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Abstract 

This research aimed to modify the traditional multivariate control charts by using the multivariate 

spatial signed rank under the normal distribution, the t distribution, and the gamma distribution. The 

performance of the modern multivariate control charts is measured based on the average run length 

(ARL). The ARL is computed using a Monte Carlo simulation. The Monte Carlo approach is applied 

to simulate the circumstances via MATLAB software. The spatial signed-rank multivariate 

exponentially weighted moving average (SSRM) control chart is found to be the most appropriate 

approach to detect the small mean shifts ( 0.5)   and the large smoothing parameters ( 0.35)   of 

all three distributions. Besides, SSRM is a robust tool for detecting waste and is suitable for most 

industrial processes. 

______________________________ 

Keywords: Multivariate exponentially weighted moving average (MEWMA), statistical process control (SPC), 

average run length (ARL), detection of nonconforming product, correlation of quality characteristics. 

 

1. Introduction 

Products that are manufactured using the same machine might still yield different results. Most 

products are made according to detailed specifications. However, some products may not be according 

to the specifications, which are called nonconforming products or wastes. Therefore, nonconforming 

products lead to a negative effect on a company not only through the loss of raw materials but also 

through the cost of man-hours, scrap, and rework, which are called internal failure costs. Internal 

failure costs are incurred when products, components, materials, and services fail to meet quality 

requirements. Statistical process control (SPC) is a method for monitoring and controlling a process 

in order to improve the process’s performance while reducing the variability in key parameters 

(Montgomery 2009). Moreover, it is used to monitor and reduce variability, enabling processes to 

return quickly to a state of control (Montgomery 2013). Univariate control charts are used to monitor 
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and control a single quality characteristic. When several correlated quality characteristics must be 

monitored, some independent control charts might be used incorrectly to monitor and control each 

quality characteristic separately. Consequently, using separate control charts to monitor and control 

multiple correlated quality characteristics is not an efficient way to monitor correlated characteristics 

due to the fact that the correlation among these characteristics weakens the performance of the single 

control charts and also results in a higher false alarm risk. Thus, the multivariate control chart has 

become an issue and has played an important role at the present time. 

Shamma and Shamma (1992) studied the development and evaluation of control charts using 

double exponentially weighted moving average (dEWMA). The dEWMA control chart performed 

much for small and moderate shifts in the process mean better than a Shewhart control chart. The 

properties were similar to an exponentially weighted moving average (EWMA) control chart, but the 

dEWMA had smaller variability and had more smoothing of the data with no compromise in the 

sensitivity of detecting the shifts in the process mean. It also had an optimal average run length (ARL) 

for a larger smoothing parameter when compared with the EWMA control chart which the properties 

were more desirable for some industrial processes. Alkahtani (2013) studied the robustness of the 

dEWMA versus EWMA control charts to non-normal processes. The EWMA and dEWMA charts 

were more robust to the t distribution. The dEWMA was more robust to non-normality for larger 

smoothing parameters. Furthermore, Shamma and Shamma (1992) pointed out that Baxley (1990) 

found a simulated industrial process required a larger   0.35   but the optimal EWMA control 

chart required 0.05.  The dEWMA control chart was more sensitive to larger smoothing 

parameters than the EWMA. Alkahtani and Schaffer (2012) studied a double multivariate 

exponentially weighted moving average (dMEWMA) control chart for process location monitoring. 

The dMEWMA outperformed the MEWMA and Hotelling’s 2  control charts for small and large 

shifts. In comparison to the MEWMA control chart, the dMEWMA chart was optimal for larger 

smoothing parameters ( ) and performs much better for very small shifts in the process mean. 

Tiengket et al. (2020) studied the construction of bivariate copulas on Hotelling’s 
2T  control chart, 

and the bivariate copulas approach can be fitted to Hotelling’s 
2T  control chart. Sukparungsee et al. 

(2021) studied the effects of constructed bivariate copulas on multivariate control chart effectiveness, 

and the performance of Hotelling’s 
2T  control chart is superior to the MCUSUM control chart for all 

shifts in the mean vector of process. Furthermore, by applying the presented control chart to two sets 

of real data, data set of the strength of 1.5 cm glass fibers measured at the National Physical 

Laboratory, England, and a data set of the strength of a glass of the aircraft window, it was found that 

for a small shift ( 0.1),  the MCUSUM control chart is better than Hotelling’s 
2T  control chart. 

Tiengket et al. (2022) studied the efficiency of constructed bivariate copulas for MEWMA and 

Hotelling’s 
2T  control charts, and the performances of the MEWMA and Hotelling’s 

2T  control 

charts were similar for small shifts ( 0.01)   but the MEWMA control chart showed higher 

performance for moderate to large shifts. 

Kvam and Vidakovic (2007) reported that the actual various situations were usually non-normal 

distributions. A nonparametric multivariate control chart could be an alternative and would play an 

important role in the quality control of future products. In the case where analysts do not know the 

underlying distribution of the data, the appropriate statistical techniques are called non-parametric or 

distribution-free methods. In addition, Zeinab (2013) conducted a study of an affine invariant signed-

rank multivariate exponentially weighted moving average (SRMEWMA) control chart for process 
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location monitoring. The SRMEWMA’s performance was superior to the MEWMA and Hotelling’s 
2T  control charts, but its detection of small shifts did respond very well to small smoothing parameters 

in the process mean of the skewed distributions. Chakraborty and Chaudhuri (1998) reported the 

spatial signed-rank method as a transformation-retransformation technique with inner standardization 

that achieved affine invariant and equivariant properties (Nevalainen et al. 2018). 

In this research, the MEWMA and dMEWMA control charts are integrated with the spatial signed 

rank under the normal distribution, the t distribution, and the gamma distribution. The performance 

measure is the ARL. The new multivariate control chart can quickly detect small shifts (  is less than 

or equal to 0.5) at a larger smoothing parameter (   is greater than or equal to 0.35) in the process 

mean under a non-normal distribution. 

 

2. Materials and Methods 

2.1. Initial parameters 

In this research, let ,ijx  1,2,...,i n  and 1,2,...,j p  be the random n p  matrix with the size 

of the sample data being that n is equal to 15,000 units and the quality characteristics ( p ) are equal 

to 2. The n p  matrices are randomized in three situations for the normal distribution, the t 

distribution, and the gamma distribution. The distributions are simulated with a mean matrix 
0( ) , 

and variance-covariance matrix 0( )  as shown in Table 1. These are used in the simulation instead of 

the real history data of the process under the non-centrality parameter  0   is the in-control 

process, the study condition on the 
0ARL  is equal to 370, and the smoothing parameter. ( = 0.05, 

0.1, 0.2, 0.3, 0.35, 0.4, 0.5 and 0.8). Then is simulated under the non-centrality parameter. ( = 0.1, 

0.25, 0.5, 1.0, 1.5 and 2.5) are the out-of-control process. For the study selection of the   and   

values got the idea from several researchers as follows: Montgomery (2005) states that if small shifts 

(roughly 0.5 standard deviations or less) are of primary concern, the typical recommendation is to 

choose a small   to say equal to 0.01, 0.025, or 0.05; if moderate shifts (roughly between 0.5 and 1.5 

standard deviations) are of greater concern choose 0.10,  whereas if larger shifts (roughly 1.5 

standard deviations or more) are of concern, choose 0.20   (Graham et al. 2011). Baxley RV (1990) 

reported that, when drifts are present, using the correct value for   has distinct advantages for 

reduction of process variability because both feedback adjustments are shown in Figure 1, a plot of 

the forecast error sigma versus   over the range from 0 to 1, which is seen to be relatively flat in the 

region around the optimal value of 0.338. 

Consequently, the case studies (p  
0ARL    nDist ) of this research are equal to 168 

scenarios.  
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Figure 1 EWMA forecast error versus lambda for the Monsanto data (Baxley RV 1990) 

 

Table 1 Mean and variance-covariance of the initial history data of each distribution 

nDist  Variable ( )ijx  Mean 
0( )  VCV 

0( )   

Normal 2 ( , )pN    (0,0, ,0)  
1 0.5

0.5 1

 
 
 

 

t  2 5pt    (0,0, ,0)  
1.7 0.85

0.85 1.7

 
 
 

 

Gamma 
 2 3, 1pGam     , 

0.5   
(3,3, ,3)  

3

3

1.5

1.5

 
 
 

 

nDist is distribution, VCV is variance-covariance. 

 

2.2. Traditional models 

In this research, the symbols (i) and (ii) refer to MEWMA and dMEWMA. 

 

1) MEWMA control chart 

The MEWMA equation (Alkahtani and Schaffer 2012) is written as equation number (1): 

 
1( ) ,i i i   y x I y  (1) 

where ,iy  1,2,...,i n  is the mean vector of each distribution calculated from the random observation 

vector of .ix  There are the normal distribution, the t distribution, and the gamma distribution, 

respectively. 
0y  is the mean vector of the historical data that 

0 0.y     is the p p  diagonal 

smoothing parameter matrix and equal to diag 1 2 )( , , , p    with 0< 1,j  1,2,..., .j p   = 0.05, 

0.1, 0.2, 0.3, 0.35, 0.4, 0.5 and 0.8 and Ι  is the identity matrix. 

 2

01 (1 ) ,
2

yi

i




 
         

 (2) 

where 
i


y

 is the exact variance-covariance matrix of 
iy  

 
2 1 ,

y
y y

ii i iT    (3) 
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where 2

iT  is the MEWMA control statistics. If 2

( )UCL ,i iT   the signal is shown as an out-of-control 

state. 

