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Abstract 

Accurate demand forecasting is crucial for airline revenue management. However, it is difficult 
to forecast demand accurately since the historical data does not reflect the actual current demand. In 
order to obtain a better estimate of current demand, there are a number of unconstraining methods 
available. In this study, we used the meta-analysis (MA) technique applied to unconstraining data to 
improve the performance of the two-class overbooking model. The accuracy and expected profit are 
computed and compared to other methods often used, for example, the expectation-maximization 
(EM) method and the naïve methods (N1, N2, and N3). Our numerical study found that the MA 
produces a better MAPE in most situations with high accuracy for demand forecasting and the highest 
expected profit in all situations, which is greater than other methods, approximately 11.71% to 
17.76%. 
______________________________ 
Keywords: Demand forecasting, static model, airline passenger, airline industry, stochastic model, revenue 
management. 
 
1. Introduction 

With high fixed costs and low marginal costs, the airline industry is a prime candidate for using 
revenue management (RM) to improve profitability. According to the Air Transport Information 
Division of Airport of Thailand Public Company Limited (AOT), total air traffic in Thailand increased 
by 21 percent from 2014 to 2015, aircraft movement increased by 17 percent, and passenger numbers 
by 21 percent. In value terms, this generated about USD 167 million increased revenue. Accurate 
demand forecasting is a vital component of RM, and flight booking data from departed flights are used 
to forecast the demand for future departing flights. A complicating issue is that some canceled booking 
requests are not included in the departed flights’ data. The reservation system accepts booking requests 
up to a pre-determined booking limit. Hence, demand in that fare class for a given flight may exceed 
the booking limit; however, historical data shows only the number of reservations. At the booking 
limit, the demand is called “censored demand” in statistics, while it is referred to as “constrained 
demand” by airlines. 
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The statistical method of uncensored data is called “unconstraining”. Thus, unconstraining 
demand is crucial in forecasting future flights’ actual demand. The popular unconstraining methods, 
for example, naïve methods (N1, N2, and N3), projection detruncation (PD), booking profile (BP), 
and expectation maximization (EM), are applied in both single-class and multi-class models. In 
practice, most commercial RM systems are based upon a two-class rather than a multi-class model. 
Weatherford (2016) reviewed historical unconstraining methods but did not conduct a meta-analysis, 
the statistical procedure for combining data from multiple studies. In our study, we applied a meta-
analysis to unconstraining data to improve the performance of the two-class overbooking model by 
estimating the mean demand of two classes and comparing its performance to others in terms of the 
expected profit through a numerical study.   

The concept is that the data on booking demand is divided into groups and functionally identical 
following the number of updated booking limits. For example, customer’s booking demand data in a 
year (360 days) is divided into groups in which each group is functionally identical (we see each group 
as each study in meta-analysis). In this study, the updated booking limit of 13 points was used since 
(see Somboon and Amaruchkul 2017) informed that these gave the highest profit expectations, so the 
data is divided into eight groups. Then, the homogeneity test is performed to test that the data in each 
group are identical so that the data is a fixed effect. Next, we estimate the population’s booking 
demand by the FE method. Once the estimated booking demand has been obtained, use that demand 
in the two-class overbooking model and estimate the expected profit. 

The paper is organized as follows: two-class models are reviewed in Section 2. Section 3 briefly 
reviews the two-class overbooking model—Section 4 details the numerical setting and the procedure 
for simulation. Section 5 presents numerical results, while Section 6 concludes. 

 
2. Literature Review 
2.1.  Two-class and two-class overbooking model 

Littlewood (1972) presented the two-class model, which focuses on the booking control problem. 
It does not allow overbooking, which means there are no cancellations or no-shows, and all booking 
requests show up at the time of service. Somboon and Amaruchkul (2016) proposed the static two-
class overbooking model, which integrates two strategies, overbooking, and seat inventory, in which 
low fare (Class-2) customers arrive prior to high fare (Class-1) customers, and each class may have 
different show up rates. The airline introduces a penalty cost, any of which rejected booking requests. 
Furthermore, the penalties differ between the two classes; as a result, the airline may overbook Class-
2 customers. We refer interested readers to (see Somboon and Amaruchkul 2016) and the literature 
cited therein for more details on the two-class overbooking model. 

