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Abstract

In this work, we are interested in H-sssi «- stable fields, that is, in stable random fields that
are self-similar with parameter H and have stationary increments. We give two estimators of the
stability and the self-similar indices based on /3-negative power variations with —1/2 < 8 < 0.
The consistency of those two estimators are also proved. We illustrate these convergences with some
examples: Lévy fractional Brownian field, well-balanced linear fractional stable field and Takenaka
random field.

Keywords: H-sssi fields; stable fields, self-similarity parameter estimator, stability parameter esti-
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1. Introduction

In this paper we will consider random fields {X (¢),¢ € R}, X : R? — R whose parameter
space is the Euclidean space R?, where d € N. More precisely, we will be interested in symmetric a-
stable (S«.S) random fields that are self-similar with parameter H (ss) and have stationary increments
(s?). Such fields are widely used as models for real data, see e.g. Bonami and Estrade (2003), Peitgen
and Saupe (1988), Wilson (2000), Dubuc et al. (1989), Taylor and Taylor (1991), Taylor and Taylor

(1999), Thomas (1982), Thomas and Thomas (1988).

In the statistical literature, the estimation of various indices of H-sssi S«.S-stable random fields,
especially for Lévy fractional Brownian fields, has been studied by many authors. Among these, to
estimate the parameter H, one can mention the generalized quadratic variations with the use of the
spectral density, e.g. Bierme et al. (2011), Cohen and Istas (2013), the emperical variogram based
on a finite number of observations of X on a regular grid, see e.g. Constantine and Hall (1994), Kent
and Wood (1997), Taylor and Taylor (1999). Other references, for example Hall and Wood (1993)
proposed box-counting estimators, Feuerverger et al. (1994) recommended estimators based on the
level crossings, Istas and Lang (1997) considered the use of higher-order increments and generalized
least squared.

The main goal of this work is to develop a method using S-negative power variations with
—1/2 < B < 0 to identify consistent estimators of the stability index « and the self-similarity index
H of H-sssi Sa.S-stable random fields. This method has been introduced recently in e.g. Dang

(2020), Dang and Istas (2017). More precisely, in Dang and Istas (2017), the authors used (-
negative power variations to estimate the Hurst and the stability indices of a H-self-similar stable
process, in the context H and « are constants, based on the fact that S-negative power variations have
expectations and covariances for —1/2 < § < 0. In this paper, using this approach gives a consistent
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estimator of H without a priori knowledge on « and vice versa, the consistent estimator of a can
be obtained without assumptions on H. In this context, we deal with the multi-indices by the use
of the transformation from Cartesian coordinates to spherical coordinates to prove some inequalities
for covariances of S-negative power variations. Moreover, the rate of convergence of our estimates is
given. All the results for the case d = 1 is coincident to those in Dang and Istas (2017).

The remainder of this paper is organized as follows: in the next sections, we present the setting
and some general results for the estimation of H and « under some given assumptions. We get
the consistent estimator for H and . Then the obtained results will be applied to some particular
examples presented in Section 3: Lévy fractional Brownian field, well-balanced linear fractional
stable field and Takenaka random field. In Section 4, we gather all the proofs of the main results and
the illustrated examples.

2. Settings and main results
We first recall the definition of ss and st properties of random fields.

Definition 1 (self-similarity, see e.g., Samorodnitsky and Tagqu (1988)) A random field { X (t),t €
R%} is self-similar with index H > 0 (H — ss) if {X(at),t € R4} @ (a7 X(t),t € R"} for all

d . o . e
a > 0, where @ denotes equality of the finite-dimensional distributions.

Definition 2 (stationary increments, see e.g., Samorodnitsky and Taqqu (1988)) A random field
{X (t),t € R?} has stationary increments (si) if

(X(t+s)— X(s),t e RN L (X (t) — X(0),t € RY)

for all s € RY.