 

2) dMEWMA control chart 

The dMEWMA equation (Alkahtani and Schaffer 2012) is written as equation number (4): 

 
1( ) ,z y I zi i i     (4) 

where ,iz  1,2,...,i n  is the mean vector of each distribution calculated from the mean vector of .yi
 

0z  is the mean vector of the historical data that 
0 0 0. z y   

 

2 2 2

4
2 2 2

3
2

2

0

2 4

( ) ( ) ( )

( )( ) ,

1 1 1 1

2 2 1 1
1 (1 )

(1 )

i

i

i

i

i

i i

i





 
 



     
 

    
     

  

   



z

 







 (5) 

where 
i


z

 is the exact variance-covariance matrix of 
iz  and 

 2 1 ,
idi i iT  

z
z z  (6) 

where 2

diT  is the dMEWMA control statistics. If 2

( ) ,di iiT UCL  the signal is shown as an out-of-control 

state. 

 

2.3. Multivariate spatial signed-rank 

 The multivariate spatial signed rank is modified from the spatial sign as 
1

( ) ,


U x x x  when 

0.x  1/2( )x x x  as the Euclidean length of a vector 
1 2( , , , ) ,i n

x x x x 1,2,...,i n and 

( ) 0,U x  when 0.x  Then, the next step is to modify them again by the spatial ranks as 

 ( ) ( )i R x AVE U x x  to be the multivariate spatial signed rank.  The R package named 

“ SpatialNP”  has functions to compute spatial signs, ranks, and signed ranks, that were created by 

Sirkia et al.  (2018) and are used to transform the data to be spatial signed-rank data.  The function is 

written as equation number (7): 

    
1

( ) ( ) ,
2

x x
Q x R x R x   (7) 

where ,( )) (
x

R x R x  ,( )) (
x

Q x Q x  and ( ) ( )  Q x Q x  that is also odd (Oja 2010). 

The ˆ ,iQ 1,2,...,i n is called the standardized spatial signed rank based on the inner 

standardization then the 2 1/2( )Q 
XS  is used to test the statistics for the affine invariant.  When the 

2 1/2( )Q 
XS  has a small value, it fails to reject 

0 : 0.H µ   Thus, the ˆ
iQ  is the affine invariant.  The 

R package named “MNM” is tested for a multivariate location using different score functions, that 

were created by Nordhausen et al.  ( 2018)  and is used to the statistical testing of the spatial signed-

rank dataset for the affine invariant test, which is written as equation number (8): 

 
 

 

2

2 1/2 1

2

ˆ
ˆ ˆ ˆ ˆ( ) ( ) . ,

ˆ

i

n n

i

Q np    
AVE Q

XS 1 Q Q Q Q 1

AVE Q

 (8) 

where 2 1/2( )Q 
XS  is the multivariate spatial signed-rank test statistics. 
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2.4. Performance measurement 

The average run length (ARL) is used to measure the control chart performance. The ARL is the 

average number of points that must be plotted before a point indicates an out-of-control condition. In 

this research, the ARL is calculated using the sum of the sample data from the 15,000 units of 

consecutive points on an in- control state before signaling the first out- of- control state and repeating 

m times, where m is equal to 5,000 (NCSS 2018). The ARL is written as equation number (9): 

 

5,000

1 ,
5,000

k

k

RL

ARL 


 (9) 

where 
kRL  is the 

thk  run length, 1,2,..., .k m  
kRL is the number of observations used to monitor 

before out-of-control in the simulation’s 
thk  round. 

The 
0ARL  is an in-control process that should be large enough, while the 

1ARL is an out-of-

control process that should be small (Sukparungsee et al. 2017). In this research, the study of the 

condition of the 
0ARL  is equal to 370. All of the ARLs are calculated using the Monte Carlo method. 

The 
1ARL is used to measure the performance of the MEWMA, dMEWMA, SSRM, and SSRdM, 

respectively. The ARL depends on the smoothing parameter ( ),  mean ( ),  and variance-covariance 

( )  through a non-centrality parameter ( ),  which is used to measure the multivariate distance 

between the mean shift ( )shift  and the target mean 
arg( ).t et  The state of an in-control process is   

equal to 0 but the out-of-control process is   equal to 0.1, 0.25, 0.5, 1, 1.5, and 2.5, respectively. The 

  is written as equation number (10): 

  
1/2

1

arg 0 arg( ) ( ) ,shift t et shift t et           (10) 

where 
0  is the variance-covariance matrix of the historical data. 

 

2.5. Performance measurement 

The transformation of the multivariate control chart was performed by using a spatial signed rank 

via the Monte Carlo simulation approach. The Monte Carlo simulation is easy to understand and 

popular to use, that is computed via MATLAB software (Thongrong et al. 2016). MATLAB is a 

proprietary multi-paradigm programming language and numeric computing environment. The 

simulation procedure consists of three main phases, as shown in Figure 2. 

 

 
 

Figure 2 Simulation procedures 
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Phase 1:  Compute the UCLs for each control chart and the distribution of the 
0ARL  to be equal to 

370. 

1.1) Create a random n p  matrix ,ijx  15,000 units for the normal distribution, the t distribution, 

and the gamma distribution. 

1.2) Transformation of 
ijx  is standardized using a spatial signed rank based on inner 

standardization ( ).ijQ x  

1.3) For each distribution, apply 1.1), and 1.2) by separating them from the random vector for a 

traditional multivariate control chart ( ),ix  and transforming with a multivariate spatial signed rank 

 ( ) .iQ x  

1.4) Apply 1.3) by placing the 
ix  vector to compute the MEWMA, and dMEWMA control 

statistics by using Equations (3) and (6), and by putting the 
i( )Q x  vector to compute the SSRM, and 

SSRdM control statistics by using Equations (13) and (16). 

1.5) Use the control statistics of 2 ,iT 2 ,diT ,SSRM

iQ and SSRdM

iQ  are obtained from 1.4) to be 

compared with the random initial UCLs value. If the control statistics are greater than the UCLs, the 

signal indicates an out-of-control state. Compute the 
0ARL using Equation (9) on each condition of p 

and   with the bisection method, and follow by adjusting the UCLs value until calculating the 
0ARL

is equal to 370. 

1.6) The UCLs are recorded as 
( )iUCL  for MEWMA, 

( )iiUCL  for dMEWMA, 
( )iiiUCL  for SSRM, 

and 
( )ivUCL  for SSRdM, respectively. 

 

Phase 2: Compute the ARL1 for each multivariate control chart and distribution at the non-centrality 

parameter.   is equal to 0.1, 0.25, 0.5, 1, 1.5, and 2.5, respectively. 

2.1) Calculate the 
shift  by using Equation (10) which moves out of the 

argt et  for each condition 

of .  

2.2) The 
shift  is obtained from the 2 and add to the first column of 

ix  and 
i( )Q x  in the 1.3). 

2.3) Compute the control statistics of 2Ti
, 2

diT , SSRM

iQ , and SSRdM

iQ  as in 1.4), then compare with 

the UCLs from 1.6). Calculate the 
1ARL by using Equation (9) on each condition of p and .  

2.4) The 
1ARL  are recorded. 

 

Phase 3: Compare the 
1ARL between the multivariate control charts of each distribution to summarize 

the highest efficiency. The conclusion of the highest efficiency multivariate control chart by using the 

1ARL in 2.4). These are tested for normal distribution properties by the Kolmogorov-Smirnov (K-S) 

test statistics. 

3.1) If the results indicate normally distributed, then summarize via randomized complete block 

designs. 

3.2) If the results indicate non-normally distributed, then summarize via a non-parametric method 

using the Friedman test statistics. 
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3. New Structural Models 

In this research, the symbols (iii) and (iv) refer to SSRM and SSRdM. 

 

3.1. SSRM control chart 

The SSRM is modified from the MEWMA and written as equation number (11): 

 
i 1( ) ( ) ( ) ( ),Q y Q x I Q yi i     (11) 

where 
i( ),Q y  1,2,...,i n  is the mean vector calculated from the spatial signed rank of 

i( ),Q x  which 

is the observation vector ( )ix  then transformed by the function of the multivariate spatial signed rank 

method. 
0( )Q y  is the mean vector of the historical data that is equal to (0,0, ,0) .  

 
2

( ) ( )1 (1 ) ,
2

Q y Q xi i

i




 
         

 (12) 

where 
i( ) Q y

 is the exact variance- covariance matrix of 
i( ),Q y  and 

i( ) Q x  is the variance-

covariance matrix of 
i( ).Q x  

 
1

( )( ) ( ),
Q y

Q y Q y
i

SSRM

i i iQ    (13) 

where SSRM

iQ  is the SSRM control statistics.  If ( ) ,
SSRM

i iiiQ UCL  the signal is shown as an out- of-

control state. 

 

3.2. SSRdM control chart 

The SSRdM is modified from the dMEWMA and written as equation number (14): 

 
1( ) ( ) ( ) ( ),Q z Q y I Q zi i i     (14) 

where ( ),iQ z  1,2,...,i n  is the mean vector of each distribution calculated from the mean vector of 

i( ).Q y  
0( )Q z  is the mean vector of the historical data that is equal to (0,0, ,0) .  

 

 

2 2 2

4
2 2 2

3
2

2

)

2 4

( ( )

( ) ( ) ( )

( )( ) ,

1 1 1 1

2 2 1 1
1 (1 )

1( )

Q z Q xi i

i

i

i

i

i i

i

 











 
 



     

 



 
 

 
    

      

 (15) 

where ( )i Q z  is the exact variance-covariance matrix of ( ).Q zi
 

 
1

( )( ) ( ),
Q z

Q z Q z
i

SSRdM

i i iQ    (16) 

where SSRdM

iQ  is the SSRdM control statistics.  If ( ) ,
SSRdM

i ivQ UCL  the signal is shown as an out- of-

control state. 