 
2.2.  Unconstraining methods 
 The theoretical study in the statistical unconstraining method gained attention in the mid-1980s 
with the expectation maximization (EM) algorithm. It is also known as the detruncation and 
uncensored algorithm (see Dempster et al. 1977, Little and Rubin 1989, McLachlan and Krishnan 
1997). 
 The EM algorithm is an iterative algorithm for estimating the maximum likelihood of problems 
with missing data. The presence of booking and capacity limits on past demands censors the data in 
historical booking records. According to Little and Rubin (1989), the EM algorithm formalizes a 
relatively old ad hoc idea for dealing with missing data. 
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 Applied work in unconstrained airline demand data began in the mid-1990s. Skwarek (1996) 
examined four unconstrained methods, N2, N3, BP and PD, and discovered that BP and PD were the 
best, with a revenue increase of 2-3% over the N2 method. 
 Saleh et al. (1997) focused on the three naïve methods (N1, N2, and N3) and concluded that using 
N2 can significantly underestimate true demand and that even a simple change like switching to N3 
from either N1 or N2 could be beneficial. 
 Pölt (2000) stated that better unconstraining demand data will improve forecast accuracy and 
more significant revenues. They were the first to investigate the EM algorithm in the airline context 
and reviewed four approaches (N1, N2, N3, and BP). The results show that N1 is better than N2 in 
realistic cases, and N3 gives better results than N1. However, the study concluded that EM was the 
most robust method for unconstraining data. 
 Zeni (2001) examined all six methods (N1, N2, N3, BP, PD, and EM) and reached the same 
conclusion as Pölt (2000) that N1 is superior to N2, and EM is the most robust method among the six, 
as measured by error. 
 
3. Two-Class Overbooking Model 

In this section, we are briefly describing the two-class overbooking model proposed by Somboon 
and Amaruchkul (2016). We refer interested readers to their article for further information. 

Note that there are two classes in this study: high fare (Class-1) and low fare (Class-2). Given that 
( ) +∈x t  is the Class-2 booking limit at the update booking limit t  days before the departure, where 

+  is the set of non-negative integers. It implies that the reservations for Class-2 are accepted up to 

( ).x t  However, overbooking is allowed if ( )x t  exceeds capacity ( ),t  where ( )t  is a capacity at the 
update booking limit point .t  

An optimal booking limit at the update booking limit point * ( )x t  that maximizes its expected 
profit is preferred:  

( ( ))x t      
2

1

( ( )) ( ( )) ( ( ))i i i i i i
i

E p B x t r B x t W B x t
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where ( ) max(0, )y y   for y   when   is the set of real number, and t  is the number of days 
prior to departure. 

Assume that ( )iD t  is the demand of Class-i reservations at the update booking limit point t  for 

1, 2.i   Let ( )i iW y  be the number of Class-i show-ups and the number of Class-i reservations, 

denoted by ( ( )) ,i iB x t y  is assumed to follow a binomial distribution with parameters iy  and i  

where i  is the show-up probability of Class-i.  

Assume that ip  is the revenue of class-i; where 1 2 0,p p   for each class. Let ig  be the penalty 

cost including the loss-of-goodwill cost and the opportunity cost where 1 2 0g g   if the airline 
rejects the booking request. In the case of no-show for Class-i reservation, the airline will refund

,i i ir p  which i  is a proportion of the revenue cost; however, a compensation h  must be paid to 

passengers who denied a boarding pass where 2.h p  
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It can be seen from the equation above that there are two sources of uncertainty, namely demand 
and the number of show-ups, otherwise we could find a closed form of the optimal booking limit using 
the theorem below. 

 
Theorem 1. For 0,1,..., 2x    and , 1,...,x     the expected profit function ( )x  is piecewise 

and unimodal in each piece. The expected profit ( )x  has a local maximum point x  on 
0,1,..., 2x    as 

   
1

1
1

1 1

1
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On the other hand, if 2 2 20 / ( ) ( 1; , ),α θ κ κ θ< < −h F  then the expected profit ( )x  has a local 

maximum point x  for , 1,...x    . It can be written as 

   2
2

2

arg min{ { , 1,...} : ( 1; , ) }.x x F x
h
α

κ κ κ θ
θ

′′ = ∈ + − >  

Otherwise, the expected profit function is increasing. 
 
Proof: See in Somboon and Amaruchkul (2016). 

 
4. Unconstraining Methods 

One of the tactics for success in RM is accurately forecasting demand. The reservation system 
accepts booking requests up to a predetermined booking limit. Hence, demand in that fare class for a 
given flight may exceed the booking limit, but historical data shows only the number of reservations. 
At the booking limit, the demand is called censored demand in the field of statistics or constrained 
demand for a passenger airline. The method of uncensored data is called unconstraining. Weatherford 
and Pölt (2002) reviewed unconstraining methods; the simplest of which are as follows: 
 
4.1. Expectation maximization (EM) 

The EM algorithm designates a relatively general idea for dealing with missing data and follows 
four basic steps: (1) Replace missing values with estimated values (2) Estimate parameters (3) Re-
estimate the missing values assuming the new parameter estimates are correct (4) Re-estimate the 
parameters, and so forth, iterating until convergence as a result, each EM method iteration consists of 
an expectation step (E Step) and maximize step (M step). The benefit of the algorithm is that it can be 
demonstrated to converge reliably. However, the drawback of EM is that its convergence rate can be 
excruciatingly slow when a large amount of data is missing. 
 