Let X be a H—sssi symmetric a— stable random fields. Let K € N, L € N be fixed integers,
a = (ag,...,ax) be a finite sequence with exactly L vanishing first moments, that is for all ¢ €
{0,..., L}, one has

K K
D klap =0, ka, £0 M
k=0 k=0
with convention 0° = 1. For example, here we can choose K = L + 1 and
_ L+1)!
— (—1)LH1-k ( ' 2
ar = (=1) K(L+1— k) &
Foreachp = (p1,...,pa) € {0, ..., K}%, let a, be defined by
ap = Qp, Apy - . . Ap,; .- 3)

For each k = (kq,...,kq) € N?,n € N, we denote by Ay X the increment of the H-sssi SauS-
stable random field X with respect to ap, i.e.

DX = Z apX (——). )

Fix —1/2 < 8 < 0, let us consider V,,(/3), the empirical mean of order /3, defined by

1
= E A X|P
ke{0,...,n—K}¢
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and the statistic

W (8) = n MV, (B). (6)
We will prove later that W,,(3) converges to E|Ag 1 X |®. We define an estimator of H as follows
fas 1 Vn/2 (ﬁ)
H,(8)==1lo . 7
9) =5 loe2 1)

We can see that the estimator of H is presented as a function of two empirical means of order 3.
Let u > v > 0, to define an estimator of «, we first introduce auxiliary functions ¥y, +, R v; Pu,v-
Let ¢y, RT X RT — R be defined by

wu,v(x7y) = —vlnx+ulny+0(u,v), (8)
where C'(u, v) is a constant depending on u, v

u—v

C(u,v) =

In7 4 uln (r(1+ %)) +oln (F(I;u)>
—vln (T(1 + g)) —uln (F(1;U)> :

here I'(.) is the Gamma function. Let h,, ,, : (0, +00) — (—00,0) be given by

huo(z) = uln (F(l + %)) — ol (r(l + g)) . )

From Lemma 4.11 in Dang and Istas (2017), one gets that h,, , is a strictly increasing function and
there exists the inverse function h;’lv. Therefore, we can define a function ¢, , : R — [0,400) as

follows
0 ifz >0
u,v\T) = . - 10
Pun() {h_l(x) ifr <0 (10

u,v

where h,, ,, is defined by (9).
Let 1, B2 be in R such that —1/2 < 8; < B2 < 0, then —f1 > —f2 > 0. The estimator of « is
defined by

On = Q—p,,—, (V=p1,—: (Va(B1), Vi (B2))) , (11
where ¢, 4, ¢y, are defined as in (8) and (10), respectively. We make the following assumptions
with 8 € (—1/2,0) fixed:
There exists a sequence {b,,, n € N} and a constant C such that ngrfoo by = 0,b,/2 = O(by) and

lim ——
n——+00 ndb%

> |cov(| Lk, 1 X 1P, |00 X|P)| < C2. (12)

k=(k1,....kq) €24, |k;|<n
Based on the assumption (12), we present the estimators of H and « as follows.
Theorem 1 Let X be a H-sssi, SauS random field, X : R — R. Also, let 3,31, 52 € R, —1/2 <
B <0,-1/2 < p1 < B2 < 0and H,(B),ay, be defined as in (7), (11), respectively. Assume (12),
then

W (8) — E|Ao1 X | = Op(by). (13)
ﬁn(ﬂ) - H= O]P’(bn)aan —a= OP(bn)a (14)

where Op(by,) is defined by:
o X,, = Op(1) iff for all € > 0, there exists M > 0 such that sup,, P(| X,,| > M < ¢),
oY, = Op(a,) means Y, = a, X,, with X,, = Op(1).

Proof: See Subsection 4.1 for the Proof of Theorem 1.
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3. Examples
We are in position to give some examples to illustrate the results presented in the latter section
for estimating H and «. n this section, let 3, 81,02 € R, —1/2 < 8 < 0,—-1/2 < 1 < B2 < 0.

3.1. Lévy fractional Brownian field
We will present here estimators for the self-similarity index H and the stability index « of the
Lévy fractional Brownian field.

Definition 3 Lévy fractional Brownian field (see e.g., Samorodnitsky and Tagqu (1988)).
Let0 < H < 1and o > 0. The Gaussian field X = {X(t),t € R?} with mean 0 and autocovariance
function

2
g
EX(8)X(s) = - {[[t|*" + [Is|[*" — [[t — s[|*"'}, ¢,5 € R, (15)

is called the Lévy fractional Brownian field. When d = 1, it is the fractional Brownian motion.

