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Abstract
Estimating the unknown size of a partially observed population is challenging particularly when

most of observed subjects are captured once. Geometric distribution, one of the most well-utilized
discrete distributions in a capture-recapture setting, is re-parameterized corresponding to the uniform
Poisson Ailamujia, a flexible model for data set with excesses of ones. The maximum likelihood
and Generalized Turing estimators using uniform Poisson Ailamujia distribution were proposed. We
address achieving variance estimates of population size estimators by using conditioning approach.
In simulation studies, potential of the proposed estimators as well as the confidence interval are in-
vestigated and compared to conventional estimators developed on the basis of geometric distribution.
All estimators behaved similarly and the presented confidence intervals can improve the estimation.
As an application, two real data examples are examined using the proposed estimators.

Keywords: Capture-recapture data, heterogeneity, one-inflation, variance estimation.

1. Introduction
In many fields, capture-recapture (CR) methods have been widely used to estimate the size of

hidden populations. For example, CR methods are used to estimate the number of heroin users in
northern Thailand (Pijitrattana 2018), the number of European pond turtles in a Venice Lagoon wet-
land area (Liuzzo et al. 2021), the number of farms in Southeast Asia that experienced foot and mouth
disease outbreaks (Sansamur et al. 2021), the number of female sex workers in Vietnam (Nguyen et
al. 2021), and the completeness of contact tracing for COVID-19 during the first wave pandemic in
Thailand (Lerdsuwansri et al. 2022; Böhning et al. 2023).

A target population is assumed to be closed, which means that no births, deaths, or migration
occur during the sampling period. Samples are obtained through the use of identification mechanisms
such as registration or trapping systems. Let X j be the number of times that unit jth is identified during
the observational period, for j = 1,2, . . . ,N. The frequency of units identified exactly 0,1, . . . ,m times
is denoted by f0, f1, . . . , fm respectively, where m is the largest observed count. Since all units in the
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population have not been observed, the number of units identified zero times, f0, is unknown. The
observed sample size identified at least once is n = f1 + f2 + · · ·+ fm. The number of unobserved
subjects must be estimated to obtain an estimate for the population size N = n+ f0.

Assume that px = P(X = x) is the probability of identifying a unit x times and p0 is the prob-
ability of a unit not being identified. Since unobserved f0 can be replaced by the expected value
N p0, estimation of p0 is required, resulting in the well-known Horvitz-Thompson estimator (Van Der
Heijden et al. 2003)

N̂ =
n

1− p̂0
.

Count data are typically represented by a Poisson distribution with parameter λ . In practice,
count data modeled by an identical λ , homogeneous Poisson model do not hold due to diversity of
subjects in the population. Heterogeneous Poisson model is more flexible and the probability function
is given as

px =
∫

∞

0

e−λ λ x

x!
g(λ )dλ ,

where g(λ ) is mixing distribution. For example, if g(λ ) is exponential distribution with parame-
ter θ , a geometric distribution with parameter p = 1

1+θ
arises. That is a special case of mixing the

Poisson and gamma distributions, resulting in a negative binomial distribution. Geometric distribu-
tions are commonly used for overdispersion capture-recapture data, and several estimators have been

developed. Niwitpong et al. (2013) proposed three estimators, N̂MLEgeo = nS
S−n , where S =

m
∑

x=1
x fx,

N̂Chao = n+ f 2
1
f2

, and N̂Censored = n2

n− f1
, based on geometric distribution using three approaches. A

classical maximum likelihood estimation for the zero-truncated geometric is considered leading to
N̂MLEgeo. The second one (N̂Chao) is developed in spirit of Chao estimator by keeping the mixing dis-
tribution unspecified and applying nonparametric inference based on the Cauchy-Schwarz inequal-
ity. Another estimator, N̂Censored , is suggested by using all available information but censors counts
larger than 1. Anan et al. (2019) proposed a generalized Turing estimator, N̂GT geo =

n

1−
√

f1
S

, for ge-

ometric distribution. A modification of Chao’s lower bound estimator, N̂MC = n+ f 3
2

f 2
3

, in the case

of one-inflation geometric model has been proposed (Böhning et al. 2019). Böhning and Ogden
(2021) recently demonstrated that one-inflation models can be fitted by truncating the count of ones
and proposed a geometric distribution estimator N̂BO = n+(n− f1)

θ̂

1−θ̂−θ̂(1−θ̂)
,where θ̂ = n− f1

n− f1+S∗ ,

S∗ =
m−2
∑

x=0
x fx+2.

