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Abstract

This research aimed to modify the traditional multivariate control charts by using the multivariate
spatial signed rank under the normal distribution, the t distribution, and the gamma distribution. The
performance of the modern multivariate control charts is measured based on the average run length
(ARL). The ARL is computed using a Monte Carlo simulation. The Monte Carlo approach is applied
to simulate the circumstances via MATLAB software. The spatial signed-rank multivariate
exponentially weighted moving average (SSRM) control chart is found to be the most appropriate
approach to detect the small mean shifts (6 <0.5) and the large smoothing parameters (A >0.35) of

all three distributions. Besides, SSRM is a robust tool for detecting waste and is suitable for most
industrial processes.

Keywords: Multivariate exponentially weighted moving average (MEWMA), statistical process control (SPC),
average run length (ARL), detection of nonconforming product, correlation of quality characteristics.

1. Introduction

Products that are manufactured using the same machine might still yield different results. Most
products are made according to detailed specifications. However, some products may not be according
to the specifications, which are called nonconforming products or wastes. Therefore, nonconforming
products lead to a negative effect on a company not only through the loss of raw materials but also
through the cost of man-hours, scrap, and rework, which are called internal failure costs. Internal
failure costs are incurred when products, components, materials, and services fail to meet quality
requirements. Statistical process control (SPC) is a method for monitoring and controlling a process
in order to improve the process’s performance while reducing the variability in key parameters
(Montgomery 2009). Moreover, it is used to monitor and reduce variability, enabling processes to
return quickly to a state of control (Montgomery 2013). Univariate control charts are used to monitor
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and control a single quality characteristic. When several correlated quality characteristics must be
monitored, some independent control charts might be used incorrectly to monitor and control each
quality characteristic separately. Consequently, using separate control charts to monitor and control
multiple correlated quality characteristics is not an efficient way to monitor correlated characteristics
due to the fact that the correlation among these characteristics weakens the performance of the single
control charts and also results in a higher false alarm risk. Thus, the multivariate control chart has
become an issue and has played an important role at the present time.

Shamma and Shamma (1992) studied the development and evaluation of control charts using
double exponentially weighted moving average (IEWMA). The dEWMA control chart performed
much for small and moderate shifts in the process mean better than a Shewhart control chart. The
properties were similar to an exponentially weighted moving average (EWMA) control chart, but the
dEWMA had smaller variability and had more smoothing of the data with no compromise in the
sensitivity of detecting the shifts in the process mean. It also had an optimal average run length (ARL)
for a larger smoothing parameter when compared with the EWMA control chart which the properties
were more desirable for some industrial processes. Alkahtani (2013) studied the robustness of the
dEWMA versus EWMA control charts to non-normal processes. The EWMA and dEWMA charts
were more robust to the t distribution. The dEWMA was more robust to non-normality for larger
smoothing parameters. Furthermore, Shamma and Shamma (1992) pointed out that Baxley (1990)

found a simulated industrial process required a larger A (4 =0.35) but the optimal EWMA control

chart required A1=0.05. The dEWMA control chart was more sensitive to larger smoothing
parameters than the EWMA. Alkahtani and Schaffer (2012) studied a double multivariate
exponentially weighted moving average (dAIMEWMA) control chart for process location monitoring.
The dAMEWMA outperformed the MEWMA and Hotelling’s 4? control charts for small and large

shifts. In comparison to the MEWMA control chart, the dIMEWMA chart was optimal for larger
smoothing parameters (A ) and performs much better for very small shifts in the process mean.

Tiengket et al. (2020) studied the construction of bivariate copulas on Hotelling’s T2 control chart,

and the bivariate copulas approach can be fitted to Hotelling’s T? control chart. Sukparungsee et al.
(2021) studied the effects of constructed bivariate copulas on multivariate control chart effectiveness,
and the performance of Hotelling’s T? control chart is superior to the MCUSUM control chart for all
shifts in the mean vector of process. Furthermore, by applying the presented control chart to two sets
of real data, data set of the strength of 1.5 cm glass fibers measured at the National Physical
Laboratory, England, and a data set of the strength of a glass of the aircraft window, it was found that

for a small shift (5<0.1), the MCUSUM control chart is better than Hotelling’s T? control chart.
Tiengket et al. (2022) studied the efficiency of constructed bivariate copulas for MEWMA and
Hotelling’s T? control charts, and the performances of the MEWMA and Hotelling’s T? control
charts were similar for small shifts (5<0.01) but the MEWMA control chart showed higher

performance for moderate to large shifts.

Kvam and Vidakovic (2007) reported that the actual various situations were usually non-normal
distributions. A nonparametric multivariate control chart could be an alternative and would play an
important role in the quality control of future products. In the case where analysts do not know the
underlying distribution of the data, the appropriate statistical techniques are called non-parametric or
distribution-free methods. In addition, Zeinab (2013) conducted a study of an affine invariant signed-
rank multivariate exponentially weighted moving average (SRMEWMA) control chart for process
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location monitoring. The SRMEWMA’s performance was superior to the MEWMA and Hotelling’s
T? control charts, but its detection of small shifts did respond very well to small smoothing parameters
in the process mean of the skewed distributions. Chakraborty and Chaudhuri (1998) reported the
spatial signed-rank method as a transformation-retransformation technique with inner standardization
that achieved affine invariant and equivariant properties (Nevalainen et al. 2018).

In this research, the MEWMA and dMEWMA control charts are integrated with the spatial signed
rank under the normal distribution, the t distribution, and the gamma distribution. The performance
measure is the ARL. The new multivariate control chart can quickly detect small shifts (& is less than
or equal to 0.5) at a larger smoothing parameter ( A is greater than or equal to 0.35) in the process
mean under a non-normal distribution.

2. Materials and Methods
2.1. Initial parameters

In this research, let x;,

i=12,..,nand j=12,..,p betherandom nx p matrix with the size
of the sample data being that n is equal to 15,000 units and the quality characteristics ( p) are equal
to 2. The nxp matrices are randomized in three situations for the normal distribution, the t
distribution, and the gamma distribution. The distributions are simulated with a mean matrix (),
and variance-covariance matrix (Z,) as shown in Table 1. These are used in the simulation instead of
the real history data of the process under the non-centrality parameter (& :O) is the in-control

process, the study condition on the ARL, is equal to 370, and the smoothing parameter. (A = 0.05,
0.1, 0.2, 0.3, 0.35, 0.4, 0.5 and 0.8). Then is simulated under the non-centrality parameter. (6 = 0.1,
0.25, 0.5, 1.0, 1.5 and 2.5) are the out-of-control process. For the study selection of the 4 and &
values got the idea from several researchers as follows: Montgomery (2005) states that if small shifts
(roughly 0.5 standard deviations or less) are of primary concern, the typical recommendation is to
choose asmall A to say equal to 0.01, 0.025, or 0.05; if moderate shifts (roughly between 0.5 and 1.5
standard deviations) are of greater concern choose A =0.10, whereas if larger shifts (roughly 1.5
standard deviations or more) are of concern, choose 4 =0.20 (Graham et al. 2011). Baxley RV (1990)
reported that, when drifts are present, using the correct value for A has distinct advantages for
reduction of process variability because both feedback adjustments are shown in Figure 1, a plot of
the forecast error sigma versus A over the range from 0 to 1, which is seen to be relatively flat in the
region around the optimal value of 0.338.

Consequently, the case studies (px & x ARL, x A x Dist") of this research are equal to 168

scenarios.
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Figure 1 EWMA forecast error versus lambda for the Monsanto data (Baxley RV 1990)

Table 1 Mean and variance-covariance of the initial history data of each distribution

Dist" Variable (x;) Mean () VCV (Z,)
Normal N, (1, 2) 0,0,...,0) [0%5 Ois}
t s eneo |10
_— Gam ,(a=3, f=1), 333 { 3 1.5}
p=05 15 3

Dist" is distribution, VCV is variance-covariance.

2.2. Traditional models
In this research, the symbols (i) and (ii) refer to MEWMA and dAMEWMA..

1) MEWMA control chart
The MEWMA equation (Alkahtani and Schaffer 2012) is written as equation number (1):

Yi =A% +(I=A)y; 4, (1)
where y,, i=12,...,n isthe mean vector of each distribution calculated from the random observation
vector of x,. There are the normal distribution, the t distribution, and the gamma distribution,
respectively. y, is the mean vector of the historical data that y, =,. A is the pxp diagonal
smoothing parameter matrix and equal to diag (4, 4,,...,4,) with 0<4, <1, j=12,..,p. 1= 0.05,
0.1,0.2,0.3,0.35,0.4,0.5and 0.8 and T is the identity matrix.

