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Abstract
In this work, we are interested in H-sssi α- stable fields, that is, in stable random fields that

are self-similar with parameter H and have stationary increments. We give two estimators of the
stability and the self-similar indices based on β-negative power variations with −1/2 < β < 0.
The consistency of those two estimators are also proved. We illustrate these convergences with some
examples: Lévy fractional Brownian field, well-balanced linear fractional stable field and Takenaka
random field.

Keywords: H-sssi fields; stable fields, self-similarity parameter estimator, stability parameter esti-
mator, negative power variations.

1. Introduction
In this paper we will consider random fields {X(t), t ∈ Rd}, X : Rd → R whose parameter

space is the Euclidean space Rd, where d ∈ N. More precisely, we will be interested in symmetric α-
stable (SαS) random fields that are self-similar with parameterH (ss) and have stationary increments
(si). Such fields are widely used as models for real data, see e.g. Bonami and Estrade (2003), Peitgen
and Saupe (1988), Wilson (2000), Dubuc et al. (1989), Taylor and Taylor (1991), Taylor and Taylor
(1999), Thomas (1982), Thomas and Thomas (1988).

In the statistical literature, the estimation of various indices ofH-sssi SαS-stable random fields,
especially for Lévy fractional Brownian fields, has been studied by many authors. Among these, to
estimate the parameter H, one can mention the generalized quadratic variations with the use of the
spectral density, e.g. Bierme et al. (2011), Cohen and Istas (2013), the emperical variogram based
on a finite number of observations of X on a regular grid, see e.g. Constantine and Hall (1994), Kent
and Wood (1997), Taylor and Taylor (1999). Other references, for example Hall and Wood (1993)
proposed box-counting estimators, Feuerverger et al. (1994) recommended estimators based on the
level crossings, Istas and Lang (1997) considered the use of higher-order increments and generalized
least squared.

The main goal of this work is to develop a method using β-negative power variations with
−1/2 < β < 0 to identify consistent estimators of the stability index α and the self-similarity index
H of H-sssi SαS-stable random fields. This method has been introduced recently in e.g. Dang
(2020), Dang and Istas (2017). More precisely, in Dang and Istas (2017), the authors used β-

negative power variations to estimate the Hurst and the stability indices of a H-self-similar stable
process, in the context H and α are constants, based on the fact that β-negative power variations have
expectations and covariances for −1/2 < β < 0. In this paper, using this approach gives a consistent
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estimator of H without a priori knowledge on α and vice versa, the consistent estimator of α can
be obtained without assumptions on H . In this context, we deal with the multi-indices by the use
of the transformation from Cartesian coordinates to spherical coordinates to prove some inequalities
for covariances of β-negative power variations. Moreover, the rate of convergence of our estimates is
given. All the results for the case d = 1 is coincident to those in Dang and Istas (2017).

The remainder of this paper is organized as follows: in the next sections, we present the setting
and some general results for the estimation of H and α under some given assumptions. We get
the consistent estimator for H and α. Then the obtained results will be applied to some particular
examples presented in Section 3: Lévy fractional Brownian field, well-balanced linear fractional
stable field and Takenaka random field. In Section 4, we gather all the proofs of the main results and
the illustrated examples.

2. Settings and main results
We first recall the definition of ss and si properties of random fields.

Definition 1 (self-similarity, see e.g., Samorodnitsky and Taqqu (1988)) A random field {X(t), t ∈
Rd} is self-similar with index H > 0 (H − ss) if {X(at), t ∈ Rd} (d)

= {aHX(t), t ∈ Rn} for all

a > 0, where
(d)
= denotes equality of the finite-dimensional distributions.

Definition 2 (stationary increments, see e.g., Samorodnitsky and Taqqu (1988)) A random field
{X(t), t ∈ Rd} has stationary increments (si) if

{X(t+ s)−X(s), t ∈ Rd} (d)
= {X(t)−X(0), t ∈ Rd}

for all s ∈ Rd.

Let X be a H−sssi symmetric α− stable random fields. Let K ∈ N, L ∈ N be fixed integers,
a = (a0, . . . , aK) be a finite sequence with exactly L vanishing first moments, that is for all q ∈
{0, . . . , L}, one has

K∑
k=0

kqak = 0,

K∑
k=0

kL+1ak ̸= 0 (1)

with convention 00 = 1. For example, here we can choose K = L+ 1 and

ak = (−1)L+1−k (L+ 1)!

k!(L+ 1− k)!
. (2)

For each p = (p1, . . . , pd) ∈ {0, . . . ,K}d, let ap be defined by

ap = ap1
ap2

. . . apd
. (3)

For each k = (k1, . . . , kd) ∈ Nd, n ∈ N, we denote by △k,nX the increment of the H-sssi SαS-
stable random field X with respect to ap, i.e.

