii) the conditional distribution of X given Y is

F (x|y) = e−
η
x

[
1 +

η

x+ ηx

] [
1 + θ

(
1− e−

η
x

(
1 +

η

x+ ηx

))(
1− 2 e

− β
y

(
1 +

β

y + βy

))]

(iv) the conditional reliability function of X given Y is

S(x|y) = 1− e−
η
x

[
1 +

η

x+ ηx

] [
1 + θ

(
1− e−

η
x

(
1 +

η

x+ ηx

))(
1− 2 e

− β
y

(
1 +

β

y + βy

))]

In the next result, we obtain the expression of moment generating and product moments for the
BILD.
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Theorem 1 If (X,Y ) ∼ BILD(η, β, θ), then the moment generating function can be expressed as
follows,

M(x,y) (t1, t2) =

∞∑
m=0

(
tm1
m!

) ∞∑
n=0

(
tn2
n!

)
ηmβnmΓ(1−m)Γ(−n)

16(1 + η)2(1 + β)2
[2mB (2nA − 4(1 + β)(1 + β − n)) θ

+4(1 + η)(1 + η −m) (−2nA θ + 4(1 + β)(1 + β − n)(1 + θ))]

A =
(
4(1 + β)2 − (5 + 4β)n+ n2

)
, B =

(
4(1 + η)2 − (5 + 4η)m+m2

)
.

Proof: From the bivariate density in Eqn. (5), calculate the following integral

M(x,y) (t1, t2) = E
(
et1xet2y

)
=

∫ ∞

0

∫ ∞

0

et1xet2yf (x, y) dxdy

after simplification, we got the result in Theorem 1.

Theorem 2 If (X,Y ) ∼ BILD(η, β, θ), then the rth and sth moments around zero is given by

µ′
rs =

ηrβssΓ(1− r)Γ(−s)

16(1 + η)2(1 + β)2
[2rB (2sA − 4(1 + β)(1 + β − s)) θ

+4(1 + η)(1 + η − r) (−2sA θ + 4(1 + β)(1 + β − s)(1 + θ))]

A =
(
4(1 + β)2 − (5 + 4β)s+ s2

)
, B =

(
4(1 + η)2 − (5 + 4η)r + r2

)
.

Proof: To prove Theorem 2 and by using Eqn. (5), start with

µ′
rs = E (XrY s) =

∫ ∞

0

∫ ∞

0

xrysf (x, y) dxdy

after simplification, we got the result.

4.2. Bivariate failure rate
The bivariate failure (hazard) rate function for BILD derived from FGM copula is defined as

(see Basu 1971).

h(x, y) =
f(x, y)

s(x, y)

=
η2(1+η)β2(1+β)e

η
x

+
β
y (1+x)(1+y)

(
1+θ

(
1−2e−

η
x (1+ η

x+ηx )
)(

1−2e
− β

y (1+ β
y+βy )

))
x(η+x+ηx−(1+η)eη/xx)y(β+y+βy−(1+β)eβ/yy)

(
(1+η)(1+β)e

η
x

+
β
y xy+θ(η+x+ηx)(β+y+βy)

) .

4.3. Hazard gradient function
Johnson and Kotz (1975) defined the hazard components function as

ζ1(x, y) = − ∂

∂x
lnS(x, y)

ζ2(x, y) = − ∂

∂y
lnS(x, y).

Here, we found the hazard gradient function for the BILD, knowing that ζ1(x, y) is the failure
rate of X with given information Y > y,
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ζ1(x, y) = ζ1(x|Y > y)

= −
η2(1 + x)

(
(1 + η)(1 + β)e

η
x
+ β

y xy + θ
(
−(1 + η)eη/xx+ 2(η + x+ ηx)

)
(β + y + βy)

)
x2 (η + x+ ηx− (1 + η)eη/xx)

(
(1 + η)(1 + β)e

η
x
+ β

y xy + θ(η + x+ ηx)(β + y + βy)
)

and similarly ζ2(x, y) is the failure rate of Y given X > x,

ζ2(x, y) = ζ2(x|Y > y)

= −
β2(1 + y)

(
(1 + η)(1 + β)e

η
x
+ β

y xy + θ
(
−(1 + η)eη/xx+ 2(η + x+ ηx)

)
(β + y + βy)

)
y2 (β + y + βy − (1 + β)eβ/yy)

