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Abstract

Recently, the progressive Type-II censoring has been extended to conduct comparative life-testing
experiment of different competing products, which tackles the lifetimes of two samples simultane-
ously. Here we consider the problem of the joint progressive censoring data coming from the two
generalized Rayleigh distributions. The estimation of the unknown parameters and prediction of the
life times of the censored units of the joint progressively censored sample are discussed. Frequentist
and Bayesian analyses are adopted for conducting the estimation and prediction problems. The like-
lihood method, bootstrap methods as well as the Bayesian sampling techniques are applied for the
inference problems. The point predictors and credible intervals of the times of future failure based on
an informative observed censoring units can be developed. Monte Carlo simulations are performed
to compare the so developed methods and one real data set is analyzed for illustrative purposes.

Keywords: Bayesian estimation and prediction; Gibbs and Metropolis sampling; highest posterior
density credible interval; importance sampling; maximum likelihood estimation; prediction interval.

1. Introduction

The censoring data is of natural interest in survival, reliability and medical studies due to cost
or time considerations. Experiment accidental breakage of units or leakage of individuals arise com-
monly in these studies [See, for example, Lawless (2002)]. The type-II progressively censoring
scheme is one of the popular mechanisms of collecting data in lifetime analysis. This type of censor-
ing schemes appears when the experimenter cannot avoid the loss of the test units at points other than
the termination point. For this, it has wide industrial applications in reliability and quality. On a de-
tailed discussion on progressive censoring subject, see for example, the monograph by Balakrishnan
and Cramer (2014). For inferences on progressive censoring data, one may refer to Mohie El-din and
Shafay (2013) and Kotb and Raqgab (2019).

The progressive type-1I censoring sample can be described as follows. Suppose that n units
are placed on a life-testing experiment and only k(< n) units are completely observed until failure.
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The censoring occurs progressively in k stages. At the time of the first failure (the first stage), R,
of the n — 1 surviving units are randomly withdrawn from the experiment, Ry of the n — 2 — R;
surviving units are withdrawn at the time of the second failure (the second stage), and so on. Fi-
nally, at the time of the k-th failure (the k-th stage), the test stops with the removal of the remaining
Ry=n—k— Zf;ll R; surviving units. We will refer to this as progressive type-II right censoring

scheme (R1, Ry, ..., Ri). The Type-II right censoring and complete sampling schemes are included
as special cases by considering (R; = Re = ... = Rx_1 = 0) and (R = n — k) and (n = k and
Ry = Ry = ... = R, = 0), respectively. Rasouli and Balakrishnan (2010) introduced the joint

progressive censoring (JPC) scheme when the data can be produced from two populations.

Under the JPC scheme, the two samples from Population-A (Pop-A) and Population-B (Pop-
B) of sizes m and n, respectively, are combined and put on a life testing experiment. Let k be the
total number of observed failures in the experiment with Ry, ..., R being the number of removal
units satisfying Zle(Ri + 1) = m + n where R; = S; + T; with S; and T; being the number of
removals at the ¢-th stage from Pop-A and Pop-B, respectively. Based on the combined sample, at
the time of the first failure Wi, Ry = S; + T units are randomly withdrawn from the remaining
(m + n — 1) surviving units where S; and 7T} are the number of removed units from Pop-A and
Pop-B, respectively. Similarly, at the second stage, Ro = S5 + 7% units are withdrawn randomly
from the remaining m + n — 2 — R; surviving units, and so on. Finally, at the time of the k-th
failure, all the remaining Ry = n+m—k — Zi:ll R; surviving units are withdrawn. In this context,
the observed data consist of (W, Z,S), where W = (Wy,..., W), 1 < k < m + n being a
pre-fixed integer, Z = (Z,...,Z;) with Z; = 1 or 0 accordingly as W is taken from an X- or
Y-sample and S = (51, ..., Sk). Let us denote the number of failed units from Pop-A and Pop-B by
ki = Zle Zi,and ko =k — k1 = Zle(l — Z;), respectively.

Under the JPC scheme, Parsi and Bairamov (2009) determined the expected number of failures
in life testing experiment. Parsi et al. (2011) considered the conditional maximum likelihood and in-
terval estimation of the parameters of two Weibull distributions. Mondal and Kundu (2019) addressed
the problem of point and interval estimation of the unknown parameters of two Weibull distributions
based on the Bayesian approach. For an elaborate treatment on JPC data and their inferences, one
may refer to Balakrishnan et al. (2015), Mondal and Kundu (2020) and Mondal et al. (2020).

In addition to the estimation problem of the unknown parameters, the problem of predicting
future occurrences based on the informative sample is another key topic in the statistical inference
and it is used extensively in survival and industrial applications, especially, for two-sample prediction
problem. Consider a situation where a manufacturer of a product is planning to set-up a warranty for
the product to be sent to the market. It is quite useful to use the information based on one sample
called informative sample to predict the future failure times in a future sample. An excellent review
on the prediction development can be found in Ahsanullah (1980), Nagaraja (1986), Kaminsky and
Nelson (1998), Ragab (2001), Barakat et al. (2014, 2018), and Valiollahi et al. (2018).

Although, extensive treatments for estimating parameters from different lifetime distributions
based on joint progressive Type-II censored data are available, but no attempt has been made for the
estimation and prediction based on joint progressive censored data from the generalized Rayleigh
(GR). From Mudholkar et al. (1995), it follows that if & < 1/2, the hazard function of GR(«, \)
is bathtub type and for > 1/2, it has an increasing hazard function. It is also well-known that
for « < 1/2, the density function is strictly decreasing and for o > 1/2, it is unimodal. Shapes of
the different probability densities of the GR distribution can be found in Raqab and Kundu (2006).
Distributions with decreasing density appear naturally as forward or backward recurrence time dis-
tributions in renewal processes. These distributional properties allow a flexibility to the experimenter
to fit practical situations where the model contains distributions with unimodal and bathtub failure
rates and it is computationally convenient for censored data. The GR distribution with parameters «
and A > 0, has the cumulative distribution function (CDF) and probability density function (PDF),
respectively,
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F(zia,\) = (1—e QD% o X >0, (1)

and
flz;o,N) =2 a Nz e_()‘gg)z(l — e_(’\””)2)a_1, a, A > 0. 2)

Here o and A > 0 are the shape and scale parameters respectively. From now on the GR distribution
with parameters o and A will be denoted by GR («, A). Several aspects of the GR distribution have
been studied by Kundu and Raqab (2005) and Raqab and Madi (2011). For some general references
on Burr type X distribution, the readers are referred to Sartawi and Abu-Salih (1991), Ahmad, et
al.(1997), and the references cited there.

The aims of this paper are mainly described as follows. First we compute the Bayes estimates of
all parameters of the GR joint progressive censored data using the importance sampling under gamma
priors. We compare the performances of the Bayes estimators with maximum likelihood estimators
(MLEs) by extensive computer simulations. We further compute the symmetric credible intervals
(CRIs) and compare them with the confidence intervals (CIs) based on the asymptotic and bootstrap
(Boot-t) arguments. Our second aim of this paper is to consider the prediction of the life lengths
of removed units. In this paper, we also consider the estimation of the posterior predictive density
of the removed failed units based on current informative data by implementing the importance and
Metropolis-Hastings (M-H) algorithms and also construct prediction intervals (PIs) of the removed
units.

The rest of the paper is organized as follows. In Section 2, we describe the Expectation-
Maximization (EM) algorithm for determining the MLEs of the scale and shape parameters. Asymp-
totic properties of the MLEs are also discussed. The Bayes estimates for the shape and scale param-
eters, respectively are derived in Section 3 using importance sampling. In Section 4, we implement
Gibbs and Metropolis sampling to develop sample-based estimates for the predictive density func-
tions of the parameters as well as the times to failure of the R;(j = 1, 2, ..., k) units still surviving
at the time of observation W; (i = 1,2, ..., k). Section 5 presents a data analysis and a Monte Carlo
simulation that perform numerical comparisons. Finally, the findings of the paper are presented in
Section 6.