△k,nX =
∑

p∈{0,...,K}d

apX(
k+ p

n
). (4)

Fix −1/2 < β < 0, let us consider Vn(β), the empirical mean of order β, defined by

Vn(β) =
1

(n−K + 1)d

∑
k∈{0,...,n−K}d

|△k,nX|β , (5)
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and the statistic

Wn(β) = nβHVn(β). (6)

We will prove later that Wn(β) converges to E|△0,1X|β . We define an estimator of H as follows

Ĥn(β) =
1

β
log2

Vn/2(β)

Vn(β)
. (7)

We can see that the estimator of H is presented as a function of two empirical means of order β.
Let u > v > 0, to define an estimator of α, we first introduce auxiliary functions ψu,v, hu,v, φu,v .
Let ψu,v: R+ × R+ → R be defined by

ψu,v(x, y) = −v lnx+ u ln y + C(u, v), (8)

where C(u, v) is a constant depending on u, v

C(u, v) =
u− v

2
lnπ + u ln

(
Γ(1 +

v

2
)
)
+ v ln

(
Γ(

1− u

2
)

)
− v ln

(
Γ(1 +

u

2
)
)
− u ln

(
Γ(

1− v

2
)

)
,

here Γ(.) is the Gamma function. Let hu,v : (0,+∞) → (−∞, 0) be given by

hu,v(x) = u ln
(
Γ(1 +

v

x
)
)
− v ln

(
Γ(1 +

u

x
)
)
. (9)

From Lemma 4.11 in Dang and Istas (2017), one gets that hu,v is a strictly increasing function and
there exists the inverse function h−1

u,v . Therefore, we can define a function φu,v : R → [0,+∞) as
follows

φu,v(x) =

{
0 if x ≥ 0

h−1
u,v(x) if x < 0

(10)

where hu,v is defined by (9).
Let β1, β2 be in R such that −1/2 < β1 < β2 < 0, then −β1 > −β2 > 0. The estimator of α is
defined by

α̂n = φ−β1,−β2
(ψ−β1,−β2

(Vn(β1), Vn(β2))) , (11)

where ψu,v, φu,v are defined as in (8) and (10), respectively. We make the following assumptions
with β ∈ (−1/2, 0) fixed:
There exists a sequence {bn, n ∈ N} and a constant C such that lim

n→+∞
bn = 0, bn/2 = O(bn) and

lim
n→+∞

1

ndb2n

∑
k=(k1,...,kd)∈Zd,|ki|≤n

∣∣cov(|△k,1X|β , |△0,1X|β)
∣∣ ≤ C2. (12)

Based on the assumption (12), we present the estimators of H and α as follows.

Theorem 1 Let X be a H-sssi, SαS random field, X : Rd → R. Also, let β, β1, β2 ∈ R,−1/2 <

β < 0,−1/2 < β1 < β2 < 0 and Ĥn(β), α̂n be defined as in (7), (11), respectively. Assume (12),
then

Wn(β)− E|△0,1X|β = OP(bn). (13)

Ĥn(β)−H = OP(bn), α̂n − α = OP(bn), (14)

where OP(bn) is defined by:
•Xn = OP(1) iff for all ϵ > 0, there exists M > 0 such that supn P(|Xn| > M < ϵ),
•Yn = OP(an) means Yn = anXn with Xn = OP(1).

Proof: See Subsection 4.1 for the Proof of Theorem 1.



Dang Thi To Nhu 487

3. Examples
We are in position to give some examples to illustrate the results presented in the latter section

for estimating H and α. n this section, let β, β1, β2 ∈ R,−1/2 < β < 0,−1/2 < β1 < β2 < 0.

3.1. Lévy fractional Brownian field
We will present here estimators for the self-similarity index H and the stability index α of the

Lévy fractional Brownian field.

Definition 3 Lévy fractional Brownian field (see e.g., Samorodnitsky and Taqqu (1988)).
Let 0 < H < 1 and σ > 0. The Gaussian fieldX = {X(t), t ∈ Rd} with mean 0 and autocovariance
function

EX(t)X(s) =
σ2

2
{||t||2H + ||s||2H − ||t− s||2H}, t, s ∈ Rd, (15)

is called the Lévy fractional Brownian field. When d = 1, it is the fractional Brownian motion.

One can also construct X as the integral X(t) = σ0
∫
Rd

(||t − x||H− d
2 − ||x||H− d

2 )M(dx),

where M is a Gaussian random measure on Rd with Lebesgue control measure and σ0 is a constant
proportional to σ. Lévy fractional Brownian field is an extension of fractional Brownian motion to
Rd. It is H-sssi 2-stable random field (see Chapter 8 in (Samorodnitsky and Taqqu , 1988) for more
details). Now we will just consider the case d ≥ 2. Let

bn = n−
d
2 . (16)

Theorem 2 Let X be a Lévy fractional Brownian field in Rd(d ≥ 2), defined by (15). Then
Ĥn(β), α̂n, defined by (7), (11) are consistent estimators of H and α, respectively. More precisely,
one obtains the results in Theorem 1 with bn as in (16).

