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Abstract 

In this paper, we consider the estimation of regression coeffcients for a gamma regression model 
when multicollinearity is present. We suggest pretest and shrinkage estimation strategies based on 
ridge estimation and compare their performance with some penalty estimators. We investigate the 
asymptotic properties of the suggested estimators. A Monte Carlo simulation run to evaluate their 
performance confirmed that the suggested estimators outperformed the unrestricted ridge regression 
estimator. Finally, a real dataset was analyzed to demonstrate the practicality of the suggested ridge- 
type and penalty estimators. 
______________________________ 
Keywords: Ridge, linear shrinkage, shrinkage pretest, LASSO, elastic net. 
 
1.  Introduction  

Linear regression is the most widely used statistical technique for describing the relationship 
between predictors and response variables with continuous values, where there is a normal 
distribution. In areas such as insurance, economics, and medicine, the response variables of interest 
may be positive, continuous, and right-skewed, so the gamma regression model is often used instead 
of linear regression. Gamma regression is an important model for generalized linear models (GLMs). 
Estimating the regression parameters can be done using the maximum likelihood method, which 
provides unbiased estimators when the predictors are independent. However, in practice it is common 
for some predictors to be intercorrelated, resulting in multicollinearity. The maximum likelihood 
estimator (MLE) becomes unstable with extremely high variance, making it inappropriate. To 
overcome multicollinearity, Hoerl (1962) first proposed ridge regression for linear regression.  

In practice, some predictors may or may not influence the response variable and are known 
respectively as active and inactive predictors. Prediction accuracy can be enhanced by removing 
inactive predictors from the model. Subspace information can be used to identify these predictors. 
The source of such information may be the variable selection method, experience of the researcher, 
or previous studies. Consequently, this information leads to two choices for practitioners, namely a 
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full model with all predictors and a submodel with active predictors. When the subspace information 
is correct, the submodel estimator can efficiently estimate the regression coefficient, while the full 
model estimator is inefficient. Conversely, submodel estimator performance degrades while the full 
model estimator performance is steady. The accuracy of information is typically unknown. Such 
uncertainties can negatively affect the estimation performance of both the full model and submodel.  

The primary motivation for the study comes from the unknown quality of subspace information. 
To avoid this and improve model prediction, we suggest the pretest and shrinkage estimation 
strategies, which are a combination of the estimators of the full model and submodel, based ridge 
regression for the gamma regression model in the presence of multicollinearity. Pretest and shrinkage 
estimation strategies have been applied to various statistical models, including multiple regression 
(Ahmed and Yüzbaşı 2016), Poisson regression (Reangsephet et al. 2020b), and gamma regression 
(Reangsephet et al. 2020a, Mahmoudi et al. 2020). Nevertheless, these previous studies focused on 
statistical models with uncorrelated predictors. Moreover, their estimators were estimated based on 
the least squares and maximum likelihood methods. More recently, Algamal and Asar (2020) and 
Amin et al. (2022) explored estimation based on the gamma model by using other biased estimation 
methods. Furthermore, the pretest and shrinkage estimators based on ridge regression has been 
applied to the partially linear model (Yüzbaşı et al. 2020). Ahmed (2014) discussed all the estimators 
in various contexts. The present literature on parameter estimation with the gamma regression model 
in the presence of multicollinearity is limited. Therefore, we suggest pretest and shrinkage estimation 
strategies based on ridge regression for parameter estimation in a gamma regression model when 
there is multicollinearity and where subspace information is available but there is an unknown degree 
of uncertainty. We also compare their performance with two penalty estimators, including the least 
absolute shrinkage and selection operator (LASSO) and elastic net (EN). These select the submodel 
by shrinking some regression coefficients to zero and provide the estimators of the remaining 
coefficients.   

The plan of this paper is as follows. Section 2 describes the gamma regression model. Section 3 
discusses estimation strategies. Section 4 presents the asymptotic results of the suggested estimators. 
Monte Carlo simulations were conducted to study the performance of the suggested estimators, and 
the findings reported in Section 5. In Section 6, the estimators are applied to real data. Section 7 
provides conclusions for the study. The Appendix gives proofs of the theoretical results. 

 
2.  Model Description 

In gamma regression, all components of the response variable Y  are independent and identically 
distributed in a gamma distribution ~ ( , / )i iY G θ θ µ  where 0θ >  is the shape parameter for 

1, 2,..., .i n=  The mean and variance of iY  are [ ]i iE Y µ=  and 2[ ] .i iV Y µ θ=  The probability density 
function is defined as (Cepeda-Cuervo et al. 2016) 
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Comparing (1) with the general form of the exponential family results in the dispersion parameter
1φ θ=  and the canonical link function is the reciprocal function 1 .i iμ x′= β  This is the linear 

combination of the predictors 1 2( )i i i ipx , x , , x ′= x  and 1 2( , , , )p
pβ β β ′= ∈β    which is a 1p×  

vector with unknown regression parameters. For gamma regression, the link function is either used 
as the canonical function or as a log link function. In this study, we consider the log link function
ln( )i iμ ′= x β  since it confirms that 0.iμ >  The corresponding log-likelihood of (1) is then given by 

 ( ) ( ) ( ){ }
1

( , ) = ln 1 ln ln .i

n

i i i i
i

θ; y θ y e θ θ θ y θ′−

=

′− + + + − − Γ∑ x ββ x β  (2) 

The maximum likelihood estimator (MLE) or unrestricted MLE can be obtained by maximizing 
the log-likelihood in (2) or by solving the following score equation: 
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However, the score equation cannot be directly solved because it is nonlinear in ,β  so iteratively 
reweighted least squares (IRLS) is used to estimate the regression parameters. In the final iteration, 
the unrestricted MLE of β  can then be calculated as 

 ( ) 1UEˆ ˆ ˆ ˆ= n n .
−

′ ′β XW X XW z  (3) 

Here, ˆ
n =W I  is the matrix of the weight function, and the ith element of vector ẑ  becomes 

ˆ
ˆ

ˆ
i i

i i
i

y
z

µ
µ
−′= +x β  and ˆˆ .i

i eµ ′= x β  Next, we assume the regularity conditions as follows: 

 ˆlim lim ,n n n n→∞ →∞′ = =XW X C C  where ′C XWX=  is a finite and positive definite matrix. 

 ( )* *
1

ˆmax ( )i n ni n ni o n≤ ≤
′ ′ =x XW X x  as ,n →∞  where *

nix is the thi  row of the matrix 1 2ˆ
n .W X  

Then the asymptotic distribution of UEβ̂  is given by Theorem 1. 
 
Theorem 1 Under the regularity conditions, as n →∞  

( ) ( )UE 1ˆ , ,d
pn N −− → φβ β 0 C  

where d→  implies convergence in distribution and 11 12

21 22

.
 

=  
 
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C
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3.  Estimation Strategies 

The subspace information is used to identify the active and inactive predictors, meaning that the 
design matrix can be partitioned as 1 2( , ),=X X X  where 1X is an 1n p×  submatrix containing the 

active predictors and 2X  is an 2n p×  submatrix containing the inactive predictors. Similarly, the 

regression parameter vector 1 2( , )′ ′ ′=β β β  is partitioned into 1 1p ×  and 2 1p ×  subvectors, such that 

1 2 .p p p+ =  With the available subspace information, we are interested in the estimation of the active 

parameter 1β  when 2β  is a known vector. Without loss of generality, 2β  is set as a zero vector. 
Hence, the estimators of both the full model and the submodel are dependent on the accuracy of the 
subspace information. 
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 To describe the suggested estimators, the ridge regression technique in a GLMs is discussed first. 
For the full model, the unrestricted ridge regression estimator (URRE) of β  is as follows: 

 ( ) 1UE

UE

ˆ ˆ ˆ ˆ( ) =

ˆ= ( ) ,

n p n

n

κ κ

κ

−
′ ′β XW X+ I XW z

R β
  

where 1 1ˆ( ) [ ( ) ]n p nκ κ − −′= +R I XW X  and 0κ ≥  is the ridge parameter. If 0,κ =  then URRE is the 

unrestricted MLE in (3) and as ,κ →∞  URRE becomes zero. Using the inverse of a partitioned 

matrix, the URRE UE
1

ˆ ( )κβ  of 1β  becomes 

 ( )1

1UE
1 1 2 1 1 2

ˆ ( ) = ,p
κ κκ κ

−
′ ′β X M X + I X M z  

   

where 
2

1 1 2 1 2
2 2 2 2 2 1 1 2 2

ˆ ˆ[ ] , , ,n p n n
κ κ −′ ′= − + = =M I X X X I X X W X X W X       and 1 2ˆ ˆ.n=z W z  

 If the subspace information about the inactive predictors is available, we know that 2 .=β 0  We 
suggest a restricted ridge regression estimator (RRRE) by combining the two approaches underlying 
restricted maximum likelihood and ridge regression to be the submodel estimator. RRRE is defined 
in the following form: 
 RE REˆ ˆ( ) ( ) ,nκ κ=β R β  (4) 

where REβ̂  is the restricted MLE of β  which is obtained by maximizing the log-likelihood function 

in (2) subject to 2 .=β 0  RRRE RE
1

ˆ ( )κβ of 1β  is derived as 

 
1

1RE 1 RE
1 1 2 1 1

ˆ ˆ( ) = ( ) .κ
pκ κ

−− ′ β I + X M X β    

Here, RE 1
1 1 1

ˆ ( )−′ ′=β X X X z  

  is the restricted MLE of 1 .β  RRRE is known to outperform URRE 
when the subspace information is correct or nearly correct, whereas RRRE becomes inefficient when 
the subspace information is incorrect, while URRE remains consistent. 