2. Frequentist Statistical Methods

Let X;,...,X,, be independent and identically distributed (iid) lifetimes of Pop-A with CDF
F(z;01) and PDF f(z;01). Suppose Y7, ...,Y,, are iid lifetimes of Pop-B with CDF G(x; 83) and
PDF g(z; 02). For given a censoring scheme R = (Ry,..., Ry),let (W, Z,S) = {(w1, 21, 81),- - -,
(wk, 2k, s;)} denotes the JPC data from Pop-A and Pop-B. The likelihood function based on a pro-
gressive type II censored sample is given by

k

L(01,05;w,2,8) o [][f(ws600)]% [g(wi; 02)]' % [1 — F(wi; 01)]% [1 — G(wi; 62)] ™,
=1
w; < w2 < ... < Wkg. 3)

In our set-up, let X -sample and Y -sample are taken from GR(«, A) and GR(as, \). From (1), (2),
and (3), the likelihood function of a2, a3 and A based on JPC sample can be written as

k k
L(a1, a2, Ndata) o< ¥ ab2\** exp {— [)\2 wa + (a1 —1) ZziDA(wi)

i=1

k
+ Otg—l Zl—ZzD)\wL +ZS Qal)\wb +ZTQ042)\U}L):|}7
i=1

i=1 i=1
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where
Dy (w;) = —log(1 — e_()‘wi)z)7 Qay 2 (w;) = —log [1 - (1 - e_()‘“”)2>al} ,
and
Qo (w5) = —log [1 = (1= e~ Ow)) ]
Therefore the log-likelihood function can be written as

k k
(a1, az, N|data) o< ki log ay + ky log ap + 2k log A — \? Zw? — (a1 = 1) ZziDA(wi)

i=1 i=1
k
— (a2 —1) Z 1 — z;)Dx(w;) ZS Qayx(w;) ZT Qann ().
=1

It can be easily seen that the MLEs of a1, as and A do not exist when k; = 0 or k5 = 0. Under
the assumption that k;, ko > 0, the MLEs of these parameters can be obtained. Differentiating the
log-likelihood function with respect to a1, a2 and A, we obtain the likelihood equations:

k1 _ r Di( 4 Z D) (w;) -0 4)
aq et ZikIA wZ = eale(wl) o
k k
ks Dy (wi)
%2 371 ) Dy T, 5
- i:1( 2;) A(w)+; D (o) 1 ©)

and

k k k
D L RICTRL1) DR G
1 3 i=1

DA(“’?) —1 DA(wL) —
- o ZSwl e 1 _azszzieasz(wl)_l =0. (6)

i=1

For complete sample (R; = 0, forall i = 1,2,... k), the last term in (4) and (5) have to be
cancelled and the MLEs of «; and a3 are obtained as functions of A and (6) can be solved numerically
by setting S; = T; = 0, for all ¢. In our JPC data, the MLEs of a;, a2 and ) have to be obtained by
solving the three-dimensional equations in (4), (5) and (6). For this, it is more appropriate to propose
the EM algorithm, suggested by Dempster et al. (1977) and used by Ng et al. (2002), to compute the
MLEs of ay, a0 and A. Let U = (uy, ...,ux) and V = (v1, ..., vx) With u; = (u;1, ..., ujs;) and
v; = (vj1, ..., vaj), 7 =1,2,..., k, be the censored data from X- and Y -samples, respectively. We
consider the censored data as missing data. The combination (w, u, v), forms the complete data set.
The log-likelihood function based on (w, u, v) is

k kK S; k T
le(ar, a2, \) o< mlog a; +nlog as + 2(m + n)log A\ — )\2[2 w? 4 Z Z Z ZU%]
i=1 i=1 j=1 i=1 j=1
k k S; J
— (a1 =)D zDa(wi) + ) Z A(uig)]
i=1 i=1 j=1

T;

k
= (a2 =D (1 = z)Da(wi) + Z > Da(vij)]- ©)

i=1 i=1 j=1
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In the E-step, firstly, we compute the pseudo-likelihood function by replacing any function of u;;(say,
91(uij)) by E(g1(Ui;)|Ui; > w;) and any function of v;;(say, g2(viz)) by E(g2(Vij)|[Vij > w;).
Therefore the pseudo log-likelihood function is

ls(aq,a0,\) o< mlog ai + nlog as + 2(m + n)log A
k k k
- )\Q[Z w? + Z SiEh‘ (Oq, /\) + Z EE% (042, )\)]
i=1 i=1 i=1

k k

— (a1 = DD zDa(wi) + Y Si Esi(ar, )]
i=1 i=1

k k

— (a2 =)D (1= z)Dx(w;) + Y Ti Esi(az, N, (8)

i=1 i=1

where Eq; (a1, A), Eqgi(asz, \), Esi(a1, \) and Ey; (a9, ) are defined as

> flu,aq, ) /OO 2 9(v, 09,2
Eqs — EEA St ket LAAVAN Es; = T — (s ove \)
Li(an, \) /w u 17F(wi,a1,)\)du’ 2i(a1, A) y v G(wh%’/\)dv,
o0 flu, aq, A
Esi(a1,\) = D/\(“)l_j(?(w.lal))\)

o0

I 7>\
du, Eyi(az, ) :/ D/\(U)l—gg)(j?%))\)dw

where f, F' and g, G are the PDF and CDF of the GR distribution from Pop-A and Pop-B, respectively.
Secondly, the M-step involves the maximization of the pseudo-likelihood function (8). Let us assume
that at the I-th stage, the estimate of (a1, ag, A) is (agl), aél)7 AD). Then (a(ll+1), aéH_l), MDY can
be obtained by maximizing

U (ag,a9,\) o mlog ay 4+ nlog as + 2(m + n)log A

k k k
— N wi Y Sl AD) + 3 1Bl A0)]
=1 =1 i=1

k k
— (a1 = DY zDa(w) + Y SiBsilaf”, AD)]
=1 i=1

k

k
= (aa =)D (1= 2)Da(wi) + Y TiBas(a), AD)], ©)

i=1 i=1
with respect to a1, g and . It follows from (9), the estimate of a;; can be obtained as a function of

agl) and \(Y) and the estimate of o as a function of agl) and \(V) as follows:

m

021 M (A) = )
KL ziDa(wy) + 8 SiBsi(al?, A0))]

(10)
dopr(A) = z .
K (1= 2)Da(w;) + X8 TiByi (), A0))]

By plugging (10) into (9), we immediately have

ansa ) = a0 = m{ o (20 ) = (225 1)}
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By using the inequality log < (z — 1) with equality being hold iff x = 1, we conclude that
ls(an, a2, A) = [(d1pr(A), dizpr (M), A) <0,
and then the maximization of I* (1 37, @257, A) can be obtained by solving the following equation:

2
By = > (1n)

m-+n

where

k k k
S w? + 08 Bl A0) + ST Byi(a), AV)
i=1 i=1 i=1

k -1

k
— (di = D) Y 22 (€00 < 1) — (dapy — 1) (1 - 2w (P 1)
=1 =1

Once A+ is obtained using (11), a (l+1) and oz(l+ ) are obtained as aglﬂ) = a; (A1) and
aélﬂ) o (A1) based on (10). It is clearly noted that iy 7, dia sy and Ay are not in explicit
forms. For this, the asymptotic variances based on the asymptotic normality of ay 5s, ctap; and Ay

can be proposed. From the log-likelihood function in (4), we have

Pk N DR e g

93— ol ST DI 177 darday

21 o Lo (e )1 — e DA (1 — oy Dy (wy))]
o 1,2 (wy) _ w2 L
Jaidn = 2)\222’101 (6 A 1)+2)‘ZSﬂU1 (eale(wi)—l)Q

