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Abstract
In this paper we propose a new three-parameter flexible Weibull-logistic (FW-L) distribution to

increase the level of flexibility of logistic distribution without increasing the number of parameters.
We obtain some of fundamental mathematical properties including asymptotes, moments, quantile
function, entropy, and order statistics. The goodness-of-fit test for the proposed distribution is also
studied. Then, we derived estimation of model parameters for both complete and right censored
data sets. Further, a simulation study is conducted to observe the asymptotic behavior of maximum
likehood estimations. The flexibility and importance of the proposed models are illustrated by means
of the real data set. The results of the study shows that the main advantage of the new distribution is
that it has increasing, decreasing or bathtub curve failure rate depending upon the shape parameter.
This property makes FW-L is very useful in data analysis.

Keywords: Order statistics, maximum likelihood estimation, quantile function, generating function,
moments.

1. Introduction
Real world phenomena can be described and predicted by statistical distributions. Many classical

distributions have been used in recent years and proposed to model the data in several areas such as
reliability, survival analysis, demography, actuarial science and others. Furthermore, introduction of
new families that extend well-known distributions provides great ı̈¬,exibility in modeling real data.
Among the recent families of distributions having a high impact in statistical modelling, there are
generalized odd generalized exponential family by Alizadeh et al. (2017), exponentiated generalized-
G Poisson by Aryal and Yousof (2017), Topp-Leone odd log-logistic by Brito et al. (2017), odd
log-logistic Topp Leone G family by Alizadeh et al. (2018a), exponentiated Weibull-H family by
Cordeiro et al. (2017), generalized two-sided family by Korkmaz and Genc (2017), exponentiated
transmuted-G family by Merovci et al. (2017), transmuted exponentiated generalized-G family by
Yousuf et al. (2017), complementary generalized transmuted Poisson-G family by Alizadeh et al.
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(2018b), odd log-logistic Poisson-G family by Alizadeh et al. (2018c), Weibull generalized-G family
by Yousuf et al. (2018), exponential Lindley odd log-logistic-G family by Korkmaz et al. (2018),
type II general exponential class by Hamedani et al. (2019), and flexible Weibull-G (FW-G) family
by Alizadeh et al. (2020).

The logistic distribution is very useful for modeling lifetime data in medicine, biology, finance
and engineering. It is used for growth models and in logistic regression with the longer tails and
a higher kurtosis than the normal distribution. The logistic distribution may be the good choice
for researchers to model data following monotonic failure rates. However, it is inappropriate for
modeling data following non-monotonic failure rates. In this study, we introduce a generalization of
the logistic distribution motivated from the flexible Weibull generated (FW-G) family of Alizadeh et
al. (2020) and called as flexible Weibull logistic (FW-L) distribution. Before going further, let us
briefly describe the FW-G family of Alizadeh et al. (2020). The cumulative distribution function
(cdf) of the FW-G family is given by

Fα,β,ψ(x) = 1− exp

{
− exp

[
αG(x;ψ)

Ḡ(x;ψ)
− β Ḡ(x;ψ)

G(x;ψ)

]}
, (1)

where α, β > 0 are two shape parameters. Here, Ḡ(x;ψ) = 1 − G(x;ψ) and ψ is the vector of
parameters for the baseline cdf G(.;ψ).

Corresponding probability density function (pdf) and hazard rate function (hrf) are, respectively,
given by

fα,β,ψ(x) = g(x;ψ)

[
α

Ḡ(x;ψ)2
+

β

G(x;ψ)2

]
exp


αG(x;ψ)
Ḡ(x;ψ)

− β Ḡ(x;ψ)
G(x;ψ)

− exp
[
αG(x;ψ)
Ḡ(x;ψ)

− β Ḡ(x;ψ)
G(x;ψ)

]  , (2)

and hα,β,ψ(x) = g(x;ψ)

[
α

Ḡ(x;ψ)2
+

β

G(x;ψ)2

]
exp

{
αG(x;ψ)

Ḡ(x;ψ)
− β Ḡ(x;ψ)

G(x;ψ)

}
. (3)

The aim of this study is to gain flexibility the logistic distribution enough for modelling different
types of lifetime data important in reliability, engineering, marketing and in other areas via FW-G
family. The paper is organized as follows: In Section 2, we present the main functions and properties
of the FW-L distribution. In Section 3, the goodness of fit test is studied for the proposed distribution
and in Section 4, the FW-L model parameters are estimated by the maximum likelihood method and
a simulation study is performed in Section 5. Then, the flexibility of the FW-L model is illustrated by
means of practical data set in Section 6. Finally, Section 7 offers some concluding remarks.