Proof: See Subsection 4.2.

3.2. Well-balanced linear fractional stable field
We now apply the results on estimating H and α for another random field which is the general-

ization of the well-balanced linear fractional stable motion.

Definition 4 Well-balanced linear fractional stable field.
Let H ∈ (0, 1), α ∈ (0, 2], H ̸= 1/α. Let X = {X(t), t ∈ Rd} be a random field defined by

X(t) =

∫
Rd

(
||t− s||H− d

α − ||s||H− d
α

)
Mα(ds), (17)

where Mα is a SαS random measure on Rd with Lebesgue control measure. Then {X(t), t ∈ Rd}
is called well-balanced linear fractional stable field.

The field X is H-sssi (see the Notes to Chapter 8 in Samorodnitsky and Taqqu (1988) for more
details). If d = 1, it reduces to the well-balanced linear fractional stable motion. Let

bn =


n−

d
2 if αH−(L+1)αd

2 < −d,
n

αH−(L+1)αd
4 if − d < αH−(L+1)αd

2 < 0,√
lnn
nd if αH−(L+1)αd

2 = −d.
(18)

It is clear that lim
n→+∞

bn = 0 as n→ +∞ and bn/2 = O(bn). We will prove that the assumption (12)

is satisfied with bn defined by (18), then the results in Theorem 1 are obtained.
Remark The case α = 2 corresponds to the Lévy fractional Brownian field with bn = n−d/2 as
presented in the subsection 3.1. Now we deal with the case 0 < α < 2.
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Theorem 3 Let {X(t), t ∈ Rd} be a well-balanced linear fractional stable field defined by (17),
where 0 < α < 2. Then the results in Theorem 1 occur with bn as in (18).

Proof: See Subsection 4.2.

3.3. Takenaka random field
We now apply our results to Takenaka random field which is an extension of Takenaka process

to Rd. For t ∈ Rd, let Ct, Vt be defined by

Ct = {(x, r) ∈ Rd × R+ : ||x− t|| ≤ r} (19)

Vt = Ct △ C0 = {(x, r) ∈ Rd × R+ : ||x− t|| ≤ r}. (20)

Definition 5 Takenaka random field (see e.g., Samorodnitsky and Taqqu (1988))
Let {X(t), t ∈ Rd} be defined by

X(t) =

∫
Rd×R+

1Vt(x, r)Mα(dx, dr), (21)

where Vt is defined by (20) and Mα is a SαS random measure with control measure m defined by

m(dx, dr) = rν−d−1dxdr, 0 < ν < 1. (22)

{X(t), t ∈ Rd} is called an (α,H)− Takenaka random field, where 0 < α < 2 and H = ν/α.

Following Theorem 8.4.4 in Samorodnitsky and Taqqu (1988), {X(t), t ∈ Rd} is H-sssi. Let
bn be defined by

bn = n
ν−1
2 . (23)

The following result is a corollary of Theorem 1.

Theorem 4 Let {X(t), t ∈ Rd} be a Takenaka random field defined by (21). Then one gets the
conclusion of Theorem 1 with bn as in (23).

Proof: See Subsection 4.2

4. Proofs
In this section, we gather all the proofs of the main results and the examples presented in Section

3. The key point in these proofs is the use of the Jacobian’s transformation from Cartesian coordinates
to spherical coordinates which is presented in Appendix.

4.1. Proof of Theorem 1
Proof: The proof consists of the following steps:

1. applying the assumption (12) and sssi properties of {X(t), t ∈ Rd} to show that Wn(β) −
E|△0,1X|β = OP(bn).

2. combining the above result with Lemma 4.10 and Lemma 4.11 in Dang and Istas (2017) to get
that Ĥn(β) and α̂n are consistent estimators of H and α, respectively.
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We first prove that Wn(β)− E|△0,1X|β = OP(bn).

Since {X(t), t ∈ Rd} is H-ss and
∑

p∈{0,...,K}d

ap = 0, then for k = (k1, . . . , kd) ∈ Zd, △k,nX
(d)
=

1
nH △0,1X. It follows that E|△k,nX|β = E

∣∣∣△0,1X
nH

∣∣∣β =
E|△0,1X|β

nβH and

EWn(β) =
nβH

(n−K + 1)d

∑
k∈{0,...,n−K}d

E|△k,nX|β = E|△0,1X|β . (24)

One gets

EWn(β)
2 =

n2βH

(n−K + 1)2d

∑
k(1),k(2)∈{0,...,n−K}d

E|△k(1),nX|β |△k(2),nX|β . (25)

For k(1),k(2) ∈ {0, . . . , n−K}d, one has |△k(1),nX|β |△k(2),nX|β (d)
= |△k(1)−k(2),1X|β |△0,1X|β .