 
3.1. Linear shrinkage ridge regression estimator 

In practice, the accuracy of the subspace information is unknown, so using either URRE or 
RRRE as the estimator of 1β  may not be a good decision. To improve the estimation of 1,β  we 
suggest the linear shrinkage ridge regression estimator (LSRRE), which is a linear combination of 
URRE and RRRE. LSRRE is derived as follows: 
 LSE RE UE

1 1 1
ˆ ˆ ˆ( ) = ( ) (1 ) ( ),κ π κ π κ+ −β β β   

where [0, 1]π∈  denotes the shrinkage intensity, which refers to the degree of confidence in the 
subspace information. If π  is close to one, the subspace information is trustworthy. LSRRE then 
shrinks URRE toward RRRE. If π  is close to zero, the subspace information is not trustworthy. 
LSRRE then shrinks RRRE toward URRE. Hence, RRRE is a special case of LSRRE when 1π =  
and LSRRE is better than URRE in a meaningful parameter space. The value of π  may be assigned 
using the researcher’s confidence in the accuracy of the subspace information. 
 
3.2.  Shrinkage pretest ridge regression estimator 

Another approach to avoiding the unknown accuracy of the subspace information is to test before 
it is incorporated into the estimation. Ahmed (1992) proposed a shrinkage pretest ridge regression 
estimator (SPTRRE), a combination between URRE and LSRRE. SPTRRE of 1β  can be written as 
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    

SPTE UE UE LSE

,1 1 1 1( ) ( ) ( ( ) ( )) ( ),n nκ κ κ κ I α= − − ≤β β β β     

or in alternative form 

    

SPTE UE UE RE

,1 1 1 1( ) ( ) ( ( ) ( )) ( ),n nκ κ π κ κ I α= − − ≤β β β β     

where ( )I ⋅  denotes the indicator function and n  is a general test statistic to test the hypothesis 

0 2:H =β 0  against 1 2:H .≠β 0  The log-likelihood ratio test statistic is suggested (Reangsephet et al. 
2020a): 

  ( )UE RE

1 2 1 22 ( ; , , , ) ( ; , , , ) .n n ny y y y y y= −β β     (5) 

Under 0 ,H  n  follows the chi-square distribution with 2p  degrees of freedom as .n →∞  Thus,

,n α  is the upper α-level critical value of the chi-square distribution with 2p  degrees of freedom. 

It is evident that the pretest ridge regression estimator (PTRRE), which follows Bancroft (1944), 
is a special case of SPTRRE when 1.π =  The PTRRE of 1β  is given as 

    

PTE UE UE RE

,1 1 1 1( ) ( ) ( ( ) ( )) ( ),n nκ κ κ κ I α= − − ≤β β β β     

It is important to note that SPTRRE and PTRRE are bounded and perform better than URRE in a part 
of the parameter space. 

 
3.3.  Shrinkage ridge regression estimator 

SPTRRE has two extreme choices, URRE and LSRRE. We address this limitation by defining 
the shrinkage ridge regression estimator (SRRE), which combines URRE and LSRRE effectively 
with the optimal weight. The SRRE of 1β  is defined  

    

SE LSE UE LSE 1
2 21 1 1 1( ) ( ) ( ( ) ( ))(1 ( 2) ), 3,nκ κ κ κ p p−= + − − − ≥β β β β     

or, equivalently,  

    

SE RE UE RE 1
2 21 1 1 1( ) ( ) ( ( ) ( ))(1 ( 2) ), 3,nκ κ κ κ p p−= + − − π − ≥β β β β    

where n  is defined in (5). The estimator occasionally suffers from over-shrinkage which occurs 

when n  is small, so that 2 2n p< −  and the shrinkage factor 2
11 (p 2) n
−− −   becomes negative, 

resulting in the sign of the estimator reversing. To remedy this, a positive shrinkage estimator is 
defined by retaining the positive part of the shrinkage factor. 

The positive-part shrinkage ridge regression estimator (PSRRE) 
PSE

1 ( )κβ  of 1β  is defined as 

    

PSE LSE UE LSE 1
2 21 1 1 1( ) ( ) ( ( ) ( ))(1 ( 2) ) , 3.nκ κ κ κ p p− += − − − − ≥β β β β     

Here max(0, ).a a+ =  Alternatively, PSRRE can be written in the following form 

    

PSE SE UE RE 1
2 , 21 1 1 1( ) ( ) ( ( ) ( ))(1 ( 2) ) ( ), 3.n n nκ κ π κ κ p I p−

α= − − − − ≤ ≥β β β β       

When 1,π =  SRRE and PSRRE are the original James- Stein approach and it is considered in this 
study. 

As can be seen from these estimators, the value of ridge parameter κ  is important. Amin et al. 
(2020) investigated various techniques for estimating κ  under the gamma regression model. The 
following ridge estimator is suggested in this paper: 
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∑  and ˆ jα is the thj element of 

UE
,′βγ  where γ is the 

eigenvector of ˆ
n .′XW X  They reported that κ  had the lowest mean square error. 

 
3.4.  Penalty estimators 

Penalized methods for GLMs are based on penalized log-likelihood optimization. The coefficient 

estimates β  can be presented as 

 arg max{ ( , ) ( )},ˆ ; Pi λy= θ −
β

β β β    

where P ( )λ β is the penalty function and λ  is a nonnegative tuning parameter. The penalty function 
is derived as 

 2

1 1

1P ( ) .
2

p p

λ
j j

j jλλ
= =

= +
− ∑ ∑β β β    

This is the least absolute shrinkage and selection operator estimator (LASSO) when 1λ =  and 
the elastic net (EN) when [0, 1].λ∈  
 
4.  Asymptotic Properties 

We are interested in the asymptotic behavior of the suggested estimators. To obtain the 
meaningful asymptotic, a sequence of local alternatives ( )nH  is considered: 

 ( ) 2: ,nH
n

=β ω                

where 2

21 2 , p
pω ω ω ′( ) ∈ ω = , ,  is a 2 1p ×  fixed vector. The vector nω  is a measure of the 

divergence between the null hypothesis 22 p=β 0  and the sequence of local alternatives. Thus, the 

null hypothesis is a special case of ( )nH  when .=ω 0  

We define the asymptotic distributional bias (ADB) of any estimator 1
ˆ ( )κ°β as 1

ˆ( ( ))ADB κ° =β  

1 1
ˆlim E[ ( ( ) )].n n κ°

→∞ −β β  The asymptotic distributional risk (ADR) of any estimator 1
ˆ ( )κ°β  is given 

as ( )1 1
ˆ ˆ( ( )) ( ( )) ,R κ tr κ° °= Γβ Q β  where tr(·) is the trace of a matrix, Q  is a positive-definite matrix and

1
ˆ( ( ))κ°Γ β  is the asymptotic mean squared error matrix (AMSEM) of any estimator 1

ˆ ( ),κ°β  defined as 

1 1 1 1 1
ˆ ˆ ˆ( ( )) lim E[ ( ( ) )( ( ) ) ].nκ n κ κ° ° °

→∞ ′Γ = − −β β β β β  
As is already known, RRRE and PTRRE are the special cases of LSRRE and SPTRRE, 

respectively, when 1π =  so only the asymptotic properties of URRE, LSRRE, SPTRRE, SRRE, and 
PSRRE are reported. 
 