Aljohani et al. (2021) proposed a uniform Poisson-Ailamujia distribution (UPA) as a flexible
discrete model for datasets with excesses of ones by combining the uniform and Poisson-Ailamujia
distribution. The UPA is a heavy-tailed distribution that can be used to model overdispersed count
data. The probability function of UPA distribution is

px = P(X = x) =
2α

(1+2α)x+1 (1)

for x = 0,1,2, ... with parameter α > 0. The mean and variance are 1
2α

and 2α+1
4α2 , respectively. As

can be seen in Figure 1 the frequency of 1’s depends on the value of α . The larger the parameter α is,
the higher frequency of one counts is. Before we go on, we illustrate the situation at hand with a real
data example. The frequency distribution of the number of daily COVID-19 deaths in Switzerland
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Figure 1 Graph of the UPA distribution

from 1 March to 30 June 2021 (Aljohani et al. 2021) is provided in Table 1.To estimate the UPA
and Poisson distribution parameters from the data, the maximum likelihood method was used. The
maximum likelihood estimator for the UPA and Poisson distribution parameters is α̂ = n

2(S−n) and

λ̂ = S
n , respectively. We also see in Figure 2 that the UPA provides a much better fit than the Poisson.

Table 1 The daily numbers of COVID-19 deaths in Switzerland from 1 March to 30 June 2021

Number of deaths 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequency 15 11 12 8 9 4 4 7 9 6 3 2 1 6 3

Number of deaths 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Frequency 1 3 3 1 1 2 1 1 0 1 0 3 0 1 3

Figure 2 The frequency distribution of COVID-19 deaths in Switzerland from 1 March and 30 June
2021

Tajuddin and Ismail (2022) pointed out that the UPA distribution is a re-parameterized geometric
distribution. The probability function in Eqn. (1) can be re-parametrized by changing α through a



728 Thailand Statistician, 2023; 21(4): 725-744.

function θ , such that

θ(α) =
2α

1+2α
.

Therefore, px = P(X = x) = (1−θ)x
θ , (2)

x = 0,1,2, ...,0 < θ < 1, which corresponds to the geometric distribution with parameter θ . The
parameter θ in the geometric distribution represents the probability of success, whereas the parameter
α is a scale that either stretches or shrinks the trend of the probability values. According to the
distribution graph (Figure 1), as α increases, the data becomes more inflated with one, implying that
estimation of α would be helpful to elucidate one-inflation.

Recently, the presence of one-inflation in capture-recapture-type data has attracted some atten-
tion. Godwin and Böhning (2017) added an excess probability of observing one counts in the posi-
tive Poisson (PP) distribution and propose the one-inflated positive Poisson (OIPP) distribution. To
allow unobserved heterogeneity, Godwin (2017) proposed the one-inflated zero-truncated negative
binomial (OIZTNB) model. Jongsomjit et al. (2022) develop the one-inflated, zero-truncated geo-
metric (OIZTG) model using reparameterization for the mean of the OIZTG distribution. What they
have in common are one-inflation parameter and covariates incorporating into truncated regression
model. Although covariates can help to improve the fit of the model, they are unavailable in many
cases. Böhning et al. (2019) proposed a modification of Chao estimator to avoid overestimation due
to one-inflation by incorporating counts of two and three. However, the modified Chao estimator
produces a relatively large variance if compared to the maximum likelihood estimator. Böhning and
Friedl (2021) addressed the population size estimator based on the unconditional likelihood with one-
inflation model. The estimator via the profile likelihood performs well but the suggested approach is
computationally intensive due to using grid of f0 values and semi-parametric bootstrap. Intuitively, it
is not easy for practitioners to use.

As an alternative model, we are interested in raising the UPA distribution in the capture-recapture
context. The rest of the paper is organized as follow: the maximum likelihood and generalized Turing
estimators for the zero-truncated uniform Poisson-Ailamujia are proposed in Section 2 and Section
3, respectively. The variance of proposed estimators for confidence interval estimation is derived in
Section 4. Performance of the proposed estimators as well as the confidence interval are evaluated by
simulation studies in Section 5. Two real datasets are used to demonstrate the proposed estimators in
Section 6. The final section summarizes major results and remarks some points of work.