921 k e2Dx(wq)

o o (ePr(wi) — 1)[1 —easz(wJ(l—a D (w))]

B B () PEON 7
021 % o
ne —p—2Zw?+2(a1—1)Zziw?(e’3*(“’”—1)(1—%2@”3@17*(%))

k
+ 2ap — 1)) (1 —z)wi(eP ) —1)(1 - 23%wZePr ()
i=1

k D>\(’wl)

— 20 le iW; (6041Dx(w1 — 1 { a1D>\ (wq) _ )(1 _ 2)\2/11)1-26D>‘(wi)):|

+ 2041/\2 2a1D,\(wz ePa(wi) _ }

ePr(wi) —1 (@2 DAwi) _ 2.2 Dy (w;)
- QQQZTw (D) — 172 { P —1)(1 =2 we )]

When the number of observed items k is sufficiently large, then under very general condi-
tions (Lehmann and Casella, 1998), the asymptotic normality of the MLE of ¢ = (aq, a2, A) (say,

(12)
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Sy = (A1, o, S\M)) can be stated as ¢y S N3(p,I71(p)), where B denotes convergence
in distribution and I(y) is the Fisher information matrix obtained by taking the negative of the
expectations of the Eq.’s in (12). In practical point of view, it is appropriate to use the approxi-
mation @p; ~ N3(p, I~ (Par)), where J(pas) is the observed information matrix (the negative
of the expressions in (12)). Therefore, the 100(1 — )% approximate CIs for ay,as and A are
(0?1M — 2y /2 VViL, G1as + Z1—q)2 \/W), (OZZM — 2y 2 V/Vaz, dapg + 21—+ /2 \/@) and

(;\ M — Zy2 Vs, Ay + Z1—y/2 @), respectively, where V;; and Vs, and V33 are the elements

of the main diagonal of J~! () and 2., is 100y-th lower percentile of the standard normal distribu-
tion. Usually, the CI based on the asymptotic results do not perform very well for small sample size.
For this, we propose CI based on the bootstrap-t method (Boot-t method), see, for example, Ahmed
(2014). The Boot-t algorithm can be described as follows:

Step 1: Estimate a1, as and A using the maximum likelihood estimation based on the observed
informative sample (say & 57, 25, and A M)-

Step 2: Using s, 2y and A obtained in Step 1, generate a bootstrap sample and then
obtain the first k£ observed censored units, By, Bo, ..., By, under the GR model. Then compute the
corresponding MLEs d1}, da}, and 5\}11 of ay,a and X and the elements (V7 V5, V55) of the
main diagonal of .J* (i1}, dia by, A%,).

Step 3: Based on the bootstrap sample in Step 2, define an estimated bootstrap version

. Qiy —day o, Q2 —d2y . AM—AML
Q1 \/VT*l , Q5 \/‘TQ*Q and Q)3 \/@ .
Step 4: Generate M=1000 bootstrap samples and versions of 7, 5 and ()3 and then obtain the
1007-th 100(1 — ~y)-th sample quantiles of Q7, Q3 and Q3 (say ¢i ~, G2~ and g3 ).
Step 5: Compute the approximate 100(1 — v)% ClIs for a1, ap and A as
(CAleM = q1,1-~/2 mdlM — G1y72 VV11)s (danr — Go1—yy2 Va2, 020 — Goy/2 V/Va2) and
(Anr = 43,172 V'V, Ant — G302 VVa3).

3. Bayesian Estimation Methods

In this section, we obtain the posterior densities of the parameters 1, a2 and A based on joint
progressive censored sample from two-parameter GR distribution and then obtain the corresponding
Bayes estimators of these parameters. To develop these estimates, we consider independent priors of
aq, a9 and A (Ragab and Madi (2009)). More specifically, we take 7;(«;), ¢ = 1,2 and m3()\) as
gamma (denoted as G(a;, b;)) with hyper-parameters a; and b;,7 = 1,2 and generalized exponential
power GEP(as, bg) distributions, respectively, where a1, aa, A > 0 and a;’s and b;’s are chosen to
reflect prior knowledge about a1, s and A. These prior densities of a;(i = 1,2) and A take the
following forms:

i—1 —b; oy -
Pas b () X i e biei j—1,2,

and

Gaz,bs (/\) = )‘2(1371 eibg)\Q'

Note that A2 is gamma distribution with parameters c and d with the mean of the X being I'(a3 +
1/2)/ (T'(a3)v/bs). It is important to point out the choices of the priors for c; and ) are based on the
mathematical structure of likelihood of the observed data which turns to be an attractable posterior
form where the prior and posterior densities have similar mathematical forms.

By setting ) (w) = Zle 2Dy (w;), Ox(w) = Zle(l — z;)Dx(w;) and combining (4) with
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the prior densities, we obtain the joint posterior density of a;;, az and A as

m(o, o, Aldata) o Py tay by 48, (W) (1) Prytas byt 5y (w) (Q2) Grpag byt | w2 (A)

X By (w) T (b + G (w))
X ezfa[DA(wi)—SiQal,*(wi)_TiQ”’*(wi)]7 (3)

where p, p(a) and ¢ 4(A) denote the gamma density of « with hyper-parameters a and b and GEP
density with hyper-parameters c and d, respectively. Based on the observed joint progressive sample,
the marginal density of A is obtained to be

T(Aldata) o Gy g 457t (V) (), (14)

where

oa(w) = (b + (5,\(w))_(k1+“1)(b2 + SA(w))_(k”’”) eXiz1 Da(wi)
Eq, |e” >hs Qal,)\(wi):| Ea, [67 kT Qaz,)\(wi):| ;

and F,, and E,, denote the expectation with respect to G(k1+a1,b1+0x(w)) and G(ka + az, by +
Ox(w)), respectively. Using (14), the Bayes estimate of A under the squared error loss (SEL) function

) 5, Bbosw)]

Exlpa(w] (1>

where E) denotes the expectation with respect to GEP(k + a3, bs + Zle w?). Given \ and data,
the marginal density of a; and « are, respectively,

_sk g .
m(o |, data) OCpk1+a1,b1+5x(w)(a1) e~ i1 S Qal,x(wl),

and

sk .
(o)A, data) o ka—o—ag,bg—&-Sk(w)(O‘Q) e~ iz Ti Qag a(wi)

This in turns out that

Eq, [ e s Qa0 Fa, oz €= St Tz a(w0)]

E(aq|A, data) =

, and F(as|)\, data) =

Eal |:67 i Sierl,A(wi):| Ea2 |:67 >k SiQa2,>\(wi):|

As a result of that, the Bayes estimates (BEs) of o1 and a can be described as

E) [px(w)E(aq |, data))
B\ [px(w)]

G1p = E(ai|data) = ExE,, | (a1|), data) = , (16)

and

E) [pr(w)E(az|A, data)]
By [pa(w)]

It can be easily checked that (15), (16) and (17) cannot be determined analytically and then im-
portance sampler technique can be employed to approximate these expressions and produce consistent
sample-based estimates for a1, aro and A and then construct the corresponding credible intervals. The
Bayes point estimates of a;, g and A can be computed using the importance sampler algorithm as
follows:

Gop = E(ag\data) = E)\Ea2|/\ (ag\A,data) =

a7
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Importance sampler algorithm:
1. Generate M \; values from GEP(k + a3, b3 + Zle wi),i=1,2,...,M;

2. Foreach \; generated in Step 1, generate M values of a; and a3 from G(ky +ay, b1 + 9\ (w))
and G(ka + ag, ba + 65 (w)), respectively;