4.2. Naïve methods 

Naïve Methods provide the three different averaging methods which are: 
1) Naïve 1 (N1) – replace all constrained observations with the average of all observations. 
2) Naïve 2 (N2) – replace all constrained observations with the average of all unconstrained 

observations. 
3) Naïve 3 (N3) – replace constrained observations less than the average of all observations with 

the average of all unconstrained observations. 
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4.3. Meta-analysis method 
Meta-analysis is a statistical method to combine the results of independent empirical research 

studies, which can be divided into two traditions: tests of the statistical significance of combined 
results and methods for combining estimates across studies. As mentioned, the data on booking 
demand is divided into groups and functionally identical following the number of updated booking 
limits in this study. Then, the homogeneity test is performed to test that the data in each group are 
identical. In statistical analysis, a fixed-effects (FE) model is one in which the model parameters are 
fixed quantities. In contrast to random-effects models in which all or some of the parameters of the 
model contain random variables. 

Fixed effects can be used if two conditions are met. First, all studies or populations are 
functionally identical. Second, the variability of sample statistics is exclusively due to sampling errors. 
Hedges and Olkin (2014) presented the most commonly used FE procedure. Let k  be the number of 
studies and iy  be sample mean of study ; 1, 2,..., .=i i k  Assume that iv  is sample variance of study 

; 1, 2,..., .=i i k  The sample sampling variance ( )
ieV  is computed, and the inverse variance are the 

weights ( )iw  used to calculate the average, which is a maximum likelihood estimator for θ  as 

    
1 1

ˆ ,θ
= =

= ∑ ∑
k k

i i i
i i

w y w  

where 1/=i iw v  and 
1

ˆ( ) 1 / .θ
=

= ∑
k

i
i

V w  However, we use the function “rma” in the metafor package in R 

for computation in this study. “rma” is the function to fit the meta-analytic for a fixed-effect model 
with or without moderators; rma( , ,method="FE"),i ix z  where ix  is vector of the observed effect sizes 

or outcomes and iz  is vector of the corresponding sampling variances. The procedure of calculation 
is presented in Section 5. 
 
5. Numerical Procedure 

As stated in the introduction, accurate demand forecasting is critical for determining optimal 
booking and overbooking. It is cumbersome to find precise forecasting demand because historical 
data, which are censored data, do not reflect actual demand. The booking limit determines how many 
seats on a flight can be sold. An airline accepts a booking in a fare class until the booking limit is 
reached. The airline then discontinues sales of seats in that fare class. It also stops collecting useful 
data. Because the booking limit is censored or “constrained,” demand for travel in that fare class may 
exceed the booking limit, but the data does not reflect this. 

Because of this, actual demand cannot be obtained directly, only estimated demand. In this setting, 
the N1, N2, N3, and EM methods are the most commonly used to correct constrained data in quantity-
based RM (see Little and Rubin 1989). The MA method is the technique we applied to calculate 
estimated demand. 

In this setting, we used the same parameter presented by Somboon and Amaruchkul (2017). We 
refer interested readers to their article for further information. Let iλ  are the seat demand of customers 

Class-i; 1, 2.i   In this experiment, we assume that 1λ  = 40, 50, 60, 70, and 2λ  = 90, 100, 110, 120, 

respectively. Assume that the plane has 162 seating capacity ( )κ  and the fare for Class-i; 1,2i   is 

denoted by 1 3,043p =  and 2 945,=p  respectively. Let ir  be the refund for passenger in each class 
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where 0.5=i ir p  and 0.8 .=i ir p  The compensation cost h = 2,000 baht must be paid to all passenger 

when the number of passengers exceeds capacity. The show-up probability iθ  on the travel day for 
customer in each Class-i; 1,2i   are 0.7, 0.8, 0.9, and 0.95, respectively.  

We partition the demand into two classes by employing the demand function proposed by Suriya 
(2009) for the Thailand’s airline industry. Let iq  be the demand function for Class-i; 1, 2.i   

Class-1 demand function: 
 1 13,588 188.605 .p q= −                  (1) 

Class-2 demand function: 
 2 21,763 188.605 .p q= −                 (2) 

After substituting 1 3,043p =  in (1) and 2 945p =  in (2), we obtain the demand for Class-1 and 

Class-2 as, 1 4.6q =  and 2 6.9q =  million customers, respectively. The proportion of Class-1 1( )υ  and 

Class-2 2( )υ  passengers is 

 1 0.4υ =  and 2 0.6.υ =                  (3) 
We considered the proportions in (3) to divide the number of reservations into two classes. Next, 

the MA, N1, N2, N3, and EM methods are used to estimate the censored demand data. Then, the 
homogeneity test is performed to test that the data in each group are identical. Assume that iy  and iv  

are the sample mean and variance of study ; 1, 2,..., ,=i i k  respectively, and îθ  is the estimated 
average. The test statistic is 

    
1

ˆ( )
.

k
i i

i i

y
Q

v
θ

=

−
= ∑  

If the null hypothesis is true, Q  will follow a central 2
( 1)kχ − distribution. 