 

4. Results and Discussion 

4.1. Simulation results 

This research uses 15,000 random samples per situation.  The three situations are the normal 

distribution, the t distribution, and the gamma distribution.  The random samples are modified by using 

the spatial signed rank based on inner standardization.  The researchers give the symbols ( i) , ( ii) , ( iii) , 

and ( iv)  that refer to MEWMA, dMEWMA, SSRM, and SSRdM, respectively.  A good UCL for the 

control charts gives narrow control limits or small values. In this research, the 0.3   refers to the small 

smoothing parameters. However, 0.3   refers to the large smoothing parameters (Baxley 1990). 
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When under consideration the 0.3,  the ( )UCL iii  and 
( )UCL iv

 control charts are less than the 

( )UCL i
 and ( )UCL ii  control charts for all distributions, thus the efficiency of the (iii) and (iv) control 

charts in detecting the mean shift is better than the (i) and (ii) control charts for all distributions. Both 

the normal distribution and the t distribution make the 
( )UCL iii

 control chart to be less than the 

( )UCL ,i
 

( )UCL ii
 and 

( )UCL iv
 control charts, thus the efficiency of the (iii) control chart in detecting 

the mean shift is better than the ( i) , ( ii) , and ( iv)  control charts for the normal distribution and the t 

distribution.  However, the gamma distribution makes the 
( )UCL iii

 control chart to be less than the 

( )UCL ,i
 

( )UCL ii
 and 

( )UCL iv
 control charts for all  ’s, thus the efficiency of the (iii) control chart 

in detecting the mean shift is better than the (i), (ii), and (iv) control charts for all  ’s and the gamma 

distribution.  Therefore, the efficiency of the ( iii)  control chart in detecting the mean shift is the most 

effective for 0.3   and all distributions. 

When under consideration the 0.2,  the 
( )UCL ii

 and ( )UCL iv  control charts are less than the 

( )UCL i
 and 

( )UCL iii
 control charts for the normal distribution and the t distribution, thus the 

efficiency of the ( ii)  and ( iv)  control charts in detecting the mean shift is better than the ( i)  and ( iii) 

control charts for the normal distribution and the t distribution.  However, the gamma distribution 

makes the 
( )UCL iii

 control chart to be less than the 
( )UCL ,i

 ( )UCL ii , and 
( )UCL iv

 control charts for 

0.2,  thus the efficiency of the ( iii)  control chart in detecting the mean shift is better than the ( i) , 

( ii) , and ( iv)  control charts for 0.2   and the gamma distribution.  Therefore, the efficiency of the 

( iv)  control chart in detecting the mean shift is most effective for 0.2   and both the normal 

distribution and the t distribution.  However, the efficiency of the ( iii)  control chart in detecting the 

mean shift is the most effective for 0.2   and the gamma distribution. 

When taking these into consideration the 0.3,   Both the normal distribution and the t 

distribution make the ( )UCL iv  control chart to be less than the ( )UCL ,i ( )UCL ii
 and ( )UCL iii  control 

charts, thus the efficiency of the (iv) control chart in detecting the mean shift is better than the (i), (ii), 

and ( iii)  control charts for the normal distribution and the t distribution.  However, the gamma 

distribution makes the 
( )iiiUCL  control chart to be less than the ( )UCL ,i ( )UCL ii  and ( )UCL iv  control 

charts for 0.3,  thus the efficiency of the ( iii)  control chart in detecting the mean shift is better 

than the ( i) , ( ii) , and ( iv)  control charts for 0.3   and the gamma distribution.  Therefore, the 

efficiency of the ( iii)  control chart is rather close to the ( iv)  control chart in detecting the mean shift 

is the most effective for 0.2 0.3   and both the normal distribution and the t distribution. 

However, the efficiency of the ( iii)  control chart in detecting the mean shift is most effective for 

0.2 0.3   and the gamma distribution, as shown in Figure 3 and Table 2. 
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(a) The normal distribution                                          (b) The t distribution 

 
(c) The gamma distribution 

 

Figure 3 Comparisons of the UCLs under the different   values and distributions 

 

Table 2 Comparisons of the UCLs for the 
0ARL 370  and 2p   under the different   values and 

distributions 

nDist  MCC 
  

0.05 0.1 0.2 0.3 0.35 0.4 0.5 0.8 

Normal 

(i) 9.10 10.21 11.05 11.40 11.51 11.62 11.74 11.86 

(ii) 6.11 7.52 9.09 10.07 10.44 10.72 11.14 11.81 

(iii) 8.75 9.50 9.50 8.94 8.57 8.20 7.45 5.42 

(iv) 5.97 7.37 8.72 9.37 9.54 9.56 9.23 6.56 

t 

(i) 9.73 11.88 15.29 18.41 19.76 21.07 23.44 28.24 

(ii) 6.20 7.76 9.95 11.81 12.73 13.66 15.71 25.74 

(iii) 8.76 9.49 9.49 9.01 8.69 8.36 7.67 5.68 

(iv) 5.91 7.28 8.72 9.37 9.49 9.51 9.29 6.81 

Gamma 

(i) 217.25 131.23 85.19 69.05 64.36 60.73 55.60 46.73 

(ii) 360.60 202.54 118.50 89.03 80.19 73.57 64.10 49.81 

(iii) 71.47 41.55 24.62 18.07 15.99 14.35 11.84 7.35 

(iv) 121.08 67.25 38.30 27.67 24.39 21.77 17.65 9.33 

(i). MEWMA; (ii). dMEWMA; (iii). SSRM; (iv). SSRdM. 

MCC is multivariate control chart. 
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The   is a smoothing parameter.  0.3   refers to the small smoothing parameters.  However, 

0.3   mean the large smoothing parameters.    is the non- centrality parameter, which is a value 

indicating the level of shifts in the mean from the target mean.  In this research, there are no shift 

 0 ,  small shifts ( 0.5),  moderate shift  1 ,  and large shifts ( 1.5)   ( Graham et al. 

2011). 

The 
1ARL values are rounded up in practical applications that are usually integers, as shown in 

Appendix A. The 
1ARL values of the (i), (ii), (iii), and (iv) control charts are tested by using the 

Kolmogorov-Smirnov (K-S) test statistics, which provide the p-values to be equal to 0.00 at a 

significance level of 0.05. Thus, the 
1ARL values of all distributions have been non-normally 

distributed at a significance level of 0.05 and then summarized the effectiveness of the control charts 

via a non-parametric method using the Friedman test statistics. The mean ranks of 
1ARL values 

obtained from the Friedman test statistics are shown in the row as [*] in Table 10 to Table 15, which 

show a significant difference at level 0.05 and provide the p-values to be equal to 0.00, and then the 

mean ranks in Appendix A are used to conclude the effectiveness of the best control charts under an 

unknown distribution, as shown in Table 3. 

Appendix A is summarized in Table 3. At 0.5,  both the normal and t distributions cause the 

performance trend of the ( iv)  control chart to decrease continuously until it reaches 0. 3.  The ( iv) 

control chart is most effective when the data has moderate and large mean shifts and small smoothing 

parameters. When considering all  ’s and 0.3,  the performance trend of the (iii) control chart is 

increased continuously and replaces the performance of the ( iv)  control chart.  When the data has 

small, moderate, and large mean shifts and large smoothing parameters, the ( iii)  control chart is the 

most effective. For the t distribution, the (ii) control chart at 2.5   and 0.05   is more effective. 

The ( ii)  control chart is most effective when the data has large mean shifts and only has a 0.05  . 

For 0.5   and all  ’ s, the ( iii)  control chart is dominant and the most effective (Haanchumpol et 

al.  2019) .  When considering the gamma distribution of all  ’ s and  ’ s, the ( iii)  control chart is 

dominant (Haanchumpol et al. 2020). The study's results are in accordance with Baxley (1990), i.e., 

the industrial processes require a smoothing parameter, and   is larger than 0. 35 under the non-

normally distributed process. 

 

4.2. Results of real practice 

This topic practically proposes the implementation of the newly discovered multivariate control 

chart in real factory processes. The researcher defines the symbols (i), (ii), (iii), and (iv) that refer to 

MEWMA, dMEWMA, SSRM, and SSRdM, respectively. The real factory examples consist of two 

industries including the tensile strength of steel production represents the normally distributed process, 

and blade wheel production of the blower housing represents the non-normally distributed process. 

1) Case Study 1: the tensile strength of steel production for the normally distributed process 

The tensile strength of steel has three important quality characteristics that consist of 1.0% yield 

load (KN), breaking load (KN), and elongation (PCT). The sample sizes used are equal to 100 units. 

The first group of data is equal to 60 units, which represent the historical data. It is separated into 6 

vectors, with each of the vectors consisting of 10 units. These 6 vectors are used for the simulation 

and calibrate the necessary parameters for calculating the 
0ARL  and UCLs of the multivariate control 

charts in Phase 1 (Zou and Tsung 2011). The distribution of the remaining group with the size of 40 

units via the Kolmogorov-Smirnov (K-S) test statistics is not significant at the 0.05 level. Thus, they 
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are inferred as a normal distribution. It is separated into 2 vectors, with each of the vectors consisting 

of 20 units to repeat 2 times. It is represented by the data that are used to calculate the control statistics 

of Phase 2. The conditions of the   are equal to 0.35, 0.4, 0.5, 0.6, 0.7, and 0.8. The   shifts are 

equal to 0.1, 0.25, and 0.5. 