Then it follows that

E|△k(1),nX|β |△k(2),nX|β = n−2βHE|△k(1)−k(2),1X|β |△0,1X|β . (26)

Combining (25) with (26), it deduces that

EWn(β)
2 =

1

(n−K + 1)d

∑
k=(k1,...,kd)∈Zd,|ki|≤n−K

(1− |k1|
n−K + 1

) . . . (1− |kd|
n−K + 1

)

× E|△k,1X|β |△0,1X|β . (27)

Moreover,by induction, we can deduce that

1

(n−K + 1)d

d∑
i=1

ki∈Z,|ki|≤n−K

(1− |k1|
n−K + 1

) . . . (1− |kd|
n−K + 1

) = 1.

Together with (24), (25), (27), one can derive

E|Wn(β)− E|△0,1X|β |2 =
1

(n−K + 1)d

∑
k=(k1,...,kd)∈Zd,|ki|≤n−K

(1− |k1|
n−K + 1

) . . . (1− |kd|
n−K + 1

)

×
(
E|△k,1X|β |△0,1X|β − (E|△0,1X|β)2

)
≤ 1

(n−K + 1)d

∑
k=(k1,...,kd)∈Zd,|ki|≤n−K

|cov(|△k,1X|β , |△0,1X|β)|. (28)

Using (28) and the assumptions (12), one gets

lim sup
n→+∞

1

b2n
E|Wn(β)− E|△0,1X|β |2 ≤ C2.

Then for all ϵ > 0, applying Markov’s inequality, one deduces

sup
n

P(|Wn(β)− E|△0,1X|β | > bn
C√
ϵ
) ≤ lim sup

n

E|Wn(β)− E|△0,1X|β |2

b2n
C2

ϵ

≤ ϵ.

It follows that Wn(β)− E|△0,1X|β = OP(bn). Since bn/2 = O(bn), one also has

Wn/2(β)− E|△0,1X|β = OP(bn).
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We deduce that Ĥn(β)−H = ϕ(Wn/2(β),Wn(β)). Combining to the fact that ϕ is differentiable at
(E|△0,1X|β ,E|△0,1X|β) and

Wn(β)− E|△0,1X|β = OP(bn),Wn/2(β)− E|△0,1X|β = OP(bn),

applying Lemma 4.10 in (Dang and Istas , 2017), one gets Ĥn(β)−H = OP(bn). Moreover

α̂n − α = φ−β1,−β2
(ψ−β1,−β2

(Wn(β1),Wn(β2)))− φ−β1,−β2
(ψ−β1,−β2

(E|△0,1X|β1 ,E|△0,1X|β2)).

From Lemma 4.11 in Dang and Istas (2017), it follows that φ−β1,−β2 ◦ ψ−β1,−β2 is differentiable at
x0 = (E|△0,1X|β1 ,E|△0,1X|β2). Combining with the assumption (12) and the fact that Wn(β1)−
E|△0,1X|β1 = OP(bn),Wn(β2) − E|△0,1X|β2 = OP(bn) and applying Lemma 4.10 in Dang and
Istas (2017), we obtain that α̂n − α = OP(bn).

4.2. Proofs related to Section 3
In this subsection, we give the proofs of theorems presented in Section 3 for the case d ≥ 2. For

the one-dimensional case (d = 1), we refer to Dang and Istas (2017) for more details.
A strategy for proving these theorems is as follows:

1. to find a bound for |cov(|△k,1X|β , |△0,1X)|β |,

2. to show that the assumption (12) is satisfied for the mentioned fields, then apply Theorem 1 to
get the conclusion.

Proof of Theorem 2. We just consider the case d ≥ 2. One has

△k,1X =

K∑
p∈{0,...,K}d

apX(k+ p),△0,1X =
∑

p′∈{0,...,K}d

ap′X(p′).

From (1), one can derive
∑

p∈{0,...,K}d

ap = 0. Then for k ∈ Zd fixed, ||k|| > 0, we have

cov(△k,1X,△0,1X) = −
∑

p,p′∈{0,...,K}d

σ2

2
apap′ ||k||2H∥ k

||k||
+

p− p′

||k||
∥2H . (29)

We consider the function f(x) = ||x||2H where x ∈ Rd, ||x|| ̸= 0. One can choose k0 ∈ N, k0 > 2

such that for all k ∈ Zd, ||k|| ≥ k0, then k+p−p′

||k|| ∈ {x ∈ Rd, 1/2 ≤ ||x|| ≤ 3/2} for all p,p′ ∈
{0, . . . ,K}d. We can see that f(x) is infinite differentiable for all x ∈ Rd, ||x|| ≠ 0.
For each p = (p1, . . . , pd),p

′ = (p′1, . . . , p
′
d),p,p

′ ∈ {0, . . . ,K}d and ||k|| ≥ k0, applying Taylor
expansion to the function f(x) to order d at x0 = k

||k|| , one gets

f(
k+ p− p′

||k||
) = 1 +

d∑
r=1

∑
r1+...rd=r

∂rf( k
||k|| )

r1! . . . rd!

