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Abstract 

Recently, an inverted Topp-Leone (IVT) distribution is introduced, which was useful for 

modeling lifetime phenomena. Some reliability measures of this distribution such as reliability, the 

maximum likelihood estimation and confidence intervals for the shape parameter are considered. In 

this paper, parameter estimation is discussed based on ranked set sampling (RSS) and neoteric ranked 

set sampling (NRSS) as a case of one stage ranked set sampling, double neoteric ranked set sampling 

(DNRSS) as a case of two stages ranked set sampling. Simulation studies are used to assess the two 

approaches from bias and efficiency aspects. The estimators are also compared with their analogs in 

simple random sampling. Moreover, it was shown that NRSS, RSS are more efficient than simple 

random sample (SRS) and they have small bias. The estimator based DNRSS, NRSS, and RSS are 

more efficient than the estimators based on SRS technique. 

______________________________ 

Keywords: Maximum likelihood estimation, neoteric ranked set sampling, inverted Topp-Leone distribution. 

 

1. Introduction 

Topp and Leone (1955) proposed the mathematical formulation of the family of J-shaped 

probability distributions. They also obtained its first four moments and showed its suitability to model 

failure data. Many contributions continued with studies of many authors, such as Nadarajah and Kotz 

(2003), Zghoul (2010, 2011). The inverted Topp-Leone (IVT) distribution is recently proposed by 

Muhammed (2019). This distribution has only one shape parameter, the probability density function 

(PDF) and, the cumulative distribution function (CDF) of the IVT distribution are, respectively, given 

by 

 2( ; ) 1 ( ) (2 1)F x x x                     (1) 

and 
( 1) ( 2 1)( ; ) 2 ( 1)(2 1) ,f x x x x         

where 0,   1 x    and   is a scale parameter. 
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Figure 1 The PDF of The IVT Distribution 

 

 
 

Figure 2 The CDF of The IVT Distribution 

 

McIntyre (1952) proposed a way to estimate mean pasture yields with greater efficiency than 

simple random sample (SRS). The first theoretical result about RSS was obtained by Takahasi and 

Wakimoto (1968). They proved that, the RSS mean is an unbiased estimator of the population mean 

and the variance of the mean of a simple random sample is larger than the variance of the mean of a 

ranked set sample of the same size. The errors may creep in while ordering the randomly selected units 

of a set because of dependence upon the ranker’s judgment. This aspect of the error of RSS was first 

considered theoretically by Dell and Clutter (1972) who have shown that, regardless of ranking errors, 

the RSS estimator of a population mean unbiased and at least as efficient as the SRS estimator with 

the same number of quantifications.  

To reduce loss of efficiency in RSS due to errors in ranking and an improvement upon the 

efficiency of the estimator of the population mean are proposed extreme ranked set sampling by 

Samawi et al. (1996) and median ranked set sampling (MRSS) as a modification of the RSS by Muttlak 

(1997) as one stage of ranked set sampling Muttlak, (2003) introduced percentile ranked set sampling 

(PRSS). A recently developed extension of RSS, Neoteric ranked set sampling (NRSS) differs from 

the original RSS scheme by Zamanzade and Al-Omari (2016). 
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The two stage RSS designs double ranked set sampling (DRSS), as developed by Al-Saleh and 

Al-Kadiri, (2000). They used Takahasi definition and showed that the DRSS is more efficient in 

estimating the population mean than RSS and SRS. Thus, a gain in efficiency is obtained using DRSS 

without increasing the set size. Hence, DRSS is a more representative sample, and a k -stage RSS 

design uses  1k
n


 sample units from the target population to produce a sample of size n  after k  stages 

of ranking developed by Al-Saleh and Al-Omari (2002). 

Besides these studies, several authors have considered the estimation of the parameters of well-

known distributions using RSS or its modifications. For example, estimation of unknown parameters 

of exponential, extreme-value, logistic, Weibull and Pareto distributions was studied by Lam et al. 