The booking limit is calculated using the two-class overbooking model, then estimate the demand 
for each class. The profit can be computed as 

 [ ] ( )
2

2 2
1

ˆ ( ( )) ( ) .i i i i i
i

p b r b W b h W bπ κ +

=

= − − − −∑                (4) 

The numerical study as mentioned is used to find the expected profit. The accuracy index (MAPE) 
of the forecast demand for the two-classes follows these steps: 

1) Generate the demand for both Class-1 and Class-2 over 360 days, which is assumed to be a 
Poisson distribution with means 1̂λ  and 2̂ ,λ  respectively. 

2) Calculate the optimal initial booking limit *(360)x  using Theorem 1. 

3) Compute the number of Class-1 and Class-2 bookings using * (360).x  

4) Recalculate the optimal booking limit *( )x t  at update booking limit point t and estimate the 

demand for each class 1 2
ˆ ˆ( , )λ λ  by using the proposed MA, EM, N1, N2 and N3 over the remaining 

days before departure. 
a) In the MA method, partition the booking demand into eight groups by the number of updated 

booking and estimate the demand for each class 1 2
ˆ ˆ( , )λ λ  by the FE model  

b) Uncensored data by EM, N1, N2, and N3 method before estimating the demand for each class 

1 2
ˆ ˆ( , )λ λ  by mean. 
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5) Used the forecast demand for the two classes to calculate a new optimal booking limit *( )x t  
6) At the departure time, generate the number of show-up passengers following binomial 

distribution with a mean equal to the number of class-i reservations. The show-up probability is 
;  1, 2,θ =i i  and the profit is calculated using (4). 

7) Repeat 1,000 iterations for all steps and average the profit. 
 
6. Numerical Result 

In this experiment, we simulate a booking demand as detailed in Section 5 and estimate censored 
booking demand data using the MA, N1, N2, N3, and EM unconstraining methods. 

For the MA method, we have to test homogeneity to check that the data in each group are identical 
so that the fixed effect can be used. However, we uncensored data by EM, N1, N2, and N3 methods 
before estimating the demand for each class by mean. 
 

 
 

Figure 1. Testing homogeneity test for the simulated booking demand for MA method 
 

Figure 1 and the test statistics value for homogeneity test is equal to 0.15 which less than 2
(0.05,7)χ  

so that the fixed effect can be used in this data. Then, the two-class overbooking model estimates the 
demand for each class and finds the optimal booking limit. The MAPE and expected profit in the same 
situation can be summarized below. 
 
6.1. Comparison of the accuracy of the estimation of the average of the booking demand for both 

classes of customers  
Table 1 shows that when 1λ =  40 and 1θ =  0.95, the MAPE of the MA method gives the least 

MAPE, while the EM, N1, N2, and N3 methods gave similar MAPE values and increased when 2λ  
has increased. 
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It can be seen from Table 2 that when 1λ = 50, and 1θ = 0.95, the MA method for estimating 2λ  
gives the least MAPE value followed by the EM method. N1, N2, and N3 methods gave similar MAPE 
values and MAPE is increased when 2λ  has increased. 

 

Table 1 MAPE for estimating 2λ  when 1λ = 40, 1r  = 2,434.4, 2r = 472.5, and 1θ = 0.95 

2λ  2θ  MA EM N1 N2 N3 
90 0.7 0.07 13.32 13.42 13.41 13.34 
90 0.8 0.02 13.32 13.42 13.41 13.34 
90 0.9 0.39 13.32 13.42 13.41 13.34 
90 0.95 0.98 13.32 13.42 13.41 13.34 

100 0.7 0.72 16.02 16.60 16.63 16.09 
100 0.8 0.03 16.02 16.60 16.63 16.09 
100 0.9 0.24 16.02 16.60 16.63 16.09 
100 0.95 0.99 16.02 16.60 16.63 16.09 
110 0.7 0.18 18.24 19.94 20.25 18.82 
110 0.8 0.48 18.24 19.94 20.25 18.82 
110 0.9 0.69 18.24 19.94 20.25 18.82 
110 0.95 0.30 18.24 19.94 20.25 18.82 
120 0.7 0.46 20.20 22.51 24.52 22.17 
120 0.8 0.23 20.20 22.51 24.5 2 22.17 
120 0.9 0.37 20.20 22.51 24.52 22.17 
120 0.95 0.53 20.20 22.51 24.52 22.17 

 

Table 2 MAPE for estimating 2λ  when 1λ = 50, 1r = 2,434.4, 2r = 472.5, and 1θ = 0.95 

2λ  2θ  MA EM N1 N2 N3 
90 0.7 0.73 6.68 7.32 7.34 6.76 
90 0.8 0.32 6.68 7.32 7.34 6.76 
90 0.9 0.83 6.68 7.32 7.34 6.76 
90 0.95 0.26 6.68 7.32 7.34 6.76 