2. Population Size Estimator via Maximum Likelihood Estimation under the Uniform Poisson-
Ailamujia Distribution

Since the count data from capture-recapture is non-zero, it can be modeled as a zero-truncated
UPA distribution: p+x = 2α

(1+2α)x . The likelihood function of count data X is

L(α) =
m

∏
x=1

(
2α

(1+2α)x

) fx
.

The log-likelihood function is

logL(α) =
m

∑
x=1

fx log2α −
m

∑
x=1

x fx log(1+2α)
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= n log2α −S log(1+2α), (3)

where n =
m
∑

x=1
fx and S =

m
∑

x=1
x fx. The maximum likelihood estimator of α can be solved by maxi-

mizing (3) leads to the score-equation

n
α

=
2S

1+2α
,

which provided α̂MLE = n
2(S−n) and p̂0 =

n
S . The maximum likelihood estimator under the UPA dis-

tribution using the Horvitz-Thomson approach is

N̂MLEupa =
n

1− n
S
=

nS
S−n

, (4)

which is the same as the maximum likelihood estimator base on geometric distribution (N̂MLEgeo)(Niwitpong
et al. 2013). An estimate variance for N̂MLEupa is given in Appendix.

Theorem 2.1 The N̂MLEupa is asymptotically unbiased under the UPA distribution

lim
N→∞

E(N̂MLEupa)

N
→ 1.

Proof: If X has the UPA distribution, E(X) = E( S
N ) =

1
2α

and E( n
N ) = 1− p0 = 1

1+2α
, E( n

S ) =

E( n/N
S/N )=

2α

1+2α
. E( N̂MLEupa

N )=E(
nS

S−n
N )=E( S

N

n
S

1− n
S
)−−−→

N→∞
( 1

2α
)(

2α
1+2α

1− 2α
1+2α

)= 1. This proves that N̂MLEupa

is asymptotically unbiased under the UPA distribution.

3. A generalized Turing estimator under the uniform Poisson-Ailamujia distribution

Let X denote the number of times a unit was identified during the research period. Assume that X
has the UPA distribution, so p0 =

2α

1+2α
, p1 =

2α

(1+2α)2 , and E(X) = 1
2α

. Consider p0 = p1(1+2α) =

p1(1+ 1
E(X) ) that could be estimated by f1

N (1+ N
S ) =

f1
N + f1

S . Since N = n
1−p0

,

p0 =
f1
n

1−p0

+
f1

S

p0 −
f1(1− p0)

n
=

f1

S

p0 +
f1 p0

n
=

f1

S
+

f1

n

p0(1+
f1

n
) =

f1

S
+

f1

n

p̂0 =
n f1 +S f1

Sn+S f1
. (5)

The generalized Turing estimator for the UPA distribution using the Horvitz-Thomson approach is

N̂GTupa =
n

1− n f1+S f1
nS+S f1

=
S(n+ f1)

S− f1
. (6)
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Theorem 3.1 The N̂GTupa is asymptotically unbiased under the UPA distribution

lim
N→∞

E(N̂GTupa)

N
→ 1.

Proof: Consider E(X)=E( S
N )=

1
2α

, E( f1
N )= p1 =

2α

(1+2α)2 , E( n
N )= 1− p0 =

1
1+2α

, so that E( f1
S )=

E( f1/N
S/N ) = 4α2

(1+2α)2 and E( n
S ) = E( n/N

S/N ) =
2α

1+2α
. Then, E( N̂GTupa

N ) = E(
S(n+ f1)

S− f1
N ) = E( S(n+ f1)

N(S− f1)
) =

E( S
N

n
S+

f1
S

1− f1
S

) −−−→
N→∞

( 1
2α

)( 2α+8α2

1+4α
) = 1. This proves that N̂GTupa is asymptotically unbiased under the

UPA distribution.

4. Variance of Estimates
To form the confidence interval (CI) for the true population size N, quantification of uncertainty

surrounding the estimates of N is important. It is critical to assess the accuracy of the proposed
estimators. Despite a precise estimate of N, if the associated estimation of variance is poor, then
coverage of the associated CI may falsely indicate poor estimation by the point estimator. One might
conclude that the point estimator results in a poor coverage rate.