One can also construct X as the integral X (t) = oo [ (||t — x[|¥~% — ||x||¥~ %)M (dx),
Rd
where M is a Gaussian random measure on R? with Lebesgue control measure and o is a constant
proportional to o. Lévy fractional Brownian field is an extension of fractional Brownian motion to
R?. It is H-sssi 2-stable random field (see Chapter 8 in (Samorodnitsky and Taqqu , 1988) for more
details). Now we will just consider the case d > 2. Let

ol

by, =n (16)

Theorem 2 Let X be a Lévy fractional Brownian field in RY(d > 2), defined by (15). Then
H, (B), an, defined by (7), (11) are consistent estimators of H and «, respectively. More precisely,
one obtains the results in Theorem 1 with b, as in (16).

Proof: See Subsection 4.2.

3.2. Well-balanced linear fractional stable field
We now apply the results on estimating H and « for another random field which is the general-
ization of the well-balanced linear fractional stable motion.

Definition 4 Well-balanced linear fractional stable field.
Let H € (0,1),a € (0,2], H # 1/a. Let X = {X(t),t € R?} be a random field defined by

X(0) = [ (It~ sl = 111" #) Ma(ds), a7
Rd

where M, is a Sa.S random measure on R¢ with Lebesgue control measure. Then {X (t),t € R¢}
is called well-balanced linear fractional stable field.

The field X is H-sssi (see the Notes to Chapter 8 in Samorodnitsky and Taqqu (1988) for more
details). If d = 1, it reduces to the well-balanced linear fractional stable motion. Let

n—% if eff=lLtlod g
by = { nTEE i — g < el=Itad g (18)

/127’? if ozH—(g—&-l)ad - _d

It is clear that lirJrrl b, = 0asn — 400 and b, )5 = O(b,). We will prove that the assumption (12)
n—+0o0o

is satisfied with b,, defined by (18), then the results in Theorem 1 are obtained.
Remark The case o = 2 corresponds to the Lévy fractional Brownian field with b, = n~%? as
presented in the subsection 3.1. Now we deal with the case 0 < o < 2.
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Theorem 3 Let {X(t),t € R} be a well-balanced linear fractional stable field defined by (17),
where 0 < o < 2. Then the results in Theorem 1 occur with b, as in (18).

Proof: See Subsection 4.2.
3.3. Takenaka random field

We now apply our results to Takenaka random field which is an extension of Takenaka process
to R?. For t € R?, let C¢, V4 be defined by

Ce ={(x,7) e R x R : ||x — t|| <7} (19)
Vi =Cy A Co={(x,7) ERI X RY : ||x — t]| < r}. (20)

Definition 5 Takenaka random field (see e.g., Samorodnitsky and Taqqu (1988))
Let {X(t),t € R?} be defined by

X(t) = / 1y, (x,r) My (dx, dr), @2n
Rd xR+
where V; is defined by (20) and M, is a Sa.S random measure with control measure m defined by
m(dx,dr) = =4 xdr, 0 < v < 1. (22)
{X(t),t € R} is called an (v, H)— Takenaka random field, where 0 < o < 2 and H = v/cv.

Following Theorem 8.4.4 in Samorodnitsky and Taqqu (1988), {X (t),t € R4} is H-sssi. Let
b, be defined by

b,=n"2 .

(23)
The following result is a corollary of Theorem 1.

Theorem 4 Let {X(t),t € R} be a Takenaka random field defined by (21). Then one gets the
conclusion of Theorem 1 with b, as in (23).

Proof: See Subsection 4.2

4. Proofs

In this section, we gather all the proofs of the main results and the examples presented in Section
3. The key point in these proofs is the use of the Jacobian’s transformation from Cartesian coordinates
to spherical coordinates which is presented in Appendix.

4.1. Proof of Theorem 1
Proof: The proof consists of the following steps:

1. applying the assumption (12) and sssi properties of {X (t),t € R?} to show that W,,(3) —
E|Ao1X|? = Op(by).