100 0.7 0.60 10.07 11.94 12.30 10.75 
100 0.8 0.71 10.07 11.94 12.30 10.75 
100 0.9 0.53 10.07 11.94 12.30 10.75 
100 0.95 0.39 10.07 11.94 12.30 10.75 
110 0.7 0.24 13.00 15.45 17.69 15.06 
110 0.8 0.16 13.00 15.45 17.69 15.06 
110 0.9 0.15 13.00 15.45 17.69 15.06 
110 0.95 0.79 13.00 15.45 17.69 15.06 
120 0.7 0.88 15.53 17.10 23.08 20.03 
120 0.8 1.01 15.53 17.10 23.08 20.03 
120 0.9 0.24 15.53 17.10 23.08 20.03 
120 0.95 0.12 15.53 17.10 23.08 20.03 
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Table 3 MAPE for estimating 2λ  when 1λ = 60, 1r = 2,434.4, 2r = 472.5, and 1θ = 0.95 

2λ  2θ  MA EM N1 N2 N3 
90 0.7 0.53 0.11a 2.14 2.53 0.79 
90 0.8 0.40 0.11b 2.14 2.53 0.79 
90 0.9 0.02 0.11 2.14 2.53 0.79 
90 0.95 1.25 0.11 2.14 2.53 0.79 

100 0.7 0.23 4.25 7.02 9.43 6.56 
100 0.8 0.27 4.25 7.02 9.43 6.56 
100 0.9 0.20 4.25 7.02 9.43 6.56 
100 0.95 0.19 4.25 7.02 9.43 6.56 
110 0.7 0.41 7.82 9.54 16.08 12.75 
110 0.8 0.14 7.82 9.54 16.08 12.75 
110 0.9 0.40 7.82 9.54 16.08 12.75 
110 0.95 0.36 7.82 9.54 16.08 12.75 
120 0.7 0.05 11.01 10.90 22.15 19.17 
120 0.8 0.03 11.01 10.90 22.15 19.17 
120 0.9 0.19 11.01 10.90 22.15 19.17 
120 0.95 0.43 11.01 10.90 22.15 19.17 

 
Table 3 shows that the MA gives the lowest MAPE when 1λ = 60 for all values except for the 

cases a and b which the EM method has the lowest MAPE. However, when 2λ = 120, the N1 method 
yields less MAPE than the EM method. 
 

Table 4 MAPE for estimating 2λ  when 1λ = 70, 1r = 2,434.4, 2r = 472.5, and 1θ = 0.95 

2λ  2θ  MA EM N1 N2 N3 
90 0.7 0.03 6.38 3.33 0.63 3.82 
90 0.8 0.91 6.38 3.33 0.63c 3.82 
90 0.9 0.40 6.38 3.33 0.63 3.82 
90 0.95 0.01 6.38 3.33 0.63 3.82 

100 0.7 1.50 1.36 0.52d 7.72 4.03 
100 0.8 0.10 1.36 0.52 7.72 4.03 
100 0.9 0.85 1.36 0.52e 7.72 4.03 
100 0.95 0.26 1.36 0.52 7.72 4.03 
110 0.7 0.61 2.82 2.80 15.10 11.82 
110 0.8 0.77 2.82 2.80 15.10 11.82 
110 0.9 0.29 2.82 2.80 15.10 11.82 
110 0.95 0.44 2.82 2.80 15.10 11.82 
120 0.7 1.03 6.41 5.13 14.93 19.17 
120 0.8 0.29 6.41 5.13 14.93 19.17 
120 0.9 0.08 6.41 5.13 14.93 19.17 
120 0.95 0.94 6.41 5.13 14.93 19.17 
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From Table 4, it can be concluded that the MA gives the best MAPE for all 2λ  when 1λ =70 
except for the cases c, d, and e, where the N2 and N1 methods give the lowest MAPE value. However, 
at 2λ = 90, the N2 method gives the low MAPE, while at 1λ = 100, 110 and 120, the N1 method gives 
the low MAPE value. 

The simulation study using the MA, EM, N1, N2, and N3 unconstrianing methods finds that the 
MA method gives the lowest MAPE, with the MAPE value between 0–1.96, while the others give the 
MAPE inconsistently. Based on the parameters, the MAPE values are between 0.07–24.54.  

In addition, we find that the EM, N1, N2, and N3 methods give the same value of MAPE, although 

1θ  and 2θ  are increased.  However, in some cases, the EM, N1, N2, or N3 methods probably give a 
lower MAPE than the MA method; the estimate may not be an accurate approximation.  As a result, 
the MA method is the most accurate estimating unconstraining method. 
 