A 2
3, =(ﬁ)[1—(1—/1) ]20, )

where X, is the exact variance-covariance matrix of y;

Ti2 = yi'zyi _1yi ) (3)
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where T,? is the MEWMA control statistics. If T, > UCL
state.

@ thesignal is shown as an out-of-control

2) dAMEWMA control chart
The AMEWMA equation (Alkahtani and Schaffer 2012) is written as equation number (4):

z, =Ay, +(1-A)z, ,, 4)
where z,, i=12,..,n is the mean vector of each distribution calculated from the mean vector of ..
z, is the mean vector of the historical data that z, =y, = 1.

y 1+ (@A-2)% - (i+1)*(1-A)*
== +2i% +2i-1)(L- )7 |, (5)
[1-@-2)*] (1 27

where X, is the exact variance-covariance matrix of z, and

Zj

Td? = Zi’zz,ilzi’ (6)
where T is the (MEWMA control statistics. If T; >UCL
state.

i thesignal is shown as an out-of-control

2.3. Multivariate spatial signed-rank

The multivariate spatial signed rank is modified from the spatial sign as U(x) :||x||’l X, when
x=0. |)x|=(xx)"* as the Euclidean length of a vector X, =(X,,X,,....X,)’, i=12,.,n and
U(x) =0, when x=0. Then, the next step is to modify them again by the spatial ranks as
R(x):AVE{U(x—xi)} to be the multivariate spatial signed rank. The R package named

“SpatialNP” has functions to compute spatial signs, ranks, and signed ranks, that were created by
Sirkia et al. (2018) and are used to transform the data to be spatial signed-rank data. The function is
written as equation number (7):

1
Q(X)=§[RX(X)+R_X(X)], (7
where R(X) =R, (x), Q(x)=Q, (x), and Q(—x) =—-Q(x) that is also odd (Oja 2010).
The QI i=12,..,n is called the standardized spatial signed rank based on the inner

standardization then the Q®(XS™"?) is used to test the statistics for the affine invariant. When the

Q?(XS™?) has a small value, it fails to reject H,:pu=0. Thus, the @, is the affine invariant. The

R package named “MNM” is tested for a multivariate location using different score functions, that
were created by Nordhausen et al. (2018) and is used to the statistical testing of the spatial signed-
rank dataset for the affine invariant test, which is written as equation number (8):

‘AVE{Q }r
lAVE{‘Qir} |

where Q?(XS™?) is the multivariate spatial signed-rank test statistics.

Q*(XS™)=1Q(Q'Q)"Q'L, =np ®)
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2.4. Performance measurement

The average run length (ARL) is used to measure the control chart performance. The ARL is the
average number of points that must be plotted before a point indicates an out-of-control condition. In
this research, the ARL is calculated using the sum of the sample data from the 15,000 units of
consecutive points on an in-control state before signaling the first out- of- control state and repeating
m times, where m is equal to 5,000 (NCSS 2018). The ARL is written as equation number (9):

5,000

> RL,
ARL =< — 9
5,000

where RL, is the k" run length, k =1,2,...,m. RL, is the number of observations used to monitor

before out-of-control in the simulation’s k™ round.

The ARL, is an in-control process that should be large enough, while the ARL, is an out-of-
control process that should be small (Sukparungsee et al. 2017). In this research, the study of the
condition of the ARL, is equal to 370. All of the ARLSs are calculated using the Monte Carlo method.
The ARL,is used to measure the performance of the MEWMA, dMEWMA, SSRM, and SSRdM,
respectively. The ARL depends on the smoothing parameter (1), mean (), and variance-covariance
(Z) through a non-centrality parameter (5), which is used to measure the multivariate distance
between the mean shift (u,,,) and the target mean (z,,,)- The state of an in-control process is &

equal to 0 but the out-of-control process is & equal to 0.1, 0.25, 0.5, 1, 1.5, and 2.5, respectively. The

S is written as equation number (10):
1/2

o= |:(:ushiﬁ - :utarget),zal (/ushift _ﬂlarget)] , (10)

where X is the variance-covariance matrix of the historical data.

2.5. Performance measurement

The transformation of the multivariate control chart was performed by using a spatial signed rank
via the Monte Carlo simulation approach. The Monte Carlo simulation is easy to understand and
popular to use, that is computed via MATLAB software (Thongrong et al. 2016). MATLAB is a
proprietary multi-paradigm programming language and numeric computing environment. The
simulation procedure consists of three main phases, as shown in Figure 2.

tPhase 1: Compute the l.TCLs}

l

(Phase 2: Compute the ARL,]

[Phase 3: Compare the Al{Ll\
J

Figure 2 Simulation procedures
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Phase 1: Compute the UCLSs for each control chart and the distribution of the ARL, to be equal to
370.

1.1) Create arandom nx p matrix x;;, 15,000 units for the normal distribution, the t distribution,
and the gamma distribution.

1.2) Transformation of x; is standardized using a spatial signed rank based on inner
standardization Q(x; ).

1.3) For each distribution, apply 1.1), and 1.2) by separating them from the random vector for a
traditional multivariate control chart (x;), and transforming with a multivariate spatial signed rank
[Q(x)]-

1.4) Apply 1.3) by placing the x; vector to compute the MEWMA, and dMEWMA control
statistics by using Equations (3) and (6), and by putting the Q(x;) vector to compute the SSRM, and
SSRdM control statistics by using Equations (13) and (16).

1.5) Use the control statistics of T2, T2, Q™ and Q"™ are obtained from 1.4) to be

compared with the random initial UCLs value. If the control statistics are greater than the UCLs, the
signal indicates an out-of-control state. Compute the ARL, using Equation (9) on each condition of p

and A with the bisection method, and follow by adjusting the UCLs value until calculating the ARL,

is equal to 370.
1.6) The UCLs are recorded as UCL,;, for MEWMA, UCL,

(i) for A(MEWMA, UCL
and UCL

a for SSRM,

vy Tor SSRdM, respectively.
Phase 2: Compute the ARL; for each multivariate control chart and distribution at the non-centrality
parameter. ¢ isequal to 0.1, 0.25, 0.5, 1, 1.5, and 2.5, respectively.

2.1) Calculate the s, by using Equation (10) which moves out of the 4., for each condition

of 6.
2.2) The g, isobtained from the 2 and add to the first column of x; and Q(x;) in the 1.3).

2.3) Compute the control statistics of T, T2, Q™ , and Q"™ as in 1.4), then compare with

the UCLs from 1.6). Calculate the ARL, by using Equation (9) on each condition of pand A.
2.4) The ARL, are recorded.

Phase 3: Compare the ARL, between the multivariate control charts of each distribution to summarize

the highest efficiency. The conclusion of the highest efficiency multivariate control chart by using the
ARL, in 2.4). These are tested for normal distribution properties by the Kolmogorov-Smirnov (K-S)

test statistics.

3.1) If the results indicate normally distributed, then summarize via randomized complete block
designs.

3.2) If the results indicate non-normally distributed, then summarize via a non-parametric method
using the Friedman test statistics.
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3. New Structural Models
In this research, the symbols (iii) and (iv) refer to SSRM and SSRdM.

3.1. SSRM control chart
The SSRM is modified from the MEWMA and written as equation number (11):

Q(yi) = AQ(Xi) +( _A)Q(yi—l)' (11)
where Q(y;), i=12,...,n isthe mean vector calculated from the spatial signed rank of Q(x;), which
is the observation vector (x;) then transformed by the function of the multivariate spatial signed rank
method. Q(y,) is the mean vector of the historical data that is equal to (0,0,...,0)".

o = (%)[1— A= 2)" |Zgg: (12)
where Zo(y.) is the exact variance- covariance matrix of Q(y,), and ZQ(X.) is the variance-
covariance matrix of Q(x;).

Q™ =Q(Y;) Zqq,) QW) (13)

where Q™ is the SSRM control statistics. If Q™" >UCL,

qiy» the signal is shown as an out-of-

control state.

3.2. SSRAM control chart
The SSRdM is modified from the AMEWMA and written as equation number (14):

Q(Zi) = AQ(yi) + (I —A)Q(ZH), (14)
where Q(z;), 1=12,...,n is the mean vector of each distribution calculated from the mean vector of
Q(y,;)- Q(z,) is the mean vector of the historical data that is equal to (0,0,...,0)".