2. combining the above result with Lemma 4.10 and Lemma 4.11 in Dang and Istas (2017) to get
that H,,(5) and &, are consistent estimators of H and «, respectively.
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We first prove that W, () — E|Ao 1 X |# = Op(by,).
(4

Since {X(t),t € R4} is H-ssand Y.  ap = 0, thenfork = (ky,...,kq) € Z%, A X =
pe{0,....K}4

ﬁ B
7N X It follows that E|Ay , X|? = E ’ Az’éx ’ = ]ElA,f[éhxl and

nfH

EW,(8) = m_K+1) > E[Dkn X[ = E[Do 1 X7 (24)
ke{0,...,n—K}4
One gets
2 n?? B B
EW,,(8)" = m—K+1)% Z E|Ak) , X7 Aye , X7 (25)

k(D) k@ e{0,....n—K}d

For k), k® € {0,...,n— K}?, onehas | Ay , X|?[ Ao ,, X | < | Ak —x 1 X [P Do X|P.
Then it follows that

E|Ak(1),nX|ﬂ|Ak(2),nX|ﬂ = n_2BHE|Ak(1>_k(2)71X|B|AO,1X|'B~ (26)

Combining (25) with (26), it deduces that

EWa(0) = — > -ty e el

(= K41 enx n—K+1 T n—-K+1
X E|Ar 1 X [P 001 X|P. (27)
Moreover,by induction, we can deduce that
L - [k [kdl
ey ey A DR Uty oy PRI Chalbrany ordiuts

i=1
ki€Z, ks |[<n—K

Together with (24), (25), (27), one can derive

1 | |l
E|W, —E|lAo 1 XPPP = ———— 1-— ). 1 —-—
‘ (ﬂ) | 0,1 “ (n7K+1)d Z ( TL*K+1) ( n—K+1
k:(k‘l ..... kd)GZd,\kﬂgan
X (E|Ak71X|5‘AO71X|ﬁ — (E|A071X|B)2)
1
< > lcov(| A1 X 1P, | 80,1 X)) (28)

— d
(= K+ D) bzl <n K

Using (28) and the assumptions (12), one gets

1
lim sup - E|W,,(8) — E|[ A1 X |7 < C%.
n—-+o0o br% ’

Then for all € > 0, applying Markov’s inequality, one deduces
E[Wo(8) — B[ Ao X ||
p2 €2

C
sup P(|W,,(8) — E|Ao 1 X |P| > bnﬁ) < limsup <e

It follows that W,,(8) — E|Ao.1 X |? = Op(by,). Since bn/2 = O(by), one also has

Wo/2(8) — E| D01 X[ = Op(by).
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We deduce that H,,(8) — H = ¢(W,, /2(B8), Wy(f)). Combining to the fact that ¢ is differentiable at
(E‘A071X|ﬁ,E|AO’1X|B) and

Wn(ﬁ) - E|A0,1X|ﬁ = OIP’(bn)a Wn/2(/8) - E|A0,1X|ﬁ = OIP’(bn);
applying Lemma 4.10 in (Dang and Istas , 2017), one gets fIn(ﬁ) — H = Op(by,). Moreover

an — Q& =Q_p,—B (1/)—[317—,32 (Wn(ﬂ1)7 Wn(ﬁQ))) —P—B1,—B2 (7/)—,@17—,32 (E‘A071X|Bla]E|A071X|62))'

From Lemma 4.11 in Dang and Istas (2017), it follows that ¢_g, _g, 0¥ _g, _g, is differentiable at
7o = (E|Ao,1 X, E|Ap,1X|?). Combining with the assumption (12) and the fact that W,,(31) —
E|Ao1 X [P = Op(b,), Wy (B2) — E|Ao1X|?2 = Op(b,) and applying Lemma 4.10 in Dang and
Istas (2017), we obtain that &, — o = Op(by,).

4.2. Proofs related to Section 3

In this subsection, we give the proofs of theorems presented in Section 3 for the case d > 2. For
the one-dimensional case (d = 1), we refer to Dang and Istas (2017) for more details.
A strategy for proving these theorems is as follows:

1. to find a bound for |cov(| Ak 1 X |?, | Ao 1 X)|?],

2. to show that the assumption (12) is satisfied for the mentioned fields, then apply Theorem 1 to
get the conclusion.