(1994),  maximum likelihood estimators of the parameters of a modified Weibull distribution using 

extreme ranked set sampling was introduced by Al-Omari and Al-Hadrami (2011), Omar and Ibrahim 

(2013) estimated the shape and scale parameters of the Pareto distribution based on extreme RSS, 

Sabry and Shaaban (2020) derived the likelihood function for NRSS and double neoteric ranked set 

sampling (DRSS) for inverse Weibull distribution and Shaaban and Yahya (2020) is concerned with 

the estimation problem using maximum likelihood (ML) method of estimation for the unknown 

parameters of exponentiated Gumbel (EG) distribution based on different ranked set sampling 

schemes. For more about applications of RSS see Chen et al. (2005), Strzalkowska-Kominiak and 

Mahdizadeh (2014), Mahdizadeh (2015) and Mahdizadeh and Strzalkowska-Kominiak (2017). The 

main purpose of this paper is to compare the estimators of the IVT distribution that are obtained based 

on the different ranked set sampling schemes. 

The paper is organized as follows: In Section 2, some sampling techniques are introduced. MLEs 

are derived for the shape parameter of IVT distribution using different sampling schemes and 

presented in Section 3. The numerical study for comparing the performance of DNRSS, NRSS, DRSS 

schemes with unknown parameters based on RSS and SRS techniques are presented in Section 4. 

Finally, the conclusion is in Section 5. 

 

2. Some Ranked Set Sampling Techniques 

This section is devoted to some various sampling procedures for selection of units in the sample 

will be considered such as RSS, NRSS and DNRSS schemes. 

 

2.1. Ranked set sampling 

Ranked set sampling proposed by McIntyre (1952) is a methodology which can improve the 

efficiency of techniques such as estimation and confidence intervals without increasing the number of 

substantial observations. It is designed to minimize the number of measured observations required to 

achieve the desired precision in making inferences. It uses additional information from the population 

to provide more structure to the data collection process and decreases the likelihood of an 

unrepresentative sample. Several studies have proved the higher efficiency of RSS, relative to SRS, 

for the estimation of a large number of population parameters. The RSS scheme can be described as 

follows: 

Step 1 Randomly select 
2m  sample units from the population. 

Step 2 Allocate the 
2m  selected units as randomly as possible into m  sets, each of size .m  

Step 3 Choose a sample for actual quantification by including the smallest ranked unit in the first 

set, the second smallest ranked unit in the second set, the process is continuous in this way until the 

largest ranked unit is selected from the last set. 

Step 4 Repeat steps 1 through 4 for r cycles to obtain a sample of size .mr  
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Figure 3 RSS design 

 

Let   1 2 1 2
ii s

X ,i , ,...,m;s , ,...,r   be a ranked set sample where m  is the set size and r  is the 

number of cycles. Then the likelihood function corresponding to RSS scheme of 
 ii s

X  is given by 

 
( 1) ( )

( ) ( ) ( )

1 1

,[( | ) ( ; )[ ( ; )] 1 ( ; )]
r m

i m i

RSS i ii j ii j ii j

j i

L x C f x F x F x    

 

   (1) 

where 
 

!
.

( 1)! !
i

m
c

i m i


 
 

 

2.2. Neoteric ranked set sampling 

A recently developed extension of RSS is introduced NRSS by Zamanzade and Al-Omari (2016), 

NRSS has been shown to be effective, producing more efficient estimators for the population mean 

and variance compared to RSS and SRS. The following steps describe the NRSS sampling design: 

Step 1 Select a simple random sample of size 
2m  units from the target finite population. 

Step 2 Ranked the 
2m  selected units in an increasing magnitude based on a visual inspection or 

any other cost-free method with respect to a variable of interest.  

Step 3 If m  is an odd, then select the  
th

1g i m     ranked unit.  If m  is an even, then select 

the  
th

1u i m     ranked unit, if i  is an even and    
th

1 1u i m      if i  is an odd where 

1
, ,and 1,2,.., .