1+(1-2)° - (i+1)*(1-2)*

N 2'4 i H i+
ZQa) = T +2i7+2i-D)(1- )" 2o, (15)
|: _( - ) :| —iz(l—ﬂ)ZiM
where z oG, 1S the exact variance-covariance matrix of Q(z;).
QiSSRdM = Q(Zi)’zo(zl)ilQ(zi)v (16)

where Q*™™ is the SSRAM control statistics. If Q™™ >UCL,,, the signal is shown as an out- of-

(iv)’
control state.

4. Results and Discussion
4.1. Simulation results

This research uses 15,000 random samples per situation. The three situations are the normal
distribution, the t distribution, and the gamma distribution. The random samples are modified by using
the spatial signed rank based on inner standardization. The researchers give the symbols (i), (ii), (iii),
and (iv) that refer to MEWMA, dMEWMA, SSRM, and SSRdM, respectively. A good UCL for the
control charts gives narrow control limits or small values. In this research, the A < 0.3 refers to the small
smoothing parameters. However, 4 > 0.3 refers to the large smoothing parameters (Baxley 1990).
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When under consideration the 4>0.3, the UCL;, and UCL, control charts are less than the

UCL;, and UCL;, control charts for all distributions, thus the efficiency of the (iii) and (iv) control

charts in detecting the mean shift is better than the (i) and (ii) control charts for all distributions. Both
the normal distribution and the t distribution make the UCL ;;, control chart to be less than the

UCL,,, UCL, and UCL

the mean shift is better than the (i), (ii), and (iv) control charts for the normal distribution and the t
distribution. However, the gamma distribution makes the UCL ;;, control chart to be less than the

UCL
()
in detecting the mean shift is better than the (i), (ii), and (iv) control charts for all A ’s and the gamma
distribution. Therefore, the efficiency of the (iii) control chart in detecting the mean shift is the most
effective for A4 >0.3 and all distributions.
When under consideration the 1 <0.2, the UCL
UCL;, and UCL,
efficiency of the (ii) and (iv) control charts in detecting the mean shift is better than the (i) and (iii)

control charts for the normal distribution and the t distribution. However, the gamma distribution
makes the UCL ;, control chart to be less than the UCL ;,, UCL,,and UCL, control charts for

A <0.2, thus the efficiency of the (iii) control chart in detecting the mean shift is better than the (i),
(i), and (iv) control charts for 1 <0.2 and the gamma distribution. Therefore, the efficiency of the
(iv) control chart in detecting the mean shift is most effective for 1<0.2 and both the normal
distribution and the t distribution. However, the efficiency of the (iii) control chart in detecting the
mean shift is the most effective for 4 <0.2 and the gamma distribution.

When taking these into consideration the 1 <0.3, Both the normal distribution and the t
distribution make the UCL ;,, control chart to be less than the UCL ;,, UCL;, and UCL , control
charts, thus the efficiency of the (iv) control chart in detecting the mean shift is better than the (i), (ii),
and (iii) control charts for the normal distribution and the t distribution. However, the gamma
distribution makes the UCL,;;, control chart to be less than the UCL ;,, UCL ;) and UCL, control

(iii
, control charts, thus the efficiency of the (iii) control chart in detecting

(iv

UCL;, and UCL, control charts forall 1 ’s, thus the efficiency of the (iii) control chart

@ and UCL

) control charts for the normal distribution and the t distribution, thus the

) control charts are less than the

(iv

charts for 4 <0.3, thus the efficiency of the (iii) control chart in detecting the mean shift is better
than the (i), (ii), and (iv) control charts for 4 <0.3 and the gamma distribution. Therefore, the
efficiency of the (iii) control chart is rather close to the (iv) control chart in detecting the mean shift
is the most effective for 0.2< A4 <0.3 and both the normal distribution and the t distribution.
However, the efficiency of the (iii) control chart in detecting the mean shift is most effective for
0.2 < A <0.3 and the gamma distribution, as shown in Figure 3 and Table 2.



700

UCL

005 01 02

MEWMA
----- SSRM

(a) The normal distribution

UCL

03 035 04 05

Thailand Statistician, 2023; 21(3): 691-724

UCL
\
AY

08 A 005 01 02 03 035 04 05 08 X
------ IMEWMA === MEWMA - JMEWMA
SSRIM === SSRM SSRAM

(b) The t distribution

400
300
200

100

005 01 02 03 035 04 05 08 A

MEWMA
————— SSRM

(¢) The gamma distribution

.............. dMEWMA
SSRdM

Figure 3 Comparisons of the UCLs under the different A4 values and distributions

Table 2 Comparisons of the UCLs for the ARL, =370 and p =2 under the different A values and

distributions

7
Dist"  MCC — 55 0.1 02 03 035 04 05 08
() 910 1021 1105 1140 1151 1162 1174 1186

Normal Gy 611 752 909 1007 1044 1072 1114 1181
Gily 875 950 950 894 857 820 745 542

vy 597 737 872 937 954 956 923 656

() 973 118 1529 1841 1076 2107 2344 2824

t (i) 620 776 995 1181 1273 1366 1571 2574
Gily 876 949 949 901 869 836 7.67 568

(v) 591 7.8 872 937 949 951 929 681

() 21725 13123 8519 6905 6436 6073 5560 46.73

camma (i) 36060 20254 11850 89.03 8019 7357 6410 49.81
iy 7147 4155 2462 1807 1599 1435 11.84  7.35

(v) 12108 6725 3830 2767 2439 2177 17.65  9.33

(i). MEWMA,; (ii). AMEWMA,; (iii). SSRM; (iv). SSRdM.

MCC is multivariate control chart.
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The A is a smoothing parameter. A < 0.3 refers to the small smoothing parameters. However,
A >0.3 mean the large smoothing parameters. § is the non-centrality parameter, which is a value
indicating the level of shifts in the mean from the target mean. In this research, there are no shift
(6=0), small shifts (5§ <0.5), moderate shift (5 =1), and large shifts (5§ >1.5) (Graham et al.

2011).
The ARL, values are rounded up in practical applications that are usually integers, as shown in

Appendix A. The ARL, values of the (i), (ii), (iii), and (iv) control charts are tested by using the

Kolmogorov-Smirnov (K-S) test statistics, which provide the p-values to be equal to 0.00 at a
significance level of 0.05. Thus, the ARL, values of all distributions have been non-normally

distributed at a significance level of 0.05 and then summarized the effectiveness of the control charts
via a non-parametric method using the Friedman test statistics. The mean ranks of ARL, values

obtained from the Friedman test statistics are shown in the row as [*] in Table 10 to Table 15, which
show a significant difference at level 0.05 and provide the p-values to be equal to 0.00, and then the
mean ranks in Appendix A are used to conclude the effectiveness of the best control charts under an
unknown distribution, as shown in Table 3.

Appendix A is summarized in Table 3. At § > 0.5, both the normal and t distributions cause the
performance trend of the (iv) control chart to decrease continuously until it reaches 0.3. The (iv)
control chart is most effective when the data has moderate and large mean shifts and small smoothing
parameters. When considering all 5§ ’sand 1> 0.3, the performance trend of the (iii) control chart is
increased continuously and replaces the performance of the (iv) control chart. When the data has
small, moderate, and large mean shifts and large smoothing parameters, the (iii) control chart is the
most effective. For the t distribution, the (ii) control chartat 5 =2.5 and A =0.05 is more effective.
The (ii) control chart is most effective when the data has large mean shifts and only hasa 2 =0.05.
For 6§ <0.5 and all A s, the (iii) control chart is dominant and the most effective (Haanchumpol et
al. 2019). When considering the gamma distribution of all 5 >s and A ’s, the (iii) control chart is
dominant (Haanchumpol et al. 2020). The study's results are in accordance with Baxley (1990), i.e.,
the industrial processes require a smoothing parameter, and A is larger than 0.35 under the non-
normally distributed process.

4.2. Results of real practice

This topic practically proposes the implementation of the newly discovered multivariate control
chart in real factory processes. The researcher defines the symbols (i), (ii), (iii), and (iv) that refer to
MEWMA, dMEWMA, SSRM, and SSRdM, respectively. The real factory examples consist of two
industries including the tensile strength of steel production represents the normally distributed process,
and blade wheel production of the blower housing represents the non-normally distributed process.