In this section, the variance of N̂MLEupa and N̂GTupa are derived using a conditional technique
(Böhning 2008) (for full details see Appendix). The estimated variance for N̂MLEupa and N̂GTupa are
provided as follows:

V̂ar(N̂MLEupa) =
Sn2

(S−n)2 +
S2n3

(S−n)4 (7)

V̂ar(N̂GTupa) =
S f1(n+ f1)(n+S)

n(S− f1)
2 +

S f1(n+S)2(Sn+ f 2
1 )

(n+ f1)(S− f1)
4 +

S f 2
1 (n+ f1)(n+S)

(S− f1)
4 . (8)

5. Simulation Study
Simulation was used to investigate the performance of the proposed estimators and confidence

interval estimations. The proposed estimators are compared to the existing estimator developed using
the geometric distribution as follows:

N̂MLEgeo =
nS

S−n
(9)

V̂ar(N̂MLEgeo) =
S2n2

(S−n)3 (10)

N̂Chao = n+
f 2
1
f2

(11)

V̂ar(N̂Chao) =
f 4
1

f 3
2
+

4 f 3
1

f 2
2

+
f 2
1
f2

(12)

N̂Censored =
n2

n− f1
(13)

V̂ar(N̂Censored) =
f1

(1− f1/n)2
2n− f1

n− f1
(14)

N̂GT geo =
n

1−
√

f1
S

(15)
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V̂ar(N̂GT geo) =
n
√

f1
S

(1−
√

f1
S )

2 +n2

 S+ f1

4S2(1−
√

f1
S )

4

 (16)

N̂MC = n+
f 3
2

f 2
3

(17)

V̂ar(N̂MC) =

(
f̂ 2
0MC

f2 + f3

)(
1+

(2 f2 +3 f3)
2

f2 f3

)
; f̂0MC =

f 3
2

f 2
3

(18)

N̂BO = n+(n− f1)
θ̂

1− θ̂ − θ̂(1− θ̂)
; θ̂ =

n1

n1 +S∗
, n1 = n− f1, S∗ =

m−2

∑
x=0

x fx+2(19)

V̂ar(N̂BO) = n2
1
(1+ θ̂)

2

(1− θ̂)
6

(
n1

θ̂ 2
+

S∗

(1− θ̂)
2

)−1

+
n1θ̂ 3(2− θ̂)

(1− θ̂ − θ̂(1− θ̂))
2 +nθ̂ . (20)

The population sizes were set at N = 100,500 for small populations, N = 1,000 for medium
populations, and N = 5,000, 10,000 for large populations. Data were generated from the UPA dis-
tribution to assess the estimator’s efficiency. Also, we are interested in a setting where data did not
follow UPA. Data from the Conway-Maxwell Poisson (CMP) and Poisson-Lindley (PL) distributions
were generated to investigate the estimator’s effectiveness under misspecification. The two-parameter
CMP distribution is defined by px =

λ x

(x!)ν
1

Z(λ ,ν) where Z(λ ,ν) = ∑
∞
j=0

λ j

( j!)ν is a normalizing con-
stant. The CMP distribution includes Poisson (ν = 1), Bernoulli (ν → 1) and geometric (ν = 0)
distributions as special cases. The PL distribution representing long-tailed count data is given by
px =

θ 2(x+θ+2)
(θ+1)x+3 ,θ ≥ 0. Both CMP and PL distributions allow for underdispersion and overdisper-

sion. Therefore, the data were generate using three settings as follows:

• The UPA distribution with α = 0.05,0.10 for mild one inflation and α = 0.25 for strong one
inflation.

• The CMP distribution with mean parameter λ = 0.5 and dispersion parameter ν = 0.1,0.5,0.8.
• The PL distribution θ = 0.3,0.6,1.0 with 5% one-inflation.

5.1. Simulation result of estimators
To assess the performance of the proposed estimators, the relative bias (Rbias) and relative root

mean squared error (RRMSE) were calculated for each scenario:

Rbias =
E(N̂)−N

N

RRMSE =
1
N

√
Var(N̂)+(E(N̂)−N)

2
.