(p1 − p′1)
r1 . . . (pd − p′d)

rd

||k||r

+
∑

r1+...+rd=d+1

∂d+1f(ξp−p′)

r1! . . . rd!

(p1 − p′1)
r1 . . . (pd − p′d)

rd

||k||d+1

where ξp−p′ is on a line segment connecting k
||k|| and k+p−p′

||k|| . Obviously, ξp−p′ ∈ {x ∈ Rd, 1/2 ≤
||x|| ≤ 3/2}- a compact set in Rd.
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From (1), it follows that
∑

p=(p1,...,pd)∈{0,...,K}d

app
r1
1 . . . prdd = 0 for r1, . . . , rd ∈ N fixed and r1 +

. . .+ rd ≤ d. Then one can derive

d∑
r=1

∑
r1+...+rd=r

∑
p,p′∈{0,...,K}d

p=(p1,...,pd),p
′=(p′

1,...,p
′
d)

apap′

∂rf( k
||k|| )

r1! . . . rd!

(p1 − p′1)
r1 . . . (pd − p′d)

rd

||k||r
= 0

Combining with (29), it follows that there is a constant C and k∗0 ≥ k0 > 2 such that for all k ∈
Zd, ||k|| ≥ k∗0 , one has

|cov(△k,1X,△0,1X)| ≤ C||k||2H−d−1 ≤ 1. (30)

Moreover, since
∑

p∈{0,...,K}d

ap = 0, one has var△k,1X = var△0,1X . On the other hand, since

X is a Gaussian field, together with (30), then for all k ∈ Zd, ||k|| ≥ k∗0 > 2, apply Lemma A.1 in
Dang and Istas (2017), one has |cov(|△k,1X|β , |△0,1X)|β | ≤ C||k||4H−2d−2, where C is a running
constant which may change from an occurrence to another. Thus

1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n

|cov(|△k,1X|β , |△0,1X|β)|

≤ C

nd

1 +
∑

k=(k1,...,kd)∈Zd,|ki|≤n,||k||≤k∗
0

||k||4H−2d−2

 .

Since d ≥ 2, 0 < H < 1, it follows 4H − 2d − 2 < −d. Then applying Lemma 3, there exists a
constant Σ > 0 such that

1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n

|cov(|△k,1X|β , |△0,1X|β)| ≤ Σ

nd
.

The condition (12) is followed with bn = n−d/2 and one gets the conclusion.

Proof of Theorem 3. The following lemma is used to prove Theorem 3.

Lemma 1 There exist K0 > 0, C > 0 such that for all k ∈ Zd, ||k|| > K0, we have

Ik =

∫
Rd

|f(s)f(s− k)|α/2ds ≤ C||k||
αH−(L+1)αd

2 , (31)

where f(s) is defined by

f(s) =
∑

p∈{0,...,K}d

ap||p− s||H− d
α , s ∈ Rd, s ̸= 0. (32)

Proof: For s ∈ Rd, ||s|| > 0, one has

f(s) = ||s||H− d
α

∑
p∈{0,...,K}d

ap||
s− p

||s||
||H− d

α . (33)

We set

g(x) = ||x||H− d
α , (34)
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where x ∈ Rd,x ̸= 0. One can choose k0 ∈ N such that for all s ∈ Rd, ||s|| ≥ k0, p ∈ {0, . . . ,K}d,
s−p
||s|| ∈ {x ∈ Rd, 1/2 ≤ ||x|| ≤ 3/2} . It is clear that g(x) is infinite differentiable for all x ∈
Rd,x ̸= 0. For each p = (p1, . . . , pd) ∈ {0, . . . ,K}d, applying Taylor expansion to the function
g(x) to order (L+ 1)d− 1 at x0 = s

||s|| , one gets

g(
s− p

||s||
) = 1 +

(L+1)d−1∑
r=1

∑
r1+...rd=r

∂rf( s
||s|| )

r1! . . . rd!

(−p1)r1 . . . (−pd)rd
||s||r

+
∑

r1+...+rd=(L+1)d

∂d+1f(ξp)

r1! . . . rd!

(−p1)r1 . . . (−pd)rd
||s||(L+1)d

where ξp is on a line segment connecting s
||s|| and s−p

||s|| . Then ξp ∈ {x ∈ Rd, 1/2 ≤ ||x|| ≤ 3/2}- a
compact set in Rd. From (1), it follows that∑

p=(p1,...,pd)∈{0,...,K}d

app
r1
1 . . . prdd = 0

for r1, . . . , rd ∈ N fixed and r1 + . . .+ rd ≤ (L+ 1)d− 1. Then one obtains

(L+1)d−1∑
r=1

∑
r1+...+rd=r

∑
p=(p1,...,pd)∈{0,...,K}d

ap
∂rf( s

||s|| )

r1! . . . rd!