(
(1 + η)(1 + β)e

η
x
+ β

y xy + θ(η + x+ ηx)(β + y + βy)
)

The vector (ζ1(x, y), ζ2(x, y)) are named as the hazard gradient of a bivariate random vector (X,Y ).
The conditional failure (hazard) rate function for the BILD, ζ(x|Y = y) of X given Y = y and
ζ(y|X = x) of Y given X = x are

ζ(x|Y = y) = − f(x|y)
S(x|y)

=
−η2e−

η
x (1 + x)

(
1 + θ

(
1− 2e−

η
x

(
1 + η

x+ηx

))(
1− 2e

− β
y

(
1 + β

y+βy

)))
(1 + η)x3

[
1− e−

η
x

(
1 + η

x+ηx

)(
1 + θ

(
1− e−

η
x

(
1 + η

x+ηx

))(
1− 2e

− β
y

(
1 + β

y+βy

)))]
and

ζ(y|X = x) = − f(y|x)
S(y|x)

=
−β2e

− β
y (1 + y)

(
1 + θ

(
1− 2e−

η
x

(
1 + η

x+ηx

))(
1− 2e

− β
y

(
1 + β

y+βy

)))
(1 + β)y3

[
1− e

− η
y

(
1 + η

y+βy

)(
1 + θ

(
1− 2e−

η
x

(
1 + η

x+ηx

))(
1− e

− β
y

(
1 + β

y+βy

)))] .
In the following subsections, we explore some local dependence measures for the BILD and introduce
its essential properties.

4.4. Local dependence function
Holland and Wang (1987) defined a local dependence function γ(x, y) for random variables X

and Y as

γ(x, y) =
∂2

∂x∂y
lnf(x, y)

we are interested in studying the dependence function for a particular cause. It can measure the total
positive of order 2 (TP2) property of a bivariate distribution easily. In studying the dependence; (TP2)
is consider to be a useful tool; for more details, see Holland and Wang (1987) and Balakrishnan and
Lai (2009).

Proposition 1 Let (X,Y ) ∼ BILD(η, β, θ). Then the local dependence γ(x, y) for BILD is

γ1(x, y) =
∂2

∂x∂y
lnf(x, y)

=
4η2(1 + η)β2(1 + β)e

η
x
+ β

y θ(1 + x)(1 + y)

xy ((1 + β)eβ/y ((1 + η)eη/x(1 + θ)x− 2θA) y + 2θ (−(1 + η)eη/xx+ 2A)B)2
(6)

where A = (η + x+ ηx) and B = (β + y + βy).
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If we substitute θ = 0 in Eqn. (6), then γ1(x, y) = 0, which results in independence between x
and y. According to Holland and Wang (1987), a bivariate density f(x, y) satisfies the TP2 property
if and only if γ1(x, y) ≥ 0. So, we can write down the result as follow:

Proposition 2 Let (X,Y ) ∼ BILD(η, β, θ). Then for θ ≥ 0 the density f(x, y) given in (5) is TP2.

Since the TP2 is a strong dependence, so that if any function is TP2, then the other dependence
properties are satisfied like: stochastically increasing (SI), right-tail increasing (RTI), association, and
positive quadrant dependence (PQD) (see Nelsen (2006) and Balakrishnan and Lai (2009). The BILD
has all these properties of dependence if and only if 0 ≤ θ ≤ 1.

4.5. Clayton-Oakes association measure
Oakes (1989) discussed Clayton-Oakes association measure by using the density function and

reliability function then it can be defined as:

l(x1, x2) =
f(x, y)S(x, y)

S1(x, y)S2(x, y)

where S1(x, y) =
∂
∂xS(x, y) and S2(x, y) =

∂
∂yS(x, y).

Proposition 3 Let (x, y) ∼ BILD (η, β, θ) derived from FGM copula, then

l1(x1, x2) =
(1 + η)3(1 + β)3(1− C)(1− D)e

3η
x + 3β

y x3y3(1 + CDθ)[1 + (1− 2C)(1− 2D)θ]

F
(
A − (1 + η)eη/xx

) (
B − (1 + β)eβ/yy

) [
2ABθ + (1 + η)eη/xx

(
(1 + β)eβ/yy − Bθ

)] .
A = (η + x+ ηx) ,B = (β + y + βy) ,C = e−

η
x

(
1 +

η

x+ ηx

)
,D = e−

β
y

(
1 +

β

y + βy

)
and F =

(
2ABθ + (1 + β)eβ/y

(
−Aθ + (1 + η)eη/xx

)
y
)
.