2. Main Properties
Consider the cdf G(x;λ) = [1 + exp(−λx)]−1 of the logistic distribution with shape parameter

λ > 0. Inserting the cdf G(x;λ) = [1 + exp(−λx)]−1 in (1.1), we obtain the cdf of the FW-L
distribution for x ∈ R as

Fα,β,λ(x) = 1− exp

− exp

 α [1 + exp(−λx)]−1

1− [1 + exp(−λx)]−1 −
β
(
1− [1 + exp(−λx)]−1

)
[1 + exp(−λx)]−1


or it can be written as

Fα,β,λ(x) = 1− exp
{
−eα e

λx−βe−λx
}
.

Then, the density function of the FW-L distribution is obtained by

fα,β,λ(x) =
(
αλ eλx + λβe−λx

)
eα e

λx−βe−λx

exp
{
−eα e

λx−βe−λx
}
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and the survival function for the FW-L distribution is given by

Sα,β,λ(x) = exp
{
−eα e

λx−βe−λx
}
.

Then, the hrf of the FW-L distribution is obtained as

hα,β,λ(x) =
(
αλ eλx + λβe−λx

)
eα e

λx−βe−λx

and corresponding cumulative hrf of the distribution is given by

Hα,β,λ(x) = eα e
λx−βe−λx

.

Some plots of the pdf and the hrf of the FW-L distribution for selected parameter values are
displayed in Figure 1. Figure 1 reveals that the FW-L density can be bimodal and unimodal. The
plots for the hrf of the FW-L model can be decreasing, increasing, constant, unimodal then bathtub
or unimodal. This shows that the flexibility of the proposed distribution.

Figure 1 Plots of the pdf and the hrf of the FW-L distribution for several values parameters

2.1. Asymptotes

Corollary 1 Let a = inf{x|Fα,β,λ(x) > 0}, the asymptotics of the cdf, pdf and hrf for x → a are,
respectively, given by

Fα,β,λ(x) ∼ exp

[
−β

[1 + exp(−λx)]−1

]
as x→ a,

fα,β,λ(x) ∼ β g(x;λ)

[1 + exp(−λx)]−2 exp

[
−β

[1 + exp(−λx)]−1

]
as x→ a,

and

hα,β,λ(x) ∼
β g(x;λ)

[1 + exp(−λx)]−2 exp

[
−β

[1 + exp(−λx)]−1

]
as x→ a.

where g(x;λ) is the pdf for the logistic distribution.
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Corollary 2 The asymptotics of cdf, pdf and hrf for x→ ∞ are, respectively, given by

1− Fα,β,λ(x) ∼ exp

{
−exp

[
α

1− [1 + exp(−λx)]−1

]}
as x→ ∞,

fα,β,λ(x) ∼ α g(x;λ)[
1− [1 + exp(−λx)]−1

]2 exp

[
α

1− [1 + exp(−λx)]−1

]

exp

{
−exp

[
α

1− [1 + exp(−λx)]−1

]}
as x→ ∞,

and hα,β,λ(x) ∼ α g(x;λ)[
1− [1 + exp(−λx)]−1

]2 exp

[
α

1− [1 + exp(−λx)]−1

]
as x→ ∞.

2.2. Useful expansion
We introduce some representations for the pdf and cdf of the FW-L distribution. For the follow-

ing cdf of FW-L distribution

Fα,β,λ(x) = 1− exp
{
−eα e

λx−βe−λx
}
.

A useful expansion can be obtained from power series as eθ =
∑∞
i=0

θi

i!

Fα,β,λ(x) =

∞∑
i=1

(−1)i+1

i!
e
iα eλx−iβe−λx

=

∞∑
i=1

∞∑
j=k=0

(−1)i+k+1(i)j+kαjβke−λ(k−j)x

i!j!k!

=

∞∑
i=1

∞∑
j=k=0

∞∑
l=0

(−1)i+k+l+1(i)j+kαiβk
(
λ
l

)
i!j!k!

(
1− e−(k−j)x

)l
=

∞∑
l=0

Sl

(
1− e−(k−j)x

)l
,

where

Sl =

∞∑
i=1

∞∑
j=k=0

(−1)i+k+l+1(i)j+kαiβk
(
λ
l

)
i!j!k!