Here, E(N̂) = 1
10,000

10,000
∑

t=1
N̂(t), Var(N̂) = 1

10,000

10,000
∑

t=1
{N̂(t)−E(N̂)}2, and N̂(t) denotes the esti-

mated values of the population size at replication t.
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Table 2 Rbias of estimators following the UPA distribution

α N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.05 0.0009 0.0279 0.0004 -0.0010 0.1695 -0.0164 0.0009 -0.0004
0.10 0.0026 0.0294 0.0021 0.0006 0.1738 -0.0554 0.0026 0.0007
0.25 0.0074 0.0394 0.0061 0.0043 0.2823 -0.2117 0.0074 0.0037

N = 500
0.05 0.0002 0.0056 0.0005 0.0001 0.0149 -0.0168 0.0002 0.0003
0.10 0.0008 0.0054 0.0006 0.0003 0.0196 -0.0564 0.0008 0.0003
0.25 0.0017 0.0083 0.0017 0.0012 0.0333 -0.2124 0.0017 0.0011

N = 1,000
0.05 0.0000 0.0022 0.0000 -0.0001 0.0081 -0.0169 0.0000 -0.0001
0.10 0.0002 0.0025 0.0002 0.0001 0.0104 -0.0567 0.0002 0.0001
0.25 0.0006 0.0040 0.0007 0.0004 0.0160 -0.2126 0.0006 0.0004

N = 5,000
0.05 0.0000 0.0004 0.0000 0.0000 0.0012 -0.0169 0.0000 0.0000
0.10 0.0000 0.0004 0.0000 0.0000 0.0018 -0.0568 0.0000 -0.0001
0.25 0.0065 0.0034 0.0022 0.0042 0.0062 -0.2082 0.0065 0.0032

N = 10,000
0.05 0.0000 0.0001 0.0000 0.0000 0.0007 -0.0170 0.0000 0.0000
0.10 0.0001 0.0004 0.0001 0.0001 0.0010 -0.0568 0.0001 0.0001
0.25 0.0000 0.0004 0.0000 0.0000 0.0016 -0.2126 0.0000 0.0000

• In the UPA distribution case, all estimators are asymptotically unbiased except N̂BO (see Table
2). All estimators except N̂BO overestimate for small population sizes and become less biased
as population sizes increase. N̂BO is underestimated, especially for strong one inflation. Table
3 shows the RRMSE, which is used to compare the performance of all estimators. The results
show that N̂MLEgeo and N̂MLEupa are likely to be the best choices, as they provide the smallest
RRMSE for all cases. The RRMSE of N̂Censored , N̂GT geoand N̂GTupa are all relatively small, and
N̂GTupa is a reasonable compromise between N̂Censored and N̂GT geo.

• In the CMP distribution case, all estimators except N̂BO overestimate. N̂BO is underestimated
(see Table 4). The RRMSE is shown in Table 5 and is used to compare the performance of
all estimators. For a small population, N̂GTupa appears to be an appropriate choice. N̂Chao is a
good option for medium and large populations. Rbias and RRMSE decrease as ν decreases,
because the CMP distribution contains the geometric or UPA distribution as a special boundary
case. All estimators based on geometric or UPA distributions perform better for small ν in
CMP distribution.

• In the PL distribution with 5% one-inflation case, almost all estimators overestimate. N̂BO

is underestimated (see Table 6) for θ = 0.6,1.0. Table 7 shows the RRMSE, which is used
to compare the performance of all estimators. N̂BO appears to be a good choice for small
and medium populations with θ = 0.3,0.6. For a large population, N̂MC appears to be a good
option. Except for N̂Chao, the other estimators produced similar results with low RRMSE.
N̂GTupa represents a reasonable compromise between N̂Censored and N̂GT geo. All estimators’
Rbias and RRMSE values increase as θ increases.
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Table 3 RRMSE of estimators following the UPA distribution

α N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.05 0.0328 0.1194 0.0459 0.0366 0.9370 0.0357 0.0328 0.0438
0.10 0.0491 0.1451 0.0666 0.0540 1.0412 0.0707 0.0491 0.0621
0.25 0.0878 0.2123 0.1129 0.0942 1.1850 0.2196 0.0878 0.1018