1) Case Study 1: the tensile strength of steel production for the normally distributed process

The tensile strength of steel has three important quality characteristics that consist of 1.0% yield
load (KN), breaking load (KN), and elongation (PCT). The sample sizes used are equal to 100 units.
The first group of data is equal to 60 units, which represent the historical data. It is separated into 6
vectors, with each of the vectors consisting of 10 units. These 6 vectors are used for the simulation
and calibrate the necessary parameters for calculating the ARL, and UCLs of the multivariate control

charts in Phase 1 (Zou and Tsung 2011). The distribution of the remaining group with the size of 40
units via the Kolmogorov-Smirnov (K-S) test statistics is not significant at the 0.05 level. Thus, they
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are inferred as a normal distribution. It is separated into 2 vectors, with each of the vectors consisting
of 20 units to repeat 2 times. It is represented by the data that are used to calculate the control statistics
of Phase 2. The conditions of the 1 are equal to 0.35, 0.4, 0.5, 0.6, 0.7, and 0.8. The & shifts are
equal to 0.1, 0.25, and 0.5.

Table 3 Performance of the best control charts using the Friedman test statistics for the ARL, =370
and p =2 under the values of A4, § and distributions

A
Dist” o 0.05 0.1 0.2 03 0.35 0.4 0.5 0.8
0.25 * * * * * * * *
05 * * * * * * * *
Normal 1 (iv) * * * * * * *
15 (iv) (iv) * * * * * *
2.5 (iv) (iv) (iv) * * * * *
0.25 * * * * * * * *
05 * * * * * * * *
t 1 (iv) * * * * * * *
15 (iv) (iv) * * * * * *
2.5 (i) (iv) (iv) * * * * *
0.1 * * * * * * * *
0.25 * * * * * * * *
05 * * * * * * * *
Gamma 1 * * * * * * * *
15 * * * * * * * *
25 * * * * * * * *

(i). MEWMA,; (ii). IMEWMA; (iii). SSRM; (iv). SSRAM.
* SSRM is dominant.

In Appendix B, the researcher presented the UCL ), UCL ), UCL ;, and UCL;, in phase 1 and

(i (i)
the control statistics of the (i), (ii), (iii), and (iv) control charts in Phase 2 for detecting three variables
of the tensile stress of steel for a normally distributed process under the A to be equal to 0.35, 0.4,
0.5, 0.6, 0.7, and 0.8, respectively. Only ¢ is equal to 0.25 when repeated two times. The results can
be read in Figure 4 to Figure 9 as follows:

UCL,.,,UCL

At 1=0.35 and &=0.25 are generated the UCL;, (i) ain and UCL
that are equal to 199.97, 272.96, 10.98, and 13.40, respectively. Then the control statistics for MCCs
in Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 4. The first repeat found
that the (ii) control chart give the first signal as “out-of-control” at the 67" observation, then the
number of responses is saved to be equal to 1 for the (ii) control chart. However, the (iv) control chart
signal is “out-of-control” at the 71" observation, and the (i) and (iii) control chart signals are “out-of-

) control charts,

(iv

control” at the 74" observation, indicating that they are slowly detected. For the second repeat found
that the (ii) control chart gives the first signal as “out-of-control” at the 88" observation, then the
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number of responses is saved to be equal to 1 for the (ii) control chart. However, the (i), (iii), and (iv)
control chart signals are “out-of-control” at the 89" observation, indicating that they are slowly
detected.

At 1=0.4 and &=0.25 are generated the UCL ;,, UCL;,,UCL ;;, and UCL;, control charts,
that are equal to 189.48, 261.40, 10.41, and 12.85, respectively. Then the control statistics for MCCs
in Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 5. The first repeat found
that the (ii) control chart give the first signal as “out-of-control” at the 67" observation, then the
number of responses is saved to be equal to 1 for the (ii) control chart. However, the (iii) and (iv)
control chart signals are “out-of-control” at the 74" observation, and the (i) control chart signal is
“out-of-control” at the 79" observation, indicating that they are slowly detected. For the second repeat
found that the (ii), (iii), and (iv) control charts give the first signal as “out-of-control” at the 89"
observation, then the number of responses is saved to be equal to 1 for the (ii), (iii), and (iv) control
charts. However, the (i) control chart signal is “out-of-control” at the 90™ observation, indicating that
it is slowly detected.

At 1=0.5 and 6=0.25 are generated the UCL ), UCL ;,,UCL ;;, and UCL
that are equal to 166.04, 230.88, 9.60, and 12.63, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 6. The first repeat found that
the (ii), (iii), and (iv) control charts give the first signal as “out-of-control” at the 74™ observation,
then the number of responses is saved to be equal to 1 for the (ii), (iii), and (iv) control charts.
However, the (i) control chart remains “in-control”. For the second repeat found that the (ii) and (iii)
control charts give the first signal as “out-of-control” at the 89" observation, then the number of
responses is saved to be equal to 1 for the (ii) and (iii) control charts. However, the (iv) control chart
signal is “out-of-control” at the 90" observation, indicating that it is slowly detected, and the (i)
control chart remains “in-control”.

At 1=0.6 and 6 =0.25 are generated the UCL;,,UCL ;,,UCL ;;, and UCL , control charts,
that are equal to 141.76, 202.48, 8.56, and 11.04, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 7. The first repeat found that
the (iii) and (iv) control charts give the first signal as “out-of-control” at the 74" observation, then
the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i)
and (ii) control charts remain “in-control”. For the second repeat found that the (iii) control chart gives
the first signal as “out-of-control” at the 89" observation, then the number of responses is saved to
be equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the
90" observation, indicating that it is slowly detected, and the (i) and (ii) control charts remain “in-

control”.
At 1=0.7 and &=0.25 are generated the UCL ;,,UCL ;,,UCL;, and UCL, control charts,

that are equal to 118.94, 169.98, 7.48, and 9.76, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 8. The first repeat found that
the (iii) and (iv) control charts give the first signal as “out-of-control” at the 74" observation, then the

number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) and
(i) control charts remain “in-control”. For the second repeat found that the (iii) control chart gives the

first signal as “out-of-control” at the 89™ observation, then the number of responses is saved to be

) control charts,

(iv
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equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the
90" observation, indicating that it is slowly detected, and the (i) and (ii) control charts remain “in-
control”.

At 1=0.8 and 5=0.25 are generated the UCL,UCL;,,UCL, and UCL,

that are equal to 98.88, 132.28, 6.59, and 7.99, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 9. The first repeat found that
the (iii) and (iv) control charts give the first signal as “out-of-control” at the 74™ observation, then
the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i)
and (ii) control charts remain “in-control”. For the second repeat found that the (iii) and (iv) control
charts give the first signal as “out-of-control” at the 89" observation, then the number of responses
is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) and (ii) control charts
remain “in-control”.

Consequently, the (iii) control chart provides the number of responses quicker than the (i), (ii),
and (iv) control charts for detecting small mean shifts (6 <0.5) and the large smoothing parameters

) control charts,

(4 20.35) under the normally distributed process, as shown in Table 4 that is summarized from
Appendix B.

Table 4 Comparisons of the number of responses for detecting small mean shifts (6 <0.5) and the
large smoothing parameters (A4 >0.35) under the normally distributed process

1) MCC A 21>0.35
0.35 0.4 0.5 0.6 0.7 0.8
()
0.1 (.I.I.) 2 2 2 6
(iii) 1 2 2 1 6
(iv) 1 1 2 4
()
0.25 (_|_|_) 2 2 2 6
(1ir) 1 2 2 2 2 9
(iv) 1 1 1 1 2 6
()
05 (_i_i_) 1 1 1 3
(iii) 1 1 2 2 1 1 8
(iv) 1 1 2 2 2 8
()
5<05 (-|.|-) 5 5 5 15
(iii) 1 2 5 6 5 4 23
(iv) 1 1 2 4 4 6 18

MCC is multivariate control chart.

Table 5 shows the results of the mean ranks of the multivariate control charts are repeated 2 times
via the Friedman test statistics. The mean ranks are classified by 4 and §. The A is equal to 0.35,
0.4, 0.5, 0.6, 0.7, and 0.8, respectively. Each of the A is separated into three sections of the & that
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are equal to 0.1, 0.25, and 0.5, respectively. The distribution of the multivariate control charts in
columns under the small mean shifts (6 <0.5) and the large values of the smoothing parameter

(4 >0.35) via the Kolmogorov-Smirnov (K-S) test statistics are significant at the 0.05 level. Thus,

they are inferred as a non-normal distribution.

Table 5 The mean ranks of MCCs by Friedman test statistics at p =3 for repeat 2 times under the

normally distributed process

P s . " Mean ranks .