 

Table 3 Performance of the best control charts using the Friedman test statistics for the 
0ARL 370  

and 2p   under the values of ,    and distributions 

nDist    
  

0.05 0.1 0.2 0.3 0.35 0.4 0.5 0.8 

Normal 

0.1 * * * * * * * * 

0.25 * * * * * * * * 

0.5 * * * * * * * * 

1 (iv) * * * * * * * 

1.5 (iv) (iv) * * * * * * 

2.5 (iv) (iv) (iv) * * * * * 

t 

0.1 * * * * * * * * 

0.25 * * * * * * * * 

0.5 * * * * * * * * 

1 (iv) * * * * * * * 

1.5 (iv) (iv) * * * * * * 

2.5 (ii) (iv) (iv) * * * * * 

Gamma 

0.1 * * * * * * * * 

0.25 * * * * * * * * 

0.5 * * * * * * * * 

1 * * * * * * * * 

1.5 * * * * * * * * 

2.5 * * * * * * * * 

   (i). MEWMA; (ii). dMEWMA; (iii). SSRM; (iv). SSRdM. 

   * SSRM is dominant. 

 

In Appendix B, the researcher presented the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv  in phase 1 and 

the control statistics of the (i), (ii), (iii), and (iv) control charts in Phase 2 for detecting three variables 

of the tensile stress of steel for a normally distributed process under the   to be equal to 0.35, 0.4, 

0.5, 0.6, 0.7, and 0.8, respectively. Only   is equal to 0.25 when repeated two times. The results can 

be read in Figure 4 to Figure 9 as follows: 

At 0.35   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv control charts, 

that are equal to 199.97, 272.96, 10.98, and 13.40, respectively. Then the control statistics for MCCs 

in Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 4. The first repeat found 

that the (ii) control chart give the first signal as “out-of-control” at the 
th67 observation, then the 

number of responses is saved to be equal to 1 for the (ii) control chart. However, the (iv) control chart 

signal is “out-of-control” at the st71  observation, and the (i) and (iii) control chart signals are “out-of-

control” at the 
th74 observation, indicating that they are slowly detected. For the second repeat found 

that the (ii) control chart gives the first signal as “out-of-control” at the 88th
observation, then the 
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number of responses is saved to be equal to 1 for the (ii) control chart. However, the (i), (iii), and (iv) 

control chart signals are “out-of-control” at the 
th89  observation, indicating that they are slowly 

detected. 

At 0.4   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv  control charts, 

that are equal to 189.48, 261.40, 10.41, and 12.85, respectively. Then the control statistics for MCCs 

in Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 5. The first repeat found 

that the (ii) control chart give the first signal as “out-of-control” at the 
th67  observation, then the 

number of responses is saved to be equal to 1 for the (ii) control chart. However, the (iii) and (iv) 

control chart signals are “out-of-control” at the 
th74  observation, and the (i) control chart signal is 

“out-of-control” at the th79  observation, indicating that they are slowly detected. For the second repeat 

found that the (ii), (iii), and (iv) control charts give the first signal as “out-of-control” at the 
th89  

observation, then the number of responses is saved to be equal to 1 for the (ii), (iii), and (iv) control 

charts. However, the (i) control chart signal is “out-of-control” at the 
th90  observation, indicating that 

it is slowly detected. 

At 0.5   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv  control charts, 

that are equal to 166.04, 230.88, 9.60, and 12.63, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 6. The first repeat found that 

the (ii), (iii), and (iv) control charts give the first signal as “out-of-control” at the th74  observation, 

then the number of responses is saved to be equal to 1 for the (ii), (iii), and (iv) control charts. 

However, the (i) control chart remains “in-control”. For the second repeat found that the (ii) and (iii) 

control charts give the first signal as “out-of-control” at the 
th89  observation, then the number of 

responses is saved to be equal to 1 for the (ii) and (iii) control charts. However, the (iv) control chart 

signal is “out-of-control” at the 
th90  observation, indicating that it is slowly detected, and the (i) 

control chart remains “in-control”. 

At 0.6   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv  control charts, 

that are equal to 141.76, 202.48, 8.56, and 11.04, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 7. The first repeat found that 

the (iii) and (iv) control charts give the first signal as “out-of-control” at the th74  observation, then 

the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) 

and (ii) control charts remain “in-control”. For the second repeat found that the (iii) control chart gives 

the first signal as “out-of-control” at the 
th89  observation, then the number of responses is saved to 

be equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the 
th90  observation, indicating that it is slowly detected, and the (i) and (ii) control charts remain “in-

control”. 

At 0.7   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv control charts, 

that are equal to 118.94, 169.98, 7.48, and 9.76, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 8. The first repeat found that 

the (iii) and (iv) control charts give the first signal as “out-of-control” at the th74 observation, then the 

number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) and 

(ii) control charts remain “in-control”. For the second repeat found that the (iii) control chart gives the 

first signal as “out-of-control” at the th89  observation, then the number of responses is saved to be 
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equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the 
th90  observation, indicating that it is slowly detected, and the (i) and (ii) control charts remain “in-

control”. 

At 0.8  and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv control charts, 

that are equal to 98.88, 132.28, 6.59, and 7.99, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 9. The first repeat found that 

the (iii) and (iv) control charts give the first signal as “out-of-control” at the th74  observation, then 

the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) 

and (ii) control charts remain “in-control”. For the second repeat found that the (iii) and (iv) control 

charts give the first signal as “out-of-control” at the 
th89  observation, then the number of responses 

is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) and (ii) control charts 

remain “in-control”. 

Consequently, the ( iii)  control chart provides the number of responses quicker than the ( i) , ( ii) , 

and ( iv)  control charts for detecting small mean shifts ( 0.5)   and the large smoothing parameters 

( 5)0.3   under the normally distributed process, as shown in Table 4 that is summarized from 

Appendix B. 

 

Table 4 Comparisons of the number of responses for detecting small mean shifts ( 0.5)   and the 

large smoothing parameters ( 5)0.3   under the normally distributed process 

  MCC 
  

0.35   
0.35 0.4 0.5 0.6 0.7 0.8 

0.1 

(i)        

(ii) 2 2 2    6 

(iii)   1 2 2 1 6 

(iv)    1 1 2 4 

0.25 

(i)        

(ii) 2 2 2    6 

(iii)  1 2 2 2 2 9 

(iv)  1 1 1 1 2 6 

0.5 

(i)        

(ii) 1 1 1    3 

(iii) 1 1 2 2 1 1 8 

(iv) 1  1 2 2 2 8 

0.5   

(i)        

(ii) 5 5 5    15 

(iii) 1 2 5 6 5 4 23 

(iv) 1 1 2 4 4 6 18 

MCC is multivariate control chart. 

 

Table 5 shows the results of the mean ranks of the multivariate control charts are repeated 2 times 

via the Friedman test statistics. The mean ranks are classified by   and  . The   is equal to 0.35, 

0.4, 0.5, 0.6, 0.7, and 0.8, respectively. Each of the   is separated into three sections of the   that 
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are equal to 0.1, 0.25, and 0.5, respectively. The distribution of the multivariate control charts in 

columns under the small mean shifts ( 0.5)   and the large values of the smoothing parameter 

( 5)0.3   via the Kolmogorov-Smirnov (K-S) test statistics are significant at the 0.05 level. Thus, 

they are inferred as a non-normal distribution. 

 

Table 5 The mean ranks of MCCs by Friedman test statistics at 3p   for repeat 2 times under the 

normally distributed process 

    
Mean ranks 

(i) (ii) (iii) (iv) 

0.35 

0.1 2.50 1.00 3.25 3.25 

0.25 3.25 1.00 3.25 2.50 

0.5 3.75 2.00 2.25 2.00 

0.4 

0.1 4.00 1.00 2.50 2.50 

0.25 4.00 1.50 2.25 2.25 

0.5 3.50 1.75 2.00 2.75 

0.5 

0.1 4.00 1.25 2.00 2.75 

0.25 4.00 1.75 1.75 2.50 

0.5 4.00 2.00 1.50 2.50 

0.6 

0.1 3.50 3.50 1.25 1.75 

0.25 3.50 3.50 1.25 1.75 

0.5 3.50 3.50 1.50 1.50 

0.7 

0.1 3.50 3.50 1.25 1.75 

0.25 3.50 3.50 1.25 1.75 

0.5 3.50 3.50 1.75 1.25 

0.8 

0.1 3.25 3.25 2.25 1.25 

0.25 3.50 3.50 1.50 1.50 

0.5 3.50 3.50 1.75 1.25 

 

Comparing the performance of multivariate control charts for the small mean shifts ( 0.5)   and 

the large smoothing parameter ( 5)0.3   will use Friedman’s test statistics. It is used to compare the 

mean ranks between the (i), (ii), (iii), and (iv) control charts. The p-value of the mean ranks is 

significant at the 0.05 level. The performances of the (i), (ii), (iii), and (iv) control charts show the 

significant differences at the 0.05 level. The (iii) control chart provides a mean rank lower than the (i), 

(ii), and (iv) control charts. Consequently, the (iii) control chart is the most efficient for detecting small 

mean shifts ( 0.5)   and the large smoothing parameters ( 5)0.3   under the normally distributed 

process, as shown in Table 6. 
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Table 6 The ranks of mean ranks of MCCs under the normally distributed process 

MCCs Symbols Mean ranks 

MEWMA (i) 3.611 

dMEWMA (ii) 2.361 

SSRM (iii) 1.917 

SSRdM (iv) 2.111 

 

2) Case Study 2: blade wheel production of the blower housing for the non-normally 

distributed process 

The blade wheel of the blower has three important quality characteristics that consist of diagonal 

length (mm), edge welding (mm), and blade wheel length (mm). The sample sizes used are equal to 

140 units. The first group of data is equal to 80 units, which represent the historical data. It is separated 

into 8 vectors, with each of the vectors consisting of 10 units. These 8 vectors are used for the 

simulation and calibrate the necessary parameters for calculating the 
0ARL and UCLs of the 

multivariate control charts in Phase 1 (Zou and Tsung 2011). The distribution of the remaining group 

with the size of 60 units via the Kolmogorov-Smirnov (K-S) test statistics is significant at the 0.05 

level. Thus, they are inferred as a non-normal distribution. It is separated into 3 vectors, with each of 

the vectors consisting of 20 units to repeat 3 times. It is represented by the data that are used to 

calculate the control statistics of Phase 2. The conditions of the   are equal to 0.35, 0.4, 0.5, 0.6, 0.7, 

and 0.8. The   shifts are equal to 0.1, 0.25, and 0.5. 