Proof of Theorem 2. We just consider the case d > 2. One has

K
MeaX = > apX(k+p),LoaX= > apX(p)

From (1), one can derive > ap =0. Then for k € Z< fixed, ||k|| > 0, we have
pe{0,...,K}4

o k p-p
cov(Die1 X, DoaX) =~ Y 7apap,\|k||2H|\w+ ] 128 (29)
p,p’€{0,....K}¢

We consider the function f(x) = ||x||?# where x € R, ||x|| # 0. One can choose ko € N, kg > 2

such that for all k € Z¢,||k|| > ko, then HHPTHP/ € {x e R, 1/2 < ||x|| < 3/2} forall p,p’ €

{0,..., K}%. We can see that f(x) is infinite differentiable for all x € R%, ||x|| # 0.
Foreach p = (p1,...,pa), P’ = (p\,.--,0,),p,p’ € {0,..., K}%and |[k|| > ko, applying Taylor
expansion to the function f(x) to order d at zy = X, one gets

d T k r r

pletep gy oy D) oo ) e )
||K|| - .y G

r=1ri+...rqg=r 1 d

+ > O f(€p—p) (p1 — D)™ .. (pa — D)
ril...rg! ||Kk]||dtT

ri+...+rqg=d+1

where £, is on a line segment connecting ¥ and ¥P=P"_ Obviously, &, p € {x € R%,1/2 <

(k]| (k]|
||x|| < 3/2}- a compact set in R%.
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From (1), it follows that > appi'...pyt = 0forry,...,rq € Nfixed and r1 +
p=(p1,-.-,pa)€{0,...., K}
...+ rq <d. Then one can derive

d 0k
O () (01 = p)™ - (pa = 2™ _
> X ) apap —— : =
ril..rg! k||
r=1ri+...4rq=r p,p’E{O,..‘,K}d
p=(p1,---,pa),p’ =(P},-:Py)

Combining with (29), it follows that there is a constant C and kj > ko > 2 such that for all k €
7%, ||k|| > kg, one has

lcov(Aga1 X, Do X)| < C|Jk|PT—471 < 1. (30)

Moreover, since > ap = 0, one has varAx 1 X = varlg,1X. On the other hand, since
pe{0,...,K}4

X is a Gaussian field, together with (30), then for all k € Z%, ||k|| > kg > 2, apply Lemma A.1 in

Dang and Istas (2017), one has |cov(| Ak 1 X%, | N0 1X)|?| < C||k||*H~29-2, where C is a running

constant which may change from an occurrence to another. Thus

1
v > |cov(| M1 X17, [ D01 X |7))]
k:(kl,...,kd)ezd,\ki|§n
C —2d—
< i 14+ Z ||k||4H 2d—2

k=(k1,....ka) €29, | ks | <n,| ||| <k}

Since d > 2,0 < H < 1, it follows 4H — 2d — 2 < —d. Then applying Lemma 3, there exists a
constant X > 0 such that

1 Y
—~ > lcov(| A1 X |2, | Doa X7 < g
k=(k1,....ka) €24, |k;|<n
The condition (12) is followed with b,, = n~%2 and one gets the conclusion. ]

Proof of Theorem 3. The following lemma is used to prove Theorem 3.

Lemma 1 There exist Ko > 0, C > 0 such that for all k € Z%, ||k|| > K, we have

aH—(L+1)ad
2

I = / F(8)f(s — K)[*"2ds < O] k|| "5 31)
Rd

where f(s) is defined by

fe)= Y apllp—sl[’ " seR:s£0. (32)

Proof: Fors € R ||s|| > 0, one has

fe) =S Y apHSH‘S Pjr-s. (33)

pe{0,....,K}4 H
We set

g(x) = [[x||7~%, (34)
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where x € R%, x # 0. One can choose ko € N such that for all s € R?, ||s|| > ko, p € {0,..., K},

r € {xe R?1/2 < |x|| < 3/2} . Itis clear that g(x) is infinite differentiable for all x €

R% x # 0. For each p = (p1,...,p4) € {0,..., K}, applying Taylor expansion to the function
g(x) toorder (L + 1)d — 1 atxg = le]]» One gets

sy Uy I ) )

ril...rg! [Is||”