(i) (ii) (iii) (iv)

0.1 2.50 1.00 3.25 3.25

0.35 0.25 3.25 1.00 3.25 2.50
0.5 3.75 2.00 2.25 2.00

0.1 4.00 1.00 2.50 2.50

0.4 0.25 4.00 1.50 2.25 2.25
0.5 3.50 1.75 2.00 2.75

0.1 4.00 1.25 2.00 2.75

0.5 0.25 4.00 1.75 1.75 2.50
0.5 4.00 2.00 1.50 2.50

0.1 3.50 3.50 1.25 1.75

0.6 0.25 3.50 3.50 1.25 1.75
0.5 3.50 3.50 1.50 1.50

0.1 3.50 3.50 1.25 1.75

0.7 0.25 3.50 3.50 1.25 1.75
0.5 3.50 3.50 1.75 1.25

0.1 3.25 3.25 2.25 1.25

0.8 0.25 3.50 3.50 1.50 1.50
0.5 3.50 3.50 1.75 1.25

Comparing the performance of multivariate control charts for the small mean shifts (6 <0.5) and

the large smoothing parameter (4 > 0.35) will use Friedman’s test statistics. It is used to compare the

mean ranks between the (i), (ii), (iii), and (iv) control charts. The p-value of the mean ranks is
significant at the 0.05 level. The performances of the (i), (ii), (iii), and (iv) control charts show the
significant differences at the 0.05 level. The (iii) control chart provides a mean rank lower than the (i),
(i), and (iv) control charts. Consequently, the (iii) control chart is the most efficient for detecting small
mean shifts (6 <0.5) and the large smoothing parameters (4 >0.35) under the normally distributed

process, as shown in Table 6.
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Table 6 The ranks of mean ranks of MCCs under the normally distributed process

MCCs Symbols Mean ranks
MEWMA (i) 3.611
dMEWMA (i) 2.361

SSRM (iii) 1.917

SSRdM (iv) 2.111

2) Case Study 2: blade wheel production of the blower housing for the non-normally
distributed process

The blade wheel of the blower has three important quality characteristics that consist of diagonal
length (mm), edge welding (mm), and blade wheel length (mm). The sample sizes used are equal to
140 units. The first group of data is equal to 80 units, which represent the historical data. It is separated
into 8 vectors, with each of the vectors consisting of 10 units. These 8 vectors are used for the
simulation and calibrate the necessary parameters for calculating the ARL,and UCLs of the
multivariate control charts in Phase 1 (Zou and Tsung 2011). The distribution of the remaining group
with the size of 60 units via the Kolmogorov-Smirnov (K-S) test statistics is significant at the 0.05
level. Thus, they are inferred as a non-normal distribution. It is separated into 3 vectors, with each of
the vectors consisting of 20 units to repeat 3 times. It is represented by the data that are used to
calculate the control statistics of Phase 2. The conditions of the 1 are equal to 0.35, 0.4, 0.5, 0.6, 0.7,
and 0.8. The & shifts are equal to 0.1, 0.25, and 0.5.

In Appendix C, the researcher presented the UCL ;,, UCL ), UCL ;;, and UCL
the control statistics of the (i), (ii), (iii), and (iv) control charts in phase 2 for detecting three variables
of the blade wheel of blower for a non-normally distributed process under the A to be equal to 0.35,
0.4,0.5,0.6, 0.7, and 0.8, respectively. Only & is equal to 0.25 when repeated two times. The results
can be read in Figure 10 to Figure 15 as follows:

At 1=0.35 and 6 =0.25 are generated the UCL ;,, UCL ;,,UCL ;;, and UCL,;, control charts,
that are equal to 25.54, 29.36, 14.30, and 18.29, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 10. The first repeat found that
the (iii) and (iv) control charts give the first signal as “out-of-control” at the 100" observation, then
the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i)
and (ii) remain “in-control”. For the second repeat found that the (iii) control chart gives the first signal
as “out-of-control” at the 103" observation, then the number of responses is saved to be equal to 1 for

the (iii) control chart. However, the (iv) signal is “out-of-control” at the 105" observation. The (ii)

, inphase 1 and

(iv

signal is “out-of-control” at the 114" observation, indicating that they are slowly detected, and the (i)
remains “in-control”. For the third repeat found that the (iv) control chart gives the first signal as “out-
of-control” at the 126" observation, then the number of responses is saved to be equal to 1 for the (iv)
control chart. However, the (ii) and (iii) signals are “out-of-control” at the 127" observation, and the
(i) signal is “out-of-control” at the 138™ observation, indicating that they are slowly detected.

At 1=0.4 and 6=0.25 are generated the UCL ;), UCL ;) ,UCL ;, and UCL,, control charts,
that are equal to 23.72, 27.94, 13.37, and 17.78, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 11. The first repeat found that

the (iii) and (iv) control charts give the first signal as “out-of-control” at the 100™ observation, then

(iv
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the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i)
and (ii) remain “in-control”. For the second repeat found that the (iii) control chart gives the first signal
as “out-of-control” at the 102" observation, then the number of responses is saved to be equal to 1
for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the 103"
observation. The (i) control chart signal is “out-of-control” at the 108" observation, and the (ii)
control chart signal is “out-of-control” at the 119" observation, indicating that they are slowly
detected. For the third repeat found that the (iv) control chart gives the first signal as “out-of-control”
at the 126™ observation, then the number of responses is saved to be equal to 1 for the (iv) control
chart. However, the (ii) control chart signal is “out-of-control” at the 127" observation. The (iii)
control chart signal is “out-of-control” at the 131* observation, and the (i) control chart signal is “out-
of-control” at the 138" observation, indicating that they are slowly detected.

At 1=05 and & =0.25 are generated the UCL,,UCL;,,UCL;;, and UCL, control charts,
that are equal to 21.85, 24.18, 11.58, and 15.56, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 12. The first repeat found that
the (iii) and (iv) control charts give the first signal as “out-of-control” at the 100" observation, then
the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i)
and (ii) remain “in-control”. For the second repeat found that the (iii) control chart gives the first signal

as “out-of-control” at the 102™ observation, then the number of responses is saved to be equal to 1 for

(iv

the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the 103"
observation. The (i) control chart signal is “out-of-control” at the 108" observation, indicating that
they are slowly detected, and the (ii) control chart remains “in-control”. For the third repeat found that
the (iv) control chart gives the first signal as “out-of-control” at the 126" observation, then the number
of responses is saved to be equal to 1 for the (iv) control chart. However, the (ii) control chart signal
is “out-of-control” at the 127" observation. The (iii) control chart signal is “out-of-control” at the
131" observation, indicating that they are slowly detected, and the (i) remains “in-control”.

At 1=0.6 and 6=0.25 are generated the UCL;,,UCL ;,,UCL ;) and UCL, control charts,
that are equal to 19.54, 22.43, 10.03, and 13.30, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 13. The first repeat found that
the (i) control chart give the first signal as “out-of-control” at the 94" observation, then the number
of responses is saved to be equal to 1 for the (i) control chart. However, the (iii) and (iv) control chart
signals are “out-of-control” at the 100™ observation, indicating that they are slowly detected, and the
(i) control chart remains “in-control”. For the second repeat found that the (iii) control chart gives the
first signal as “out-of-control” at the 102™ observation, then the number of responses is saved to be
equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the
103" observation. The (i) control chart signal is “out-of-control” at the 108" observation, indicating
that they are slowly detected, and the (ii) control chart remains “in-control”. For the third repeat found
that the (iv) control chart gives the first signal as “out-of-control” at the 126" observation, then the
number of responses is saved to be equal to 1 for the (iv) control chart. However, the (iii) control chart
signal is “out-of-control” at the 131" observation. The (i) control chart signal is “out-of-control” at

(iv
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the 133" observation, and the (ii) control chart signal is “out-of-control” at the 138" observation,
indicating that they are slowly detected.
At 1=0.7 and 5=0.25 are generated the UCL ), UCL,,UCL 3, and UCL g, control charts,

that are equal to 17.59, 20.99, 8.72, and 11.29, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 14. The first repeat found that
the (i) and (iii) control charts give the first signal as “out-of-control” at the 94" observation, then the
number of responses is saved to be equal to 1 for the (i) and (iii) control charts. However, the (ii) and
(iv) control chart signals are “out-of-control” at the 100" observation, indicating that they are slowly
detected. For the second repeat found that the (iii) and (iv) control charts give the first signal as “out-
of-control” at the 102™ observation, then the number of responses is saved to be equal to 1 for the
(iii) and (iv) control charts. However, the (i) and (ii) control chart signals are “out-of-control” at the
108" observation, indicating that they are slowly detected. For the third repeat found that the (iii)

control chart gives the first signal as “out-of-control” at the 130" observation, then the number of
responses is saved to be equal to 1 for the (iii) control chart. However, the (iv) control chart signal is
“out-of-control” at the 131" observation. The (i) control chart signal is “out-of-control” at the 133"
observation, indicating that they are slowly detected, and the (ii) control chart remains “in-control”.
At 1=0.8 and & =0.25 are generated the UCL;,,UCL ), UCL ;;, and UCL, control charts,

that are equal to 15.65, 17.56, 7.61, and 9.42, respectively. Then the control statistics for MCCs in
Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 15. The first repeat found that
the (i), (ii), (iii), and (iv) control charts give the first signal as “out-of-control” at the 94™ observation,
then the number of responses is saved to be equal to 1 for the (i), (ii), (iii), and (iv) control charts. For
the second repeat found that the (iii) and (iv) control charts give the first signal as “out-of-control” at
the 102™ observation, then the number of responses is saved to be equal to 1 for the (iii) and (iv)
control charts. However, the (i) and (ii) control chart signals are “out-of-control” at the 108"
observation, indicating that they are slowly detected. For the third repeat found that the (iii) control
chart gives the first signal as “out-of-control” at the 130™ observation, then the number of responses
is saved to be equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-
control” at the 131* observation. The (i) and (ii) control chart signals are “out-of-control” at the 133"
observation, indicating that they are slowly detected.