(−p1)r1 . . . (−pd)rd
||s||r

= 0

Combining with (33), it follows that there is a constant C such that for all s ∈ Rd, ||s|| ≥ k0, one has

|f(s)| ≤ C||s||H− d
α−(L+1)d. (35)

Let K0 = 2k0, for all k ∈ Zd, ||k|| ≥ K0, by changing variable then

Ik =

∫
||s||≥ ||k||

2

|f(s)f(s+ k)|α/2ds+
∫

||s||≤ ||k||
2

|f(s)f(s+ k)|α/2ds := I1k + I2k,

where I1k =
∫

||s||≥ ||k||
2

|f(s)f(s+k)|α/2ds, I2k =
∫

||s||≤ ||k||
2

|f(s)f(s+k)|α/2ds. Applying Cauchy-

Schwartz’s inequality, since ||k||/2 ≥ k0, one can use (35) and then make the transformation from
Cartesian coordinates to spherical coordinates to get

I1k ≤

 ∫
||s||≥ ||k||

2

|f(s)|αds
∫

||s||≥ ||k||
2

|f(s+ k)|αds


1/2

≤ C

 ∫
||s||≥ ||k||

2

||s||αH−d−(L+1)αdds


1/2

≤ C

 ∫
ρ≥ ||k||

2

ραH−d−(L+1)αddρ


1/2

≤ C||k||
αH−(L+1)αd

2

(36)

where C is a running constant which may change from an occurrence to another. The latter inequality
comes from the fact that αH − (L+ 1)αd < 0. Similarly, one gets

I2k ≤ C||k||
αH−(L+1)αd

2 .
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Together with (36), (36) and since αH−(L+1)αd
2 < 0, one can choose k0 such that for all k ∈

Zd, ||k|| > K0, one has Ik ≤ C||k||
αH−(L+1)αd

2 .
We are back to the proof of Theorem 3 by proving that condition (12) is satisfied. Since∑

p∈{0,...,K}d

ap = 0, one has

△k,1X =

∫
Rd

 ∑
p∈{0,...,K}d

ap||p− (s− k)||H− d
α

Mα(ds) =

∫
Rd

f(s− k)Mα(ds)

where f(s) is defined by (32). It follows that

||△k,1X||α =

∫
Rd

|f(s− k)|αds

1/α

=

∫
Rd

|f(s)|αds

1/α

= ||△0,1X||α. (37)

From Lemma 1, there exist K0 > 0, 0 < η < 1, C > 0 such that for k ∈ Zd, ||k|| > K0, we have[
△k,1X

||△k,1X||α
,

△0,1X

||△0,1X||α

]
2

=
1

||△0,1X||αα

∫
Rd

|f(s)f(s− k)|α/2ds ≤ C||k||
αH−(L+1)αd

2 ≤ η < 1

where [., .]2 is defined by

[∫
Rd

f(s)Mα(ds),
∫
Rd

g(s)Mα(ds)

]
2

=
∫
Rd

|f(s)g(s)|α/2ds.

From (37) and applying Theorem 4.2 in Dang and Istas (2017), for all k ∈ Zd, ||k|| > K0, there
exists a constant C such that

∣∣cov(|△k,1X|β , |△0,1X|β)
∣∣ = ||△0,1X||2βα

∣∣∣∣∣cov( |△k,1X|β

||△k,1X||βα
,
|△0,1X|β

||△0,1X||βα
)

∣∣∣∣∣ ≤ C||k||
αH−(L+1)αd

2 .

Then one has

1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n

|cov(|△k,1X|β , |△0,1X|β)|

=
1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n,||k||≤K0

|cov(|△k,1X|β , |△0,1X|β)|

+
1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n,||k||>K0

|cov(|△k,1X|β , |△0,1X|β)|

≤ C

nd

1 +
∑

k=(k1,...,kd)∈Zd,|ki|≤n,||k||>K0

||k||
αH−(L+1)αd

2

 ≤ Cb2n,

where bn is defined by (18). The latter inequality comes from Lemma 3. Thus the condition (12) is
satisfied. Then one gets the conclusion from Theorem 1.

Proof of Theorem 4. The following lemma is used to prove Theorem 4.

Lemma 2 Let X be a Takenaka random field defined by (21). For k ∈ Rd, let

Ik = [△k,1X,△0,1X]2 =

+∞∫
0

∫
Rd

rν−d−1|fk(x, r)f0(x, r)|α/2dxdr (38)
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where fk(x, r) is defined by

fk(x, r) =
∑

p∈{0,...,K}d

ap1Vk+p
(x, r). (39)

Then there exist K1 > 0 and a constant C > 0 such that for all k ∈ Rd, ||k|| > K1, we have
Ik ≤ C||k||ν−1.