Ly PG e

] | (L+1)d
e (L 1)d ril.. . rg! lIsl|

and =

IISH Then &, € {x € R4, 1/2 < ||x|| < 3/2}-a

where ¢, is on a line segment connecting HSII

compact set in R?. From (1), it follows that
Z appi'...p =0
p=(p1,...,pa)€{0,....K }4

forry,...,rq € Nfixedandr1 + ...+ r4 < (L + 1)d — 1. Then one obtains

! " fgam) (=p)™ ... (=pa)™
Z 2 2 P! sl =0

r=1 rit..+ra="p=(p1,...,pa)€{0,..., K }¢

Combining with (33), it follows that there is a constant C such that for all s € R, ||s|| > ko, one has
()] < CJs|| =401, (35)

Let Ko = 2k, for all k € Z4,||k|| > K, by changing variable then

I = / F(8) (s + K)[*/2ds + / |F(8) £ (s + 1)|*/2ds = Tuye + I,

l1sl1> L1 l1sl1< Ll
where 1k = [ |f(s)f(s+k)|*/2ds, ok = [ |f(s)f(s+k)|*/?ds. Applying Cauchy-
lIs1> L 151 L&l

Schwartz’s inequality, since ||k||/2 > ko, one can use (35) and then make the transformation from
Cartesian coordinates to spherical coordinates to get

1/2
| [ lerds [ sl
[Is]|> Ll |Is||> Ll
1/2 1/2
<C / Hs||aH—d—(L+1)adds <C / paH—d—(L+1)addp < CHkHM
[Is]|> Ll > Ll

(36)
where C'is a running constant which may change from an occurrence to another. The latter inequality
comes from the fact that « H — (L + 1)ad < 0. Similarly, one gets

aH—(L+1)ad
2

Ly < Clk
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Together with (36), (36) and since aH—(Ltl)ad 0, one can choose kg such that for all k €

2
74, ||k|| > Ko. one has I, < C|[k||*" 5.
We are back to the proof of Theorem 3 by proving that condition (12) is satisfied. Since
ap = 0, one has
pe{0,...,.K}4

beaxX= [ apllo— o101 ) Mata) = [ sts - 1Ma(a9
Rd

R4 pG{O,‘..,K}d

where f(s) is defined by (32). It follows that

1/« 1/
Xl = | [1f6-wras| = | [Irods] = lltaX]. 6D
d d
From Lemma 1, there exist Ky > 0,0 < 1 < 1,C > 0 such that for k € Z%, ||k|| > K, we have
A1 X N1 X :| / 9 aH— (L+1)(xd
TR : [£(s)f(s —k)|*/2ds < C|[K]| <n<l
1Ak X]la " [1B01 X [aly (1D, 1X\|a
where ., ], is defined by [ff o (ds) fg 1 = f |f(s)g(s)|*/?ds.
2

From (37) and applying Theorem 4.2 in Dang and Istas (2017), for all k € Z%,||k|| > K, there
exists a constant C' such that

aH— (L+1)ad

|1 X [P Do X

( ,
1Ak X o [[Ao X5

)| <

|cov(|Aka X7, 1801 X17)| = (|80, X[ |cov Cllk]|

Then one has

v > lcov(| A1 X 17, | D01 X 7))
k=(k1,....ka) €Z4,|ki|<n
1
=3 > lcov(| i1 X |7, | 20,1 X17))|
k=(k1,....ka) €24, | i | <, |k|| < Ko
1
+og > lcov(| A1 X7, | D01 X 7))
Kk=(k1,....kq) €24, |k | <n,|[k]||> Ko
C aH—(L+1)ad
<G|+ > = | <o,

k=(k1,....ka) €2, |ki|<n,|[k[[> Ko

where b,, is defined by (18). The latter inequality comes from Lemma 3. Thus the condition (12) is
satisfied. Then one gets the conclusion from Theorem 1. O

Proof of Theorem 4. The following lemma is used to prove Theorem 4.