Consequently, the (iii) control chart provides the number of responses quicker than the (i), (ii),
and (iv) control charts for detecting small mean shifts (6 <0.5) and the large smoothing parameters
(4>0.35) under the normally distributed process, as shown in Table 7 that is summarized from
Appendix C.

Table 8 shows the results of mean ranks of the multivariate control charts are repeated 3 times via
the Friedman test statistics. The mean ranks are classified by A and §. The A is equal to 0.35, 0.4,
0.5, 0.6, 0.7, and 0.8, respectively. Each of the A is separated into three sections of the § that are
equal to 0.1, 0.25, and 0.5, respectively. The distribution of the multivariate control charts in columns
under the small mean shifts (6 <0.5) and the large values of the smoothing parameter (4 >0.35) via

the Kolmogorov-Smirnov (K-S) test statistics are significant at the 0.05 level. Thus, they are inferred
as a non-normal distribution.
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Table 7 Comparisons of the number of responses for detecting small mean shifts (6 <0.5) and the

large smoothing parameters (4 >0.35) under the non-normally distributed process

2
5 4>0.35
MCC 0.35 0.4 05 0.6 0.7 0.8

10) 1 1 1 3
(ii) 1 1

0.1 (iii) 2 2 2 1 3 3 13
(iv) 2 2 2 1 1 1 9
(i) 1 1 1 3
(i) 1 1

0.25 (iii) 2 2 2 1 3 3 13
(iv) 2 2 2 1 1 2 10
()
(i)

05 (iii) 3 2 2 2 3 3 15
(iv) 2 2 1 2 1 3 11
(i) 2 2 2 6
(i) 2 2

5<05

(iii) 7 6 6 4 9 9 41
(iv) 6 6 5 4 3 6 30

MCC is multivariate control chart

Table 8 The mean ranks of MCCs by Friedman test statistics at p =3 for repeat 3 times under the
non-normally distributed process

Mean ranks

4 0 0 ) (i) W)
0.1 3.50 3.33 1.67 1.50

0.35 0.25 3.83 3.00 1.67 1.50
0.5 3.67 3.33 1.33 1.67

0.1 3.50 3.17 1.83 1.50

0.4 0.25 3.50 3.17 1.83 1.50
05 3.67 3.33 1.50 1.50

0.1 3.17 3.83 1.50 1.50

0.5 0.25 3.50 3.17 1.83 1.50
0.5 3.33 3.33 1.67 1.67

0.1 2.50 3.83 1.83 1.83

0.6 0.25 2.33 4.00 1.83 1.83
05 2.67 4.00 1.50 1.83

0.1 2.67 3.83 1.33 2.17

0.7 0.25 2.67 3.67 1.33 2.33
05 2.83 4.00 1.17 2.00

0.1 3.00 3.00 1.50 2.50

0.8 0.25 3.17 3.17 1.67 2.00

0.5 3.50 3.50 1.50 1.50
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Comparing the performance of multivariate control charts for the small mean shifts (6 <0.5) and
the large smoothing parameter (4> 0.35) will use Friedman’s test statistics. It is used to compare the

mean ranks between the (i), (ii), (iii), and (iv) control charts. The p-value of the mean ranks is
significant at the 0.05 level. The performances of the (i), (ii), (iii), and (iv) control charts show
significant differences at the 0.05 level. The (iii) control chart provides a mean rank lower than the
(i), (ii), and (iv) control charts. Consequently, the (iii) control chart is the most efficient for detecting
small mean shifts (6 <0.5) and the large smoothing parameters (A >0.35) under the non-normally

distributed process, as shown in Table 9.

Table 9 The ranks of mean ranks of MCCs under the non-normally distributed process

MCCs Symbols Mean ranks
MEWMA () 3.500
dMEWMA (i) 3.500
SSRM (iii) 1.444
SSRdM (iv) 1.556

5. Conclusions and Recommendation

This research studied the development of traditional control charts using a spatial signed-rank
method based on inner standardization via the Monte Carlo simulation approach. The random samples
comprised three situations, i.e., normal distribution, the t distribution, and the gamma distribution. In
this research, the (i), (ii), (iii), and (iv) referred to multivariate exponentially weighted moving average
(MEWMA), double multivariate exponentially weighted moving average (AIMEWMA, spatial signed-
rank multivariate exponentially weighted moving average (SSRM), and spatial signed-rank double
multivariate exponentially weighted moving average (SSRAM), respectively.

When considering the efficiency of all control charts under the UCLs, found that the efficiency
of the (iii) control chart in detecting the mean shift was the most effective for 2 >0.3 and all
distributions. However, the efficiency of the (iii) control chart in detecting the mean shift was the most
effective for 2 <0.2 and the gamma distribution. Then the efficiency of the (iii) control chart was
rather close to the (iv) control chart in detecting the mean shift is the most effective for 0.2 < 4 <0.3
and both the normal distribution and the t distribution. However, the efficiency of the (iii) control
chart in detecting the mean shift was most effective for 0.2 <1 <0.3 and the gamma distribution.
Then the efficiency of the (iv) control chart in detecting the mean shift was the most effective for
A1<0.2 and both the normal distribution and the t distribution. As a result, concluded that the
efficiency of the (iii) control chart was most effective in detecting the mean shift for large smoothing
parameters (4 >0.3) and for the normal, t, and gamma distributions, respectively.

Simulation results, the Friedman test statistics was used to compare the best performance for the
control charts regardless of the data distribution. The Friedman test was used to rank the mean of the
ARL, between the (i), (ii), (iii), and (iv) control charts. The normal distribution and the t distribution
at §>0.5 and 1 <0.3, the (iv) control chart, were most effective when the data was moderate and
large mean shifts, and small smoothing parameters. For the normal distribution, the t distribution, and
the gamma distribution at § <0.5 and all A ’s, the (iii) control chart was the most effective when the
data was small mean shifts, and the small and large smoothing parameter.
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Practical results, the real factory examples consist of two industries including the tensile strength
of steel production represents the normally distributed process and blade wheel production of the
blower housing represents the non-normally distributed process. In both processes, the (iii) control
chart provides the mean rank lower than the (i), (ii), and (iv) control charts. Consequently, the (iii)
control chart is most efficient for detecting small mean shifts (6 <0.5) and the large smoothing

parameters (A >0.35) under normal and non-normal distribution processes.