In Appendix C, the researcher presented the 
( ) ( ) ( )UCL , UCL , UCLi ii iii

 and 
( )UCL iv

 in phase 1 and 

the control statistics of the (i), (ii), (iii), and (iv) control charts in phase 2 for detecting three variables 

of the blade wheel of blower for a non-normally distributed process under the   to be equal to 0.35, 

0.4, 0.5, 0.6, 0.7, and 0.8, respectively. Only   is equal to 0.25 when repeated two times. The results 

can be read in Figure 10 to Figure 15 as follows: 

At 0.35   and 0.25   are generated the 
( ) ( ) ( )UCL , UCL , UCLi ii iii

 and 
( )UCL iv

 control charts, 

that are equal to 25.54, 29.36, 14.30, and 18.29, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 10. The first repeat found that 

the (iii) and (iv) control charts give the first signal as “out-of-control” at the 
th100 observation, then 

the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) 

and (ii) remain “in-control”. For the second repeat found that the (iii) control chart gives the first signal 

as “out-of-control” at the 
rd103 observation, then the number of responses is saved to be equal to 1 for 

the (iii) control chart. However, the (iv) signal is “out-of-control” at the 
th105  observation. The (ii) 

signal is “out-of-control” at the 
th114  observation, indicating that they are slowly detected, and the (i) 

remains “in-control”. For the third repeat found that the (iv) control chart gives the first signal as “out-

of-control” at the 
th126 observation, then the number of responses is saved to be equal to 1 for the (iv) 

control chart. However, the (ii) and (iii) signals are “out-of-control” at the 
th127 observation, and the 

(i) signal is “out-of-control” at the 
th138  observation, indicating that they are slowly detected. 

At 0.4   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and 
( )UCL iv

 control charts, 

that are equal to 23.72, 27.94, 13.37, and 17.78, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 11. The first repeat found that 

the (iii) and (iv) control charts give the first signal as “out-of-control” at the 
th100 observation, then 
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the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) 

and (ii) remain “in-control”. For the second repeat found that the (iii) control chart gives the first signal 

as “out-of-control” at the 
nd102  observation, then the number of responses is saved to be equal to 1 

for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the 
rd103

observation. The (i) control chart signal is “out-of-control” at the 
th108  observation, and the (ii) 

control chart signal is “out-of-control” at the 
th119  observation, indicating that they are slowly 

detected. For the third repeat found that the (iv) control chart gives the first signal as “out-of-control” 

at the 126th
observation, then the number of responses is saved to be equal to 1 for the (iv) control 

chart. However, the (ii) control chart signal is “out-of-control” at the 
th127  observation. The (iii) 

control chart signal is “out-of-control” at the 
st131  observation, and the (i) control chart signal is “out-

of-control” at the 138th
observation, indicating that they are slowly detected. 

At 0.5   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv control charts, 

that are equal to 21.85, 24.18, 11.58, and 15.56, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 12. The first repeat found that 

the (iii) and (iv) control charts give the first signal as “out-of-control” at the 100th
observation, then 

the number of responses is saved to be equal to 1 for the (iii) and (iv) control charts. However, the (i) 

and (ii) remain “in-control”. For the second repeat found that the (iii) control chart gives the first signal 

as “out-of-control” at the 
nd102 observation, then the number of responses is saved to be equal to 1 for 

the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the 103rd

observation. The (i) control chart signal is “out-of-control” at the 
th108 observation, indicating that 

they are slowly detected, and the (ii) control chart remains “in-control”. For the third repeat found that 

the (iv) control chart gives the first signal as “out-of-control” at the 
th126 observation, then the number 

of responses is saved to be equal to 1 for the (iv) control chart. However, the (ii) control chart signal 

is “out-of-control” at the 
th127 observation. The (iii) control chart signal is “out-of-control” at the 

st131  observation, indicating that they are slowly detected, and the (i) remains “in-control”. 

At 0.6   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv  control charts, 

that are equal to 19.54, 22.43, 10.03, and 13.30, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 13. The first repeat found that 

the (i) control chart give the first signal as “out-of-control” at the 
th94  observation, then the number 

of responses is saved to be equal to 1 for the (i) control chart. However, the (iii) and (iv) control chart 

signals are “out-of-control” at the 
th100  observation, indicating that they are slowly detected, and the 

(ii) control chart remains “in-control”. For the second repeat found that the (iii) control chart gives the 

first signal as “out-of-control” at the 
nd102  observation, then the number of responses is saved to be 

equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-control” at the 

103rd
observation. The (i) control chart signal is “out-of-control” at the 

th108 observation, indicating 

that they are slowly detected, and the (ii) control chart remains “in-control”. For the third repeat found 

that the (iv) control chart gives the first signal as “out-of-control” at the 
th126 observation, then the 

number of responses is saved to be equal to 1 for the (iv) control chart. However, the (iii) control chart 

signal is “out-of-control” at the 
st131  observation. The (i) control chart signal is “out-of-control” at 
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the 
rd133 observation, and the (ii) control chart signal is “out-of-control” at the 

th138 observation, 

indicating that they are slowly detected. 

At 0.7   and 0.25   are generated the ( ) ( ) ( )UCL , UCL , UCLi ii iii  and ( )UCL iv control charts, 

that are equal to 17.59, 20.99, 8.72, and 11.29, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 14. The first repeat found that 

the (i) and (iii) control charts give the first signal as “out-of-control” at the 
th94  observation, then the 

number of responses is saved to be equal to 1 for the (i) and (iii) control charts. However, the (ii) and 

(iv) control chart signals are “out-of-control” at the 
th100  observation, indicating that they are slowly 

detected. For the second repeat found that the (iii) and (iv) control charts give the first signal as “out-

of-control” at the 
nd102  observation, then the number of responses is saved to be equal to 1 for the 

(iii) and (iv) control charts. However, the (i) and (ii) control chart signals are “out-of-control” at the 
th108 observation, indicating that they are slowly detected. For the third repeat found that the (iii) 

control chart gives the first signal as “out-of-control” at the 
th130  observation, then the number of 

responses is saved to be equal to 1 for the (iii) control chart. However, the (iv) control chart signal is 

“out-of-control” at the 
st131  observation. The (i) control chart signal is “out-of-control” at the rd133

observation, indicating that they are slowly detected, and the (ii) control chart remains “in-control”. 

At 0.8   and 0.25   are generated the 
( ) ( ) ( )UCL , UCL , UCLi ii iii

 and 
( )UCL iv

 control charts, 

that are equal to 15.65, 17.56, 7.61, and 9.42, respectively. Then the control statistics for MCCs in 

Phase 2 are compared with the UCLs from Phase 1, as shown in Figure 15. The first repeat found that 

the (i), (ii), (iii), and (iv) control charts give the first signal as “out-of-control” at the th94 observation, 

then the number of responses is saved to be equal to 1 for the (i), (ii), (iii), and (iv) control charts. For 

the second repeat found that the (iii) and (iv) control charts give the first signal as “out-of-control” at 

the nd102  observation, then the number of responses is saved to be equal to 1 for the (iii) and (iv) 

control charts. However, the (i) and (ii) control chart signals are “out-of-control” at the th108

observation, indicating that they are slowly detected. For the third repeat found that the (iii) control 

chart gives the first signal as “out-of-control” at the th130  observation, then the number of responses 

is saved to be equal to 1 for the (iii) control chart. However, the (iv) control chart signal is “out-of-

control” at the 
st131 observation. The (i) and (ii) control chart signals are “out-of-control” at the rd133

observation, indicating that they are slowly detected. 

Consequently, the (iii) control chart provides the number of responses quicker than the (i), (ii), 

and (iv) control charts for detecting small mean shifts ( 0.5)   and the large smoothing parameters 

( 5)0.3   under the normally distributed process, as shown in Table 7 that is summarized from 

Appendix C. 