3. Compute E,, [e‘ Ti1 SiQay (“’i)], and E,, {al e Tizt SiQ"‘l’Ai(wi’)} with respect to the

simulated «; values in Step 2;

4. Compute E,, {e’ Y1 TiQas (“’i)}, and E,, {042 e~ 2Zici TiQaz n; (wi)}, with respect to the
simulated as values in Step 2;

5. Compute ¢y, (w), E(a1|A;, data) and E(as|A;, data);

6. Average the numerators and the denominators of (15), (16) and (17) with respect to the A
values simulated in Step 1.

Now, we aim at developing two-sided Bayes CRIs as well as highest posterior density (HPD)
CRIs for the o1, ag and A. Based on the simulated values, (1 — v)100% the Bayes CRIs for these
aq, a9, A may be computed. That is, a 100(1 — )% Bayes CRI for (6 = «ai,a9, or M) is
(6©/2,911=7/2)) where §(") is 100~-th percentile of the 6 values simulated via the previous al-
gorithm. Since the previous CRIs do not specify whether the values of 8 within these intervals have
highest probability than that of the values outside the intervals, we propose the HPD CRI for 6. It
is defined as the one of the shortest width such that the posterior density of any point outside the
interval is less than that for any point inside the intervals. To compute the HPD CRI for any function
of the parameters involved (say, p(«a1, a2, A)), we use a Monte Carlo method developed by Chen and
Shao (1999) for using importance sampling to compute HPD CRIs for the parameters involved. By
ordering the simulated values of p(a1, a2, A), we obtain

P S pe) < - S Py

then compute the ratios

A
9:730( ®) i=1,2,..., M.

M ’
Zi=1 c»0()‘(1‘))
For M sufficiently large, the 100(1 — 7)% shortest-width Chen and Shao CRI (C-S CRI) for p
is the shortest interval among the intervals I; for j = 1,2,..., M — [(1 — v)M], with

IJ _ (p(l\i/l), p(.7+[(1&7)kf] )) 7
where [z] is the integer part of « and p(7) is 100~-th percentile of p, which can be obtained as follows:

pay if v=0,
p(“/) —

pay if Z;;i G<~< Zi»:l s

Therefore, the C-S CRIs of a1, a2 and A can be obtained accordingly.

Next, we consider M-H algorithm as explained in Tierney (1994). For this, we opt for stochastic
simulation procedures, namely, the Gibbs and Metropolis samplers (Gilks, Richardson, and Spiegel-
halter, 1995) to generate samples from the posterior distributions. The following algorithm describes
the steps to generate sample-based estimates of oy, s and \. The MLEs of a1, @y and A can be
considered as initial values. The M-H algorithm proceeds as follows:
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M-H algorithm for estimation problem:

1. Start with initial values (ago), a(QO), A0y

2. SetJ=1;
3. Generate ag‘]) from G (k1 + a1, b1 + 6x(w)), and Generate ag‘]) from G (kg + ag, by + 6 (w));

4. Given AV, generate A from (Aol al”), w) described in (14) with the N(A(/=1), §2)
proposal distribution, where S% is the variance of A which can be chosen to be the inverse of
Fisher information. The values of A can be updated as follows:

a. Generate ¢ from N(A/~15%) and u from U(0, 1)

b. If u < min(1, &) then let \(Y) = ¢, else go to (a), where = %

5. SetJ=J+1.

@)}

. Repeat steps 3-5, M times.

4. Bayesian Prediction Methods

In this section, we address the problem of predicting the censored units in the JPC from the
GR distribution. Precisely, at stage j, we are interested in the posterior density of the s-th order
statistic from a sample of size S; removed items and the ¢-th order statistic from a sample of size T}
removed items, where R; = S; + T}. In other words, we wish to predict Us;s_,» (s =12,..., Sj)
and V.1, (t = 1,2,...,T;), based on observing the joint progressively type-II right censored sample,
W = (wy,ws,...,wg). The posterior predictive density of Y7 = s:5; and Yo = Vi, given the
observed censored data is

p(yu yQ‘data) = /0 /0 /0 fyl‘data(yl |041a )‘> gyf_,\data<y2‘a27 A)

x  m(aq,az, Aldata) don dag dX, y1,y2 > w;. (18)

Here f,, | data(W1la1, A) and gy gaga (y2| a2, A) are the conditional densities of Y1 and Y3 given W =
w, respectively. By Markovian property of progressively type-II right censored order statistics, this
conditional density is the conditional distribution of Y7 and Y5 given W; = w;. That is, the pdf of
the s-th and ¢-th order statistics out of S; and T; with R; = S; + T}, from F and G right truncated
at w;, respectively (see, for example, Arnold et al. (1998)). Precisely, it can be rewritten as follows:

s—1t—18;—sTj—t s—IN/t—1\/S;: —s\ /T —t
hy, v, (Y1, y2) o ZZZ Z(_l)HHHV( i )( v >< j/f >< jl >A4041

=0 v=0 k=0 [=0

Q2Y1Y2 e—Az(yfﬂ/%)e—al [(s—i+k) Dx(y1)+iDx (w;)] g —a2[(t—v+1) Dx(y2)+vDx(w;)]

eD)\(yl)"FD)\(y2)+San1,)\(wj)"l‘TanQ,)\(wj)’ Y1, Y2 > wj. 19)

From (13), (18) and (19), we obtain the posterior predictive density of (U, V') given the observed
JPC data. It is evident that the Bayes predictive estimates E(Y;|W = w) or E(Y2|W = w) cannot
be computed directly from (18). Therefore, we propose the Monte Carlo (MC) simulation procedure
to generate samples from the predictive distributions. Under the SEL function, the Bayes predictors
(BPs) of Y7 and Y5 can be obtained as

o0 oo

Y/l - Eposterior(yllw) - / Y1 p(yl‘w)dyla }A/2 - Eposterior(y2|w) = / Yo p(y2|’w)dy2

wj wj
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Based on MC samples (o, a9,\), j = 1,2,..., M, the simulation consistent estimator of
p(y|w) can be obtained as

M

) 1

Blyilw) = 32> flunlws 01, 2), ply2fw) = Zg y2lwj; oz, Aj). (20)
j=1

Hence the sample-based predictors of Y7 and Y> can be simplified in the following forms:

~ 1 1 [ [ 1/as;]
Y, = — 7 _ 1— 1— 1— ()\wj)
RE=EY [ {0 1= (w0 - ey ) L stuyau,
and
M -
~ 1 1 > 1/agy]
_ L _ _ _ (N wJ)
Yo yYi ]Ezl y /o { log _1 (u +(1—-u)(l—e )z ) | }qﬁ(u)dw

where ¢(.) is the PDF of gamma distribution with parameters s and S; — s. Further, the approximate
estimator in (20) can be also used to obtain a two-sided prediction intervals (PIs) for Y; = Us.s; (s =
1,2,...,8;) and Yo = Vi, (t = 1,2,...,T}). The (1 — +)100% PIs of Y1 and Y5 are (L1, U1)
and (Lo, Us), respectively, where L1, Uy, Lo, and Us are computed numerically from the following
equations:

P(Y: > Li|w) = / pntw)dyy =1 1, and P(V; > Uslw) = / plntw)d = 2, @D
L1 U1
and
> ¥ > v
P(Yy > Lo|w) = / P(y2|w)dys =1 — 5 and P(Y7 > Us|w) = / P(ya|w)dys = 7 (22)
Lg U2

In most practical situations, it is required to predict the removed (missing) observations jointly
or any function of these removed observations. For example, let us consider that we wish to predict
the average of the removed units at the stage j. For this, our aim is to predict the removed units
(U, V), jointly. In this case, we need to find the full Bayesian model of (U, V') given W = w that
allows us to be able to implement the Gibbs sampling algorithm. By the likelihood of complete data
and the joint prior of o, ag and A, the full Bayesian model can be described as