.

Then, we can write the cdf of the FW-L by means of the expansion as F (x) =
∑∞
l=0 SlHl(x) where

Hl(x) = [G(x)]
l
; G(x) = 1 − e−(k−j)x. Here, Hl(x) is the exponentiated exponential (EE)

distribution with power parameter l. Now, we can write the FW-L distribution as a mixture of the EE
distribution densities as

f(x)α,β,λ =

∞∑
l=0

Sl+1hl+1(x)

where hl+1(x) = (l + 1)g(x)Gl(x) is the density function of the EE with power parameter (l + 1)
and

g(x) = (k − j)e−(k−j)x, x ≥ 0.

Zubair et al. (2018) discussed the basic properties of the EE distribution. Let z ; EE(α, λ)
distribution the rth moment about origin is

E(zr) =
αΓ(r + 1)

λr
Ar(α)
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where

Ar(α) = 1 +

∞∑
m=0

(−1)m

(m+ 1)r+1

(
α− 1
m

)
, r = 1, 2, 3, ....

Then, the mean and variance of z are, respectively, given by

E(z) =
α

λ
A1(α)

V ar(z) =
α

λ2
[
A2(α)− αA2

1(α)
]
.

The moment generating function (mgf) of z is given by

Mz(t) = αB

(
1− t

λ
, α

)
,

where

B(P, z) =

1∫
0

tP−1(1− t)z−1dt =
Γ(P )Γ(z)

Γ(P + z)

is the beta function and Γ(p) =
∫∞
0
wP−1e−wdw (for p > 0) is the gamma function. Using the mgf,

the rth incomplete moment of z is obtained as

µ′
(r,z) =

α

λr
A∗
r(α),

where

A∗
r(α) =

∞∑
P=0

(−1)P

(P + 1)r+1

(
α− 1
P

)
γ(r + 1, (P + 1)λz), r = 1, 2, 3, ....

and γ(P, z) =
∫ z
0
wP−1e−wdw for P > 0 is the incomplete gamma function.

2.3. Moments and moment generating function
The rth moment of the FW-L distribution can be expressed as

µ′
r = E(Xr) =

∫ ∞

0

Xrf(x)dx =

∞∑
l=0

Sl
lΓ (r + 1)

(k − j)
r Ar(l),

where

Ar(l) = 1 +

∞∑
m=0

(−1)m

(m+ 1)r+1

(
k − j − 1

m

)
, r = 1, 2, 3, ....

The rth incomplete moment about origin of the FW-L distribution is given as

µ(r,x) =

∞∑
l=0

Sl
l

(k − j)
rA

∗
r(l)

where

A∗
r(l) =

∞∑
P=0

(−1)P

(P + 1)r+1

(
l − 1
P

)
γ(r + 1, (P + 1)(k − j)x), r = 1, 2, 3, ...

and γ(P, z) =
∫ z
0
wP−1e−wdw for P > 0 is the incomplete gamma function.
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The mgf of the FW-L distribution is obtained as

Mx(t) = E(etx) =

∫ ∞

0

etxf(x)dx

=

∞∑
l=0

lSlB

(
1− t

k − j
, l

)
,

where

B(P, q) =

∫ 1

0

tP−1(1− t)q−1dt

=
Γ(P )Γ(q)

Γ(P + q)

is the beta function and Γ(P ) =
∫∞
0
wP−1e−wdw is the gamma function for P > 0.

2.4. Entropy
The notion of entropy is of fundamental importance in different areas such as physics, probability

and statistics, communication theory, and economics. The residual entropy of X is given by

E(X) = −
∫ ∞

0

F (x) log(F (x))dx

and the cumulative residual entropy of X is given by

CE(X) = −
∫ ∞

0

F̄ (x) log(F̄ (x))dx.

After some simple algebra using geometric expansion and generalized binomial expansion for
the FW-L distribution, we can obtain residual entropy as

E(X) =

∞∑
i,j,k,r=0

k∑
l=0

(−1)i+r+k−lαl βk−l
[
(i+ 1)j − (i+ 2)j

] (2l − k

r

)
I2l−k+r

j!k!(i+ 1)

where I2l−k+r =
∫∞
−∞

[
[1 + exp(−λx)]−1

]2l−k+r
dx and the cumulative entropy as

CE(X) =

∞∑
i,j,l=0

j∑
k=0

(−1)i+j−k+lαk βj−k(i+ 1)j
(
j

k

)(
2k − j

l

)
I2k−j+r

i!j!

where I2k−j+r =
∫∞
−∞

[
[1 + exp(−λx)]−1

]2k−j+r
dx.