2 2

m m
u g i m

 
   

 
 

Step 4 Repeat steps 1 through 3 r  cycles if needed to obtain a NRSS of size .n rm  The NRSS 

scheme can be described as follows, the observation after order: 

 

 
Figure 4 NRSS design in case of odd sample size 

 

Using NRSS method, we have to choose the units with the rank 2, 5, 8 for actual quantification, 

then the measured NRSS units are 
      2 1 5 1 8 1

X , X , X  for one cycle. 
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Let   ,  1, 2,.., ,  1, 2,...,
i j

X i m j r   be a neoteric ranked set sample where m  is the set size and 

r  is the number of cycles. Then the likelihood function corresponding to NRSS scheme that proposed 

by Sabry and shaaban (2020), is given by 

 
1

( ) ( 1) 1

( ) ( ( )) ( ( )) ( ( 1))1
1 1

1

!
( | ) ( ; ) [ ( ; ) ( ; )] ,

( ( ) ( 1) 1)!

m m
k i k i

k i j k i j k i j k i jm
i i

i

w
L x f x F x F x

k i k i

   


  


 



  

  
 


 

(2) 

where m  is the set size, r  is the number of cycles, 2 !,w m  and ( )k i  is chosen as  

( 1) ,  odd

( ) ( 1) ,  even,  even

( 1) ( 1) ,  even,  odd,

g i m m

k i u i m m i

u i m m i

 


  
   

 

where          0 1
0 0,  1 1  and  ,  .

k k m
k k m w x x


         

 

2.3. Double ranked set sampling 

Al-Saleh and Al-Kadiri (2000) proposed DRSS procedure for estimating the population mean as 

two stage ranked set sampling. The following steps are employed to obtain a DRSS of size .m   

Step 1 Select 
3m  elements from the target population and divide these elements randomly into 

n  sets (of size 
2m ). 

Step 2 Select a sample of size m  in each set using RSS method. 

Step 3 Apply the RSS procedure again to elements selected in step 2 to obtain a DRSS. 

Step 4 The cycle may be repeated m  times. 

 

 
 

Figure 5 DRSS design in case of even sample size 

 

So, we have four judgment ranked sets of size m  each: 

  1, (11) (22) ( )min , ,..., , 1, 2,...,j j j

j mmX x x x j r  , and  

  , (11) (22) ( )max , ,..., , 1, 2,...,k k k

m k mmX x x x k r r m     

The likelihood function for DRSS that proposed by Sabry et al. (2019) is given as: 

Case I: m  even ( 2 ),m r  

 1 1

(1: ) (1, ) (1: ) (1, ) ( : ) ( , ) ( : ) ( , )

1 1

( ) ( )[1 ( )] ( )[ ( )]
r m

m m

m j m j m m m k m m m k

j k r

L m f x F x m f x F x  

  

   
    

  
            (3) 
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Case II: m  odd ( 2 1),m r   

1 1

(1: ) (1, ) (1: ) (1, ) ( : ) ( , ) ( : ) ( , )

1 2

( ) ( )[1 ( )] ( )[ ( )]
r m

m m

m j m j m m m k m m m k

j k r

L m f x F x m f x F x  

  

   
    

  
   

  ( 1), ( 1)1: ( 1) 1: ( 1), ( 1),1: ( 1)( (
(2 1)!

) ) 1 )
( )! )!

(
(

r

r m r r m r m rrr r rx F x Ff
r r

x
r

      

 
  
 

.                                  (4) 

 

2.4. Double Neoteric ranked set sampling 

DNRSS is defined by Taconeli and Cabral (2018) which is defined to be a two-stage design in 

which the first stage is defined as RSS scheme, while the NRSS procedure should be applied in the 

second stage. To draw a DRSS sample of size ,n  the following steps must be implemented: 

Step 1 Identify 
3m  elements from the target population and divide them, randomly, into m  blocks 

with m  sets of size .m  

Step 2 Apply the RSS method to each block to obtain m RSS samples of size .n  

Step 3 Employ the NRSS procedure to the 
2m  elements selected in step 2 to obtain a DNRSS 

sample of size .m  Only these sample units must be measured for the variable of interest. 