Theorem 2 Under the local alternatives H(n) and the regularity conditions, as ,n →∞  the ADBs of 
the suggested estimators become 
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UE
1 11.2

ˆ( ( )) ,ADB κ = −β μ  
LSE
1 11.2

ˆ( ( )) ,ADB κ π= − −β μ δ  
SPTE 2
1 11.2 4 2,

ˆ( ( )) ( ; ),c c αADB κ π G + += − − χ ∆β μ δ  
SE 2
1 11.2 4

ˆ( ( )) E[ ( )],cADB κ c −
+= − − χ ∆β μ δ  

PSE
1 11.2

ˆ( ( )) ( ),ADB κ D= − − ∆β μ δ  

where 2 2 2
4 4 4 4( ) E[ ( )] ( ; ) E[ ( ) ( ( ) )],c c c cD c G c c I c− −

+ + + +∆ = χ ∆ + ∆ − χ ∆ χ ∆ ≤  2 2,c p= −  1
11 12 ,−= −δ C C ω

1 1
11.2 0 11.2 12 22( ),κ n− −= −μ C β ω C C  and 1

11.2 11 12 22 21.
−= −C C C C C  ( ; )qG x ∆ denotes the cumulative 

distribution function of a non-central chi-square distribution with q degrees of freedom and non-

central parameter 1
22.1( )φ− ′∆ = ω C ω  and 2 2[ ( )] (x, )j j

q qo
E x dG

∞− −χ ∆ = ∆∫  denotes the expectation of 

the reciprocal of the non-central chi-square distribution with q degrees of freedom and non-central 
parameter .∆  
 
Proof: See Appendix A. 
 

To make the comparison more meaningful and clear, the ADBs were transformed to the scalar 
form of the asymptotic distributional quadratic bias (ADQB): 

 1 1 11.2 1
ˆ ˆ ˆ( ( )) [ ( ( ))] [ ( ( ))]ADQB κ ADB κ ADB κ .° ° °′=β β C β    

The ADQBs of the suggested estimators are expressed by the following theorem. 
 
Theorem 3 Under the local alternatives ( )nH  and the regularity conditions, as ,n →∞  the ADQBs 

of the suggested estimators become 
UE
1 11.2 11.2 11.2

ˆ( ( )) ,ADQB κ ′=β μ C μ  
LSE UE 2
1 1 11.2 11.2 11.2

ˆ ˆ( ( )) ( ( )) 2 ,ADQB κ ADQB κ π π′ ′= + +β β δ C μ δ C δ  

( )2SPTE UE 2 2 2
1 1 11.2 11.2 4 2, 11.2 4 2,

ˆ ˆ( ( )) ( ( )) 2 ( ; ) ( ; ) ,c c α c c αADQB κ ADQB κ π G π G+ + + +′ ′= + χ ∆ + χ ∆β β δ C μ δ C δ  

( )2SE UE 2 2 2
1 1 11.2 11.2 4 11.2 4

ˆ ˆ( ( )) ( ( )) 2 E[ ( )] E[ ( )] ,c cADQB κ ADQB κ c c− −
+ +′ ′= + χ ∆ + χ ∆β β δ C μ δ C δ  

PSE UE 2
1 1 11.2 11.2 11.2

ˆ ˆ( ( )) ( ( )) 2 ( ) ( )ADQB κ ADQB κ D D .′ ′= + ∆ + ∆β β δ C μ δ C δ  
 

The proof of this theorem is skipped as it was directly proved by Theorem 2. Clearly, the ADQBs 
of all estimators are equal under the null hypothesis. For fixed π,  it can be observed that the ADQB 
of SPTRRE is equal to that of LSRRE when 0.α =  The ADQBs of URRE and SPTRRE are equal 
when 1.α =  For a fixed ,α  the ADQBs of SPTRRE, SRRE, and PSRRE converge on the ADQB of 

URRE as ,∆ →∞  because 2
4 2,( ; )c c αG + +χ ∆  and 2

4E[ ( )]c
−
+χ ∆  are decreasing functions of ∆  while the 

ADQB of LSRRE becomes unbounded. The following theorem concerns the ADR of the estimators. 
 
Theorem 4 Suppose that Q  is a positive-definite matrix, then under the local alternatives ( )nH  and 

the regularity conditions, as ,n →∞  the ADRs of the suggested estimators become 
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UE 1
1 11.2 11.2 11.2

ˆ( ( )) ( ) ,R κ trφ − ′= +β QC μ Qμ  
LSE UE 2
1 1 11.2

ˆ ˆ( ( )) ( ( )) (2 ) ( ) 2 ,R κ R κ π π tr π π′ ′= − − + +β β QΩ δ Qμ δ Qδ  

{ }
SPTE UE 2 2
1 1 11.2 4 2, 4 2,

2 2
4 2, 6 2,

ˆ ˆ( ( )) ( ( )) 2 ( ; ) (2 ) ( ) ( ; )

2 ( ; ) (2 ) ( ; ) ,
c c α c c α

c c α c c α

R κ R κ π G π π tr G

G π π G
+ + + +

+ + + +

′= + χ ∆ − − χ ∆

′+ π χ ∆ − −= χ ∆

β β δ Qμ QΩ

δ Qδ
 

{ }SE UE 2 2 4
1 1 11.2 4 4 4

4
6

ˆ ˆ( ( )) ( ( )) 2 E[ ( )] ( ) 2E[ ( )] E[ ( )]

( 4) E[ ( )],
c c c

c

R κ R κ c c tr c

c c

− − −
+ + +

−
+=

′= + χ ∆ − χ ∆ − χ ∆

′+ + χ ∆

β β δ Qμ QΩ

δ Qδ
 

{
} {

PSE SE 2 2
1 1 11.2 4 4

2 2
4 4

2 4 2 2 2
4 4 4 4 4

2
6

ˆ ˆ( ( )) ( ( )) 2 E[(1- ( )) ( ( ) )]

( ) 2E[(1- ( )) ( ( ) )]

E[ ( ) ( ( ) )] ( ; ) E[(1- ( )) ( ( ) )]

2E[(1 ( )) (

c c

c c

c c c c c

c c

R κ R κ c I c

tr c I c

c I c G c c I c

c I

−
+ +

−
+ +

− −
+ + + + +

−
+

′= + χ ∆ χ ∆ ≤

− χ ∆ χ ∆ ≤

′+ χ ∆ χ ∆ ≤ + ∆ + χ ∆ χ ∆ ≤

− − χ ∆ χ

=

=

=

β β δ Qμ

QΩ

δ Qδ

}2 2 4 2
6 6 6 6( ) )] E[ ( ) ( ( ) )] + ( ; )c c cc c I c G c .−

+ + + +∆ ≤ − χ ∆ χ ∆ ≤ ∆

 

 
Proof: See Appendix B. 
 

It can be seen that the ADR of LSRRE is an unbounded function of .∆  When 0,∆ =  all 
suggested estimators are superior to URRE. Nevertheless, the ADR of SPTRRE approaches the ADR 
of URRE when .∆ →∞  It can be seen that PSE SE UE

1 1 1
ˆ ˆ ˆ( ( )) ( ( )) ( ( ))R κ R κ R κ≤ ≤β β β  for all values of ∆  

with 2 3.p ≥  
 
5. Simulation Analysis 

A Monte Carlo simulation was conducted to evaluate the performance of the suggested 
estimators. All calculations were run on R software. The response variable iY  was generated with 

sample sizes of n = 100 and 150, using a random number from a gamma distribution ~ ( , )i iY G θ θ μ  

such that .i
iμ e ′= x β  The predictor ix was generated using the following formula: 

 2 1 2
( 1)(1 ) , 1, 2, , .ij ij i px ρ h ρh j p+= − + =     

Here, 2ρ  represents the correlation between the predictors and hij are independent standard 

normal random numbers. The factors were varied, setting 2ρ = 0.5, 0.7, 0.9, 0.95, and 0.99, and θ = 

0.5 and 1.5. The number of predictors were { }1 2( , ) (3, 4), (3, 7), (3, 12), (3, 19) .p p ∈ Three levels of 

shrinkage intensity were set to π  = 0.25, 0.50, and 0.75. The significance level =0.05.α  The 
multicollinearity diagnostic tool for GLMs is a condition number (CN) (Weissfeld and Sereika 1991). 
If the CN—which is calculated from the ratio of the largest eigenvalue to the smallest eigenvalue of 
the Fisher information matrix—is greater than 30, then the presence of multicollinearity is implied. 

To assess the behavior of the suggested estimators, we first defined 0∗∆ = −β β  as the 

divergence between the simulated model and the submodel under the null hypothesis 
22 .p=β 0  Here 

the simulated parameter such that 1 2( , ) ,′ ′ ′=β β β  such that 
2

*
2 1( , ),p −′= ∆β 0  the submodel parameter

2

0
1( , ) ,p′ ′=β β 0  and ⋅  is the Euclidean norm. Two cases were studied. For the first case, it was 
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assumed that * 0.=∆  We then considered the regression coefficient for the simulated model as

2
((1.6, 1.2, 0.1), )p ′= − −β 0  and 0.5θ= .  In the second case, it was assumed that * 0.∆ ≥  The 

regression coefficient was set to 
2 1

((0.75, 0.2, 1.68), , )p −

∗ ′ ′= − ∆β 0  where 1.5θ= .  