N = 500
0.05 0.0150 0.0373 0.0206 0.0166 0.0717 0.0222 0.0150 0.0198
0.10 0.0219 0.0511 0.0295 0.0240 0.0987 0.0597 0.0219 0.0276
0.25 0.0390 0.0811 0.0501 0.0420 0.1795 0.2140 0.0390 0.0455

N = 1,000
0.05 0.0105 0.0257 0.0145 0.0117 0.0452 0.0198 0.0105 0.0140
0.10 0.0155 0.0354 0.0211 0.0171 0.0652 0.0584 0.0155 0.0197
0.25 0.0278 0.0564 0.0357 0.0300 0.1165 0.2134 0.0278 0.0325

N = 5,000
0.05 0.0047 0.0110 0.0065 0.0052 0.0177 0.0175 0.0047 0.0063
0.10 0.0069 0.0155 0.0093 0.0076 0.0269 0.0571 0.0069 0.0088
0.25 0.0109 0.0234 0.0133 0.0096 0.0486 0.2082 0.0109 0.0111

N = 10,000
0.05 0.0033 0.0078 0.0046 0.0037 0.0125 0.0173 0.0033 0.0044
0.10 0.0050 0.0110 0.0067 0.0054 0.0188 0.0569 0.0050 0.0063
0.25 0.0086 0.0177 0.0111 0.0093 0.0342 0.2127 0.0086 0.0101

Table 4 Rbias of estimators following the CMP distribution λ = 0.5

ν N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.1 0.1023 0.1130 0.0780 0.0855 1.3318 -0.4514 0.1023 0.0813
0.5 0.4380 0.3693 0.3615 0.3929 3.2313 -0.5320 0.4380 0.3848
0.8 0.7007 0.6614 0.6228 0.6540 3.3008 -0.5649 0.7007 0.6467

N = 500
0.1 0.0814 0.0532 0.0588 0.0691 0.1852 -0.4525 0.0814 0.0657
0.5 0.3974 0.2626 0.3158 0.3540 1.0881 -0.5340 0.3974 0.3462
0.8 0.6684 0.4753 0.5562 0.6087 2.8192 -0.5697 0.6684 0.6005

N = 1,000
0.1 0.0777 0.0440 0.0550 0.0658 0.1367 -0.4531 0.0777 0.0624
0.5 0.3883 0.2479 0.3061 0.3451 0.8262 -0.5343 0.3883 0.3373
0.8 0.6572 0.4581 0.5449 0.5981 1.8952 -0.5701 0.6572 0.5899

N = 5,000
0.1 0.0755 0.0382 0.0526 0.0638 0.0963 -0.4531 0.0755 0.0605
0.5 0.3831 0.2393 0.3014 0.3406 0.6742 -0.5344 0.3831 0.3329
0.8 0.6482 0.4440 0.5353 0.5893 1.4754 -0.5701 0.6482 0.5811

N = 10,000
0.1 0.0758 0.0381 0.0529 0.0641 0.0899 -0.4531 0.0758 0.0608
0.5 0.3829 0.2389 0.3013 0.3405 0.6576 -0.5344 0.3829 0.3328
0.8 0.6479 0.4439 0.5354 0.5893 1.4252 -0.5701 0.6479 0.5811
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Table 5 RRMSE of estimators following the CMP distribution λ = 0.5

ν N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.1 0.2072 0.3766 0.2280 0.2067 5.2190 0.4555 0.2072 0.2102
0.5 0.5439 0.6570 0.5144 0.5166 7.9771 0.5349 0.5439 0.5138
0.8 0.8345 1.1330 0.8295 0.8168 6.7757 0.5673 0.8345 0.8145

N = 500
0.1 0.1115 0.1397 0.1074 0.1055 0.4690 0.4533 0.1115 0.1053
0.5 0.4196 0.3222 0.3486 0.3799 2.2961 0.5346 0.4196 0.3734
0.8 0.6960 0.5379 0.5941 0.6401 8.0861 0.5702 0.6960 0.6329

N = 1,000
0.1 0.0942 0.1009 0.0841 0.0865 0.3023 0.4535 0.0942 0.0853
0.5 0.3991 0.2802 0.3230 0.3580 1.1268 0.5346 0.3991 0.3510
0.8 0.6705 0.4882 0.5630 0.6132 2.6686 0.5703 0.6705 0.6055