3. Goodness-of-fit Test
In the presence of censorship, classical goodness-of-fit statistics cannot be applied to fit data to

the model chosen in the analysis, so the researchers proposed some modifications of those statistics.
In this section, we construct a modified chi-square goodness-of-fit test statistic Y 2 which enable us to
check the validity of this new model. We use the approach proposed by Bagdonavicius and Nikulin
(2011) based on the maximum likelihood method on non-grouped data.

Let X1, ..., Xn be i.i.d. random variables grouped into k classes Ij where Ij = (aj−1, aj ] with
a0 = 0, ak = τ and τ is a finite time. Consider the null hypothesis H0
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P (Xi ≤ x | H0) = F0(x; θ), x ≥ 0, θ = (θ1, ..., θs)
T ∈ Θ ⊂ Rs

and consider the vector

Zj =
1√
n
(Uj − ej) , j = 1, 2, ..., k , with k ≻ s.

where Uj and ej are the observed and expected numbers of failures to fall into the grouping intervals
Ij . The statistic Y 2 is defined by

Y 2 = ZT Σ̂−Z

where Σ̂− is a generalized inverse of the covariance matrix Σ̂. Now, we write this statistic as the sum
of a chi-square statistic and a quadratic form Q as

Y 2 =

k∑
j=1

(Uj − ej)
2

Uj
+Q

with following equations

Q = WT Ĝ−W, Âj = Uj/n, Uj =
∑

i:Xi∈Ij

δi,

W = (W1, ....,Ws)
T , Ĝ = [ĝll′ ]sxs, ĝll′ = îll′ −

k∑
j=1

ĈljĈl′jÂ
−1
j ,

Ĉlj =
1

n

∑
i:Xi∈Ij

δi
∂

∂θ
lnh(xi, θ̂), îll′ =

1

n

n∑
i=1

δi
∂ lnh(xi, θ̂)

∂θl

∂ lnh(xi, θ̂)

∂θl′
,

Ŵl =

k∑
j=1

ĈljÂ
−1
j Zj , l, l′ = 1, ...., s.

Here, θ̂ represents the maximum likelihood estimator (MLE) of θ on initial non-grouped data.
Under the null hypothesis H0, the limit distribution of the statistic Y 2 is a chi-square with k =
rank(Σ) degrees of freedom. For more details, see Voinov and Shugart et al. (2013).

To apply this test statistic, the expected failure times ej to fall into the grouping intervals Ij must
be the same for any j, so the estimated interval limits aj are equal to

âj = H−1

(
Ej −

∑i−1
l=1 H (xl, θ)

n− i+ 1
, θ̂

)
, âk = max

(
X(n),τ

)
with Ek =

∑n
i=1H

(
xi, θ̂

)
. So, for the FW-L distribution, we have

Ej =
j

k − 1

n∑
i=1

eα e
λxi−βe−λxi

, j = 1, ..., k − 1.

The components of the estimated matrix Ŵ are derived from the estimated matrix Ĉ which is
given by

Ĉ1j =
1

n

n∑
i:xi∈Ij

δi

[
λ eλxi

αλ eλxi + λβe−λxi
+ eλxi

]
,

Ĉ2j =
1

n

n∑
i:xi∈Ij

δi

[
λ e−λxi

αλ eλxi + λβe−λxi
− e−λxi

]
,
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Ĉ3j =
1

n

n∑
i:xi∈Ij

δi

[
α (1 + λxi) e

λxi + β (1− λxi) e
−λxi

αλ eλxi + λβe−λxi
+ xi

(
αeλxi + βe−λxi

)]

and

Ŵl =

k∑
j=1

ĈljA
−1
j Zj , l = 1, ..,m j = 1, .., k.

Therefore, the test statistic can be obtained easily from

Y 2
n

(
θ̂
)

=

k∑
j=1

(Uj − ej)
2

Uj
+ ŴT

ı̂ll′ − k∑
j=1

ĈljĈl′jÂ
−1
j

−1

Ŵ .