The simulation was iterated 2,000 times, which was sufficient to provide stable results. The 
performance of the estimator 1

ˆ ( )κ°β  was measured by comparing its MSE with that of URRE: 

 
UE

UE 1
1 1

1

ˆ( ( ))ˆ ˆ( ( ), ( )) .ˆ( ( ))
MSE κRMSE κ κ
MSE κ

°
°

=
ββ β
β

   

Keep in mind that, if RMSE is greater than one, the estimator 1
ˆ ( )κ°β  is superior to UE

1
ˆ ( ).κβ  

 
5.1.  Case I: * 0∆ =  

In this case, the subspace information 2 =β 0  was assumed to be correct. The penalty estimators 

can then be expected to estimate 1β  by selecting the optimal value of ,λ  which shrinks many 

elements in 2β  to exactly zero. We therefore compared the performance of the suggested estimators 
with the MLE and the penalty estimators LASSO and EN.  The cv. HDtweedie function in the 
HDtweedie package was used to estimate the penalty estimators.  The optimal value of λ  was 
selected by minimizing the mean square error using 5-fold cross validation. 

Tables 1 and 2 report the results for { }1 2( , ) (3, 4), (3, 7), (3, 12), (3, 19) , 0.5,p θp ∈ =  and n = 

100 and 150. The CN was large when 2ρ  and 2p  were large due to the degree of multicollinearity. 
As expected, it can be concluded that the performance of MLE was worse than the suggested 
estimators when multicollinearity exists. The RMSEs of the suggested estimators increased when 2ρ  

increased from a moderate 2( 0.5)ρ =  to a high 2( 0.9)ρ =  level for fixed 2p  and .n  However, 

their RMSEs decreased when 2ρ  increased to a severe 2 0.99)(ρ =  level, yet the suggested 
estimators still outperformed URRE.  Moreover, the RMSEs of the suggested estimators also 
increased as 2p  increased for fixed 1p  and .n  RRRE outshone all the other estimators for all cases 
considered in the simulation study.  The RMSE of LSRRE and SPTRRE increased as π  increased. 
LSRRE dominated some other estimators when π  was large.  PTRRE outperformed SRRE and 
PSRRE when 1p  was close to 2 ,p  but this reversed at large values of 2.p  The penalty estimators 

performed well when 2p  was large, but the suggested estimators performed better than the penalty 
estimators. 
 
5.2.  Case I: * 0∆ ≥  

We considered the case in which the subspace information was assumed to be either correct or 
incorrect. The penalty estimators were omitted because they do not take advantage of the fact that the 
regression coefficients of inactive predictor 2 .=β 0  Tables 3 and 4 report the results for 1 2( , )p p  =  

(3, 19)  when 0.25, 1.5,π θ= = and 100n =  and 150.  To simplify the comparison, Figures 1 and 2 

present graphics for all combinations of 2 , ,p ρ  and .n   
 
 



Pannipa Rintara et al.  589 

 

Table 1 RMSEs of the suggested estimators with respect to UE
1

ˆ ( )κβ   
when * 0, 0.5,θ∆ = =  and 100n =  

2ρ  Estimator 
Number of inactive predictors 2( )p  
4 7 12 19 

0.5 CN  12.593 20.471 37.262 72.145 
 MLE  0.980 0.984 0.982 0.981 
 RRRE  1.314 1.436 1.740 2.145 
 LSRRE 0.25π =  1.117 1.157 1.229 1.313 
  0.50π =  1.219 1.302 1.468 1.685 
  0.75π =  1.289 1.404 1.663 2.020 
 SPTRRE 0.25π =  1.094 1.134 1.197 1.264 
  0.50π =  1.173 1.252 1.394 1.553 
  0.75π =  1.226 1.332 1.547 1.792 
 PTRRE  1.244 1.355 1.607 1.875 
 SRRE  1.139 1.276 1.537 1.904 
 PSRRE  1.175 1.327 1.593 1.978 
 LASSO  1.026 1.052 1.083 1.149 
 EN  1.016 1.034 1.062 1.117 

0.7 CN  27.130 45.061 83.418 163.199 
 MLE  0.968 0.972 0.971 0.967 
 RRRE  1.379 1.515 1.826 2.264 
 LSRRE 0.25π =  1.137 1.178 1.248 1.332 
  0.50π =  1.260 1.348 1.516 1.741 
  0.75π =  1.347 1.473 1.739 2.121 
 SPTRRE 0.25π =  1.110 1.151 1.214 1.279 
  0.50π =  1.205 1.288 1.433 1.593 
  0.75π =  1.269 1.383 1.607 1.859 
 PTRRE  1.291 1.412 1.675 1.952 
 SRRE  1.161 1.325 1.592 1.985 
 PSRRE  1.206 1.381 1.658 2.074 
 LASSO  1.033 1.063 1.103 1.176 
 EN  1.025 1.046 1.084 1.151 

0.9 CN  99.869 168.094 314.304 618.428 
 MLE  0.907 0.914 0.905 0.889 
 RRRE  1.429 1.573 1.873 2.310 
 LSRRE 0.25π =  1.152 1.192 1.259 1.340 
  0.50π =  1.292 1.380 1.543 1.763 
  0.75π =  1.393 1.522 1.781 2.160 
 SPTRRE 0.25π =  1.122 1.163 1.223 1.288 
  0.50π =  1.229 1.315 1.455 1.616 
  0.75π =  1.303 1.424 1.639 1.898 
 PTRRE  1.328 1.460 1.709 1.998 
 SRRE  1.177 1.354 1.621 2.015 
 PSRRE  1.230 1.418 1.695 2.114 
 LASSO  1.023 1.060 1.124 1.212 
 EN  1.043 1.076 1.153 1.245 
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Table 1 (Continued) 

2ρ  Estimator Number of inactive predictors 2( )p  
4 7 12 19 

0.95 CN  208.994 352.678 660.681 1301.195 
 MLE  0.823 0.829 0.807 0.771 
 RRRE  1.432 1.564 1.840 2.225 
 LSRRE 0.25π =  1.153 1.190 1.253 1.327 
  0.50π =  1.294 1.375 1.528 1.725 
  0.75π =  1.395 1.514 1.756 2.091 
 SPTRRE 0.25π =  1.124 1.162 1.220 1.281 
  0.50π =  1.232 1.311 1.445 1.598 
  0.75π =  1.306 1.419 1.624 1.868 
 PTRRE  1.311 1.455 1.690 1.961 
 SRRE  1.182 1.347 1.600 1.956 
 PSRRE  1.232 1.414 1.675 2.052 
 LASSO  0.998 1.041 1.110 1.197 
 EN  1.056 1.098 1.196 1.303 

0.99 CN  1082.055 1829.523 3431.927 6762.799 
 MLE  0.425 0.410 0.357 0.298 
 RRRE  1.304 1.354 1.464 1.555 
 LSRRE 0.25π =  1.114 1.131 1.165 1.192 
  0.50π =  1.213 1.248 1.318 1.379 
  0.75π =  1.280 1.328 1.428 1.515 
 SPTRRE 0.25π =  1.095 1.116 1.148 1.172 
  0.50π =  1.175 1.216 1.282 1.333 
  0.75π =  1.228 1.283 1.377 1.447 
 PTRRE  1.246 1.304 1.408 1.479 
 SRRE  1.131 1.223 1.350 1.462 
 PSRRE  1.178 1.277 1.398 1.507 
 LASSO  0.842 0.889 0.937 0.931 
 EN  0.959 1.016 1.104 1.122 

  
Table 2 RMSEs of the suggested estimators with respect to UE

1
ˆ ( )κβ   

when * 0, 0.5,θ∆ = = and 150n =  

2ρ  Estimator 
Number of inactive predictors 2( )p  
4 7 12 19 

0.5 CN  11.544 17.874 30.755 54.877 
 MLE  0.988 0.990 0.990 0.991 
 RRRE  1.271 1.402 1.538 1.826 
 LSRRE 0.25π =  1.101 1.143 1.186 1.243 
  0.50π =  1.187 1.273 1.366 1.507 
  0.75π =  1.247 1.367 1.497 1.730 
 SPTRRE 0.25π =  1.084 1.121 1.164 1.206 
  0.50π =  1.154 1.227 1.316 1.416 
  0.75π =  1.202 1.302 1.425 1.583 
 PTRRE  1.221 1.330 1.459 1.652 
 SRRE  1.112 1.254 1.410 1.664 
 PSRRE  1.146 1.295 1.464 1.712 
 LASSO  1.038 1.049 1.089 1.108 
 EN  1.023 1.024 1.063 1.076 
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Table 2 (Continued) 