N = 5,000
0.1 0.0792 0.0550 0.0597 0.0686 0.1453 0.4532 0.0792 0.0658
0.5 0.3853 0.2461 0.3048 0.3433 0.7259 0.5345 0.3853 0.3357
0.8 0.6509 0.4502 0.5390 0.5923 1.5785 0.5701 0.6509 0.5842

N = 10,000
0.1 0.0776 0.0474 0.0565 0.0665 0.1167 0.4532 0.0776 0.0635
0.5 0.3840 0.2424 0.3030 0.3418 0.6847 0.5344 0.3840 0.3342
0.8 0.6492 0.4470 0.5373 0.5908 1.4736 0.5701 0.6492 0.5827

Table 6 Rbias of estimators following the PL distribution with 5% one-inflation

θ N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.3 0.0879 0.1741 0.0908 0.0881 0.1474 0.0285 0.0879 0.0893
0.6 0.1199 0.2050 0.1300 0.1229 0.2189 -0.0805 0.1199 0.1254
1.0 0.1550 0.2657 0.1777 0.1630 0.4311 -0.2490 0.1550 0.1668

N = 500
0.3 0.0859 0.1415 0.0888 0.0871 0.0340 0.0273 0.0859 0.0882
0.6 0.1169 0.1678 0.1253 0.1207 0.0664 -0.0804 0.1169 0.1229
1.0 0.1452 0.2119 0.1658 0.1547 0.0997 -0.2496 0.1452 0.1586

N = 1,000
0.3 0.0852 0.1377 0.0885 0.0867 0.0276 0.0268 0.0852 0.0879
0.6 0.1164 0.1639 0.1251 0.1206 0.0546 -0.0803 0.1164 0.1229
1.0 0.1435 0.2067 0.1650 0.1538 0.0793 -0.2495 0.1435 0.1579

N = 5,000
0.3 0.0854 0.1346 0.0883 0.0868 0.0220 0.0270 0.0854 0.0879
0.6 0.1162 0.1609 0.1248 0.1204 0.0446 -0.0802 0.1162 0.1228
1.0 0.1426 0.2019 0.1637 0.1529 0.0603 -0.2495 0.1426 0.1570

N = 10,000
0.3 0.0853 0.1342 0.0883 0.0868 0.0214 0.0269 0.0853 0.0879
0.6 0.1161 0.1604 0.1246 0.1203 0.0429 -0.0803 0.1161 0.1226
1.0 0.1424 0.2014 0.1635 0.1527 0.0578 -0.2495 0.1424 0.1568

5.2. Simulation result of confidence interval estimations
The 95% confidence interval estimations of N are constructed using the normal approximation

approach based on the population size estimators and the estimated variances as: N̂ ±1.96
√

V̂ar(N̂).

Estimation performance is measured using coverage probability (CP) and average length (AL), which
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Table 7 RRMSE of estimators following the PL distribution with 5% one-inflation

θ N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.3 0.0958 0.2457 0.1056 0.0976 0.6032 0.0446 0.0958 0.1022
0.6 0.1393 0.2954 0.1618 0.1451 0.7214 0.0955 0.1393 0.1518
1.0 0.1951 0.4026 0.2347 0.2067 1.7595 0.2560 0.1951 0.2141

N = 500
0.3 0.0875 0.1526 0.0919 0.0891 0.0764 0.0312 0.0875 0.0909
0.6 0.1212 0.1863 0.1324 0.1256 0.1475 0.0836 0.1212 0.1287
1.0 0.1540 0.2405 0.1785 0.1642 0.2455 0.2510 0.1540 0.1690

N = 1,000
0.3 0.0861 0.1434 0.0901 0.0878 0.0534 0.0289 0.0861 0.0894
0.6 0.1186 0.1731 0.1286 0.1229 0.1026 0.0819 0.1186 0.1257
1.0 0.1480 0.2215 0.1715 0.1586 0.1668 0.2502 0.1480 0.1631

N = 5,000
0.3 0.0855 0.1357 0.0886 0.0870 0.0291 0.0274 0.0855 0.0882
0.6 0.1166 0.1628 0.1255 0.1209 0.0577 0.0806 0.1166 0.1233
1.0 0.1435 0.2049 0.1650 0.1539 0.0865 0.2497 0.1435 0.1581