5. Estimation of Bivariate Inverse Lindley Distribution Based on Copula
In this section, we are discussing the maximum likelihood estimator to estimate the parameters

of the BILD. To compute the maximum likelihood estimation (MLE), we need to solve a three-
dimensional optimization problem simultaneously, using the joint density function f(x, y; η, β, θ)
from Eqn. (5),
let a (x, η) =

(
1− 2e−

β
x

(
1 + η

x+ηx

))
and a (y, β) =

(
1− 2e−

β
y

(
1 + β

y+βy

))
,

then maximize likelihood function can be written as:

L =

(
ηβ

(1 + η)(1 + β)

)n n∏
i=1

(
(1 + xi)(1 + yi)

x3
i y

3i

)
e
−

∑n
i=1

(
η
xi

)
−
∑n

i=1

(
β
yi

)
×

n∏
i=1

(1 + θ a (xi, η) a (yi, β))

and the loglikelihood function can be written as:

lnL = n
(
ln η2 − ln(1 + η)

)
+ n

(
lnβ2 − ln(1 + β)

)
+

n∑
i=1

ln

(
1 + xi

x3
i

)
−

n∑
i=1

(
η

xi

)

+

n∑
i=1

ln

(
1 + yi
y3i

)
+−

n∑
i=1

(
β

yi

)
+

n∑
i=1

ln (1 + θ (a (xi, η)) (a (yi, β))) (7)
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diffrentiate Eqn. (7) partially with respect to η , β and θ separately, as following

∂ lnL

∂η
=

n(2 + η)

η(1 + η)
−

n∑
i=1

(
1

xi

)
+

n∑
i=1

2ηe
−η
xi θ(1 + η + 2xi + ηxi)a(yi, β)

(1 + η)2x2
i (1 + θ(a(xi, η)a(yiβ)))

∂ lnL

∂β
=

n(2 + β)

β(1 + β)
−

n∑
i=1

(
1

yi

)
+

n∑
i=1

2βe
−β
xi θ(1 + β + 2yi + βyi)a(xi, β)

(1 + β)2x2
i (1 + θ(a(xi, η)a(yiβ)))

and
∂ lnL

∂θ
=

n∑
i=1

(a(xi, η))(a(yi, β))

1 + θ(a(xi, η)a(yi, β))
.

The MLE (η̂, β̂, θ̂) can be obtained by solving likelihood equations simultantaneously, the esti-
mate of η̂, β̂ and θ̂ are handled numerically through statistical software,

∂ lnL

∂η

∣∣∣∣
η=η̂

= 0,
∂ lnL

∂β

∣∣∣∣
β=β̂

= 0,
∂ lnL

∂θ

∣∣∣∣
θ=θ̂

= 0,

there is no closed form expression for MLE (η̂, β̂, θ̂) the estimate of the parameters are handled
numerically using a non-linear optimization algorithm.

6. Results
6.1. Simulation study

We are establishing the simulation study for the BILD derived from the FGM copula for MLE
estimation. According to Nelsen (2006), we can use the condition distribtion function of copula to
generate random variate from the bivariate f(x, y) = f(x)f(x|y). By using the following procedures,
we can generate random samples from BILD by using the conditional approach:

Let X and Y be a random variables whose joint distribution function is BILD. The FGM copula
C(u, v) = uv[1+θ(1−u)(1−v)] and so the conditional distribution function is cu(v) = ∂

∂uC(u, v) =
v[1+ θ(1− v)(1−2u)]. Thus, the random numbers (xi, yi) can be generated by using the algorithm:

1) From uniform distribution U(0, 1) generate two independent sample u and t.

2) Set t = ∂
∂uC(u, v) and solved for v.

3) Find X = F−1(u; η) and Y = F−1(v;β); where F−1 is the inverse of the CDF ILD.

4) Finally, set x = X and y = Y .

A simulation study is carrying out based on the following data generalized from BILD the value
of the parameters η and β is choosen with different value of the copula parameter θ and different sizes
of sample (n = 15,30,50,100), as shown for the following cases for the random variables generating
from FGM-BILD:
case 1:(η = 0.5, β = 0.5, θ = 0.3)
case 2:(η = 1.5, β = 2.5, θ = 0.7)
case 3:(η = 3.5, β = 3, θ = −0.3)
case 4:(η = 4.5, β = 4, θ = −0.7).