Table 5 MAPE for estimating 1λ  when 2λ = 90, 1r = 2,434.4, 2r = 472.5, and 2θ = 0.8 

1λ  1θ  MA EM N1 N2 N3 
40 0.7 0.91 30.02 29.93 29.95 29.98 
40 0.8 0.45 30.02 29.93 29.95 29.98 
40 0.9 1.02 30.02 29.93 29.95 29.98 
40 0.95 0.16 30.02 29.93 29.95 29.98 
50 0.7 0.86 12.00 11.40 11.39 11.96 
50 0.8 1.06 12.00 11.40 11.39 11.96 
50 0.9 0.03 12.00 11.40 11.39 11.96 
50 0.95 0.81 12.00 11.40 11.39 11.96 
60 0.7 0.06 0.07 1.83 2.58 0.57 
60 0.8 0.43 0.07f 1.83 2.58 0.57 
60 0.9 0.63 0.07g 1.83 2.58 0.57 
60 0.95 0.84 0.07h 1.83 2.58 0.57 
70 0.7 1.12 8.78 11.44 13.89 10.90 
70 0.8 0.44 8.78 11.44 13.89 10.90 
70 0.9 0.30 8.78 11.44 13.89 10.90 
70 0.95 0.47 8.78 11.44 13.89 10.90 

 
It can be seen from Tables 5 and 6 that the MA gives the smallest MAPE estimate when 2λ = 90 

and 100 and 2θ  = 0.8. However, the cases f, g and h in Table 5 show that the EM method produces 
the lowest MAPE while the N2 method creates the lowest MAPE in the cases of i, j and k as seen in 
Table 6. 
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Table 6 MAPE for estimating 1λ  when 2λ  = 100, 1r = 2,434.4, 2r = 472.5, and 2θ = 0.8 

1λ  1θ  MA EM N1 N2 N3 
40 0.7 0.34 40.00 39.20 39.08 39.94 
40 0.8 0.16 40.00 39.20 39.08 39.94 
40 0.9 0.19 40.00 39.20 39.08 39.94 
40 0.95 0.05 40.00 39.20 39.08 39.94 
50 0.7 0.18 19.93 17.75 16.90 19.32 
50 0.8 0.81 19.93 17.75 16.90 19.32 
50 0.9 0.62 19.93 17.75 16.90 19.32 
50 0.95 0.33 19.93 17.75 16.90 19.32 
60 0.7 1.43 6.38 3.32 0.44i 3.95 
60 0.8 0.49 6.38 3.32 0.44j 3.95 
60 0.9 1.67 6.38 3.32 0.44k 3.95 
60 0.95 0.33 6.38 3.32 0.44 3.95 
70 0.7 0.69 3.30 5.59 12.07 8.57 
70 0.8 0.15 3.30 5.59 12.07 8.57 
70 0.9 0.44 3.30 5.59 12.07 8.57 
70 0.95 0.67 3.30 5.59 12.07 8.57 

 
Table 7 MAPE for estimating 1λ  when 2λ = 110, 1r = 2,434.4, 2r = 472.5, and 2θ = 0.80 

1λ  1θ  MA EM N1 N2 N3 
40 0.7 0.52 49.94 47.21 46.10 49.19 
40 0.8 0.99 49.94 47.21 46.10 49.19 
40 0.9 0.67 49.94 47.21 46.10 49.19 
40 0.95 0.49 49.94 47.21 46.10 49.19 
50 0.7 0.15 27.65 23.99 20.54 24.74 
50 0.8 0.66 27.65 23.99 20.54 24.74 
50 0.9 0.27 27.65 23.99 20.54 24.74 
50 0.95 0.65 27.65 23.99 20.54 24.74 
60 0.7 1.60 12.84 10.18 2.64 6.67 
60 0.8 0.35 12.84 10.18 2.64 6.67 
60 0.9 1.11 12.84 10.18 2.64 6.67 
60 0.95 0.23 12.84 10.18 2.64 6.67 
70 0.7 0.17 1.60 1.45 11.09 7.14 
70 0.8 0.44 1.60 1.45 11.09 7.14 
70 0.9 0.41 1.60 1.45 11.09 7.14 
70 0.95 0.17 1.60 1.45 11.09 7.14 

 
Still, the MA gives the lowest MAPE for 1λ  estimation when 2λ =110 as shown in Table 7. When 

1λ = 40 and 50, the EM, N1, N2, and N3 produce similar MAPE and high values. Also, when 1λ  is 
increasing, the MAPE of the EM, N1, N2, and N3 decrease; unfortunately, it still produces a MAPE 
higher than the MA. 
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Table 8 MAPE for estimating 1λ  when 2λ = 120, 1r = 2,434.4, 2r = 472.5, and 2θ = 0.80 

1λ  1θ  MA EM N1 N2 N3 
40 0.7 0.67 59.67 55.02 50.72 55.86 
40 0.8 2.31 59.67 55.02 50.72 55.86 
40 0.9 1.30 59.67 55.02 50.72 55.86 
40 0.95 0.20 59.67 55.02 50.72 55.86 
50 0.7 0.26 35.37 32.23 23.15 28.00 
50 0.8 0.41 35.37 32.23 23.15 28.00 
50 0.9 0.64 35.37 32.23 23.15 28.00 
50 0.95 0.46 35.37 32.23 23.15 28.00 
60 0.7 0.25 18.37 18.34 3.76 8.33 
60 0.8 0.07 18.37 18.34 3.76 8.33 
60 0.9 0.17 18.37 18.34 3.76 8.33 
60 0.95 1.36 18.37 18.34 3.76 8.33 
70 0.7 0.31 7.07 8.55 2.77 7.14 
70 0.8 0.40 7.07 8.55 2.77 7.14 
70 0.9 0.53 7.07 8.55 2.77 7.14 
70 0.95 1.31 7.07 8.55 2.77 7.14 