4. Estimation
4.1. Maximum likelihood estimation with the complete data

In this section, the parameters of the FW-L distribution are estimated using the method of max-
imum likelihood. Let x1, x2, ...xn be random samples distributed according to the distribution, the
likelihood function is obtained by the relationship

Ln(α, β, λ) =

n∏
i=1

f(xi, α, β, λ).

By taking the natural logarithm, the log-likelihood function is obtained as

logLn =

n∑
i=1

ln
(
αλ eλxi + λβe−λxi

)
+ α

n∑
i=1

eλxi − β

n∑
i=1

e−λxi −
n∑
i=1

eα e
λxi−βe−λxi

.

The MLEs α̂ ,β̂ and λ̂ of the unknown parameters α, β and λ are derived from the nonlinear
following score equations

∂L

∂α
=

n∑
i=1

λ eλxi

αλ eλxi + λβe−λxi
+

n∑
i=1

eλxi −
n∑
i=1

eλxi+α e
λxi−βe−λxi

,

∂L

∂β
=

n∑
i=1

λ e−λxi

αλ eλxi + λβe−λxi
−

n∑
i=1

e−λxi +

n∑
i=1

e−λxi+α e
λxi−βe−λxi

,

∂L

∂λ
=

n∑
i=1

α (1 + λxi) e
λxi + β (1− λxi) e

−λxi

αλ eλxi + λβe−λxi
+ α

n∑
i=1

xie
λxi + β

n∑
i=1

xie
−λxi

−
n∑
i=1

(
αxi e

λxi + βxie
−λxi

)
eα e

λxi−βe−λxi
.

4.2. Maximum likelihood estimation with the right censored data
Let us considerX = (X1, X2, ..., Xn)

T a sample from the FW-L distribution with the parameter
vector θ = (α, β, λ)T which can contain right censored data with the fixed censoring time τ . Each
Xi can be written as Xi = (xi, δi) where

δi =

{
0, is a censoring time,
1, is a failure time.
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The right censoring is assumed to be non informative, so the log-likelihood function can be
written as:

Ln(θ) =

n∑
i=1

δi lnh(xi, θ) +

n∑
i=1

lnS(xi, θ)

=

n∑
i=1

δi
[
ln
(
αλ eλxi + λβe−λxi

)
+ α eλxi − βe−λxi

]
−

n∑
i=1

eα e
λxi−βe−λxi

.

The MLEs α̂, β̂ and λ̂ of the unknown parameters α, β and λ are derived from the nonlinear
following score equations

∂L

∂α
=

n∑
i=1

δi

[
λ eλxi

αλ eλxi + λβe−λxi
+ eλxi

]
−

n∑
i=1

eλxi+α e
λxi−βe−λxi

,

∂L

∂β
=

n∑
i=1

δi

[
λ e−λxi

αλ eλxi + λβe−λxi
− e−λxi

]
+

n∑
i=1

e−λxi+α e
λxi−βe−λxi

,

∂L

∂λ
=

n∑
i=1

δi

[
α (1 + λxi) e

λxi + β (1− λxi) e
−λxi

αλ eλxi + λβe−λxi
+ xi

(
αeλxi + βe−λxi

)]

−
n∑
i=1

(
αxi e

λxi + βxie
−λxi

)
eα e

λxi−βe−λxi
.

Let us point out that the explicit form of α̂, β̂ and λ̂ cannot be obtained, so numerical methods
are required.

5. Simulation
To show the praticability of this test, we carry out a simulation study by generating N = 10, 000

right censored samples with different percentage (15% and 30%) of right censoring and different sizes
(n = 25, 50, 130, 350, 500) from the FL-W model with parameters α = 2, β = 0.8 and λ = 1.5.
Using R statistical software and the Barzilai-Borwein (BB) algorithm (Varadhan and Gilbert, 2009),
we calculate the MLEs of the unknown parameters and their mean squared errors (MSEs). The
results are presented in Table 1.