(o, g, A, u, v|w) < o1 (o |A, w) dz(az| A, w) p3(Aw), (23)

where ¢ (a1|A, w) and ¢2(az|A, w) are the PDF of gamma distributions G (m +ay, by + 0 (w, u)),
G(n + ag, by + dx(w, v)) and ¢3(A|w) is given by

3(/\|w) _ )\2(m+n)+a371 67[b3+n(w,u,v)]>\2 eak('11J,u)+&(u),'v)7 24)
where
k k Si k T;
n(w,w,v) =3 wi+) Y ul+d > v
i=1 i=1 j=1 =1 j=1
and

(5,\(w'u —(5)\ —I—ZZD)\ uU 6>\w'u —(5)\ —i—ZZD)\ ’U”

i=1 j=1 i=1 j=1

It is obvious that the full conditional distribution of c; given A, w and the full conditional dis-
tribution of ap given A\, w are G(m + a1,b1 + dr(w,w)), G(n + az,bs + dx(w, v)), but the the



540 Thailand Statistician, 2023; 21(3): 529-551

form of full conditional distribution of A given w in (24) is not well-known distribution. By setting
Uj(s) = (Ulzsj P Us—l:Sj 5 Us+1:Sj 5 USJ-:SJ-)’ Vj(t) = (%:Tj; ey V;E—I:Tj 5 ‘/t-i-l:ij VTj:Tj) and
using (24), we immediately obtain the conditional probability density function of Y; and Y5 as

fy1)g(y2) I{“s—l:Sj <W1<Ug g5 V-1 <Y2<Viq1Ty; }
[F(us+1:sj)*F(us—1:sj )] [G(Ut-pl:Tj)*G(vt—l:Tj )] ’

S#Sj,t#T',

7T(y17 yQ‘wa Uj(s), Vj(t)s 9) =
f(y1)g(y2) I{y1>u5,lrsj,y2>vt71:Tj}

[liF(usil;Sj)}[lfc(vt—l:Tj)] s

s:Sj7t:Tj,

where f(.), F(.) and g(.), G(.) were defined as the PDF and CDF for X -data and Y -data, respec-
tively. Hence the values of « and v can be updated based on the transformations:

1/a 1/2
v, = % { In [1 - ((1 UYL — e Qe e 4 r(p — e*<A“S+1:Sa‘)2)“1) 1} } , s #S5;
1/en 1/2
v, — i{_ln [1 N <(1 L U)(1 — e Qs yeu +U) o ]}  s=5;, 25)
and
1 —(Avi—1:1) oo —(weprry)? o 1/ea] M2
Y, = $4-In 1—((1—U)(1—e )Y L U (1 — e” M) ) t# Ty
1/a 1/2
Y, = i{—ln [1—((1_U)<1—eWHZTJ'V)&%U) ” =T, (26)

where U is standard uniform U (0, 1) variate. The Gibbs sampler is used to estimate the posterior
distribution by sampling for a1, co and (Y7, Ys) from the full conditional distributions. For A, it can
be updated via M-H algorithm using normal distribution as a proposal distribution. Algorithm similar
to the M-H algorithm for estimation problem can be implemented for the prediction problem using
the full conditional distributions provided in (23) and (24). The steps can be described as follows:

M-H algorithm for prediction problem:
1. Start with initial values (ago), ozgo), AO) 44(0) 4(0)y;
2. Set J=1;

3. Generate ag‘]) from G(m+aq, b1 +3dx(w, u), and Generate agJ) from G(n+as, ba+6x(w, v);

4. Given A(=1), generate \ from ¢3 ()\|a§‘]), aé‘]), w) described in (24) with the N(A\(/~1) §2)
proposal distribution, where S is the variance of A which can be chosen to be the inverse of
Fisher information. The values of A\ can be updated as follows:

a. Generate ¢ 7 from A(.JA\V~D§2) = N\~ S2) and u from U(0, 1)

b. If u < min(1, k*) then let A\(/) = £, else go to (a), where

. Bs(Aglw) ANYTVE,, %)
936V D |w) A6 AV, 83)

5. SetJ=J+1.

6. Repeat steps 3-5, M times.
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5. Simulation Results and Data Analysis

Here in this section, we perform a comprehensive simulation study to assess the performances of
the sample-based estimates and predictors developed in the previous sections and discuss the analysis
of the JPC data extracted from a practical data with GR fitting distribution. All computations are
performed using R software.

5.1. Data analysis

In this section we present the analysis of real data sets to illustrate the performance of the ob-
tained methods. The data represent the breaking strength (in MPa) of jute fibre at 5 mm and 15 mm
gauge lengths. The data were originally reported by Xia et al. (2009). The sets of data are:

Data set 1 (5 mm gauge length):

129.08 167.87 168.2 178.25 185.42 187.68 218.86 226.53 254.29 260.97
268.20 270.79 304.84 306.99 315.33 360.8 367.70 370.02 441.87 495.51
496.28 516.48 537.45 546.11 554.61 566.31 583.97 618.57 809.23 823.03

Data set 2 (15 mm gauge length):

42.66 70.09 72.24 76.38 80.4 106.73 127.81 135.09 156.67 168.37
193.42 200.76 202.75 225.65 355.56 339.22 457.71 468.47 489.66 497.94
550.42 562.39 569.07 574.86 594.4 640.48 678.06 716.3 748.75 813.87

Table 1: MLEs, K-S and CvM goodness-of-fit tests.

Data Set  Scale Parameter Shape Parameter K-S(p-value) CvM(p-value)
1 0.2252157 1.290241 0.13333(0.9578) 0.14865(0.9238)
2 0.2252157 0.6278746 0.14825(0.9435) 0.14241(0.9360)

Table 1 presents the MLEs of the unknown parameters, the goodness-of-fit tests based on Kolmogrov-
Smirnov (K-S) and Cramer-von Mises (CvM) statistics. It is easily seen that the GR model fits both
data sets very well. This conclusion is also supported by diagnostic plots of the empirical and fit-
ted distribution functions in Figures 1 and 2. In addition, it is of interest to study the null hypoth-
esis Hy : A1 = Ay = X (i.e., the scale parameters are equal) versus the alternative hypothesis
Hy : A1 # ) using the likelihood ratio test. For the given data, the test statistic is computed as
A = L1/L2 = 0.4123, —2log(A) = 1.7722 and the p-value of the test is 0.5209. Hence, the
assumption of equality of the scale parameters cannot be rejected.

For explanation purposes, we suggest the following joint progressive type-II censored sample
withm =n=30,k=15,R;=5,i=1,...,6, R, =0,i=7,...,10and R; = 3,i=11,...,15.
The data set is as follows:

(42.66,0,2), (70.09,0,4), (72.24,0,1), (76.38,0,3), (80.4,0,2),
(106.73,0,4), (127.81,0,0), (129.08,1,0), (135.09,0,0), (156.67,0,0),
(l67.87,1,3), (168.2,1,0), (168.37,0,2), (178.25,1,2), (185.42,1,2).