2ρ  Estimator 
Number of inactive predictors 2( )p  
4 7 12 19 

0.7 CN  24.920 39.400 68.944 124.399 
 MLE  0.982 0.983 0.984 0.984 
 RRRE  1.332 1.476 1.620 1.933 
 LSRRE 0.25π =  1.121 1.165 1.208 1.264 
  0.50π =  1.228 1.320 1.414 1.559 
  0.75π =  1.304 1.434 1.570 1.818 
 SPTRRE 0.25π =  1.097 1.140 1.184 1.224 
  0.50π =  1.180 1.267 1.359 1.459 
  0.75π =  1.235 1.358 1.488 1.651 
 PTRRE  1.255 1.392 1.528 1.732 
 SRRE  1.142 1.295 1.468 1.744 
 PSRRE  1.179 1.345 1.530 1.797 
 LASSO  1.044 1.064 1.111 1.137 
 EN  1.023 1.040 1.082 1.102 

0.9 CN  91.806 147.047 259.946 472.056 
 MLE  0.947 0.947 0.949 0.948 
 RRRE  1.379 1.535 1.679 2.006 
 LSRRE 0.25π =  1.136 1.181 1.222 1.277 
  0.50π =  1.259 1.356 1.449 1.594 
  0.75π =  1.347 1.487 1.623 1.879 
 SPTRRE 0.25π =  1.110 1.149 1.199 1.235 
  0.50π =  1.204 1.285 1.393 1.486 
  0.75π =  1.269 1.384 1.538 1.695 
 PTRRE  1.292 1.420 1.582 1.784 
 SRRE  1.161 1.328 1.511 1.798 
 PSRRE  1.202 1.384 1.577 1.857 
 LASSO  1.047 1.075 1.137 1.182 
 EN  1.039 1.073 1.128 1.179 

0.95 CN  192.124 308.515 546.474 993.553 
 MLE  0.895 0.894 0.893 0.887 
 RRRE  1.386 1.541 1.679 1.994 
 LSRRE 0.25π =  1.138 1.183 1.222 1.275 
  0.50π =  1.263 1.360 1.449 1.589 
  0.75π =  1.353 1.493 1.624 1.869 
 SPTRRE 0.25π =  1.112 1.149 1.199 1.233 
  0.50π =  1.209 1.286 1.393 1.482 
  0.75π =  1.276 1.385 1.538 1.688 
 PTRRE  1.299 1.420 1.583 1.776 
 SRRE  1.164 1.331 1.510 1.791 
 PSRRE  1.207 1.389 1.578 1.850 
 LASSO  1.014 1.045 1.108 1.175 
 EN  1.038 1.081 1.152 1.233 
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Table 2 (Continued) 

2ρ  Estimator 
Number of inactive predictors 2( )p  
4 7 12 19 

0.99 CN  994.583 1600.232 2838.809 5165.566 
 MLE  0.581 0.561 0.533 0.489 
 RRRE  1.327 1.434 1.507 1.677 
 LSRRE 0.25π =  1.121 1.155 1.180 1.212 
  0.50π =  1.227 1.298 1.350 1.430 
  0.75π =  1.301 1.399 1.472 1.605 
 SPTRRE 0.25π =  1.101 1.131 1.162 1.186 
  0.50π =  1.187 1.246 1.311 1.369 
  0.75π =  1.245 1.325 1.415 1.512 
 PTRRE  1.264 1.351 1.445 1.570 
 SRRE  1.143 1.268 1.384 1.553 
 PSRRE  1.186 1.325 1.441 1.598 
 LASSO  0.891 0.948 0.980 1.060 
 EN  0.994 1.089 1.126 1.226 

 
Table 3 RMSEs of the proposed estimators with respect to UE

1
ˆ ( )κβ   

when 1 2( , ) (3, 19), 0.25, 1.5,p p π θ= = =  and 100n =  

2ρ  CN *∆  RRRE LSRRE SPTRRE PTRRE SRRE PSRRE 
0.5 71.907 0.00 1.707 1.218 1.149 1.423 1.544 1.568 

  0.15 1.524 1.219 1.123 1.256 1.439 1.462 
  0.30 1.096 1.202 1.063 1.017 1.244 1.254 
  0.45 0.736 1.170 1.007 0.932 1.126 1.128 
  0.60 0.500 1.123 0.998 0.975 1.071 1.071 
  0.75 0.351 1.066 1.000 0.995 1.045 1.045 
  1.00 0.211 0.955 1.000 1.000 1.027 1.027 
  1.25 0.137 0.835 1.000 1.000 1.020 1.020 
  1.50 0.095 0.718 1.000 1.000 1.016 1.016 
  1.75 0.068 0.611 1.000 1.000 1.014 1.014 
  2.00 0.051 0.518 1.000 1.000 1.011 1.011 

0.7 162.666 0.00 1.791 1.236 1.162 1.470 1.602 1.629 
  0.15 1.656 1.240 1.146 1.344 1.527 1.555 
  0.30 1.261 1.230 1.092 1.085 1.329 1.350 
  0.45 0.886 1.208 1.035 0.931 1.180 1.188 
  0.60 0.621 1.173 1.001 0.920 1.099 1.100 
  0.75 0.446 1.129 0.997 0.966 1.058 1.058 
  1.00 0.275 1.038 1.000 0.997 1.031 1.031 
  1.25 0.183 0.937 1.000 1.000 1.022 1.022 
  1.50 0.128 0.832 1.000 1.000 1.019 1.019 
  1.75 0.094 0.732 1.000 1.000 1.018 1.018 
  2.00 0.071 0.639 1.000 1.000 1.016 1.016 
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Table 3 (Continued) 
2ρ  CN *∆  RRRE LSRRE SPTRRE PTRRE SRRE PSRRE 

0.9 616.522 0.00 1.808 1.241 1.165 1.479 1.615 1.645 
  0.15 1.821 1.251 1.163 1.453 1.627 1.655 
  0.30 1.660 1.256 1.147 1.324 1.540 1.571 
  0.45 1.403 1.256 1.116 1.158 1.414 1.441 
  0.60 1.137 1.249 1.080 1.019 1.299 1.318 
  0.75 0.907 1.238 1.044 0.929 1.211 1.222 
  1.00 0.625 1.207 1.004 0.904 1.122 1.124 
  1.25 0.443 1.166 0.996 0.954 1.078 1.078 
  1.50 0.326 1.116 0.999 0.986 1.058 1.058 
  1.75 0.247 1.057 1.000 0.998 1.048 1.048 
  2.00 0.193 0.996 1.000 1.000 1.043 1.043 

0.95 1,297.303 0.00 1.726 1.224 1.155 1.444 1.558 1.588 
  0.50 1.617 1.258 1.141 1.288 1.514 1.545 
  1.00 1.020 1.259 1.058 0.960 1.269 1.283 
  1.50 0.605 1.230 1.001 0.918 1.146 1.147 
  2.00 0.382 1.177 0.998 0.979 1.100 1.100 
  2.50 0.258 1.106 1.000 0.998 1.082 1.082 
  3.00 0.186 1.024 1.000 1.000 1.072 1.072 
  3.50 0.139 0.937 1.000 1.000 1.064 1.064 
  4.00 0.108 0.851 1.000 1.000 1.057 1.057 
  5.00 0.072 0.697 1.000 1.000 1.043 1.043 
  6.00 0.052 0.572 1.000 1.000 1.030 1.030 

0.99 6,743.479 0.00 1.260 1.179 1.133 1.189 1.211 1.223 
  0.50 1.434 1.261 1.177 1.279 1.331 1.338 
  1.00 1.543 1.327 1.192 1.290 1.389 1.398 
  1.50 1.537 1.275 1.166 1.215 1.388 1.400 
  2.00 1.454 1.200 1.118 1.114 1.354 1.365 
  2.50 1.308 1.199 1.067 1.033 1.312 1.318 
  3.00 1.145 1.179 1.023 0.986 1.273 1.275 
  3.50 0.989 1.142 1.002 0.974 1.238 1.239 
  4.00 0.854 1.091 0.997 0.980 1.207 1.207 
  5.00 0.651 1.074 0.999 0.997 1.158 1.158 
  6.00 0.512 0.952 1.000 1.000 1.120 1.120 

 
Table 4 RMSEs of the proposed estimators with respect to UE

1
ˆ ( )κβ   

when 1 2( , ) (3, 19), 0.25, 1.5,p p π θ= = =  and 150n =  
2ρ  CN *∆  RRRE LSRRE SPTRRE PTRRE SRRE PSRRE 