Further study shall generate the gamma distribution for the quality characteristic variables (p) to
be greater than 2, that we could not find a program to generate the gamma distribution for p greater

than 2. In this research, the results could not be compared between the normal distribution, the t
distribution, and the gamma distribution because the researcher did not determine the mean and
variance- covariance values of each random variable distribution were equal. In future research, the
researcher can compare the three quality characteristics in the same distributions under the same mean
and variance, whereby the researcher can transform the t distribution and the gamma distribution into
a normal distribution and compare them. The research can be extended to the Weibull distribution or
other continuous distributions that are continuous variables. The Weibull distribution is one of the
gamma distribution families widely used to study maintenance engineering, quality engineering, and
product reliability analysis. Thus, future studies of the performance of non-parametric multivariate
control charts can be brought to compare between the gamma distribution, the Weibull distribution,
and other continuous distributions. In this research, the performance measure was ARL only. Thus,
the average run length (ARL) and the standard deviation of the run length (SDRL) have been
traditionally used as measures of a control chart’s performance. The run-length distribution is highly
skewed to the right, especially for an in-control process or when the shift is small, so the value of the
SDRL is quite high. Even if the ARL exists, it is, in most cases, associated with a high SDRL, which
is undesirable. Extremely large values for any of the run-length characteristics, mean that those run-
length characteristics can’t be computed within a practical time, i.e., using the ARL as a performance
measure can be misleading. The skewness is higher for smaller shifts in the location. Thus, the median
run length (MRL) is a more credible measure of a chart’s performance since it is less affected by the
skewness of the run-length distribution (Gan 1993, Maravelakis et al. 2005, Teoh etal. 2013). The
use of the MRL ensures better control over the false alarm rate (FAR) in the sense that no more than
50% of the false alarms are guaranteed to be realized before the MRL (Graham et al. 2014).
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Table 10 Comparisons of the ARL, for detecting the mean shifts of 4 =0.05, 0.1, 0.2, and 0.3 when the ARL, =370 and p =2 under the normal distribution

2
0.05 0.1 0.2

5 UCL
910  6.11 8.75 597 1021 752 9.50 737  11.05  9.09 9.50 872 1140 10.07 894 937
(1) (i1) (iii) (iv) (1) (1) (iii) (iv) (1) (i1) (ii1) (iv) (1) (i1) (ii1) (iv)
0 370 370 370 370 371 371 370 371 371 371 370 370 370 370 370 371
ol 241 211 231 209 276 243 255 243 304 283 276 266 321 302 281 282
T [241] [2.69] [226%]  [2.64] [243] [2.69] [2.25%] [2.64] [245] [2.72] [228%] [2.55] [2.50] [2.68] [2.29%] [2.53]
05 83 67 79 67 111 86 96 86 153 118 114 107 185 147 n7 122
[2.55] [2.59] [2.33%]  [2.53] [2.64] [2.59] [2.27%] [2.50] [2.74] [2.69] [2.16%] [2.41] [2.80] [2.76] [2.05%] [2.40]
05 26 22 25 22 32 26 29 26 46 33 33 31 62 43 33 36
[2.59] [2.56] [2.37%]  [248] [2.71] [2.55] [2.26%]  [2.48] [2.92] [2.60] [2.09%] [2.39] [3.05] [2.74] [1.88%] [2.33]
o 8 7 7 6 9 8 8 8 10 9 8 8 13 10 8 9
[2.72] [2.46] [2.53] [2.30%] [2.72] [2.54] [2.32%] [2.43] [2.91] [2.60] [2.06%] [2.43] [3.11] [2.68] [1.84%] [2.37]
s 4 3 4 3 4 4 4 4 5 4 4 4 5 4 4 4
< [2.83] [232]  [2.63] [222%] [2.78] [244] [245] [2.33%*] [2.85] [2.60] [2.15%] [2.40] [2.99] [2.71] [1.89%] [2.40]
55 1 1 1 1 2 1 1 1 2 2 1 1 2 2 1 2
[2.80] [2.26] [2.69] [2.25%] [2.79] [2.34] [2.57] [2.31%] [2.79] [2.48] [2.37] [2.36%] [2.82] [2.60] [2.20%] [2.39]

The one without the bracket [ ]is ARL,

[*] are the mean ranks of the ARL, of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences.



Thidathip Haanchumpol and Chatchai Sermpongpan

715

Table 11 Comparisons of the ARL, for detecting the mean shifts of 1 =0.35, 0.4, 0.5 and 0.8 when the ARL, =370 and p =2 under the normal distribution

0.35

5 UCL
1151 1044 857 954 1162 10.72 820 956 1174 11.14 745 923  11.86 11.81 542 656
(1) (i1) (iii) (iv) (1) (i1) (ii1) (iv) (1) (i1) (ii1) (iv) (1) (i1) (ii1) (iv)
0 371 370 371 371 370 370 371 371 370 370 371 371 370 371 370 370
ol 327 306 272 288 334 317 269 290 340 324 259 286 357 349 197 241
T 2.52] [267]  [227%] [2.54] [2.55] [2.66] [2.26%] [2.54] [2.59] [2.65] [2.25%] [2.511 [2.76] [2.76] [2.09%] [2.39]
025 199 160 ns 129 218 172 1mo 133 237 191 99 129 288 26l 59 83
[2.83] [2.78] [1.97%] [2.41] [2.88] [2.80] [1.90%] [2.42] [2.96] [2.86] [1.83%] [2.35] [3.20] [3.13] [1.60%] [2.08]
05 71 48 33 38 79 53 32 39 101 65 29 39 16l 132 16 24
[3.12] [2.80] [L.77%] [2.31] [3.17] [2.85] [1.70%] [2.29] [3.28] [2.95] [1.58%] [2.20] [3.42] [3.26] [1.42%] [1.90]
o 14 10 8 9 16 1 8 9 21 13 7 9 43 30 4 6
[3.19] [2.73] [174*] [233] [327] [2.79] [1.65%] [2.29] [3.39] [2.91] [1.53%] [2.17] [3.54] [3.22] [1.43*] [1.81]
s 5 4 3 4 6 5 3 4 7 5 3 4 14 9 2 3
2 [3.071 [275] [1.80%] [2.38] [3.16] [2.79] [1.72%] [2.33] [3.30] [2.88] [1.61%*] [2.21] [3.51] [3.15] [1.55%] [1.78]
55 2 2 1 2 2 2 1 2 2 2 1 1 3 2 1 1
2 [2.84] [2.65] [2.13%] [239] [2.89] [2.68] [2.07%] [2.37] [297] [2.75] [1.99%] [2.30] [3.19] [2.96] [1.85%] [2.00]

The one without the bracket [ ]is ARL,

[*] are the mean ranks of the ARL, of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences.
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Table 12 Comparisons of the ARL, for detecting the mean shifts of 4 =0.05, 0.1, 0.2 and 0.3 when the ARL, =370 and p =2 under the t distribution
2
0.05 0.1 0.2 0.3

5 UCL
9.73 6.20 8.76 591 11.88 7.76 9.49 7.28 15.29 9.95 9.49 872 1841 11.81 9.01 9.37
@) (ii) (iii) (iv) @) (i) (iii) (iv) (1) (ii) (iii) (iv) (1) (ii) (iii) @iv)
0 370 370 370 371 371 371 371 371 371 371 371 370 370 370 370 371
0.1 258 220 236 207 304 255 260 244 346 306 271 274 362 333 281 286
' [2.46] [2.72] [2.30%] [2.53] [2.49] [2.69] [2.26%] @ [2.55] [2.50] [2.74] [2.25%] @ [2.52] [2.52] [2.73] [2.28%] [2.47]
025 98 71 81 68 154 94 99 85 255 146 111 110 312 204 117 126
[2.77]  [2.59] [2.25%] [2.39] [2.96] [2.60] [2.17%] @ [2.28] [3.01] [2.75] [1.99%]  [2.25] [3.00] [2.85] [1.92*] [2.23]
0.5 29 23 25 22 45 27 29 26 106 41 33 31 193 67 35 37
' [2.83] [2.53] [2.29%] [2.36] [3.20] [2.46] [2.11%] @ [2.24] [3.48] [2.63] [1.83*] [2.06] [3.54] [2.82] [1.66*] [1.98]
10 8 7 8 7 11 8 8 8 19 10 9 8 44 12 9 9
[2.96] [2.40] [2.46] [2.19*] [3.25] [2.44] [2.15%] @ [2.17] [3.64] [2.54] [1.78*%] @ [2.04] [3.78] [2.73] [1.58%] [1.91]
L5 4 3 4 3 5 4 4 4 7 4 4 4 12 5 4 4
' [3.04] [2.26] [2.58] [2.13*] [3.23] [2.36] [2.28] [2.14*] ([3.61] [2.52] [1.83*%] [2.05] ([3.80] [2.67] [1.60*] [1.93]
25 2 1 1 1 2 1 1 1 2 2 1 1 3 2 1 2
[2.95] [247*] [2.68] [2.21] [3.09] [2.24] [2.49] [2.17%] [3.39] [2.40] @ [2.12] [2.10%*] [3.63] [2.53] [1.85*] [1.99]

The one without the bracket [ ]is ARL,

[*] are the mean ranks of the ARL, of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences.
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Table 13 Comparisons of the ARL, for detecting the mean shifts of 4 =0.35, 0.4, 0.5 and 0.8 when the ARL, =370 and p =2 under the t distribution