The estimate of parameters by the MLE estimation for the simulation study based on the 10000
replications are summarized in Tables 1 - 4. Based on the tables, some consequences can be drawn:
In the simulation study, if the sample size increases, the value of mean square error and length of
confidence interval decreases.

In the simulation tables, when the parameters η, β and θ increase, then the corresponding mean
square error also increases for the small sample and after that decreases gradually by increasing the
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sample size; on the contrary, the simulation table does not affect by the increasing of the depen-
dence parameter θ as observed from the corresponding MSE for different values of the dependence
parameter.

In general, the effect of marginal parameters has a negligible impact on estimating the copula
parameters, as shown in the tables. We can remark that by increasing the marginal parameters, the
MSE increases for the small sample and decreases gradually as the sample size increases. The data
analysis and the simulation study were accomplished by the R software (version 3.5.3).

Table 1 (MLE) Simulation study of the parameters of FGM-BILD (case 1)

n parameter Estimate MSE L.C.I. U.C.I.
η(0.5) 0.5117 0.0214 0.3516 0.7488

15 β(0.5) 0.5246 0.0233 0.3564 0.7677
θ(0.5) 0.4562 0.1010 0.0184 0.9613
η(0.5) 0.5075 0.0056 0.3936 0.6559

30 β(0.5) 0.5099 0.0048 0.3945 0.6559
θ(0.3) 0.4550 0.0945 0.0248 0.9573
η(0.5) 0.5076 0.0034 0.4137 0.6249

50 β(0.5) 0.5051 0.0043 0.4120 0.6168
θ(0.3) 0.4276 0.0812 0.0255 0.9367
η(0.5) 0.5030 0.0013 0.4352 0.5798

100 β(0.5) 0.5024 0.0013 0.4350 0.5786
θ(0.3) 0.3805 0.0574 0.0236 0.8576

Table 2 (MLE) Simulation study of the parameters of FGM-BILD (case 2)

n parameter Estimate MSE L.C.I. U.C.I.
η(1.5) 1.5824 0.1187 1.0595 2.3603

15 β(2.5) 2.6508 0.3755 1.7548 4.0385
θ(0.7) 0.5082 0.1128 0.0306 0.9723
η(1.5) 1.5430 0.0521 1.1748 2.0417

30 β(2.5) 2.5787 0.1631 1.9226 3.4857
θ(0.7) 0.5531 0.0951 0.0396 0.9767
η(1.5) 1.5189 0.0296 1.2232 1.8977

50 β(2.5) 2.5391 0.0943 2.0219 3.2105
θ(0.7) 0.5848 0.0770 0.0743 0.9767
η(1.5) 1.5132 0.0142 1.2973 1.7668
β(2.5) 2.5244 0.0440 2.1488 2.9789
θ(0.7) 0.6395 0.0506 0.1646 0.9746
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Table 3 (MLE) Simulation study of the parameters of FGM-BILD (case 3)

n parameter Estimate MSE L.C.I. U.C.I.
η(3.5) 3.6907 0.7633 2.4008 5.7022

15 β(3) 3.1538 0.5498 2.0773 4.8963
θ(−0.3) -0.4593 0.0999 -0.9602 -0.0210
η(3.5) 3.5855 0.3335 2.6585 4.8945

30 β(3) 3.0783 0.2436 2.2894 4.1390
θ(−0.3) -0.4476 0.0945 -0.9547 -0.0204
η(3.5) 3.5529 0.1824 2.8305 4.4891

50 β(3) 3.0403 0.1312 2.4162 3.7930
θ(−0.3) -0.4246 0.0812 -0.9271 -0.0260
η(3.5) 3.5277 0.0897 2.9892 4.1734

100 β(3) 3.0139 0.0634 2.5721 3.5476
θ(−0.3) -0.3837 0.0588 -0.8583 -0.0247

Table 4 (MLE) Simulation study of the parameters of FGM-BILD (case 4)

n parameter Estimate MSE L.C.I. U.C.I.
η(4.5) 4.7357 1.3513 3.0197 7.4656

15 β(4) 4.2469 1.0661 2.7547 6.6520
θ(−0.7) -0.5153 0.1115 -0.9718 -0.0283
η(4.5) 4.6313 0.5956 3.4050 6.3344

30 β(4) 4.1149 0.4584 3.0288 5.6529
θ(−0.7) -0.5550 0.0913 -0.9748 -0.0462
η(4.5) 4.5594 0.3316 3.5884 5.8246