Table 8 shows the results of mean ranks of the multivariate control charts are repeated 3 times via 

the Friedman test statistics. The mean ranks are classified by   and  . The   is equal to 0.35, 0.4, 

0.5, 0.6, 0.7, and 0.8, respectively. Each of the   is separated into three sections of the   that are 

equal to 0.1, 0.25, and 0.5, respectively. The distribution of the multivariate control charts in columns 

under the small mean shifts ( 0.5)   and the large values of the smoothing parameter ( 5)0.3   via 

the Kolmogorov-Smirnov (K-S) test statistics are significant at the 0.05 level. Thus, they are inferred 

as a non-normal distribution. 
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Table 7 Comparisons of the number of responses for detecting small mean shifts ( 0.5)   and the 

large smoothing parameters ( 5)0.3   under the non-normally distributed process 

  MCC 
  

0.35   
0.35 0.4 0.5 0.6 0.7 0.8 

0.1 

(i)    1 1 1 3 

(ii)      1 1 

(iii) 2 2 2 1 3 3 13 

(iv) 2 2 2 1 1 1 9 

0.25 

(i)    1 1 1 3 

(ii)      1 1 

(iii) 2 2 2 1 3 3 13 

(iv) 2 2 2 1 1 2 10 

0.5 

(i)        

(ii)        

(iii) 3 2 2 2 3 3 15 

(iv) 2 2 1 2 1 3 11 

0.5   

(i)    2 2 2 6 

(ii)      2 2 

(iii) 7 6 6 4 9 9 41 

(iv) 6 6 5 4 3 6 30 
MCC is multivariate control chart 

 

Table 8 The mean ranks of MCCs by Friedman test statistics at 3p   for repeat 3 times under the 

non-normally distributed process 

    
Mean ranks 

(i) (ii) (iii) (iv) 

0.35 

0.1 3.50 3.33 1.67 1.50 

0.25 3.83 3.00 1.67 1.50 

0.5 3.67 3.33 1.33 1.67 

0.4 

0.1 3.50 3.17 1.83 1.50 

0.25 3.50 3.17 1.83 1.50 

0.5 3.67 3.33 1.50 1.50 

0.5 

0.1 3.17 3.83 1.50 1.50 

0.25 3.50 3.17 1.83 1.50 

0.5 3.33 3.33 1.67 1.67 

0.6 

0.1 2.50 3.83 1.83 1.83 

0.25 2.33 4.00 1.83 1.83 

0.5 2.67 4.00 1.50 1.83 

0.7 

0.1 2.67 3.83 1.33 2.17 

0.25 2.67 3.67 1.33 2.33 

0.5 2.83 4.00 1.17 2.00 

0.8 

0.1 3.00 3.00 1.50 2.50 

0.25 3.17 3.17 1.67 2.00 

0.5 3.50 3.50 1.50 1.50 
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Comparing the performance of multivariate control charts for the small mean shifts ( 0.5)   and 

the large smoothing parameter ( 5)0.3   will use Friedman’s test statistics. It is used to compare the 

mean ranks between the ( i) , ( ii) , ( iii) , and ( iv)  control charts.  The p- value of the mean ranks is 

significant at the 0. 05 level.  The performances of the ( i) , ( ii) , ( iii) , and ( iv)  control charts show 

significant differences at the 0. 05 level.  The ( iii)  control chart provides a mean rank lower than the 

(i), (ii), and (iv) control charts. Consequently, the (iii) control chart is the most efficient for detecting 

small mean shifts ( 0.5)   and the large smoothing parameters ( 5)0.3   under the non- normally 

distributed process, as shown in Table 9. 

 

Table 9 The ranks of mean ranks of MCCs under the non-normally distributed process 

MCCs Symbols Mean ranks 

MEWMA (i) 3.500 

dMEWMA (ii) 3.500 

SSRM (iii) 1.444 

SSRdM (iv) 1.556 

 

5. Conclusions and Recommendation 

This research studied the development of traditional control charts using a spatial signed- rank 

method based on inner standardization via the Monte Carlo simulation approach. The random samples 

comprised three situations, i.e., normal distribution, the t distribution, and the gamma distribution. In 

this research, the (i), (ii), (iii), and (iv) referred to multivariate exponentially weighted moving average 

(MEWMA), double multivariate exponentially weighted moving average (dMEWMA, spatial signed-

rank multivariate exponentially weighted moving average ( SSRM) , and spatial signed- rank double 

multivariate exponentially weighted moving average (SSRdM), respectively. 

When considering the efficiency of all control charts under the UCLs, found that the efficiency 

of the ( iii)  control chart in detecting the mean shift was the most effective for 0.3   and all 

distributions. However, the efficiency of the (iii) control chart in detecting the mean shift was the most 

effective for 0.2   and the gamma distribution.  Then the efficiency of the ( iii)  control chart was 

rather close to the (iv) control chart in detecting the mean shift is the most effective for 30 2 .. 0 

and both the normal distribution and the t distribution.  However, the efficiency of the ( iii)  control 

chart in detecting the mean shift was most effective for 30 2 .. 0   and the gamma distribution. 

Then the efficiency of the ( iv)  control chart in detecting the mean shift was the most effective for 

0.2   and both the normal distribution and the t distribution.  As a result, concluded that the 

efficiency of the (iii) control chart was most effective in detecting the mean shift for large smoothing 

parameters ( 3)0.   and for the normal, t, and gamma distributions, respectively. 

Simulation results, the Friedman test statistics was used to compare the best performance for the 

control charts regardless of the data distribution.  The Friedman test was used to rank the mean of the 

1ARL  between the (i), (ii), (iii), and (iv) control charts. The normal distribution and the t distribution 

at 0.5   and 0.3,   the ( iv)  control chart, were most effective when the data was moderate and 

large mean shifts, and small smoothing parameters. For the normal distribution, the t distribution, and 

the gamma distribution at 0.5   and all  ’s, the (iii) control chart was the most effective when the 

data was small mean shifts, and the small and large smoothing parameter. 
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Practical results, the real factory examples consist of two industries including the tensile strength 

of steel production represents the normally distributed process and blade wheel production of the 

blower housing represents the non- normally distributed process.  In both processes, the ( iii)  control 

chart provides the mean rank lower than the ( i) , ( ii) , and ( iv)  control charts.  Consequently, the ( iii) 

control chart is most efficient for detecting small mean shifts ( 5)0.   and the large smoothing 

parameters ( 5)0.3   under normal and non-normal distribution processes. 

Further study shall generate the gamma distribution for the quality characteristic variables (p) to 

be greater than 2, that we could not find a program to generate the gamma distribution for p  greater 

than 2.  In this research, the results could not be compared between the normal distribution, the t 

distribution, and the gamma distribution because the researcher did not determine the mean and 

variance- covariance values of each random variable distribution were equal.  In future research, the 

researcher can compare the three quality characteristics in the same distributions under the same mean 

and variance, whereby the researcher can transform the t distribution and the gamma distribution into 

a normal distribution and compare them. The research can be extended to the Weibull distribution or 

other continuous distributions that are continuous variables.  The Weibull distribution is one of the 

gamma distribution families widely used to study maintenance engineering, quality engineering, and 

product reliability analysis.  Thus, future studies of the performance of non- parametric multivariate 

control charts can be brought to compare between the gamma distribution, the Weibull distribution, 

and other continuous distributions.  In this research, the performance measure was ARL only.  Thus, 

the average run length ( ARL)  and the standard deviation of the run length ( SDRL)  have been 

traditionally used as measures of a control chart’s performance. The run-length distribution is highly 

skewed to the right, especially for an in-control process or when the shift is small, so the value of the 

SDRL is quite high. Even if the ARL exists, it is, in most cases, associated with a high SDRL, which 

is undesirable.  Extremely large values for any of the run- length characteristics, mean that those run-

length characteristics can’t be computed within a practical time, i.e., using the ARL as a performance 

measure can be misleading. The skewness is higher for smaller shifts in the location. Thus, the median 

run length (MRL) is a more credible measure of a chart’s performance since it is less affected by the 

skewness of the run-length distribution (Gan 1993, Maravelakis et al. 2005, Teoh et al. 2013). The 

use of the MRL ensures better control over the false alarm rate (FAR)  in the sense that no more than 

50% of the false alarms are guaranteed to be realized before the MRL (Graham et al. 2014). 
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Appendix A: Comparisons of the 
1

ARL  

 

Table 10 Comparisons of the 
1ARL  for detecting the mean shifts of 

  0.05, 0.1, 0.2,   and 0.3 when the 
0ARL 370  and 2p   under the normal distribution 

  

  

0.05 0.1 0.2 0.3 

UCL 

9.10 6.11 8.75 5.97 10.21 7.52 9.50 7.37 11.05 9.09 9.50 8.72 11.40 10.07 8.94 9.37 

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

0 370 370 370 370 371 371 370 371 371 371 370 370 370 370 370 371 

0.1 
241 

[2.41] 

211 

[2.69] 

231 

[2.26*] 

209 

[2.64] 

276 

[2.43] 

243 

[2.69] 

255 

[2.25*] 

243 

[2.64] 

304 

[2.45] 

283 

[2.72] 

276 

[2.28*] 

266 

[2.55] 

321 

[2.50] 

302 

[2.68] 

281 

[2.29*] 

282 

[2.53] 

0.25 
83 

[2.55] 

67 

[2.59] 

79 

[2.33*] 

67 

[2.53] 

111 

[2.64] 

86 

[2.59] 

96 

[2.27*] 

86 

[2.50] 

153 

[2.74] 

118 

[2.69] 

114 

[2.16*] 

107 

[2.41] 

185 

[2.80] 

147 

[2.76] 

117 

[2.05*] 

122 

[2.40] 

0.5 
26 

[2.59] 

22 

[2.56] 

25 

[2.37*] 

22 

[2.48] 

32 

[2.71] 

26 

[2.55] 

29 

[2.26*] 

26 

[2.48] 

46 

[2.92] 

33 

[2.60] 

33 

[2.09*] 

31 

[2.39] 

62 

[3.05] 

43 

[2.74] 

33 

[1.88*] 

36 

[2.33] 

1.0 
8 

[2.72] 

7 

[2.46] 

7 

[2.53] 

6 

[2.30*] 

9 

[2.72] 

8 

[2.54] 

8 

[2.32*] 

8 

[2.43] 

10 

[2.91] 

9 

[2.60] 

8 

[2.06*] 

8 

[2.43] 

13 

[3.11] 

10 

[2.68] 

8 

[1.84*] 

9 

[2.37] 