 
From our numerical study using the MA, EM, N1, N2, and N3 unconstraining methods to estimate 

the demand, we conclude that the MA method produces the smallest MAPE, with the MAPE value 
being between 0–2.68, while the others give the inconsistent MAPE. The MAPE values were between 
0.03–59.67, and we find that the EM, N1, N2, and N3 methods give the same MAPE, although 1θ  and 

2θ  are increased. In addition, we find that the MAPE of 1λ  estimated from the EM, N1, N2, and N3 

methods decrease when they increase until 1λ = 60. However, the MAPE will increase at 1λ = 70. The 
MA method produces a MAPE that is relatively stable. Although the EM, N1, N2, or N3 methods may 
give a lower MAPE, the estimate may not be an accurate approximation. We conclude that the MA 
method is the most accurate unconstraining method for demand estimation. 
 
6.2. Comparison of the expected profit for all unconstraining methods  

In this section, we present some results of the expected profit of all unconstraining methods. Table 
9 shows that the expected profit at 1λ = 40, 2λ = 90, 1r = 2,434.4 and 2r = 472.5. The MA method 

produces the highest profit expectation at all 1θ  and 2θ . Even, the expected profit at 1λ = 50, 2λ = 90, 

1r = 2,434.4 and 2r = 472.5. The MA method produces the highest profit expectation for all 1θ  and 2θ  
as shown in Table 10. 
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Table 9 The expected profit when 1λ = 40, 2λ = 90, 1r = 2434.4 and 2r = 472.5 

1θ  2θ  MA EM N1 N2 N3 
0.7 0.7 197,101.13 182,801.16 182,586.19 182,574.54 182,784.54 
0.7 0.8 202,692.01 186,508.10 186,287.64 186,275.62 186,491.96 
0.7 0.9 207,369.99 190,188.07 189,964.51 189,951.73 190,170.27 
0.7 0.95 212,111.58 192,017.97 191,792.25 191,779.42 192,000.19 
0.8 0.7 208,839.35 195,556.25 195,337.30 195,323.60 195,535.07 
0.8 0.8 213,419.96 199,263.19 199,038.75 199,024.68 199,242.48 
0.8 0.9 219,937.58 202,943.16 202,715.62 202,700.79 202,920.80 
0.8 0.95 223,387.27 204,773.05 204,543.36 204,528.47 204,750.72 
0.9 0.7 220,591.42 208,264.89 208,030.42 208,015.50 208,239.63 
0.9 0.8 225,598.04 211,971.84 211,731.87 211,716.58 211,947.05 
0.9 0.9 231,584.52 215,651.80 215,408.74 215,392.69 215,625.37 
0.9 0.95 234,936.83 217,481.69 217,236.48 217,220.37 217,455.28 

0.95 0.7 226,965.67 214,506.37 214,255.18 214,240.54 214,482.46 
0.95 0.8 230,990.24 218,213.31 217,956.63 217,941.62 218,189.88 
0.95 0.9 237,086.26 221,893.28 221,633.50 221,617.72 221,868.20 
0.95 0.95 239,136.17 223,723.17 223,461.24 223,445.41 223,698.11 
 

Table 10 The expected profit when 1λ = 50, 2λ = 90, 1r = 2434.4 and 2r = 472.5 

1θ  2θ  MA EM N1 N2 N3 

0.7 0.7 212,644.12 196,754.42 195,482.95 195,462.94 196,681.15 
0.7 0.8 218,184.11 200,758.13 199,453.54 199,433.15 200,685.14 
0.7 0.9 221,896.62 204,714.81 203,394.79 203,376.39 204,626.94 
0.7 0.95 223,218.42 206,722.22 205,387.19 205,366.80 206,634.76 
0.8 0.7 226,459.34 210,475.54 209,136.06 209,114.57 210,332.16 
0.8 0.8 231,839.42 214,479.32 213,106.64 213,084.78 214,336.15 
0.8 0.9 237,018.66 218,436.00 217,047.90 217,028.02 218,277.95 
0.8 0.95 238,877.70 220,443.41 219,040.30 219,018.43 220,285.77 
0.9 0.7 241,676.55 224,147.91 222,715.77 222,725.58 223,995.92 
0.9 0.8 247,417.91 228,151.69 226,686.35 226,695.79 227,999.91 
0.9 0.9 250,839.97 232,108.26 230,627.61 230,639.03 231,941.71 
0.9 0.95 252,403.00 234,115.67 232,620.01 232,629.44 233,949.53 

0.95 0.7 248,523.30 230,721.37 229,201.95 229,187.07 230,575.98 
0.95 0.8 251,848.52 234,725.15 233,172.53 233,157.28 234,579.97 
0.95 0.9 256,323.46 238,681.83 237,113.79 237,100.52 238,521.77 
0.95 0.95 257,143.99 240,689.13 239,106.19 239,090.94 240,529.59 
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Table 11 The expected profit when 1λ = 60, 2λ =  90, 1r = 2434.4 and 2r = 472.5 