50 β(4) 4.0632 0.2556 3.2034 5.1671
θ(−0.7) -0.5958 0.0747 -0.9776 -0.0789
η(4.5) 4.5372 0.1585 3.8526 5.3894

100 β(4) 4.0301 0.1229 3.4200 4.7935
θ(−0.7) -0.6381 0.0523 -0.9776 -0.1541
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7. Application of Real Data and Discussion
To study the proposed model BILD and elucidate the MLE estimation procedure, We consider

the drought data for (Panhandle) climate division of Nebraska state; the real drought data set is
demonstrated for the 83 drought events in climate division (Panhandle), we got the data from Nadara-
jah (2009). The data comprises the monthly modified Palmer Drought Severity Index (PDSI) from
January 1895 to December 2004. The PDSI is often used to measure droughts depend on recent pre-
cipitation and temperature; see Alley (1984) for details; when the PDSI is less than zero, then drought
is said to have been occurring; see Yevjevich (1967). The bivariate data sets x and y represent the
duration of drought and non-drought, respectively. The BILD was determined by fitting the model to
the observed values.

To verify that IL distribution fits the data set x (drought) and y (non-drought) accurately, we
calculate Kolmogrove-Smirnov (K-S) goodness of fit test statistics and maximize log-likelihood (LL)
for the marginal of IL distribution. For the drought data set, the K-S is 0.1927 and -LL is 215.5371;
similarly, for the non-drought data set, the K-S is 0.2530 and -LL is 242.2437. Therefore, the IL
Distribution can be used to fit the data as shown from the previous result, Figures 6 and 7.
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Figure 7 K-S plot for dataset y

The parameters estimation are displayed in Table 5 for the proposed BILD model derived from
FGM copula using the MLE estimate.

Table 5 MLE estimate for BIL disribution derived from FGM copula

Copula η̂ β̂ θ̂ -LL AIC
FGM 2.6859 2.5898 0.2855 457.2872 920.5744

In the following, for the comparison reason, we have fitted the Bivariate Generalized Exponen-
tial distribution based in Clayton copula (ClaytonBGED); which was discussed by Kundu and Gupta
(2011), FGM Bivariate Generalized Exponential (FGMBGED); which was introduced by Elaal and
Jarwan (2017) and FGM Bivariate Weibull distribution (FGMBWD); which was discussed by Al-
metwally et al. (2020). Also, we compare our model with other models that are not coming from
the copula approach Nadarajah (2007, 2009) fitted the drought and non-drought data by using the bi-
variate gamma distribution (BGD) and bivariate Pareto distribution (BPD). Table 6 demonstrate that
BILD derived from FGM copula has the smallest value for the Akaike information criterion (AIC)
among different models.
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Table 6 The MLEs of the parameters, copula parameter estimate, the log-likelihood values and AIC
values

Copula Model MLE -LL AIC
FGM BILD η̂= 2.6859 ,β̂= 2.5898,θ̂= 0.2855 457.2872 920.5744

BGD θ̂1= 0.337 ,θ̂2= 0.252 550.6 1105.2
BPD θ̂1=2.131 ,θ̂2= 11.034,θ̂= 8.127 491.863 989.726

Clayton BGED λ̂1=0.1639 ,λ̂2= 0.9763 ,θ̂=0.7543 495.1963 1000.393
λ̂3= 0.0718 λ̂4= 0.6219

FGM BGED λ̂1= 0.1639 ,λ̂2= 0.9763,θ̂=0.4503 497.0947 1004.189
λ̂3= 0.0718 λ̂4=0.6219

FGM BWD λ̂1=0.2112 ,λ̂2= 0.8990,θ̂=0.4177 491.9845 993.969
λ̂3= 0.2389 λ̂4= 0.7094

8. Conclusions
In this paper, we introduced the BILD derived from FGM copula as an alternative distribution

to analyze bivariate lifetime data. Several properties of the BILD have been discussed, like the con-
ditional distribution, moment generating function and some concepts regarding the bivariate failure
rate and the hazard gradient function. We have debated TP2 property via the local dependence func-
tion and indicated its relation with it. Parameters were estimated for the application of real data by
utilizing MLE estimation. It seems from the application of real data that BILD derived from FGM
copula is successfully fitting the data as well as for the simulation study, and the model FGM-BILD
provides better results than other models.
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