0.5 54.959 0.00 1.636 1.205 1.140 1.385 1.494 1.519 
  0.15 1.346 1.200 1.105 1.157 1.333 1.353 
  0.30 0.851 1.169 1.019 0.920 1.129 1.133 
  0.45 0.523 1.116 0.997 0.959 1.044 1.045 
  0.60 0.337 1.046 0.999 0.994 1.017 1.017 
  0.75 0.230 0.966 1.000 1.000 1.010 1.010 
  1.00 0.135 0.824 1.000 1.000 1.008 1.008 
  1.25 0.087 0.688 1.000 1.000 1.009 1.009 
  1.50 0.060 0.567 1.000 1.000 1.009 1.009 
  1.75 0.043 0.466 1.000 1.000 1.009 1.009 
  2.00 0.033 0.384 1.000 1.000 1.008 1.008 
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Table 4 (Continued) 
2ρ  CN *∆  RRRE LSRRE SPTRRE PTRRE SRRE PSRRE 

0.7 124.592 0.00 1.726 1.226 1.155 1.437 1.558 1.588 
  0.15 1.485 1.225 1.128 1.241 1.425 1.452 
  0.30 0.997 1.203 1.054 0.958 1.193 1.206 
  0.45 0.637 1.161 1.003 0.883 1.066 1.068 
  0.60 0.421 1.104 0.996 0.955 1.015 1.016 
  0.75 0.292 1.036 0.999 0.993 1.000 1.000 
  1.00 0.175 0.911 1.000 1.000 1.000 1.000 
  1.25 0.114 0.785 1.000 1.000 1.000 1.000 
  1.50 0.080 0.669 1.000 1.000 1.004 1.004 
  1.75 0.059 0.566 1.000 1.000 1.007 1.007 
  2.00 0.044 0.479 1.000 1.000 1.009 1.009 

0.9 472.821 0.00 1.772 1.237 1.161 1.456 1.593 1.625 
  0.15 1.722 1.244 1.156 1.394 1.567 1.598 
  0.30 1.447 1.243 1.129 1.207 1.421 1.451 
  0.45 1.117 1.233 1.081 1.006 1.264 1.285 
  0.60 0.838 1.214 1.034 0.900 1.150 1.159 
  0.75 0.631 1.188 1.004 0.865 1.079 1.082 
  1.00 0.409 1.130 0.995 0.942 1.023 1.023 
  1.25 0.281 1.060 0.999 0.991 1.005 1.005 
  1.50 0.202 0.983 1.000 1.000 1.003 1.003 
  1.75 0.152 0.904 1.000 1.000 1.006 1.006 
  2.00 0.118 0.825 1.000 1.000 1.010 1.010 

0.95 995.191 0.00 1.739 1.230 1.157 1.439 1.571 1.603 
  0.50 1.371 1.249 1.116 1.140 1.389 1.418 
  1.00 0.706 1.218 1.010 0.874 1.125 1.129 
  1.50 0.382 1.146 0.996 0.958 1.045 1.045 
  2.00 0.232 1.048 1.000 0.996 1.031 1.031 
  2.50 0.153 0.940 1.000 1.000 1.033 1.033 
  3.00 0.109 0.831 1.000 1.000 1.036 1.036 
  3.50 0.081 0.728 1.000 1.000 1.036 1.036 
  4.00 0.063 0.636 1.000 1.000 1.035 1.035 
  5.00 0.041 0.487 1.000 1.000 1.030 1.030 
  6.00 0.029 0.379 1.000 1.000 1.022 1.022 

0.99 5,174.282 0.00 1.395 1.143 1.103 1.263 1.320 1.338 
  0.50 1.589 1.185 1.123 1.345 1.445 1.462 
  1.00 1.581 1.219 1.117 1.258 1.446 1.466 
  1.50 1.389 1.213 1.083 1.094 1.376 1.391 
  2.00 1.133 1.158 1.041 0.982 1.301 1.308 
  2.50 0.899 1.163 1.014 0.939 1.245 1.247 
  3.00 0.716 1.160 1.001 0.955 1.208 1.209 
  3.50 0.579 1.149 0.999 0.979 1.181 1.181 
  4.00 0.476 1.131 1.000 0.994 1.160 1.160 
  5.00 0.341 1.079 1.000 1.000 1.126 1.126 
  6.00 0.260 1.012 1.000 1.000 1.097 1.097 

 
The results can be summarized as follows: 

 When the subspace information was correct or nearly correct, so that *∆  was at or near zero, 
RRRE dominated all other estimators as measured by RMSE. As *∆  moved away from zero, 
itsRMSE decreased and converged on zero. 
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 Since LSRRE is a linear combination of RRRE that depends on the shrinkage intensity ,π  its 
performance was similar to that of RRRE, in that the RMSEs decreased slowly, converging on zero 
as *∆  increased. LSRRE dominated all other estimators in some areas of * 0.∆ >  

 As *∆  increased from zero, the RMSEs of SPTRRE and PTRRE initially fell.  In this phase, 
PTRRE outperformed SPTRRE. As *∆  increased, however, SPTRRE began to outperform PTRRE. 
As *∆  increased further, the RMSEs of the two estimators converged to one. 

 For all combinations of 2p  and ,ρ  PSRRE dominated SRRE when *∆  was at or near zero, 

but their performance became equivalent as *∆ increased. 
 SRRE and PSRRE outperformed all other estimators in some areas of * 0.∆ >  
 Although the degree of multicollinearity increased, the behavior of the suggested estimators 

was similar.  
From all the results, no estimator uniformly outperformed the others for the entire parameter 

space.  Nonetheless, PTRRE, PSRRE are quite robust although there is multicollinearity and the 
subspace information is uncertain.  While PSRRE has a requirement 2 3,p ≥  PTRRE does not have 

such a requirement. Thus, when 2 3,p ≥  PSRRE should be used, otherwise PTRRE should be used. 
 
6.  Application to Real Data 

To investigate the practical use of our approach, the suggested estimators were applied to a new 
car and truck dataset. This dataset is available from the Journal of Statistics Education (JSE) website 
(http://jse.amstat.org/jse_data_archive.htm). The goal was to build a model to predict the retail price 
in ten thousand US dollars from =428n  observations. The list of variables associated with this dataset 
are given in Table 5. 

 
Table 5 List of variables 

Variable Description Remarks 
Response variable 

price 
Predictors 

sport 
sportVe 
wagon 

van 
adrive 
rdrive 
cost 

engine 
cylinder 
power 
city 

highway 
weight 
wheel 
length 
width 

 
Retail price in ten thousand US dollars 

 
Sport car 

Sport utility vehicle 
Wagon 

Minivan 
All-wheel drive 

Rear-wheel drive 
Dealer cost in US dollars 

Engine size 
Number of cylinders 

Horsepower 
City miles per gallon 

Highway mile per gallon 
Weight in pounds 

Wheelbase in inches 
Length in inches 
Width in inches 

 
Numeric 

 
1 = Yes and 0 = No 
1 = Yes and 0 = No 
1 = Yes and 0 = No 
1 = Yes and 0 = No 
1 = Yes and 0 = No 
1 = Yes and 0 = No 

Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric  
Numeric 
Numeric 
Numeric 
Numeric 

http://jse.amstat.org/jse_data_archive.htm
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Figure 1 RMSEs of the proposed estimators with respect to UE

1
ˆ ( )κβ  as a function of *∆  

when 0.50, 0.05, 1.5,π α θ= = = and 100n =  
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Figure 2 RMSEs of the proposed estimators with respect to UE

1
ˆ ( )κβ as a function of *∆  

when 0.50, 0.05, 1.5,π α θ= = = and 150n =  
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The response variable was positive, continuous, and right skewed, meaning that this could be 
treated as a gamma distribution with an estimated shape parameter 4.065θ =  based on a chi-square 
test 17.116 with a p-value of 0.145. The CN value of the Fisher information matrix was 2,167.947, 
implying that multicollinearity was present. To overcome this, the suggested estimators should be 
applied to this dataset.  

In real applications, subspace information is unavailable concerning which predictors affect the 
response variable. Instead, the active predictors were identified using the variable selection method 
based on AIC, BIC, LASSO, and EN. The variable selection results to build the submodels are given 
in Table 6. Therefore, three different submodels were considered. 

To evaluate the performance of the suggested estimators, the resampling bootstrap method was 
used to estimate parameter 1.β  We drew 300m =  bootstrap rows from the dataset with replacement 
and 2,000N =  replications.  Moreover, the accuracy of the subspace information was unknown, so 
we conservatively selected 0.50.π =  The relative prediction error was calculated to compare the 
performance of the suggested estimators (Reangsephet et al. 2020b): 

 
( )
( )

2' UE
1

UE 1
1 1 2'

1
1

ˆSimulated exp( ( )
ˆ ˆ( ( ), ( )) .