1.5 
4 

[2.83] 

3 

[2.32] 

4 

[2.63] 

3 

[2.22*] 

4 

[2.78] 

4 

[2.44] 

4 

[2.45] 

4 

[2.33*] 

5 

[2.85] 

4 

[2.60] 

4 

[2.15*] 

4 

[2.40] 

5 

[2.99] 

4 

[2.71] 

4 

[1.89*] 

4 

[2.40] 

2.5 
1 

[2.80] 

1 

[2.26] 

1 

[2.69] 

1 

[2.25*] 

2 

[2.79] 

1 

[2.34] 

1 

[2.57] 

1 

[2.31*] 

2 

[2.79] 

2 

[2.48] 

1 

[2.37] 

1 

[2.36*] 

2 

[2.82] 

2 

[2.60] 

1 

[2.20*] 

2 

[2.39] 

The one without the bracket [ ] is 1ARL  

[*] are the mean ranks of the 1ARL  of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences. 
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Table 11 Comparisons of the 
1ARL  for detecting the mean shifts of   0.35, 0.4, 0.5 and 0.8 when the 

0ARL 370  and 2p   under the normal distribution 

  

  

0.35 0.4 0.5 0.8 

UCL 

11.51 10.44 8.57 9.54 11.62 10.72 8.20 9.56 11.74 11.14 7.45 9.23 11.86 11.81 5.42 6.56 

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

0 371 370 371 371 370 370 371 371 370 370 371 371 370 371 370 370 

0.1 
327 

[2.52] 

306 

[2.67] 

272 

[2.27*] 

288 

[2.54] 

334 

[2.55] 

317 

[2.66] 

269 

[2.26*] 

290 

[2.54] 

340 

[2.59] 

324 

[2.65] 

259 

[2.25*] 

286 

[2.51] 

357 

[2.76] 

349 

[2.76] 

197 

[2.09*] 

241 

[2.39] 

0.25 
199 

[2.83] 

160 

[2.78] 

115 

[1.97*] 

129 

[2.41] 

218 

[2.88] 

172 

[2.80] 

110 

[1.90*] 

133 

[2.42] 

237 

[2.96] 

191 

[2.86] 

99 

[1.83*] 

129 

[2.35] 

288 

[3.20] 

261 

[3.13] 

59 

[1.60*] 

83 

[2.08] 

0.5 
71 

[3.12] 

48 

[2.80] 

33 

[1.77*] 

38 

[2.31] 

79 

[3.17] 

53 

[2.85] 

32 

[1.70*] 

39 

[2.29] 

101 

[3.28] 

65 

[2.95] 

29 

[1.58*] 

39 

[2.20] 

161 

[3.42] 

132 

[3.26] 

16 

[1.42*] 

24 

[1.90] 

1.0 
14 

[3.19] 

10 

[2.73] 

8 

[1.74*] 

9 

[2.33] 

16 

[3.27] 

11 

[2.79] 

8 

[1.65*] 

9 

[2.29] 

21 

[3.39] 

13 

[2.91] 

7 

[1.53*] 

9 

[2.17] 

43 

[3.54] 

30 

[3.22] 

4 

[1.43*] 

6 

[1.81] 

1.5 
5 

[3.07] 

4 

[2.75] 

3 

[1.80*] 

4 

[2.38] 

6 

[3.16] 

5 

[2.79] 

3 

[1.72*] 

4 

[2.33] 

7 

[3.30] 

5 

[2.88] 

3 

[1.61*] 

4 

[2.21] 

14 

[3.51] 

9 

[3.15] 

2 

[1.55*] 

3 

[1.78] 

2.5 
2 

[2.84] 

2 

[2.65] 

1 

[2.13*] 

2 

[2.39] 

2 

[2.89] 

2 

[2.68] 

1 

[2.07*] 

2 

[2.37] 

2 

[2.97] 

2 

[2.75] 

1 

[1.99*] 

1 

[2.30] 

3 

[3.19] 

2 

[2.96] 

1 

[1.85*] 

1 

[2.00] 

The one without the bracket [ ] is 1ARL  

[*] are the mean ranks of the 1ARL  of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences. 
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Table 12 Comparisons of the 
1ARL for detecting the mean shifts of   0.05, 0.1, 0.2 and 0.3 when the 

0ARL 370  and 2p   under the t distribution 

  

  

0.05 0.1 0.2 0.3 

UCL 

9.73 6.20 8.76 5.91 11.88 7.76 9.49 7.28 15.29 9.95 9.49 8.72 18.41 11.81 9.01 9.37 

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

0 370 370 370 371 371 371 371 371 371 371 371 370 370 370 370 371 

0.1 
258 

[2.46] 

220 

[2.72] 

236 

[2.30*] 

207 

[2.53] 

304 

[2.49] 

255 

[2.69] 

260 

[2.26*] 

244 

[2.55] 

346 

[2.50] 

306 

[2.74] 

271 

[2.25*] 

274 

[2.52] 

362 

[2.52] 

333 

[2.73] 

281 

[2.28*] 

286 

[2.47] 

0.25 
98 

[2.77] 

71 

[2.59] 

81 

[2.25*] 

68 

[2.39] 

154 

[2.96] 

94 

[2.60] 

99 

[2.17*] 

85 

[2.28] 

255 

[3.01] 

146 

[2.75] 

111 

[1.99*] 

110 

[2.25] 

312 

[3.00] 

204 

[2.85] 

117 

[1.92*] 

126 

[2.23] 

0.5 
29 

[2.83] 

23 

[2.53] 

25 

[2.29*] 

22 

[2.36] 

45 

[3.20] 

27 

[2.46] 

29 

[2.11*] 

26 

[2.24] 

106 

[3.48] 

41 

[2.63] 

33 

[1.83*] 

31 

[2.06] 

193 

[3.54] 

67 

[2.82] 

35 

[1.66*] 

37 

[1.98] 

1.0 
8 

[2.96] 

7 

[2.40] 

8 

[2.46] 

7 

[2.19*] 

11 

[3.25] 

8 

[2.44] 

8 

[2.15*] 

8 

[2.17] 

19 

[3.64] 

10 

[2.54] 

9 

[1.78*] 

8 

[2.04] 

44 

[3.78] 

12 

[2.73] 

9 

[1.58*] 

9 

[1.91] 

1.5 
4 

[3.04] 

3 

[2.26] 

4 

[2.58] 

3 

[2.13*] 

5 

[3.23] 

4 

[2.36] 

4 

[2.28] 

4 

[2.14*] 

7 

[3.61] 

4 

[2.52] 

4 

[1.83*] 

4 

[2.05] 

12 

[3.80] 

5 

[2.67] 

4 

[1.60*] 

4 

[1.93] 

2.5 
2 

[2.95] 

1 

[2.17*] 

1 

[2.68] 

1 

[2.21] 

2 

[3.09] 

1 

[2.24] 

1 

[2.49] 

1 

[2.17*] 

2 

[3.39] 

2 

[2.40] 

1 

[2.12] 

1 

[2.10*] 

3 

[3.63] 

2 

[2.53] 

1 

[1.85*] 

2 

[1.99] 

The one without the bracket [ ] is 1ARL  

[*] are the mean ranks of the 1ARL  of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences. 
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Table 13 Comparisons of the 
1ARL for detecting the mean shifts of   0.35, 0.4, 0.5 and 0.8 when the 

0ARL 370  and 2p   under the t distribution 

  

  

0.35 0.4 0.5 0.8 

UCL 

19.76 12.73 8.69 9.49 21.07 13.66 8.36 9.51 23.44 15.71 7.67 9.29 28.24 25.74 5.68 6.81 

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

0 371 370 370 370 370 370 371 370 370 371 370 371 371 371 371 370 

0.1 
362 

[2.52] 

341 

[2.73] 

279 

[2.28*] 

289 

[2.48] 

364 

[2.53] 

350 

[2.72] 

280 

[2.29*] 

288 

[2.45] 

364 

[2.59] 

355 

[2.66] 

275 

[2.30*] 

291 

[2.45] 

369 

[2.75] 

369 

[2.74] 

216 

[2.14*] 

253 

[2.37] 

0.25 
324 

[2.99] 

232 

[2.89] 

116 

[1.89*] 

131 

[2.23] 

332 

[2.99] 

258 

[2.93] 

114 

[1.87*] 

132 

[2.21] 

346 

[3.02] 

295 

[2.98] 

108 

[1.82*] 

130 

[2.17] 

364 

[3.18] 

356 

[3.16] 

67 

[1.63*] 

95 

[2.03] 

0.5 
224 

[3.52] 

86 

[2.91] 

35 

[1.60*] 

39 

[1.97] 

251 

[3.52] 

109 

[2.97] 

34 

[1.57*] 

40 

[1.95] 

286 

[3.48] 

163 

[3.09] 

32 

[1.51*] 

40 

[1.92] 

336 

[3.41] 

319 

[3.36] 

19 

[1.40*] 

28 

[1.83] 

1.0 
66 

[3.81] 

15 

[2.81] 

8 

[1.50*] 

9 

[1.88] 

91 

[3.82] 

19 

[2.88] 

8 

[1.45*] 

9 

[1.85] 

142 

[3.82] 

33 

[2.98] 

8 

[1.39*] 

9 

[1.81] 

256 

[3.57] 

207 

[3.37] 

5 

[1.38*] 

7 

[1.69] 

1.5 
17 

[3.84] 

6 

[2.76] 

4 

[1.52*] 

4 

[1.88] 

25 

[3.87] 

6 

[2.83] 

3 

[1.47*] 

4 

[1.84] 

51 

[3.89] 

9 

[2.93] 

3 

[1.41*] 