1θ  2θ  MA EM N1 N2 N3 
0.7 0.7 229,308.61 210,273.42 206,523.60 205,625.97 209,698.92 
0.7 0.8 231,570.45 214,532.27 210,721.34 209,765.85 213,978.91 
0.7 0.9 235,486.01 218,766.84 214,884.62 213,905.63 218,141.16 
0.7 0.95 239,284.81 220,892.52 216,999.98 216,031.37 220,267.69 
0.8 0.7 244,367.58 224,935.21 220,848.32 219,719.87 224,022.87 
0.8 0.8 247,148.94 229,194.02 225,046.06 223,859.74 228,302.85 
0.8 0.9 252,665.12 233,428.59 229,209.34 227,999.53 232,465.10 
0.8 0.95 254,078.20 235,554.27 231,324.70 230,125.27 234,591.63 
0.9 0.7 261,919.61 239,418.33 235,282.01 234,151.91 238,452.19 
0.9 0.8 267,200.64 243,698.00 239,479.75 238,291.79 242,732.18 
0.9 0.9 269,657.23 247,912.26 243,643.03 242,431.57 246,894.43 
0.9 0.95 271,252.90 250,037.39 245,758.39 244,557.32 249,020.95 

0.95 0.7 271,886.80 246,796.09 242,220.70 241,089.37 245,813.77 
0.95 0.8 273,317.07 251,056.41 246,418.44 245,229.25 250,093.76 
0.95 0.9 277,695.17 255,290.98 250,581.72 249,369.03 254,256.01 
0.95 0.95 281,780.01 257,416.66 252,697.08 251,494.77 256,382.53 
 
Table 11 shows results trending in the same direction as in Tables 9-10. The MA method gives 

the best profit expectation for all 1θ  and 2.θ  
 

Table 12 The expected profit when 1λ = 70, 2λ = 90, 1r = 2,434.4 and 2r = 472.5 

1θ  2θ  MA EM N1 N2 N3 
0.7 0.7 241,761.59 222,781.08 218,186.42 212,326.89 220,015.90 
0.7 0.8 244,882.09 227,383.63 222,694.43 216,623.98 224,524.72 
0.7 0.9 248,138.16 231,945.56 226,989.34 220,899.45 228,800.58 
0.7 0.95 250,744.10 234,156.00 229,179.78 222,987.81 231,010.48 
0.8 0.7 260,636.48 237,702.52 232,832.54 226,974.50 234,661.69 
0.8 0.8 262,841.88 242,317.23 237,340.54 231,271.59 239,170.51 
0.8 0.9 267,155.24 246,893.54 241,635.45 235,547.06 243,446.37 
0.8 0.95 269,700.32 249,103.98 243,825.89 237,635.42 245,656.27 
0.9 0.7 282,027.10 253,555.27 248,722.65 241,806.63 249,498.05 
0.9 0.8 284,433.33 258,157.82 253,230.66 246,103.72 254,006.87 
0.9 0.9 288,259.81 262,734.13 257,525.57 250,379.20 258,282.74 
0.9 0.95 290,731.86 264,956.72 259,716.01 252,467.56 260,492.63 

0.95 0.7 289,725.89 261,666.50 255,963.62 249,014.30 257,799.44 
0.95 0.8 292,168.64 266,460.70 260,471.63 253,311.39 262,308.26 
0.95 0.9 296,086.41 271,037.01 264,766.53 257,586.86 266,584.13 
0.95 0.95 298,327.19 273,247.45 266,956.97 259,675.22 268,794.02 
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As same as the earlier results, the MA method still produces the best profit expectation for all 1θ  

and 2.θ  The simulation study shows that the MA method produces a higher expected profit than the 
EM, N1, N2, and N3 methods. The MA gives the highest profit expectation, 11.71%, 14.41%, 14.41%, 
17.76%, and 13.81% more than the EM, N1, N2, and N3 methods, respectively.  Furthermore, the 
hypothesis testing found that the MA method gave the highest expected profit and differed from the 
EM, N1, N2, and N3 methods at a significance level of 0.05. So, it can be concluded that applying the 
MA method to the two-class overbooking model will give airlines the highest profit expectations. 
 
7.  Conclusions  

The booking demand data is simulated to compare the performance of meta- analysis ( MA) 
applied to unconstraining data with the other unconstraining methods N1, N2, N3, and EM.  We find 
that the MA method gives both classes an approximate average booking demand close to the actual 
booking demand. The estimates variate follows all parameters in the two-class overbooking model. In 
contrast, when using EM, N1, N2, and N3 unconstraining methods, the estimated average booking 
demand is not close to the average actual booking demand in almost all study cases.  In the two-class 
overbooking model, meta- analysis applied to unconstraining data provided the highest profit 
expectations. 
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