035

5 UCL
19.76  12.73 869 949 21.07 13.66 836 951 2344 1571 767 929 2824 2574 568  6.81
() (ii) i) (iv) () (ii) (i) (iv) 6 (ii) (i) (iv) ) (ii) Gi) (v
0 371 370 370 370 370 370 371 370 370 371 370 371 371 371 371 370
ol 362 341 279 289 364 350 280 288 364 355 275 291 369 369 216 253
T[2.52] [273]  [228%] [248] [2.53] [2.72] [2.29%] [2.45] [2.59] [2.66] [2.30%] [2.45] [2.75] [2.74] [2.14%] [2.37]
025 324 232 16 131 332 258 14 132 346 295 108 130 364 356 67 95
[2.99] [2.89] [1.89%*] [223] [2.99] [2.93] [L.87%] [2.21] [3.02] [2.98] [1.82*] [2.17] [3.18] [3.16] [1.63*] [2.03]
05 224 86 35 39 251 109 34 40 286 163 32 40 336 319 19 28
2 [3.52] [291] [1.60%] [1.97] [3.52] [2.97] [1.57%] [1.95] [3.48] [3.09] [1.51%*] [1.92] [3.41] [3.36] [1.40%] [1.83]
o 66 15 8 9 91 19 8 9 142 33 8 9 256 207 5 7
7 [3.81] [2.81] [1.50%] [1.88] [3.82] [2.88] [1.45%] [1.85] [3.82] [2.98] [1.39%*] [1.81] [3.57] [3.37] [1.38%] [1.69]
s 17 6 4 4 25 6 3 4 51 9 3 4 162 102 2 3
< [3.84] [276] [1.52%] [1.88] [3.87] [2.83] [1.47*] [1.84] [3.89] [2.93] [L41*] [L.77] [3.66] [3.29] [1.43*] [1.62]
) 4 2 1 2 4 2 1 2 7 2 1 1 43 16 1 1
2 [3.72] [2.60] [1.75%] [1.94] [3.78] [2.67] [1.67%] [1.88] [3.86] [2.80] [1.57*] [L1.78] [3.79] [3.15] [1.48%] [1.57]

The one without the bracket [ ] is ARL,

[*] are the mean ranks of the ARL, of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences.
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Table 14 Comparisons of the ARL, for detecting the mean shifts of A =0.05, 0.1, 0.2 and 0.3 when the ARL, =370 and p =2 under the gamma distribution

A
0.05 0.1

5 UCL
217.25 360.60 7147 121.08 13123 202.54 4155 6725 85.19 11850 2462 3830 69.05 89.03  18.07 27.67
() (ii) (iii) (iv) (i) (ii) (i)  (iv) (i) (ii) (i)  (iv) (i) (ii) (i) (iv)
0 370 370 370 371 371 371 371 371 370 371 371 371 370 370 370 371
ol 254 246 135 143 268 247 128 125 289 261 133 128 307 285 134 136
: [2.96] [3.64] [1.37%] [2.02] [291] [3.52] [1.58%] [1.99] [2.87] [3.34] [1.75%*] [2.05] [2.89] [3.21] [L.81*] [2.09]
025 154 151 64 79 164 142 49 53 199 157 44 45 230 185 43 45
[3.17] [3.69] [1.06*] [2.09] [3.29] [3.59] [1.26%] [1.87] [3.31] [3.51] [L42%] [L.76] [3.30] [3.45] [1.47%] [1.78]
05 84 92 35 52 81 71 23 30 107 73 17 19 138 91 15 16
: [3.09] [3.80] [1.00%] [2.11] [3.38] [3.56] [1.03%*] [2.04] [3.51] [3.43] [L19%*] [1.87] [3.53] [3.41] [1.28%] [1.78]
o 42 57 18 31 32 34 1 17 35 26 7 9 48 28 5 7
[2.93] [3.99] [1.00%] [2.08] [3.19] [3.77] [1.00%] [2.04] [3.60] [3.38] [1.01*] [2.01] [3.68] [3.29] [L.08*] [1.94]
s 27 42 1 21 18 23 7 11 16 15 4 6 20 13 3 4
: [2.95] [4.00] [1.00%] [2.05] [3.00] [3.97] [1.00%] [2.02] [3.45] [3.54] [1.00%*] [2.02] [3.69] [3.29] [1.04*] [1.98]
)5 15 26 6 11 9 14 3 6 7 8 2 3 6 6 1 2
: [2.98] [4.00] [1.00%] [2.02] [2.98] [4.00] [1.00%] [2.02] [3.06] [3.92] [1.02%] [2.01] [3.44] [3.54] [1.13*] [1.90]

The one without the bracket [ ]is ARL,

[*] are the mean ranks of the ARL, of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences.
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Table 15 Comparisons of the ARL, for detecting the mean shifts of 4 =0.35, 0.4, 0.5 and 0.8 when the ARL, =370 and p =2 under the gamma distribution

035

5 UCL
6436 80.19 1599 2439 60.73 7357 1435 2177 5560 64.10 11.84 17.65 46.73 4981 735 933
(1) (i1) (iif) (iv) (i) (i1) (iif) (iv) () (i1) (iii) (iv) (1) (i1) (iii) (iv)
0 371 370 370 371 371 371 371 371 371 371 371 371 371 370 370 371
ol 316 289 133 140 323 296 132 143 329 307 126 141 344 331 103 120
[2.90] [3.15] [1.82*] [2.13] [2.92] [3.10] [L.84*] [2.15] [2.97] [3.05] [1.85%] [2.13] [3.07] [3.06] [1.82*] [2.05]
025 242 196 43 46 251 210 42 47 271 228 40 46 302 285 29 38
[3.30] [3.41] [1.48%] [1.81] [3.30] [3.38] [1.49%] [1.83] [3.33] [3.33] [1.51*] [1.83] [3.38] [3.34] [1.47%] [1.81]
05 152 99 14 16 163 111 13 15 189 135 12 15 241 214 8 11
[3.54] [3.39] [1.31%] [1.76] [3.54] [3.39] [1.33*] [L75] [3.55] [3.37] [1.35%] [1.74] [3.51] [3.41] [1.39%] [1.69]
o 57 30 5 6 65 34 4 6 85 45 4 5 143 110 3 3
[3.70] [3.27] [1.13*] [1.90] [3.70] [3.27] [L.17%] [1.85] [3.70] [3.27] [1.25%] [1.78] [3.59] [3.38] [1.39%*] [1.64]
s 23 13 3 4 27 14 3 3 38 17 2 3 79 55 1 2
[3.73] [3.25] [1.09%] [1.94] [3.76] [3.22] [1.14*] [1.89] [3.78] [3.20] [1.22*] [1.80] [3.64] [3.34] [1.40%] [1.63]
5 s 7 6 1 2 7 5 1 2 9 5 1 1 23 14 1 1
< [3.57] [340] [1.16%] [1.87] [3.66] [3.32] [1.19%] [1.84] [3.75] [3.22] [1.27%] [L76] [3.69] [3.27] [1.44*] [1.59]

The one without the bracket [ ]is ARL,

[*] are the mean ranks of the ARL, of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences.
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Appendix B: UCLs and control statistics in Phases 1 and 2 for a normally distributed process
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Figure 4 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the tensile stress of steel for a normally distributed process under 2 =0.35 and § =0.25
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Figure 5 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the tensile stress of steel for a normally distributed process under 2 =0.4 and 6 =0.25
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Figure 6 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the tensile stress of steel for a normally distributed process under 4 =0.5and 6§ =0.25
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Figure 7 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the tensile stress of steel for a normally distributed process under 4 =0.6 and 6 =0.25
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Figure 8 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the tensile stress of steel for a normally distributed process under 2 =0.7 and & =0.25
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Figure 9 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the tensile stress of steel for a normally distributed process under 4 =0.8 and §=0.25
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Appendix C: UCLs and control statistics in Phases 1 and 2 for a non-normally distributed process
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Figure 10 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the blade wheel of blower for a non-normally distributed process under 2 =0.35 and § =0.25
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Figure 11 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the blade wheel of blower for a non-normally distributed process under 2 =0.4 and § =0.25
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Figure 12 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
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variables of the blade wheel of blower for a non-normally distributed process under 2 =0.5and & =0.25
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Figure 13 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three

variables of the blade wheel of blower for a non-normally distributed process under 2 =0.6 and 6 =0.25
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Figure 14 UCLs and control statistics in phase 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the blade wheel of blower for a non-normally distributed process under A = 0.7 and § =0.25
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Figure 15 UCLs and control statistics in phase 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three
variables of the blade wheel of blower for a non-normally distributed process under A =0.8and 6 =0.25