4 

[1.77] 

162 

[3.66] 

102 

[3.29] 

2 

[1.43*] 

3 

[1.62] 

2.5 
4 

[3.72] 

2 

[2.60] 

1 

[1.75*] 

2 

[1.94] 

4 

[3.78] 

2 

[2.67] 

1 

[1.67*] 

2 

[1.88] 

7 

[3.86] 

2 

[2.80] 

1 

[1.57*] 

1 

[1.78] 

43 

[3.79] 

16 

[3.15] 

1 

[1.48*] 

1 

[1.57] 

The one without the bracket [ ] is 1ARL  

[*] are the mean ranks of the 1ARL  of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences. 
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Table 14 Comparisons of the 
1ARL for detecting the mean shifts of   0.05, 0.1, 0.2 and 0.3 when the 

0ARL 370  and 2p   under the gamma distribution 

  

  

0.05 0.1 0.2 0.3 

UCL 

217.25 360.60 71.47 121.08 131.23 202.54 41.55 67.25 85.19 118.50 24.62 38.30 69.05 89.03 18.07 27.67 

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

0 370 370 370 371 371 371 371 371 370 371 371 371 370 370 370 371 

0.1 
254 

[2.96] 

246 

[3.64] 

135 

[1.37*] 

143 

[2.02] 

268 

[2.91] 

247 

[3.52] 

128 

[1.58*] 

125 

[1.99] 

289 

[2.87] 

261 

[3.34] 

133 

[1.75*] 

128 

[2.05] 

307 

[2.89] 

285 

[3.21] 

134 

[1.81*] 

136 

[2.09] 

0.25 
154 

[3.17] 

151 

[3.69] 

64 

[1.06*] 

79 

[2.09] 

164 

[3.29] 

142 

[3.59] 

49 

[1.26*] 

53 

[1.87] 

199 

[3.31] 

157 

[3.51] 

44 

[1.42*] 

45 

[1.76] 

230 

[3.30] 

185 

[3.45] 

43 

[1.47*] 

45 

[1.78] 

0.5 
84 

[3.09] 

92 

[3.80] 

35 

[1.00*] 

52 

[2.11] 

81 

[3.38] 

71 

[3.56] 

23 

[1.03*] 

30 

[2.04] 

107 

[3.51] 

73 

[3.43] 

17 

[1.19*] 

19 

[1.87] 

138 

[3.53] 

91 

[3.41] 

15 

[1.28*] 

16 

[1.78] 

1.0 
42 

[2.93] 

57 

[3.99] 

18 

[1.00*] 

31 

[2.08] 

32 

[3.19] 

34 

[3.77] 

11 

[1.00*] 

17 

[2.04] 

35 

[3.60] 

26 

[3.38] 

7 

[1.01*] 

9 

[2.01] 

48 

[3.68] 

28 

[3.29] 

5 

[1.08*] 

7 

[1.94] 

1.5 
27 

[2.95] 

42 

[4.00] 

11 

[1.00*] 

21 

[2.05] 

18 

[3.00] 

23 

[3.97] 

7 

[1.00*] 

11 

[2.02] 

16 

[3.45] 

15 

[3.54] 

4 

[1.00*] 

6 

[2.02] 

20 

[3.69] 

13 

[3.29] 

3 

[1.04*] 

4 

[1.98] 

2.5 
15 

[2.98] 

26 

[4.00] 

6 

[1.00*] 

11 

[2.02] 

9 

[2.98] 

14 

[4.00] 

3 

[1.00*] 

6 

[2.02] 

7 

[3.06] 

8 

[3.92] 

2 

[1.02*] 

3 

[2.01] 

6 

[3.44] 

6 

[3.54] 

1 

[1.13*] 

2 

[1.90] 

The one without the bracket [ ] is 1ARL  

[*] are the mean ranks of the 1ARL  of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences. 
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Table 15 Comparisons of the 
1ARL for detecting the mean shifts of   0.35, 0.4, 0.5 and 0.8 when the 

0ARL 370  and 2p   under the gamma distribution 

  

  

0.35 0.4 0.5 0.8 

UCL 

64.36 80.19 15.99 24.39 60.73 73.57 14.35 21.77 55.60 64.10 11.84 17.65 46.73 49.81 7.35 9.33 

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

0 371 370 370 371 371 371 371 371 371 371 371 371 371 370 370 371 

0.1 
316 

[2.90] 

289 

[3.15] 

133 

[1.82*] 

140 

[2.13] 

323 

[2.92] 

296 

[3.10] 

132 

[1.84*] 

143 

[2.15] 

329 

[2.97] 

307 

[3.05] 

126 

[1.85*] 

141 

[2.13] 

344 

[3.07] 

331 

[3.06] 

103 

[1.82*] 

120 

[2.05] 

0.25 
242 

[3.30] 

196 

[3.41] 

43 

[1.48*] 

46 

[1.81] 

251 

[3.30] 

210 

[3.38] 

42 

[1.49*] 

47 

[1.83] 

271 

[3.33] 

228 

[3.33] 

40 

[1.51*] 

46 

[1.83] 

302 

[3.38] 

285 

[3.34] 

29 

[1.47*] 

38 

[1.81] 

0.5 
152 

[3.54] 

99 

[3.39] 

14 

[1.31*] 

16 

[1.76] 

163 

[3.54] 

111 

[3.39] 

13 

[1.33*] 

15 

[1.75] 

189 

[3.55] 

135 

[3.37] 

12 

[1.35*] 

15 

[1.74] 

241 

[3.51] 

214 

[3.41] 

8 

[1.39*] 

11 

[1.69] 

1.0 
57 

[3.70] 

30 

[3.27] 

5 

[1.13*] 

6 

[1.90] 

65 

[3.70] 

34 

[3.27] 

4 

[1.17*] 

6 

[1.85] 

85 

[3.70] 

45 

[3.27] 

4 

[1.25*] 

5 

[1.78] 

143 

[3.59] 

110 

[3.38] 

3 

[1.39*] 

3 

[1.64] 

1.5 
23 

[3.73] 

13 

[3.25] 

3 

[1.09*] 

4 

[1.94] 

27 

[3.76] 

14 

[3.22] 

3 

[1.14*] 

3 

[1.89] 

38 

[3.78] 

17 

[3.20] 

2 

[1.22*] 

3 

[1.80] 

79 

[3.64] 

55 

[3.34] 

1 

[1.40*] 

2 

[1.63] 

2.5 
7 

[3.57] 

6 

[3.40] 

1 

[1.16*] 

2 

[1.87] 

7 

[3.66] 

5 

[3.32] 

1 

[1.19*] 

2 

[1.84] 

9 

[3.75] 

5 

[3.22] 

1 

[1.27*] 

1 

[1.76] 

23 

[3.69] 

14 

[3.27] 

1 

[1.44*] 

1 

[1.59] 

The one without the bracket [ ] is 1ARL  

[*] are the mean ranks of the 1ARL  of multivariate control charts (MCCs) by the Friedman test, which showed the type of MCCs used for detecting mean shifts led to statistically significant differences. 
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Appendix B: UCLs and control statistics in Phases 1 and 2 for a normally distributed process 

 

 

    
        (a) The first repeat                                                            (b) The second repeat 

 

Figure 4 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the tensile stress of steel for a normally distributed process under 0.35   and 0.25   

 

 

    
       (a) The first repeat                                                             (b) The second repeat 

 

Figure 5 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the tensile stress of steel for a normally distributed process under 0.4   and 0.25   

 

 

    
      (a) The first repeat                                                            (b) The second repeat 

 

Figure 6 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the tensile stress of steel for a normally distributed process under 0.5  and 0.25   
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     (a) The first repeat                                                             (b) The second repeat 

 

Figure 7 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the tensile stress of steel for a normally distributed process under 0.6   and 0.25   

 

 

    
     (a) The first repeat                                                             (b) The second repeat 

 

Figure 8 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the tensile stress of steel for a normally distributed process under 0.7   and 0.25   

 

 

    
       (a) The first repeat                                                             (b) The second repeat 

 

Figure 9 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the tensile stress of steel for a normally distributed process under 0.8   and 0.25   
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Appendix C: UCLs and control statistics in Phases 1 and 2 for a non-normally distributed process 

 

 

      
       (a) The first repeat                                                             (b) The second repeat 

 

  
(c) The third repeat 

 

Figure 10 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the blade wheel of blower for a non-normally distributed process under 0.35   and 0.25   

 

 

       
       (a) The first repeat                                                             (b) The second repeat 
 

 

 
(c) The third repeat 

 

Figure 11 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the blade wheel of blower for a non-normally distributed process under 0.4   and 0.25   
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       (a) The first repeat                                                             (b) The second repeat 
 

 
(c) The third repeat 

 

Figure 12 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the blade wheel of blower for a non-normally distributed process under 0.5  and 0.25   

 

 

       
       (a) The first repeat                                                             (b) The second repeat 

 

 
(c) The third repeat 

 

Figure 13 UCLs and control statistics in Phases 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the blade wheel of blower for a non-normally distributed process under 0.6   and 0.25   
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       (a) The first repeat                                                             (b) The second repeat 

 

 
(c) The third repeat 

 

Figure 14 UCLs and control statistics in phase 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the blade wheel of blower for a non-normally distributed process under 0.7  and 0.25   

 

 

       
       (a) The first repeat                                                             (b) The second repeat 
 

  
(c) The third repeat 

 

Figure 15 UCLs and control statistics in phase 1 and 2 of the (i), (ii), (iii), and (iv) control charts for detecting of three 

variables of the blade wheel of blower for a non-normally distributed process under 0.8  and 0.25   
 