Step 4 Steps 1-3 can be repeated r  times to draw a sample of size .mr  

In Figure 6, we show how to select a sample of size 3m   and 1,r   then we have to select 

3 27m   units as 

 

 
 

Figure 6 DNRSS design in case of odd sample size and one cycle 

 

Let   1 2 1 2
i j

X , i , ,..,m, j , ,...,r   be a DNRSS where m  is the set size and r  is the number of 

cycles. Then the Likelihood function corresponding to DNRSS scheme that proposed by Sabry and 

shaaban (2020), is given by 
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( ) ( ( ))1
1

1

!
( | ) ( ; )

( ( ) ( 1) 1)!

m

k i j m k i jm
i

i

w
L x f y

k i k i

 








  




1
( ) ( 1) 1

( ( )) ( ( 1))

1

[ ( ; ) ( ; )] .
m

k i k i

m k i j m k i j

i

F y F y 


  





   

 (5) 

 

3. Estimation of the IVT Distribution Parameters 

In this Section MLE for the unknown parameter of IVT distribution is obtained based on RSS, 

NRSS, DRSS and DNRSS, the estimators are also compared with its analogs in simple random 

sampling. 

 

3.1. Estimation based on SRS 

Muhammed (2019) introduced the maximum likelihood estimator (MLE) for IVT distribution 

parameters based on SRS. In this subsection, MLE based on SRS will be reviewed.  Let 
1 2, , , nx x x

be a random sample of size n  from IVT(  ), then the likelihood function can be written as follows  

2 1 1

1

,( ; ) 2 ( 1) (2 1)n n

SRS i i i

i

n

L x x x x     



    

and the log likelihood function is then derived as 

1 1 1

( ) log log( 1) (2 1) log ( 1) log(2 1),
n n n

SRS i i i

i i i

l n x x x   
  

           

The first derivative of the log-likelihood function denoted by 
SRSl  with respect to   is as follows 

 
1 1

2 log log(2 1).
n n

SRS

i i

i i

l n
x x

   


   


   (6) 

From (7), Muhammed (2019) showed that MLE of   can be obtained as follows 

2

1

.

log
(2 1)

n
i

i i

n

x

x






 
 

 


 

 

3.2. Estimation based on RSS 

In this subsection, MLE of IVT distribution will be derived. Suppose 

      11 22
1 2

j j mm j
X , X , , X ;  j , , ,r    denotes the ranked set sample of size n mr  from IVT(  ), 

where m is the set size and r  is the number of cycles. By substituting (1) and (2) into (3), then the 

likelihood function based on RSS data is given by 

  ( )

1
2 1

( ) ( )

1 1

( ; ) 2 ( 1) 2 1
ii j

r m

RSS i ii j ii j

j i

L x c x x x
 


 

 

    

                                     
1

2 2

( ) ( ) ( ) ( )1 2 1 2 1
i n i

ii j ii j ii j ii jx x x x
    

 

     

and the first derivative of 
RSSl  with respect to   is given by 
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( ) ( )

1 1 1 1

( ) ( ) ( ) ( ) ( )

2 2
1 1 1 1( ) ( ) ( ) ( )

2 log log(2 1)

(2 1) 2log log(2 1) 2log log(2 1)
( 1) ( )

( ) (2 1) ( ) (2

r m r m

ii j ii j

j i j i

r m r m
ii j ii j ii j ii j ii j

j i j iii j ii j ii j ii j

RSSl rm
x x

x x x x x
i n i

x x x x



  

     


   


   



          
   



 

  .
1)

 

(7) 

It is clear that, is not easy to obtain a closed form of the non linear ( 9) , so an iterative technique 

can be used to obtain MLEs of   as will be seen in Section 4. 

 

3.3. Estimation based on NRSS 

In this subsection, we will derive MLE for IVT(  ) based on NRSS technique by substituting (1) 

and (2) in (4). Let   1 2 1 2
i j

X , i , ,..,m, j , ,...,r   be a neoteric ranked set sample where m  is the set 

size and r  is the number of cycles, then the likelihood function corresponding to NRSS scheme is 

given by  

 

   

( ( )( ( )

( ) ( 1) 1

( ( ) ( ( 1)( ( ) ( ( 1)

1
2 1

( ( )

1 1

1
2 2

1

( ; ) 2 ( 1) 2 1

1 2 1 1 2 1 .