Proof: Since 1A△B = (1A−1B)
2, then fk(x, r) = (1−2×1C0(x, r))

∑
p∈{0,...,K}d

ap1Ck+p
(x, r).

It induces that |fk(x, r)| = |
∑

p∈{0,...,K}d

ap1Ck+p
(x, r)|. Let K0 = K

√
d, now we will consider Ik

for k ∈ Rd, ||k|| > 4K0.
If ||x|| > K0 + r, then for all p ∈ {0, . . . ,K}d, ||x − p|| ≥ ||x|| − ||p|| > K0 + r − ||p|| ≥ r, it
follows 1Cp(x, r) = 0. Thus f0(x, r) = 0 for ||x|| > K0 + r. One can derive

Ik =

+∞∫
0

rν−d−1

∫
||x||≤K0+r

|f0(x, r)fk(x, r)|α/2dxdr := I1k + I2k, (40)

where

I1k =

||k||
2 −K0∫
0

rν−d−1

∫
||x||≤K0+r

|f0(x, r)fk(x, r)|α/2dxdr,

I2k =

+∞∫
||k||
2 −K0

rν−d−1

∫
||x||≤K0+r

|f0(x, r)fk(x, r)|α/2dxdr.

We consider I1k. For 0 ≤ r ≤ ||k||
2 −K0, then 0 < K0+r ≤ ||k||−K0−r. If ||x|| < ||k||−K0−r,

one has

||x− p− k|| ≥ ||k|| − ||x|| − ||p|| > ||k|| − ||p|| − (||k|| −K0 − r) = r +K0 − ||p|| ≥ r

for all p ∈ {0, . . . ,K}d, it follows that 1Ck+p
= 0.

Thus fk(x, r) = 0 for ||x|| < ||k|| −K0 − r. Then one gets I1k = 0 and Ik = I2k.
For r ≥ ||k||

2 − K0, one has r − K0 ≥ ||k||
2 − 2K0 > 0. If ||x|| < r − K0 then ||x − p|| ≤

||x||+ ||p|| < r −K0 + ||p|| ≤ r for all p ∈ {0, . . . ,K}d, it induces that 1Cp(x, r) = 1. Thus one
can derive that f0(x, r) = 0 for ||x|| < r −K0. It induces

Ik = I2k =

+∞∫
||k||
2 −K0

rν−d−1

∫
r−K0≤||x||≤K0+r

|f0(x, r)fk(x, r)|α/2dxdr.

Moreover |f0(x, r)fk(x, r)|α/2 ≤

( ∑
p∈{0,...,K}d

|ap|

)α

< +∞. It follows that

Ik ≤ C

+∞∫
||k||
2 −K0

rν−d−1

∫
r−K0≤||x||≤K0+r

dxdr.
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We make the transformation from Cartesian coordinates to spherical coordinates to get

Ik ≤ C

+∞∫
||k||
2 −K0

rν−d−1

∫
r−K0≤ρ≤K0+r

ρd−1dρdr ≤ 2K0C

+∞∫
||k||
2 −K0

rν−d−1(2r)d−1dr. (41)

The latter inequality comes from the fact that for r ≥ ||k||
2 −K0, then r −K0 ≤ ρ ≤ r +K0 ≤ 2r.

From (41), one gets Ik ≤ C
(

||k||
2 −K0

)ν−1

≤ C
(

||k||
4

)ν−1

since ν − 1 < 0. Thus there exists a

constant C > 0 such that for all k ∈ Rd, ||k|| > 4K0, where K0 = K
√
d, one has Ik ≤ C||k||ν−1.

We come back to the proof of Theorem 4. One has

△k,1X =

∫
Rd×R+

 ∑
p∈{0,...,K}d

ap1Vk+p
(x, r)

M(dx, dr) =

∫
Rd×R+

fk(x, r)M(dx, dr),

where fk(x, r) is defined by (39). We write

||△k,1X||αα =

+∞∫
0

∫
Rd

rν−d−1|
∑

p∈{0,...,K}d

ap1Ck+p
(x, r)|αdxdr

=

+∞∫
0

∫
Rd

rν−d−1|
∑

p∈{0,...,K}d

ap1Cp(x− k, r)|αd(x− k)dr = ||△0,1X||αα. (42)

From Lemma 2, there exist K1 > 0, 0 < η < 1 such that for k ∈ Zd, ||k|| > K1, we have

[
△k,1X

||△k,1X||α
,

△0,1X

||△0,1X||α
]2 =

1

||△0,1X||αα

+∞∫
0

∫
Rd

rν−d−1|fk(x, r)f0(x, r)|α/2dxdr

≤ C||k||ν−1 ≤ η < 1.