Based on the above observed joint progressive type II censored data, we obtain the MLEs and
BEs of o, as and A. We have generated 5000 observations to compute the BEs of a;, ag and A
based on the importance sampler. For computing the BEs and C-S CRIs, we assume that the priors
of a1, ap and A are improper, i.e. a; = b; = as = by = a3z = bz = 0, since we do not have any
prior information. The M-H algorithm is also used to compute the BEs of A. These BEs are obtained
after discarding the initial 500 burn-in samples. The histogram displayed in Figure 3 shows that the
Gaussian distribution is an appropriate proposal distribution for the full conditional distributions of
A. Here, the best fitted model for the full conditional distribution can be concluded by managing the
choice of the parameters for the proposal distribution. Therefore, to generate numbers from the target
probability distribution, we use the M-H algorithm with Gaussian proposal distribution. We assumed
the initial value of \ to be its MLE, A a which is computed using EM-algorithm while the variance



542 Thailand Statistician, 2023; 21(3): 529-551

Empirical and theoretical CDFs Q-Q plot
S
P
© -
@ ~ -
o
(%] ©o
2
© =
S §
& s ¥
o 8 9
< =
s 7 S ¥
i
o -
N
o
o/ ~
/4’ o
o | .7. —— GRayleigh o © GRayleigh
e T T T T T T T - T T T T
1 2 3 4 5 6 7 8 2 4 6 8
data Theoretical quantiles
(a) (b)

Figure 1 (a): Empirical and fitted distribution functions Plot for data set 1, (b): Q-Q Plot for data set 1
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Figure 2 (a): Empirical and fitted distribution functions Plot for data set 2, (b): Q-Q Plot for data set 2

of A to be the reciprocal of Fisher information which is S3 = 0.00027. Here, we generated 50,000
random variates with S3 = 0.00027 and we checked the acceptance rate for this choice of variance to
be 70.77% which is quite satisfactory. We discarded the initial 5000 burn-in samples and computed
the BEs based on the remaining observations.

Graphical diagnostics tools involving trace and ACF plots are used to check the convergence of
M-H algorithm. Figure 3 shows the trace and ACF plots for A. From the trace plot, we can easily
observe a random scatter about some mean value represented by a solid line with a fine mixing of the
chains for the simulated values of A. The ACF plot shows that chains have very low autocorrelations.
As a result, these plots indicate the rapid convergence of the M-H algorithm based on the proposed
Gaussian distribution.



Mohammad Z. Raqgab et al. 543

The results for MLEs and BEs using importance and M-H samplers along with the 95% Boot-t
CI, Asymptotic CI and C-S CRIs for o, as and A are presented in Table 2.

Let us now consider the prediction of some censored values, based on the above 15 observed
values. The point predicted values and PIs for censored values, are computed and displayed in Table
3. The PIs are established based on Bayesian methods (importance and M-H algorithms) under SEL
function which are discussed in details in Section 4. It is clearly evident that the Bayesian M-H PI is
the shortest interval for all cases.

Table 2: Point estimators and 95% C'Is for a1, a2 and .

SEL
MLE  Importance M-H Approximate CI Boot-t CI C-S CRI
ar 69268 4.7495 4.8628 (5.5266,7.7802)  (4.1257,5.8196) (4.3577,5.9571)
az  1.8312 1.8959 1.8382 (0.7529,2.9094)  (0.9751, 3.0608)  (0.7869, 2.4675)
A 0.0075 0.0089 0.00827 (0.0053, 0.0096)  (0.0057,0.0094)  (0.0059, 0.0092)

Table 3: Point predictors and 95% PIs of Us.s; and Vi.1; based on Bayesian methods.

Point predictors PIs
Importance M-H Importance M-H
ng
Uis, 43.56 44.62 (41.27,45.48) (43.17, 47.08)
Usa.s, 45.39 46.82 (44.12, 48.77) (44.84, 49.13)
Vi 44.12 45.94 (42.89, 47.22) (44.21, 48.22)
Vs, 46.95 47.12 (45.28, 50.09) (46.41, 50.83)
Ui:s, 72.36 73.62 (71.19, 75.53) (72.03, 76.08)
Uss, 77.68 79.12 (75.91, 80.62) (77.82, 82.14)
Vi, 73.11 73.95 (71.75,76.14) (71.97, 76.08)
Ui:s, 74.75 75.52 (73.14, 77.62) (73.88, 78.02)
Vi 75.48 76.33 (74.46, 78.91) (75.26, 79.47)
Va.ry 78.69 79.09 (75.98, 80.67) (77.69, 82.16)
Uis, 78.17 78.89 (76.67, 81.23) (77.13, 81.51)
Us:s, 81.66 82.64 (79.26, 84.04) (80.37, 84.96)
Vi, 80.09 81.34 (77.52, 82.13) (78.62, 83.06)
Ui:ss 82.99 84.45 (80.12, 84.94) (82.45, 86.98)
Vi 84.32 85.97 (83.42, 88.36) (84.28, 89.02)
Varyg 86.43 87.82 (84.78, 89.86) (85.63, 90.54)
Ui:sg 108.61 109.72 (106.56, 111.61)  (107.72, 112.49)
Us:sg 113.28 115.11 (110.73,115.00)  (113.47, 118.40)
Vi 110.71 111.65 (109.08, 114.25)  (109.67, 114.49)
Ui:s1y 171.62 170.23 (169.64, 175.48)  (168.83, 174.41)
Us:sy, 177.52 176.82 (175.38, 181.44)  (173.86, 179.65)
Vi, 173.66 172.19 (171.63, 177.72) ~ (170.76, 176.59)
Va.y, 179.42 178.61 (177.29, 183.50)  (175.64, 181.59)
Ui:sys 175.01 173.19 (173.83,180.15)  (171.39, 177.42)
Vi 177.49 177.39 (175.47,181.95)  (176.12, 182.27)
Ui:syy 182.39 183.07 (180.67, 187.24)  (181.48, 187.75)
Viry, 183.47 184.62 (180.82, 187.55)  (181.79, 188.17)
Ui:sys 189.70 190.68 (186.77, 193.56)  (188.52, 195.03)
Vi, 191.58 192.49 (188.90, 195.82)  (189.62, 196.35)

5.2. Simulation results

Now, we compare the performances of the different methods of estimation and prediction based
on Monte Carlo simulations. We compare the performances of the MLEs, and BEs in terms of biases
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Figure 3 Plots of Metropolis-Hastings Markov chains for A. (a): Trace Plot of A, (b): ACF Plot of A and (c):
Histogram of A

and mean squares errors (MSEs). In this simulation, the values of GR parameters are considered as
a1 = 2, ag = 1.5 and A = 2. Here, we consider different effective sample sizes, £ = 20, 25 and
different censoring schemes. For conducting the Bayesian analysis, we assume three different priors.
For the first prior (Prior 0), zero values were given to the prior parameters to reflect improper prior
information. That is, we assumed that a1 = by = a3 = by = a3 = b3 = 0. Then we assume
two additional proper priors with same means but different variances to reflect the sensitivity of our
inferences to variations in the specification of prior parameters. Prior 1 and Prior 2 correspond to
a1=a2:a3=1,b1:b2:b3:231’1da1=a2:2,a3:1,b1:b2:b3=4,
respectively. For this reason, Prior 2 is more informative than Prior 1. This helps us to see how
much does the informative prior effect contributes to the results obtained based on observed data. We
use the following notation for a particular progressive censoring scheme. For example k¥ = 7 and
R= (7,0(5), 15) means R1 = 7, R2 = R3 = R4 = R5 = RG = 0,R7 = 15.
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Table 4 presents the average biases and MSEs of the MLEs and BEs under SEL of a3, as and
A are computed over 5000 replications. The average lengths (ALs) and coverage probabilities (CPs)
of 95% Cls for a1, ao and A based on Bootstrap-t, asymptotic maximum likelihood and Bayesian
methods with improper prior (Prior 0) and informative priors (Prior 1 and Prior 2) under SEL function
are displayed in Table 5. As seen in Table 4, the BEs perform well for £ = 20 and £ = 25 in the
sense of bias and MSE. Clearly, the results of BEs are not very sensitive to the assumed values of
the prior parameters, particularly the informative prior (Prior 2). From Table 5, it is observed that the
C-S CRIs are shorter than the asymptotic and Boot-t CIs under all priors for £ = 20 and k = 25. The
performances of C-S CRIs tend to be high under the informative priors when compared to asymptotic
and Boot-t CIs. While the Boot-t method performs well when compared to asymptotic method for
estimating of all parameters. It can be also observed that all CIs are shorter for k& = 25 when compared
to k = 20. The simulated CPs are very close for all these intervals.