Lemma 2 Let X be a Takenaka random field defined by (21). For k € R?, let

+oo
he = [Ak 1 X, Do X2 = / /TV*d*l\fk(XaT)fo(XaT)|a/2dXd7’ (38)
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where fi(x,r) is defined by

fi(x,r) = Z aply,, (x,7). (39)

Then there exist K1 > 0 and a constant C > 0 such that for all k € R |k|| > K, we have
L < C||k||¥~ L.

Proof: Since 14,5 = (14 —15)2, then fi(x,7) = (1 -2 x 1¢,(x,7)) 3 apley,, (x,7).
pe{0,...,K}4
It induces that | fi (x,7)| = | > aple,,(x,7)|. Let Ky = KV/d, now we will consider Iy
p€{0,...,K}d
fork € R? ||k|| > 4K.
If ||x|| > Ko + r, then for all p € {0,...,K}%, ||x — p|| > ||x|| = ||p|| > Ko +7 — ||p|| > r, it
follows 1¢, (x,7) = 0. Thus fo(x,r) = 0 for [|x|| > K + 7. One can derive

“+o0
fe= [ el ) R = T+ T (40)
0 x| S Kot
where
gl
Lk = / prd=t / | fo(x, ) fic(x, 7)|*/ 2dxdr,
0 l[x[|[<Ko+r
+oo
o= [t [ oG ) s
Wil e, ]| Ko+r

We consider I1. For 0 <7 < *58 — Ko, then 0 < Ko+ < ||k|| = Ko —7. If ||x]|| < [[k|| =Ko -,
one has

b —p = Kk[[ > [[K[| = [[x[[ = [[p]| > |[k|[ = [[pl| = ([|k|| = Ko —7) =7+ Ko —[lp[| = r

forall p € {0,..., K}, it follows that 1¢, , , = 0.

Thus fx(x,r) = 0 for ||x|| < ||k|| — Ko — r. Then one gets I = 0 and I, = lo.

For r > ”QLHfKO, one has r — Ky > H—;‘Hf?Ko > 0. If ||x|| < r — Kp then ||x — p|| <
x| + ||pl| <7 — Ko+ ||p]| < rforall p € {0,..., K}? itinduces that 1¢_(x,r) = 1. Thus one
can derive that fo(x,r) = 0 for ||x|| < r — Kj. It induces

+oo
Iy = I = / pr=d=t / | fo(x,7) fic(x, 7)|*/ 2dxdr.
1l kg r—Ko<||x||<Ko+r

«
Moreover | fo(x,7) fic(x,7)|*/? < < > ap|> < 4o00. It follows that

L <C / pr—d=1 / dxdr.

el _ g r—Ko<||x[|<Ko+r
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We make the transformation from Cartesian coordinates to spherical coordinates to get

+oo
L <C / pr—d-1 / pt 1dpdr<2Koc / o2 e, (41)
k||

H12<H ~ Ko r—Ko<p<Ko+r 2 —Ko

The latter inequality comes from the fact that for r > ” Lkl Ko, thenr — Ko < p<r+ Ky < 2r.
v—1
<C ( |k”) since v — 1 < 0. Thus there exists a

From (41), one gets I < C’( Lkl KO) -
= K+/d, one has I, < C||k||*~.

constant C' > 0 such that for all k € R?, ||k|| > 4K, where K
We come back to the proof of Theorem 4. One has

N1 X = > aply,(x,7) | M(dx,dr) = / fie(x, 7Y M (dx, dr),
Rd xR+ pe{0,.... K} Rd xR+
where fi(x,r) is defined by (39). We write
A1 XS = // v—d-= 1| aple,,, (x,7)|%dxdr
pE{O ..... K}d
// v—d-1 aple, (x —k,7)|*d(x —k)dr = || Do 1 X |2, (42)
pE{O ..... K}d

From Lemma 2, there exist K1 > 0,0 < 1 < 1 such that for k € Z4, ||k|| > K7, we have

Ak 1X AO 1X i1 P
7 7 . /2 dxd
[||Ak,1X|\a’ 1801 X[l ||A01X||a / / | fie(x,7) fo(x,7)[*dxdr