Table 1 Mean simulated values of MLEs of α̂, β̂ and λ̂ and their corresponding MSEs

N = 10.000 n1 = 25 n2 = 50 n3 = 130 n4 = 350 n5 = 500
α̂ 1.8394 1.8986 1.9544 1.9873 1.9936

MSE 0.0091 0.0085 0.0056 0.0033 0.0022

β̂ 0.9346 0.9238 0.8934 0.8275 0.8083
MSE 0.0097 0.0079 0.0059 0.0043 0.0025

λ̂ 1.5533 1.5446 1.5379 1.5103 1.5018
MSE 0.0059 0.0055 0.0048 0.0032 0.0012

The MLEs of parameter values, presented in Table 1, agree closely with the true parameter
values. Then, we calculate the test statistic Y 2 for each sample with respect to the FW-L model and
we compare the obtained values with the theoretical levels of significance (ε = 0.01 , 0.05 , 0.1).
The results are summarized in Tables 2 and 3.
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Table 2 Simulated levels of significance for Y 2 against their theoretical values for 15% of censorship

N = 10, 000 n1 = 25 n2 = 50 n3 = 130 n4 = 350 n5 = 500
ε = 1% 0.0065 0.0075 0.0082 0.0089 0.0097
ε = 5% 0.0435 0.0445 0.0476 0.0485 0.0496
ε = 10% 0.0926 0.0932 0.0984 0.0992 0.1003

Table 3 Simulated levels of significance for Y 2 against their theoretical values for 30% of censorship

N = 10, 000 n1 = 25 n2 = 50 n3 = 130 n4 = 350 n5 = 500
ε = 1% 0.0075 0.0085 0.0091 0.0095 0.0101
ε = 5% 0.0412 0.0442 0.0462 0.0482 0.0495
ε = 10% 0.0889 0.0935 0.0974 0.0982 0.0994

As seen in Tables 2 and 3, empirical proportions of rejection of the null hypothesis H0 for
ε = 1%, 5% and 10% levels of significance for all sample sizes and for different percentage of
censorship are very close to the theoretical ones. Therefore, the test statistic Y 2, proposed in this
work, can be applied to fit data to FL-W distribution.

6. Applications
6.1. First application with the complete data

We now provide applications to show empirically the potentiality of the new model. We compare
the FWL distribution with those of the Logistic (L), beta Logistic (BL), exponentiated Logistic (EL),
Kumaraswamy Logistic (KwL) and transmuted Weibull Logistic (TWL). We use the data set recently
used by Cankaya (2018) which consists of 118 observations. The data are as follows:

0.029, 0.062, 0.011, 0.009, 0.065, -0.128, 0.133, 0.116, 0.184, 0.111, -0.066, -0.049 0.05, 0.137, 0.162,
0.173, 0.033, 0.107, 0.11, 0.147, 0.118 , 0.172, 0.284, -0.137 0.038, -0.145, -0.181, -0.155, 0.198, 0.024, 0.079,
-0.252, 0.062, 0.097, 0.032 0.026, 0.195, 0.019, 0.138, -0.3, -0.105, -0.11, -0.168, -0.173, -0.15, 0.078, 0.113
-0.047, 0.024, 0.001, -0.075, 0.014, 0.058, -0.083, -0.339, -0.177, -0.073, -0.044 -0.106, -0.159, -0.101, -0.074,
-0.126, -0.131, -0.22, -0.184, -0.105, 0.173, 0.151 0.064, -0.007, -0.005, -0.189, -0.219, -0.301, -0.212, -0.088,
0.157, 0.042, 0.184 0.114 , 0.102 , 0.119 , -0.064, -0.075, 0.073, 0.038, 0.017, -0.134, -0.118, -0.097 0.059,
0.025, -0.102, -0.096, -0.035, 0.057 , -0.055 , 0.015, -0.23, -0.115, 0.255 0.034, 0.078, 0.129, 0.081, 0.032,
0.047, -0.145, 0.012 , -0.224, 0.074, -0.06 -0.137, 0.034, 0.009, -0.139, -0.141

The MLEs and some statistics of the models for the data set are presented in Tables 4 and
5, respectively. We consider the Cramér-von Mises and the Anderson-Darling (W ∗, A∗) and the
Kolmogorov-Smirnov (K-S) statistic with its p-value. W ∗ and A∗ statistics are, respectively, given
by

W ∗ = (1 + 1/2n)

[
1

12n
+
∑n

j=1
wj

]
,

and
A∗ = a(n)

(
n+ n−1

∑n

j=1
aj

)
,

where
wj = [zi − (2j − 1) / (2n)]

2
,

a(n) =

(
1 +

9

4
n−2 +

3

4
n−1

)
,

and
aj = (2j − 1) log [zi (1− zn−j+1)] ,

Here, zi = F (yj) and the yj’s values are the ordered observations. Note that the smaller these
statistics are, the better the fit is.
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Table 4 The MLEs for the data set