For prediction problem, we have randomly generated six different joint progressive censored
schemes from GR distribution and for £ = 20 and k£ = 25, we then compute the average biases,
mean square prediction errors (MSPEs) for the predictors and Pls for censored items. Under the
non-informative and informative priors, the biases and MSPEs of BPs over 1000 replications are
computed and provided in Tables 6 and 7 for various censoring schemes of £ = 20 and k = 25. The
ALs and CPs of 95% PIs based on importance, M-H and bootstrap methods are also reported in Table
8. It can be seen from Tables 6 and 7 that the BPs using M-H method perform well when compared
to the importance sampler method. As expected, the MSPEs of the censored items tend to be larger
when s gets larger and when k becomes smaller. From Table 8, there is a clear evidence that the
Bayes PIs based on M-H sampling are the most preferred Pls in terms of AL criterion. It can also
be observed that the Bayes PIs under the informative prior (Prior 2) perform better than PIs based
on other priors. Moreover, the simulated CPs are remarkably high and tend to be the true prediction
coefficient 1 — v = 0.95.

6. Conclusions

In this study, we have considered the estimation and prediction problems based on joint Type-
II progressive censoring scheme when their lifetimes follow generalized Rayleigh distributions with
different shape parameters. It is shown that the maximum likelihood estimators of the model param-
eters can be obtained by adopting the expectation-maximization algorithm. We have also proposed
Bayesian procedures to estimating the parameters involved and predicting the life lengths of the re-
moved units in multiple stages of the joint progressively censored sample. The corresponding estima-
tion and prediction intervals involving importance, bootstrap and Metropolis-Hastings methods are
used to develop prediction intervals for the future censored units. The performance of all methods pre-
sented in this paper are evaluated and compared via Monte Carlo simulations. It is observed that the
Bayes estimates and predictors under Metropolis-Hastings method outperform the frequentist meth-
ods as well as the Bayes ones under the importance sampling in the sense of bias and mean square
error. By considering the average length and coverage probability as optimality criteria, it is also
evident that the highest posterior density credible intervals compete the approximate and Boot-t con-
fidence intervals. In the context of prediction, the prediction intervals based on Metropolis-Hastings
method are more efficient than the ones based on importance sampling.

Although, we have mainly restricted our attention to the joint Type-II progressive censoring
scheme produced from the two populations, but the so developed procedures can be extended to more
than two populations as well. More investigation is needed along this line.
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Table 4: Biases and MSEs of the MLEs and BEs of a1, ais and .

MLE Prior 0 Prior 1 Prior 2
Censoring scheme | Bias MSE Bias MSE Bias MSE Bias MSE
k=20, a1 0.0877  0.0694 -0.0762  0.0625 0.0781 0.0602 0.0708  0.0556
R = (7,0(18),15) az  0.1281  0.1316 0.0840  0.0905 0.0804  0.0848 0.0747  0.0759
A 0.0745  0.0628 0.0693  0.0581 0.0633  0.0549 0.0591 0.0527
k =20, a1 0.0915  0.0773 -0.0899  0.0710 0.0821  0.0678 0.0799  0.0652
R = (0(g), 7,09y, 15) az -0.1320  0.1586 0.0948  0.1095 0.0857  0.0967 0.0817  0.0959
0.0870  0.0687 -0.0851  0.0640 0.0830  0.0637 0.0784  0.0617
k=20, a1 0.0958  0.0784 -0.0934  0.0714 0.0856  0.0689 0.0839  0.0672
R = (018, 7,15) az  0.1542  0.1881 0.1103  0.1183 0.0871  0.0986 0.0847  0.0985
A 0.0918  0.0701 0.0903  0.6558 0.0835  0.0647 0.0815  0.0637
k =25, ai  0.0608  0.0507 -0.0584  0.0495 0.0561  0.0489 0.0542  0.0467
R = (7,0(23),10) az 00772  0.0761 0.0752  0.0738 0.0744  0.0725 -0.0724  0.0659
A 0.0527  0.0476 0.0511 0.0453 0.0503  0.0442 0.0488  0.0430
k =25, a1 0.0622  0.0541 0.0601 0.0511 0.0588  0.0501 0.0566  0.0471
R =(0(11),7,0(12),10) a2  0.0799  0.0810 0.0791 0.0742 0.0784  0.0727 -0.0775  0.0687
A 0.0549  0.0499 -0.0520  0.0467 0.0515  0.0453 0.0500  0.0467
k =25, ai;  -0.0628  0.0542 -0.0602  0.0517 0.0594  0.0509 0.0584  0.0488
R = (0(23),7,10) az  0.0816  0.0832 0.0795  0.0753 0.0786  0.0739 -0.0724  0.0718
A 0.0547  0.0497 0.0525  0.0478 -0.0520  0.0492 0.0519  0.0475
Table 5: ALs and CPs of 95% CIs of a1, as and A when m = 20 and n = 22.
Boot-t CI Approximate CI C-S CRI
Censoring scheme | Prior 0 Prior 1 Prior 2
a1 AL 1.1514 1.2920 0.9714 0.8527 0.8156
Cp 0.9514 0.9502 0.9541 0.9546 0.9609
k = 20, az AL 1.2299 1.3216 1.0148 0.9135 0.8853
R =(7,0(18), 15) Cp 0.9520 0.9511 0.9547 0.9558 0.9621
A AL 1.1201 1.2278 0.9265 0.9107 0.8161
CP 0.9501 0.9492 0.9530 0.9534 0.9577
a1 AL 1.2927 1.5298 1.0147 0.9277 0.8826
Cp 0.9524 0.9512 0.9549 0.9552 0.9622
k =20, az AL 1.3647 1.6472 1.0954 0.9725 0.9043
R = (0(g),7,0(9), 15) Cp 0.9528 0.9518 0.9556 0.9569 0.9634
A AL 1.1821 1.3080 0.9814 0.9146 0.8275
CP 0.9519 0.9508 0.9536 0.9554 0.9585
a1 AL 1.4692 1.6842 1.0848 1.0276 0.8916
Cp 0.9528 0.9519 0.9554 0.9569 0.9625
k =20, az AL 1.5859 1.8228 1.1924 1.0752 0.9265
R = (018, 7,15) Cp 0.9536 0.9522 0.9562 0.9578 0.9644
A AL 1.2142 1.3696 1.0122 0.9407 0.8521
CP 0.9525 0.9514 0.9543 0.9568 0.9591
a1 AL 0.9836 1.0243 0.9246 0.8290 0.7837
Cp 0.9481 0.9474 0.9501 0.9512 0.9545
k =25, az AL 1.0098 1.0852 0.9425 0.8224 0.8009
R = (7,0(23), 10) Cp 0.9498 0.9489 0.9518 0.9532 0.9590
A AL 0.9662 1.0109 0.8912 0.7710 0.7592
CP 0.9472 0.9466 0.9488 0.9506 0.9520
a1 AL 1.0554 1.1223 0.9452 0.8406 0.8065
Cp 0.9504 0.9496 0.9524 0.9535 0.9587
k =25, az AL 1.1562 1.1851 0.9712 0.8572 0.8232
R = (0(11),7,0(12), 10) Cp 0.9510 0.9501 0.9533 0.9542 0.9600
A AL 0.9902 1.1087 0.9002 0.8084 0.7852
Cp 0.9493 0.9488 0.9518 0.9529 0.9571
a1 AL 1.1348 1.2656 0.9601 0.8256 0.8054
CP 0.9519 0.9504 0.9537 0.9548 0.9594
k = 25, az AL 1.2157 1.2842 1.0025 0.8995 0.8620
R = (0(23),7,10) Cp 0.9519 0.9510 0.9541 0.9559 0.9607
A AL 1.0821 1.2014 0.9084 0.8151 0.8006
CpP 0.9511 0.9501 0.9529 0.9534 0.9575
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Table 6: Biases and MSPEs of BPs for censored items for &k = 20.
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Prior 0 Prior 1 Prior 2