ˆSimulated exp( ( )

m

i i
i

m

i i
i

y κ
RPE κ κ

y κ

° =

=

=
∑

∑

- β
β β

- β

x

x
            

 
Table 6 Variable selection results 

Variable selection method 1p  2p  Active predictors 

AIC 13 3 sport, sportiVe, van, adrive, rdrive, cost, engine, power, 
city, highway, weight, wheel, length 

BIC 9 7 sport, sportiVe, van, adrive, rdrive, cost, engine, power, 
weight 

LASSO 1 15 cost 
EN 1 15 cost 

 
Table 7 RPEs of suggested estimators with respect to URRE for new car and truck data 

Submodel 
Estimator 

RRRE LSRRE SPTRRE PTRRE SRRE PSRRE LASSO EN 
AIC 1.448 1.524 1.123 1.090 1.129 1.140 1.214 1.325 
BIC 1.001 1.022 1.004 1.003 1.012 1.013 1.015 1.053 

LASSO/EN 0.524 1.063 1.000 1.000 1.023 1.023 0.908 1.023 
 

As can be seen in Table 7, the subspace information given by AIC was reliable, having the 
highest RPEs of the suggested estimators. LSRRE was more efficient than RRRE and also performed 
better than all other estimators.  Moreover, SPTRRE outperformed PTRRE, and PSRRE 
outperformed SRRE.  These results are consistent with the simulation results when the subspace 
information was nearly correct.  

The subspace information provided by BIC was unreliable since it had poor prediction accuracy. 
RRRE was less efficient than LSRRE. The RPEs of PTRRE and SPTRRE were close to one and the 
performance of SRRE was close to that of PSRRE. Likewise, the submodel provided by LASSO/EN 
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was also unreliable. The performance of RRRE was profoundly poor. The efficiency of PTRRE and 
SPTRRE were equal to that of URRE, and the efficiency of SRRE was identical to PSRRE.  These 
results were consistent with the simulation results when the subspace information was far from 
correct. 

When comparing the penalized maximum likelihood estimators, the EN estimator outperformed 
the LASSO estimators. The penalized maximum likelihood estimators performed better than URRE 
when the subspace information was given by AIC. In contrast, the RPEs of the LASSO and EN 
estimators were low when the subspace information was provided by BIC and LASSO/EN. Hence, 
regardless of subspace information accuracy, the shrinkage estimation strategy was robust, which is 
consistent with the theoretical and numerical results. 
 
7. Conclusions 

In this study, we analyzed ridge regression estimators as alternative estimators when multi- 
collinearity exists under a gamma regression model.  We then suggested pretest and shrinkage 
estimation strategies to improve efficiency when subspace information on inactive predictors is avail- 
able.  We examined the performance of the suggested estimators from the asymptotic properties and 
provided numerical results. We also compared the suggested estimators with two penalty estimators 
LASSO and EN. Finally, we applied the suggested estimators to real data. 

The numerical results confirmed that, when the subspace information was correct, the suggested 
estimators outperformed URRE.  RRRE was superior to all other estimators when *∆ was close to or 
equal to zero, but its efficiency converged on zero if the subspace information was incorrect. LSRRE 
performed similarly to RRRE, but its convergence on zero depended on the shrinkage intensity .π  
The shrinkage estimation strategy outperformed the pretest estimation strategy when 2p  was large. 

The penalty estimators were competitive with the suggested estimators when ρ and 2p  were large. 
Finally, the real data analysis produced results consistent with the theoretical and numerical results. 
We recommend the use of ridge- type pretest and shrinkage estimation strategies in the presence of 
multicollinearity. 
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Appendices 
To obtain the expressions for the asymptotic properties of the suggested estimators in Theorems 

2 and 4, we assume that the submatrices of the Fisher information matrix C satisfy the following 
equations:  

 ( ) ( )1 1 1 1 11
1 1lim lim ,

n n
κ

n n→∞ →∞
′ ′+ = =X X I X X C      (6) 

 ( )1 2 12
1lim ,

n n→∞
′ =X X C     

 ( )2 1 21
1lim ,

n n→∞
′ =X X C     

 ( ) ( )2 2 2 2 22
1 1lim lim

n n
κ .

n n→∞ →∞
′ ′+ = =X X I X X C      (7) 

We present the following three lemmas which will enable us to derive the results of the 
asymptotic properties of the suggested estimators. 
 
Lemma 1 If 0 0κ n κ→ ≥ and C is nonsingular then 

UE 1 1
1 0

ˆ( ( ) ) , )~ (n κ N κ .φ− −− −β β C β C  
 
Proof: The details of the proof can be found in Knight and Fu (2000). 
 

https://www.researchgate.net/scientific-contributions/Edilberto-Cepeda-Cuervo-2003244066
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Lemma 2 Let Z be a q-dimensional normal vector distributed as ( , )Z ZN .μ Σ  Then for a measureable 
function of φ  we have 

2
2E[ ( )] E[ ( )],Z qφ φ +′ = χ ∆Z Z Z μ  

2 2
2 4E[ ( )] E[ ( )] E[ ( )],Z q Z Z qφ φ φ+ +′ ′ ′= χ ∆ + χ ∆ZZ Z Z Σ μ μ  

where 2 ( )mχ ∆  is a non-central chi-square distribution with m degrees of freedom and non-centrality 
parameter .∆  
 
Proof: The proof can be found in Judge and Bock (1978). 

Lemma 3 Let 1 2[ , ]′=X X X  be distributed as ( , )pN μ Σ with 11 12
1 2

21 22

[ , ] , ,
 ′ ′ ′= =  
 

Σ Σ
μ μ μ Σ

Σ Σ
and 

0.>Σ  The conditional distribution of 1,X  given that 2 2 ,=X x  is normal and has 
1

1 2 2 1 12 22 2 2E[ | ] ( )−= = + −X X x μ Σ Σ x μ  and 1
1 2 2 11 12 22 21V[ | ] .−= = −X X x Σ Σ Σ Σ  

 
Proof: The proof can be found in Johnson and Wichern (2002). 
 
Proposition 1 Let UE RE UE RE

1 1 1 2 1 1 3 1 1
ˆ ˆ ˆ ˆ( ( ) ), ( ( ) ), ( ( ) ( )).n n nandn κ n κ n κ κ= − = − = −A β β A β β A β β

Under the local alternative ( ) ,nH  regularity conditions, and Lemma 1, as ,n →∞  we have the joint 

distributions: 
1 1

1 1 11.2 11.2 11
1 1

2 2 11.2 11 11

3 3

, ,
n

d
n

n

N
φ φ
φ φ

− −

− −

  −     
       → − −       

               

0
0



A A μ C C Ω
A A μ δ C C
A A δ Ω Ω

 

where 1 1 1 1 1
11.2 0 11.2 12 22 11 12 11.2 11( ), , ( )κ n φ− − − − −= − = − = −μ C β ω C C C C C Cδ ω Ω and d→  represents the 

convergence in distribution. 
 
Proof: Under Lemmas 1, we obtain 

1
1 1 11.2 11.2~ ( , ).d

n N φ −→ −A A μ C  
From (4), we know that 

RE RE

UE 1 1 1 UE

ˆ ˆ( ) ( )
ˆ ˆˆ ˆ( ) - ( ) .

n

n n

κ κ

κ κ − − −

=

′ ′ ′ ′=

β R β

β XW X+ I H [H(XW X) H ] Hβ
 

Using the partitioned matrix formula, we obtain the relationship between the UE
1

ˆ ( )κβ  and 
RE
1

ˆ ( )κβ  as follows: 

( )
( )

1RE UE 1 1
1 1 1 1 1 2 2 2 2 1 1 1 1 2

1 UE
2 2 2 1 1 1 1 2 2

ˆ ˆ( ) ( ) + ( ) ( )

ˆ( ) ,

κ κ κ κ +κ
−− −

−

′ ′ ′ ′ ′ ′= − +

′ ′ ′ ′×= −

β β X X + I X X X X X X X X I X X I

X X X X X X X X β

           

       

 

which is a linear function of UE
1

ˆ ( )κβ  and UE
2

ˆ ( ).κβ  Hence, by Slutky’s Theorem, Theorem 1, and (6) 

and (7) obtain that 
2 22 ~ ( , )pN μ ΣA AA  such that 
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2

RE
1 1

UE 1 UE
1 11 12 2 1

UE 1 UE
1 1 11 12 2 2 2

1
1 11 12

1
11.2 11 12 11.2

ˆlim ( ) ,

ˆ ˆlim ( ) + ,

ˆ ˆlim ( ) + lim ( )],

],

n

n

n n

E[ n( κ )]

E[ n( κ )]

E[ n( κ )] E[ n

E[
.