k i jk i j

k i k i

k i j k i jk i j k i j

r m

NRSS k i j

j i

m

i

L x x x x

x x x x




 
 

 

  




 

 


 



      
  

                 

 



 

The associated log-likelihood function denoted by 
NRSSl  is as follows 

       

   
( ( 1) ( ( )( ( 1) ( ( )

( ( )) ( ( )) ( ( ))

1 1 1 1 1 1

1
2 2

1 1

( ) log log 2 1 log 1 log 2

( ( ) ( 1) 1) log 2 2 1

1

1

1

k i j k i jk i j k i j

r m r m r m

k i j k i j k i j

j i

r

NR S

j i i

S

j

m

j i

l mr x x x

k i k i x x x x
 

 

   



     


 

 

     

       
 









  


 

and the first derivative of the 
NRSSl  is given by 

           
( ( 1) ( ( 1) ( ( 1) ( ( 1) ( ( ) ( ( )( ( ) ( ( 1)

( ( )) ( ( ))

1 1 1 1

1

1 1

2 2

2 log log(2 1)

( ( ) ( 1) 1)

2 1 2log 2 1 2 1 2 1log log 2log
k i j k i j k i j k i j k i j k i jk i j k i j

S
r m r m

k i j k i j

j i j i

r m

j

NRS

i

l rm
x x

k i k i

x x x x x x x x
 

 

 

   

   



 

 


   



   

       
 

 


 



   
( ( 1) ( ( )( ( 1) ( ( )

2 2

.

2 1 2 1
k i j k i jk i j k i j

x x x x
 

 



 



  

 

(8) 

MLE of IVT distribution parameters based on NRSS can be obtained by solving (10) using 

iterative technique. 

 

3.4. Estimation based on DRSS 

According to equation 5 the likelihood function for DRSS design is derived as follows.  

Case I: m  even ( 2 )m r  
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       
 

       
 

(1) (1)

( ) ( )

1
1

2 2 1 2

(1) (1) (1)

1

1
1

2 1 2

( ) ( ) ( )

1

( ; )

2 .

2 1 2 1 2 1

1 2 1 1 2 1

j j

m j m j

r m m

j j j

j

m m m

m j m j m j

k

S

r

DRSL

x

x m x x x x x

m m x x x x

  

  








  






  

 

 
   

  




 
 


  
 





 

Then, the associated log-likelihood function is obtained as 
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and the first derivative is given by 
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Case II: m  odd ( 2 1)m r   

According to Equation ( 6)  the log- likelihood function of the IVT distribution for odd set size is 

given by 
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and the first derivative is given by 
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3.5. Estimation based on DNRSS 

By substitution in Equation (7) based on IVT distribution the Likelihood function for set sizes m  

and with r  cycles based on DNRSS scheme is given by 
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The associated log-likelihood function is as follows 
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and the first derivative of the 
DNRSSl  is given by 
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4. Simulation Study 

A simulation study is complementary to this study with an evaluation of the performance of the 

proposed maximum likelihood estimator of the shape parameter of IVT distribution based on RSS, 

NRSS, DRSS, DNRSS. The simulation is applied for 10,000 replications and different sample sizes, 

 20,30,40,50,100 .m   The simulation is made for different parameters values IVT(  )={IVT(0.5), 

IVT(1.5), IVT(3), IVT(5)}.  

Comparison between the proposed estimators for   using SRS, RSS, MRSS, and NRSS schemes 

are carried out using mean square error (MSE) and efficiencies criteria. The efficiency between all 

estimators with respect to the MLE based on SRS are calculated. The efficiency of the estimator is 

defined as  

 
 
 

1

1 2

2

MSE
eff , 

MSE


 


  if  1 2,  1,eff     then 2  is better than 1 .  

The results of relative biases, MSE and relative efficiency for the different estimator is listed in 

Figures 7-10 and Tables 1-2, are represented to clarify the simulation results.  