Censoring Scheme | Importance M-H Importance M-H Importance M-H
Yi.7 Bias 0.3816 -0.3625 0.3688 0.3527 0.3561 0.3441

R = (7,0(18), 15) MSPE 0.8248 0.7845 0.7485 0.7098 0.5858 0.4929
Y3.7 Bias 0.4264 -0.4025 0.3928 0.3758 0.3784 0.3668

MSPE 0.8559 0.8088 0.7679 0.7260 0.6009 0.5359

Ys.7 Bias 0.4760 0.4421 -0.4265 0.4052 0.3928 0.3735

MSPE 0.8769 0.8368 0.8067 0.7565 0.7015 0.6086
Yi.15 Bias -0.3554 0.3351 0.3364 0.3252 0.3169 -0.3055

MSPE 0.8038 0.7652 0.7225 0.6811 0.5690 0.4661

Ys.15 Bias 0.3787 0.3491 0.3528 0.3350 0.3275 0.3117

MSPE 0.8358 0.8015 0.7728 0.7301 0.6008 0.5182

Y10:15 Bias 0.4082 0.3942 0.3852 -0.3466 0.3426 0.3114

MSPE 0.8729 0.8350 0.8010 0.7685 0.6328 0.5992

Yi.7 Bias 0.4006 0.3853 0.3871 0.3732 -0.3766 0.3661

R = (0(9),7,0(9),15) MSPE 0.8595 0.8187 0.7714 0.7328 0.6285 0.5220
Y3.7 Bias 0.4626 0.4243 -0.4119 0.4056 0.3974 0.3822

MSPE 0.8845 0.8580 0.8074 0.7565 0.6449 0.5659

Ys.7 Bias 0.5092 0.4741 0.4836 -0.4654 0.4392 0.4135

MSPE 0.9023 0.8645 0.8391 0.7955 0.7209 0.6460
Yi:15 Bias 0.3925 -0.3792 0.3655 0.3518 0.3498 -0.3213

MSPE 0.8504 0.8250 0.7795 0.7428 0.6288 0.5463

Ys.15 Bias 0.4529 0.4182 0.4320 0.4016 0.4027 0.3682

MSPE 0.8716 0.8655 0.8202 0.7667 0.6754 0.6018

Y1i0:15 Bias 0.4757 0.4448 0.4401 0.4212 0.4273 0.3989

MSPE 0.9068 0.8611 0.8400 0.7912 0.7492 0.6754

Yi.7 Bias 0.4692 0.4435 0.4528 0.4411 0.4284 0.4266

R = (0(18),7,15) MSPE 0.8911 0.8521 0.8173 0.7720 0.6632 0.5775
Y3.7 Bias -0.5260 0.4874 0.4752 0.4505 0.4495 0.4468

MSPE 0.9147 0.8790 0.8487 0.7948 0.6820 0.6065

Ys.7 Bias -0.5557 0.5274 0.5375 0.5181 0.4919 0.4612

MSPE 0.9345 0.8905 0.8714 0.8236 0.7562 0.6865

Yi:15 Bias 0.4501 0.4379 -0.4365 0.4181 0.4085 -0.3991

MSPE 0.8754 0.8401 0.7825 0.7611 0.6488 0.5602

Ys.15 Bias 0.4752 0.4528 0.4563 0.4371 0.4216 0.4066

MSPE 0.8954 0.8670 0.8296 0.7788 0.7059 0.6374

Y1i0:15 Bias 0.4929 0.4735 0.4751 0.4509 0.4490 0.4227

MSPE 09111 0.8789 0.8574 0.8048 0.7839 0.7177
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Table 7: Biases and MSPEs of BPs for censored items for k£ = 25.
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Prior 0 Prior 1 Prior 2

Censoring Scheme | Importance M-H Importance M-H Importance M-H
Yi.7 Bias -0.3405 0.3292 0.3184 0.2932 -0.2945 0.2738

R = (7,023, 10) MSPE 0.6721 0.6618 0.6228 0.6024 0.4542 0.4311
Y3.7 Bias 0.3660 -0.3509 -0.3429 0.3291 0.3240 0.3117

MSPE 0.6950 0.6740 0.6531 0.6168 0.4734 0.4552
Ys.7 Bias 0.3867 -0.3731 0.3619 0.3547 0.3385 -0.3282

MSPE 0.7061 0.6866 0.6825 0.6585 0.4932 0.4628
Y110 Bias 0.2879 0.2810 -0.2851 0.2762 0.2623 -0.2580

MSPE 0.6502 0.6471 0.6020 0.5840 0.4413 0.4281

Y10 Bias 0.3097 0.2962 0.2922 0.2834 0.2758 0.2664

MSPE 0.6661 0.6580 0.6376 0.6016 0.4659 0.4429
Ys:10 Bias 0.3124 0.3069 -0.3021 0.2951 0.2942 -0.2844

MSPE 0.6852 0.6732 0.6654 0.6365 0.4827 0.4527

Yi.7 Bias 0.3457 0.3331 -0.3246 0.3102 -0.3047 0.2931

R = (0(11),7,0(12), 10) MSPE 0.7065 0.6918 0.6379 0.6154 0.4722 0.4523
Y3.7 Bias 0.3714 0.3573 0.3510 -0.3384 0.3379 0.3228

MSPE 0.7334 0.7227 0.6660 0.6375 0.4965 0.4735

Ys.7 Bias -0.4011 0.3885 -0.3861 0.3621 0.3525 0.3408

MSPE 0.7521 0.7405 0.6925 0.6731 0.5118 0.4730
Yi:10 Bias 0.3186 0.3045 -0.2916 0.2821 0.2744 -0.2676

MSPE 0.6812 0.6750 0.6187 0.5922 0.4588 0.4356

Y10 Bias 0.3296 0.3143 -0.3092 0.2911 0.2864 0.2778

MSPE 0.7146 0.6946 0.6563 0.6168 0.4852 0.4538

Ys:10 Bias 0.3351 -0.3246 0.3169 0.3013 0.3005 0.2952

MSPE 0.7296 0.7061 0.6782 0.6551 0.4961 0.4665

Yi.7 Bias 0.3661 0.3552 -0.3456 0.3271 0.3274 0.3182

R = (0(23), 7, 10) MSPE 0.7249 0.7007 0.6582 0.62448 0.4935 0.4691
Ya.7 Bias -0.3852 0.3750 0.3698 0.3562 -0.3515 0.3374

MSPE 0.7589 0.7307 0.6760 0.6411 0.5100 0.4805

Ys.7 Bias -0.4259 0.4131 0.4054 0.3868 -0.3722 0.3681

MSPE 0.7652 0.7188 0.7089 0.6812 0.5261 0.4962
Yi:10 Bias 0.3238 0.3111 -0.3034 0.2950 0.2951 -0.2846

MSPE 0.7083 0.6895 0.6301 0.6035 0.4713 0.4463

Ya:10 Bias 0.3346 0.3214 0.3219 -0.3168 0.3126 0.2996

MSPE 0.7409 0.7008 0.6642 0.6244 0.4932 0.4682

Ys:10 Bias 0.3502 0.3375 0.3354 0.3215 0.3188 0.3024

MSPE 0.7562 0.7135 0.6924 0.6648 0.5172 0.4765
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