Distribution Estimates with standard error in parenthesis
α̂ β̂ λ̂ t̂

FWL 0.5463838 0.9242085 5.0754028 -
(0.1863241) (0.2315904) (1.0611709)

BL 508.7562790 512.0486055 0.4864484 -
(556.1311682) (557.9322 ) (0.2675502)

KL 7.416539 118.610140 2.408877 -
(9.623443) (782.922193) (3.154974 )

GL 76.163092 89.143183 1.175464 -
(142.723560) (185.595702) (1.193495)

TWL 0.06357792 5.24083845 1.52840070 0.29944251
(0.01640107) (55.20841571) (16.10059 ) (0.21395963)

EL 8.363962 5.158805 - -
(0.4220599) (0.4354993)

Table 5 Some statistics for the models fitted to data set

Distribution Goodness of fit criteria
A∗ W ∗ L KS P-value AIC

FWL 0.4273275 0.07126977 -75.24204 0.061852 0.7574 -144.4841
BL 0.8036802 0.1621459 -74.45516 0.10258 0.1669 -142.9103
KL 0.7021602 0.1272965 -74.22824 0.077346 0.4803 -142.4565
GL 2.210552 0.3016586 -72.2051 0.059891 0.4699 -138.4101

TWL 3.030841 0.44206 -67.05935 0.078908 0.1656 -126.1187
EL 2.99168 0.4312295 -65.96237 0.075193 0.2081 -117.9247

Based on Tables the FW-L model provides adequate fits as compared to other models with small
values for A∗, W ∗, KS and largest P-values among all fitted model. The FW-L model is better than
the BL, KL, GL, TML and EL models in modeling the data set. The estimated pdfs and cdfs plots are
displayed in Figure 2 It is clear from Figure 2 shows that the FWL distribution provides the best fits
to all data sets.

Figure 2 Estimated CDF and PDF for data set
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6.2. Second application with the right censored data
Consider data of times to infection of kidney dialysis patients (Nahman et al. 1992).
Percutaneous Placed Catbeter
Infection Times: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2.5, 2.5, 3.5, 6.5, 9.5, 15.5
Censored observations: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 1.5, 2.5,

2.5, 2.5, 2.5, 2.5, 3.5, 3.5, 3.5, 3.5, 3.5, 4.5, 4.5, 4.5, 5.5, 5.5, 5.5, 5.5, 5.5, 6.5, 7.5, 7.5, 7.5, 8.5, 8.5,
8.5, 9.5, 9.5, 10.5, 10.5, 10.5, 11.5, 11.5, 12.5, 12.5, 12.5, 12.5, 14.5, 14.5, 16.5, 16.5, 18.5, 19.5,
19.5, 19.5, 20.5, 22.5, 24.5, 25.5, 26.5, 26.5, 28.5.

We use the statistic test provided above to verify if these data are modeled by the FW-L. distri-
bution, At that end, we first calculate the MLEs of the unknown parameters as

γ̂ =
(
α̂, λ̂, β̂

)T
= (1.235, 0.8196, 1.8469)

T
.

Data are grouped into k = 6 intervals Ij . We give the necessary values in Table 6.

Table 6 Values of âj , ej , Uj , Ĉ1j , Ĉ2j , Ĉ3j

âj 0.56 3.12 5.26 9.15 15.25 28.5
UJ 16 11 09 13 14 14

Ĉ1j 0.5531 0.3625 0.2412 0.4223 0.5315 0.5748

Ĉ2j 0.1364 0.2152 0.1352 0.2073 0.2561 0.1245

Ĉ3j 0.1485 0.2581 0.1346 0.3964 0.1236 0.2241
ej 10.826 10.826 10.826 10.826 10.826 10.826

Then, we obtain the value of the statistic test Y 2
n :

Y 2
n = X2 +Q = 3.1849 + 2.1684 = 5.3533

For significance level ε = 0.05, the critical value χ2
5 = 12, 5916 is superior than the value of

Y 2
n = 5.3533, so we can conclude that the proposed FL-W model fit the data.