→∞

−

→∞

−

→∞ →∞

−

−

= −

= −

= − − +

= +

= − + = − −

β β

β β β

β β β β β

Aμ

C C

C C

A C C ω
μ C C ω μ δ

 

Hence, 1
2 11.2 11~ ( , ).pN φ −− −μA δ C  

Next, 3nA  is a linear function of 1nA  and 2.nA  We then have 

3

UE RE
1 1

1 UE
11 12 2

1
11 12

ˆ ˆlim ( ) ( ) ,

ˆlim ,

,

n

n

E[ n( κ κ )]

E[ n( )]
→∞

−

→∞

−

= −

= −

= − =

β β

β

Aμ

C C

C C ω δ

 

3

UE RE
1 1

1 UE
11 12 2

1 1 1
11 12 22.1 21 11

1 1
11.2 11

ˆ ˆlim ( ) ( ) ,

ˆlim ,

,

( ) .

n

n

V[ n( κ κ )]

V[ n( )]

φ

φ

→∞

−

→∞

− − −

− −

= −

= −

=

= − =

β β

β

AΣ

C C

C C C C C

C C Ω

 

Finally, we derive the covariance matrix between 1 2, ,A A  and 3A  as follows 
1

1 2 11

1 3 1 1 2

2 3 2 1 2

[ , ] ,
[ , ] [ , ] ,
[ , ] [ , ] .

Cov
Cov Cov
Cov Cov

φ −=
= − =
= − =

A A C
A A A A A Ω
A A A A A 0

 

 
Appendix A: Proof of Theorem 2 
Proof: Using Proposition 1, we have UE

1 11.2
ˆ( ( )) .ADB κ = −β μ  Next, the ADB of LSRRE is considered 

LSE
4 1 1

UE UE RE
1 1 1 1

1 3

ˆ( ( ) ),
ˆ ˆ ˆ( ( ) ) ( ( ) ( )),

,

n

n n

n κ

n κ π n κ κ
π

= −

= − − −
= −

β β

β β β β

A

A A
 

which is a linear function of 1nA  and 3.nA  By Slutsky’s Theorem and as ,n →∞  we obtain 
LSE
1 4

1 3

11.2

ˆ( ( )) lim E[ ],

lim E[ ],

.

nn

n nn

ADB κ

π

π

→∞

→∞

=

= −

= − −

β

μ

A

A A

δ

 

The ADB of SPTRRE is as follows 

2

SPTE
5 1 1

UE UE RE
1 1 1 , 1

1 3 2,

ˆ( ( ) ),
ˆ ˆ ˆ( ( ) ( ( ) ( )) ( ) ),

( ),

n

n p α

n n n c α

n κ

n κ π κ κ I

π I +

= −

= − − ≤ −

= − ≤

β β

β β β β 

 

A

A A

 

which is a linear function of 1nA  and 3n .A  By Slutsky’s Theorem and as ,n →∞  we obtain 
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SPTE
1 5

1 3 2,

2
11.2 4 2,

ˆ( ( )) lim E[ ],

lim E[ ( )],

( ; ).

nn

n n n c αn

c c α

ADB κ

π I

π G

→∞

+→∞

+ +

=

= − ≤

= − − χ ∆

β

μ

A

A A

δ

   

The ADB of SRRE is  
SE

6 1 1

UE UE RE
1 1 1

1
1

1 3
1,

ˆ( ( ) ),
ˆ ˆ ˆ( ( ) ( ( ) ( )) ),

n

n n

n

n

n κ

n κ c κ κ

c

−

−

= −

= − − −

= −

β β

β β β β

A

A A





 

which is a linear function of 1nA  and 3n .A  By Slutsky’s Theorem and as ,n →∞  we obtain 

1
1

SE
1 6

3

2
11.2 4

ˆ( ( )) lim E[ ],

lim E[ ],

[ ( )].

nn

n n nn

c

ADB κ

c

c E

→∞

→∞

−

−

+

=

= −

= − − χ ∆

β

μ

A

A A

δ

  

Finally, the ADB of PSRRE is considered such that 
PSE

7 1 1

SE UE RE
1 1 1 1

6 3

1

1

ˆ( ( ) ),
ˆ ˆ ˆ( ( ) ( ( ) ( ))(1 ( ) ),

(1 ( ),

)

)
nn

n

n

n n n

n κ

n κ κ κ c I

c I

c

c

−

−

= −

= − − − ≤ −

= − − ≤

β β

β β β β

A

A A

 

 

 

which is a linear function of 6nA  and 3nA . By Slutsky’s Theorem and as ,n →∞  we obtain 
PSE
1 7

6 3

SE
1 3

2 2
11.2 4 4 4

2
11.2 4

1

2 2
4 4

2
4

]

) ( )

( )) (

E

( ) )
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nn
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c E G c c E I c
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→∞

− −

−

−
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−
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4 4

11.
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.
c c cIc cE
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+ +∆ − χ ∆
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−
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∆μ δ

 

 
Appendix B: Proof of Theorem 4 

To prove the asymptotic distributional risk of the estimators, we first derive the asymptotic mean 
squared error matrix (AMSEM): 

1 1

UE UE UE
1 1 1 1 1

1 1

1

1
11.2 11.2 11.2

LSE LSE LSE
1 1 1 1 1

1 3 1 3

UE
1

ˆ ˆ ˆ( ( )) lim ( ) ( ) ,

lim ,

] ,

,
ˆ ˆ ˆ( ( )) lim [ ( ( ) )( ( ) ) ],

lim E[( )( ) ],

ˆ( (

n

n nn

n

n n n nn

κ E[n( κ )( κ ) ]

E[ )]

V[

κ E n κ κ

π π

φ

→∞

→∞

−

→∞

→∞

′Γ = − −

′=

′= +

′= +

′Γ = − −

′= − −

= Γ

β β β β β

β β β β β

β

A A

A A

A μ μ

C μ μ

A A A A

{ } { }1 3 3 3

2
1 3 3

UE 2
1 11.2

)) 2 Cov[ , ] V[ ] ,

ˆ( ( )) (2 ) 2 ,

κ π π

κ π π π π

′ ′− + + +

′ ′= Γ − − + +β

A A A AA A μ μ A μ μ

Ω μ δ δδ
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1

SPTE SPTE SPTE
1 1 1

2 2 2 2

1 1

1 3 2, 1 3 2,

2
1 21 2, 2 23 3 ,1 3

ˆ ˆ ˆ( ( )) lim E[ ( ( ) )( ( ) ) ],

lim E[( ( ))( ( )) ],

E[ ] 2 E[ ( )( ) ( ))] E[ ( ].

n

n n n c α n n n c α

c c α c c α

n

E

κ n κ κ

π I π I

π I π I+ + + +

→∞

+ +→∞

′Γ = − −

′= −

χ ∆ χ χ

≤ − ≤

′ ′ ′= − + ∆ χ≤ ≤

β β β β β



   A A A A

A A A A A A

 

Applying the law of iterated expectations with Lemmas 2 and 3 gives 
2 2

2 2,

2 2
2 2,

2 2 2 2 2 2
4 2, 4 2, 6 2,

2 2

.

2

4 2

1 1 3 3

1
11. 3 3

1

,

1.2

11
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( )

( )

( ) ( ) (E
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) ( )],

E[ ( )] [ ( )] E[ ( )])

E[ ( )],)
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c c α

c c α c c α c c α
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E I

I

I I I

I

+ +

+ +

+ + + + + +

−

+ +

′ = ≤ 
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χ ∆ χ
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χ ≤
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∆
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χ ∆ χ χ
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μ 2 2 2 2
2, 2, 2,2 4 4 6 24 ,; ) ; ) ; ) ; ).( ( ( (c α cc c α c α c αc cG G G G+ ++ + ++ + +′ ′∆ ′−χ χ ∆ χ ∆ χ ∆+ +δ Ω δδ δδ

 

Substituting the results of E1 into SPTE
1

ˆ( ( )),κΓ β  we get 
SPTE UE
1 1

2
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4 6
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1 11.2 4
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Using the law of iterated expectation, we have 
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Replacing E2 in SE
1

ˆ( ( )),κΓ β  we obtain 
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Using the identity 2 2 4
4 6 6( )] ( )]E[ 2 ( )E[ ]E[ .c c c

− − −
+ + +χ ∆ − χ ∆ = χ ∆  Therefore, SE

1
ˆ( ( ))κΓ β  is obtained as 
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Applying the law of iterated expectations with Lemmas 2 and 3 gives 
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Substituting the result of E3 into PSE
1

ˆ( ( )),κΓ β  we obtain 
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The ADRs of the suggested estimators can be proved using the AMSEMs.  
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