 

 
 

Figure 7 Relative efficiency of different 

RSS schemes for value of parameter 0.5 

 
 

Figure 8 Relative efficiency of different RSS 

schemes for value of parameter 1.5 
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Figure 9 Relative efficiency of different RSS 

schemes for value of parameter 3 

 
 

Figure 10 Relative efficiency of different RSS 

schemes for value of parameter 5 

Simulation results are summarized in Figures 7-10 and Tables 1-2 and for some values of the 

estimation parameter. 

1. It may be concluded that the DNRSS estimator is biased and more efficient than the SRS, RSS, 

NRSS estimator for all cases considered in this study. However, as demonstrated by Toconeli and 

Cabral (2018) it is better to use DNRSS with small sample size. Also, it is noted that the efficiency of 

the parameter estimation depends on the values of   as well as the sample size. 

2. The relative efficiency from NRSS and RSS to the design with best performance than SRS for 

all cases. 

3. The relative efficiency of the estimator based on NRSS have the largest efficiencies in cases 

for value of parameter 0.5,1.5,   While increasing the value of parameter to 3,5   the relative 

efficiency of the estimator based on RSS has become better than NRSS.  

4. The biases are small for all cases.  

5. MSE of the estimator based on SRS data are greater than MSE of the estimators based on RSS, 

NRSS, and DNRSS data.  

6. Whenever, increasing the set size of the sample, MSE of estimator based on SRS, RSS, NRSS, 

and DNRSS decrease. 

7. Approaching MSEs of the estimator based on SRS is nearly close from MSE of estimator based 

on RSS, NRSS as the sample size increases. 
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Table 1 MSE and Relative efficiency of the estimator for   based on RSS schemes compared to 

SRS estimator under perfect ranking 

 m  
SRS RSS NRSS DRSS DNRSS 

MSE MSE RE MSE RE MSE RE MSE RE 

IVT(0.5) 20 0.03342 0.01819 1.84 0.00888 3.76 0.00995 3.36 0.00494 6.76 

30 0.00935 0.00397 2.35 0.00187 4.99 0.00200 4.67 0.00110 8.52 

50 0.00117 0.00035 3.37 0.00021 5.54 0.00023 5.10 0.00009 13.49 

100 0.00031 0.00008 3.96 0.00005 6.64 0.00005 5.96 0.00002 15.37 

IVT(1.5) 20 0.00772 0.00440 1.75 0.00168 4.60 0.00185 4.17 0.00142 5.43 

30 0.00082 0.00034 2.43 0.00016 5.04 0.00018 4.49 0.00010 8.54 

50 0.00055 0.00021 2.56 0.00009 5.81 0.00010 5.23 0.00005 12.15 

100 0.00033 0.00009 3.48 0.00005 7.04 0.00005 6.33 0.00002 13.56 

IVT(3) 20 0.00310 0.00194 1.60 0.00120 2.58 0.00099 3.14 0.00057 5.40 

30 0.00035 0.00012 2.94 0.00010 3.59 0.00008 4.48 0.00004 8.40 

50 0.00025 0.00007 3.69 0.00006 4.07 0.00005 5.01 0.00002 11.29 

100 0.00014 0.00003 4.51 0.00002 6.05 0.00002 7.68 0.00001 12.49 

IVT(5) 20 0.02232 0.01501 1.49 0.00588 3.79 0.00499 4.48 0.00386 5.79 

30 0.00441 0.00111 3.98 0.00088 4.98 0.00078 5.62 0.00062 7.10 

50 0.00229 0.00049 4.66 0.00044 5.20 0.00034 6.72 0.00019 12.12 

100 0.00064 0.00013 4.83 0.00011 5.91 0.00009 7.16 0.00004 14.69 

 

5. Conclusion 

Maximum likelihood estimator for the inverted Topp-Leone distribution is studied based on 

double neoteric ranked set sampling, ranked set sampling and neoteric ranked set sampling and simple 

random sample. These MLEs are not in closed forms, so numerical method is used. Results show that 

DNRSS estimator is biased and more efficient than the SRS, RSS, NRSS estimator for all cases 

considered in this study. Also, it was shown that NRSS, RSS are more efficient than SRS and they has 

small bias. Generally, the estimator based DNRSS, NRSS, and RSS are more efficient than the 

estimators based on SRS technique. 
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