<ClKIt <<t

From (42) and applying Theorem 4.2 in Dang and Istas (2017), there exists a constant C' > 0 such
that for all k € Z?, ||k|| > K, one can derive

lcov(| A1 X 17,1201 X[7)| = ([ 201 X2 |cov

|Ak;1X|ﬂ |A0;1X|ﬂ < Cllk v—1
. ) = i,
1Ak X o [[A01 X |o

Then one has

1
v > lcov(| A1 X |7, [ Do, X))
k=(k1,....ka) €24, |k;|<n
1
=3 >, lcov(| Lk X1, | 20,1 X7
k=(k1,..., ka)€Z |k |<n,||k||<K1
1
+3 > [cov(| Dk X17, | 80,1 X17)]
k=(k1,....ka) €29, |ki| <n,| k|| > K,
C v—1 v—1
<5 |1+ > ||K|| < Cn’ L.
k=(k1,....,ka) EZ%,|k;|<n,||k||>Ko

is defined by (23). The latter inequality comes from Lemma 3. Then (12) is satisfied.

where b,
O

Together with Theorem 1, one gets the conclusion.
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5. Conclusions

In this paper, we have extended the results in Dang and Istas (2017) to estimate the Hurst index
H and the stability index a for H-sssi, Sa.S-stable random fields, whose parameter space is in high
dimensions R?. From the statistical literature, there are several methods used to estimate H and a,
however, in many situations, one needs an a priori knowledge on « to estimate H and vice versa. In
this framework, there always exists the moments of S— negative-power variations (—1/2 < 8 < 0)
of underlying fields without any assumptions. The estimations are based on this variations. One of
the key point of proofs is to find the inequalities for their covariances. In this context, the difficulty
is the appearance of multi-indices. This problem has been solved by using the transformation from
Cartesian coordinates to spherical coordinates. In this work, some examples has also been presented
to illustrate obtained results.

Appendix

In this part, we will define a spherical coordinate system in R?, d > 2 where the coordinates
consist of a radial coordinate p, p > 0 and d — 1 angular coordinates ¢1, ..., ¢q_1 Where ¢,_1 €
[0,27] and ¢; € [0, 7] fori =1,...,d — 2 (in case d = 2, then we have just one angular coordinate
¢ € [0,27]). We will find the Jacobian of the transformation from Cartesian coordinates to spherical
coordinates.

We define the spherical coordinates by

z1 = pcos(¢r)
To = psin(p1) cos(p2)
x3 = psin(¢q) sin(pz) cos(¢s))

X1 = psin(¢y) sin(Pa) . . . sin(¢dn—3) sin(dnp—2) cos(Ppn_1)
Xy, = psin(py) sin(Pa) . . . sin(¢n—3) sin(gn—2) sin(p,—1) (43)

Then the Jacobian of the transformation from Cartesian coordinates to spherical coordinates is

O(r172 ... 24q) de1
T R,
cos(¢1) —sin(¢q) .. 0
sin(¢1) cos(¢p2) cos(¢1) cos(¢p2) e 0
. (44)
sin(g1)...cos(dp—1) cos(¢y)sin(ps)...cos(dn-1) ... —sin(¢r)...sin(dp_1)
sin(¢1)...sin(¢p—1) cos(¢y)sin(¢ps)...sin(dp—1) ... sin(p1)...cos(¢dn-1)

d—2
J=p"t H sind_l_j(gbj).

j=1
Lemma 3 Forp < 0,Ky,d € N, Ko, d > 2, one has
O(n_d) lfp < _da

Sp=20(MP) if —d<p<0, 45)
o(23)  ifp=—d.

where

1
Sp=— > ||k (46)

k=(k1,....kq)EZ,|k;|<n,||k||>Ko>2
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Proof: Since p < 0, we have

2d
Sn=2 > I
k=(k1,...,kq)€Z4,0<k; <n,||k||>Ko>2
24 C
N T 47
n n
Ko—1<||x||<nVd Ko—1<p<nVd

The latter inequality comes from the transformation from Cartesian coordinates to spherical coordi-
nates.

If p < —d, then d + p < 0. From (47), one gets S,, = O(n’d).

If —d < p <0, then d + p > 0. Thus one has S,, = O(n?).

If p = —d, one gets S,, = O(lz—f) Then we get the conclusion.
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