7. Conclusion
In this paper, we proposed a new distribution, called the flexible Weibull logistic (FW-L) distri-

bution which extends the logistic distribution. Several properties of the new distribution were investi-
gated, including moments, moment generating function, asymptotes, entropy. The model parameters
both comple and censored data sets tare estimated by maximum likelihood approach. Then, Monte
Carlo simulation results indicate that the performance of the MLE are quite satisfactory. Applications
with completed and censored data sets indicate that the FW-L distribution provide the best fit among
all the sub-models. From the plots of the fitted densities and histogram, clearly, the FW-L distribution
yields a closer fit to the histogram than the other other models. Therefore, the new FW-L model can
be used quite effectively in analyzing data. We hope that the proposed model can be used effectively
as a competitive model to fit real data.

References
Alizadeh M, Ghosh I, Yousof HM, Rasekhi M, Hamedani GG. The generalized odd generalized

exponential family of distributions: properties, characterizations and applications. J Data Sci.
2017; 15: 443-466.

Alizadeh M, Lak F, Rasekhi M, Ramires TG, Yousof HM, Altun E. The odd log-logistic Topp Leone
G family of distributions: heteroscedastic regression models and applications. Comput Stat.
2018a; 33: 1217-1244.



528 Thailand Statistician, 2023; 21(3): 516-528

Alizadeh M, Yousof HM, Afify AZ, Cordeiro GM, Mansoor M. The complementary generalized
transmuted Poisson-G family of distributions. Aust J Stat. 2018b; 47(4), 60-80.

Alizadeh M, Yousof HM, Rasekhi M, Altun E. The odd log logistic Poisson-G family of distributions.
J Math Ext. 2018c; 12(3): 81-104.

Aryal GR, Yousof HM. The exponentiated generalized-G Poisson family of distributions. Eco Qual
Cont. 2017; 32(1): 1-17.

Bagdonavicius V, Kruopis J, Nikulin M. Nonparametric Tests for Complete Data, New York: John
Wiley & Sons. 2011.

Brito E, Cordeiro GM, Yousof HM, Alizadeh M, Silva GO. Topp-Leone odd log-logistic family of
distributions. J Stat Comput Sim. 2017; 87(15): 3040-3058.

Cankaya MN. Asymmetric bimodal exponential power distributionon the real line, Entropy. 2018;
20(23): 1-19.

Cordeiro GM, Afify AZ, Yousof HM, Pescim RR, Aryal GR. The exponentiated Weibull-H family of
distributions: Theory and Applications. Mediter J Math. 2017; 14: 1-22.

Hamedani GG, Rasekhi M, Najibi SM, Yousof HM, Alizadeh M. Type II general exponential class
of distributions. Pak J Stat Oper Res. 2019; 15(2): 503-523.

Korkmaz MC, Genc AI. A new generalized two-sided class of distributions with an emphasis on two-
sided generalized normal distribution. Commun Stat Simul Comput. 2017; 46(2): 1441-1460.

Korkmaz MC, Yousof HM, Rasekhi M, Hamedani GG. The exponential Lindley odd log-logistic G
family: properties, characterizations and applications. J Stat Theory Appl. 2018; 17(3): 554-571.

Merovci F, Alizadeh M, Yousof HM, Hamedani GG. The exponentiated transmuted-G family of
distributions: theory and applications. Commun Stat Theo Meth. 2017; 46(21): 10800-10822.

Nahman NS, Middendorf DF, Bay WH, McElligott R, Powell S, Anderson J. Modification of the
percutaneous approach to peritoneal dialysis catheter placement under peritoneoscopic visual-
ization: Clinical results in 78 patients. J Am Soc Nephrol. 1992; 3: 103-107.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Australia, 2009, http: //www.R-project.org/.

Varadhan R, Gilbert P. BB: An R package for solving a large system of nonlinear equations and
for optimizing a high-dimensional nonlinear objective function. J Stat Softw. 2009; 32(4):
http://www.jstatsoft.org/v32/i04/.

Voinov A, Shugart HH. ’Integronsters’, integral and integrated modeling. Environ Model Softw. 2013;
39: 149-158.

Yousof HM, Afify AZ, Alizadeh M, Butt NS, Hamedani GG, Ali MM. The transmuted exponentiated
generalized-G family of distributions. Pak J Stat Oper Res. 2015; 11(4): 441-464.


	Introduction
	Main Properties
	Asymptotes
	Useful expansion
	Moments and moment generating function
	Entropy

	Goodness-of-fit Test
	Estimation
	Maximum likelihood estimation with the complete data
	Maximum likelihood estimation with the right censored data

	Simulation
	Applications
	First application with the complete data
	Second application with the right censored data

	Conclusion