From (42) and applying Theorem 4.2 in Dang and Istas (2017), there exists a constant C > 0 such
that for all k ∈ Zd, ||k|| > K1, one can derive

|cov(|△k,1X|β , |△0,1X|β)| = ||△0,1X||2βα

∣∣∣∣∣cov
(

|△k,1X|β

||△k,1X||βα
,
|△0,1X|β

||△0,1X||βα

)∣∣∣∣∣ ≤ C||k||ν−1.

Then one has
1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n

|cov(|△k,1X|β , |△0,1X|β)|

=
1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n,||k||≤K1

|cov(|△k,1X|β , |△0,1X|β)|

+
1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n,||k||>K1

|cov(|△k,1X|β , |△0,1X|β)|

≤ C

nd

1 +
∑

k=(k1,...,kd)∈Zd,|ki|≤n,||k||>K0

||k||ν−1

 ≤ Cnν−1.

where bn is defined by (23). The latter inequality comes from Lemma 3. Then (12) is satisfied.
Together with Theorem 1, one gets the conclusion.
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5. Conclusions
In this paper, we have extended the results in Dang and Istas (2017) to estimate the Hurst index

H and the stability index α for H-sssi, SαS-stable random fields, whose parameter space is in high
dimensions Rd. From the statistical literature, there are several methods used to estimate H and α,
however, in many situations, one needs an a priori knowledge on α to estimate H and vice versa. In
this framework, there always exists the moments of β− negative-power variations (−1/2 < β < 0)
of underlying fields without any assumptions. The estimations are based on this variations. One of
the key point of proofs is to find the inequalities for their covariances. In this context, the difficulty
is the appearance of multi-indices. This problem has been solved by using the transformation from
Cartesian coordinates to spherical coordinates. In this work, some examples has also been presented
to illustrate obtained results.

Appendix
In this part, we will define a spherical coordinate system in Rd, d ≥ 2 where the coordinates

consist of a radial coordinate ρ, ρ ≥ 0 and d − 1 angular coordinates ϕ1, . . . , ϕd−1 where ϕn−1 ∈
[0, 2π] and ϕi ∈ [0, π] for i = 1, . . . , d− 2 (in case d = 2, then we have just one angular coordinate
ϕ ∈ [0, 2π]). We will find the Jacobian of the transformation from Cartesian coordinates to spherical
coordinates.
We define the spherical coordinates by

x1 = ρ cos(ϕ1)

x2 = ρ sin(ϕ1) cos(ϕ2)

x3 = ρ sin(ϕ1) sin(ϕ2) cos(ϕ3))

. . .

xn−1 = ρ sin(ϕ1) sin(ϕ2) . . . sin(ϕn−3) sin(ϕn−2) cos(ϕn−1)

xn = ρ sin(ϕ1) sin(ϕ2) . . . sin(ϕn−3) sin(ϕn−2) sin(ϕn−1) (43)

Then the Jacobian of the transformation from Cartesian coordinates to spherical coordinates is

J =
∂(x1x2 . . . xd)

∂(ρϕ1ϕ2 . . . ϕn−1)
= ρd−1×∣∣∣∣∣∣∣∣∣∣

cos(ϕ1) − sin(ϕ1) . . . 0
sin(ϕ1) cos(ϕ2) cos(ϕ1) cos(ϕ2) . . . 0

. . . . . . . . . . . .
sin(ϕ1) . . . cos(ϕn−1) cos(ϕ1) sin(ϕ2) . . . cos(ϕn−1) . . . − sin(ϕ1) . . . sin(ϕn−1)
sin(ϕ1) . . . sin(ϕn−1) cos(ϕ1) sin(ϕ2) . . . sin(ϕn−1) . . . sin(ϕ1) . . . cos(ϕn−1)

∣∣∣∣∣∣∣∣∣∣
. (44)

J = ρn−1
d−2∏
j=1

sind−1−j(ϕj).

Lemma 3 For p < 0,K0, d ∈ N,K0, d ≥ 2, one has

Sp =


O(n−d) if p < −d,
O(np) if − d < p < 0,

O( lnn
nd ) if p = −d.

(45)

where

Sp =
1

nd

∑
k=(k1,...,kd)∈Zd,|ki|≤n,||k||≥K0>2

||k||p. (46)
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Proof: Since p < 0, we have

Sn =
2d

nd

∑
k=(k1,...,kd)∈Zd,0≤ki≤n,||k||≥K0>2

||k||p

≤ 2d

nd

∫
K0−1≤||x||≤n

√
d

|x||pdx ≤ C

nd

∫
K0−1≤ρ≤n

√
d

ρd+p−1dx. (47)

The latter inequality comes from the transformation from Cartesian coordinates to spherical coordi-
nates.
If p < −d, then d+ p < 0. From (47), one gets Sn = O(n−d).
If −d < p < 0, then d+ p > 0. Thus one has Sn = O(np).
If p = −d, one gets Sn = O( lnn

nd ). Then we get the conclusion.
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