N = 10,000
0.3 0.0854 0.1348 0.0885 0.0869 0.0252 0.0271 0.0854 0.0880
0.6 0.1163 0.1614 0.1250 0.1206 0.0501 0.0804 0.1163 0.1229
1.0 0.1429 0.2029 0.1641 0.1532 0.0722 0.2495 0.1429 0.1574

are defined as follows:

CP =
∑

10,000
t=1 C(t)

10,000
,

where C(t) equals 1 if the true population size N is within the confidence interval and 0 otherwise.

AL =
∑

10,000
t=1 (N̂U(t) − N̂L(t))

10,000
,

where N̂U(t) and N̂L(t) are the upper and lower estimates of N at replication t, respectively.

• In the UPA distribution case (see Table 8), the coverage probabilities of almost all estimators,
except N̂MC and N̂BO, close to the nominal level. The coverage probabilities of N̂MC are lower
than the nominal level and converge to nominal level as N increases, and N̂MC provides the
longest average length. Because the average lengths of N̂MLEupa are slightly longer than those
of N̂MLEgeo, N̂MLEupa has higher coverage probabilities than N̂MLEgeo. Similarly, the average
lengths of N̂GTupa are slightly longer than those of N̂GT geo, so the coverage probabilities of
N̂GTupa are greater than those of N̂GT geo.

• With the exception of N̂BO, almost all estimators’ coverage probabilities are close to the nomi-
nal level for N = 100 in the CMP distribution (see Table 9). For N = 500 and 1,000, N̂MC has
the highest coverage probabilities and the longest average lengths. N̂MLEgeo provides relatively
low coverage compared to N̂MLEupa for small and medium population, just as N̂GT geo provides
relatively low coverage compared to N̂GTupa. As a result, the proposed confidence intervals can
improve estimates. Except for N̂Chao and N̂MC when ν = 0.1, all estimators provide relatively
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poor coverage probabilities for large population.

• Coverage probabilities of N̂Chao greater than the nominal level in the PL distribution with 5%
one-inflation for N = 100. For N = 100 and θ = 0.3, coverage probabilities of N̂BO greater
than the nominal level. Coverage probabilities of N̂Censored , N̂MLEupa, and N̂GTupa close to the
nominal level for N = 100 and θ = 1.0. Coverage probabilities of N̂MC close to the nominal
level for N = 500 and 1,000, but the confidence intervals of N̂MC are the widest, followed by
N̂Chao. The average lengths of the other estimators are quite short.

As the UPA distribution is a re-parameterized geometric distribution, the simulation results show that
N̂MLEupa and N̂MLEgeo provide the same Rbias and RRMSE. However, it was found that N̂MLEupa has
a higher variance than N̂MLEgeo, concluding that the coverage probability is greater in all situations.

Table 8 Coverage probability (Average length) of estimators following the UPA distribution
ν N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.05 0.95(13.08) 0.89(39.15) 0.93(17.81) 0.94(14.08) 0.83(155.83) 0.93(13.79) 0.95(13.15) 0.93(16.98)
0.10 0.95(19.37) 0.91(50.06) 0.94(26.04) 0.94(20.54) 0.85(161.11) 0.76(17.67) 0.96(19.71) 0.94(24.15)
0.25 0.95(34.66) 0.92(77.07) 0.94(44.50) 0.94(35.86) 0.86(265.84) 0.04(20.49) 0.97(37.66) 0.94(39.92)

N = 500
0.05 0.95(29.10) 0.94(71.44) 0.95(40.18) 0.94(31.66) 0.90(123.75) 0.83(30.70) 0.95(29.24) 0.95(38.50)
0.10 0.95(43.05) 0.94(98.90) 0.95(58.19) 0.94(45.92) 0.91(178.09) 0.20(39.37) 0.95(43.77) 0.95(54.24)
0.25 0.95(76.26) 0.94(157.54) 0.95(98.39) 0.94(79.29) 0.91(324.92) 0.00(45.64) 0.96(82.47) 0.95(88.58)

N = 1,000
0.05 0.95(41.14) 0.94(98.11) 0.95(56.76) 0.95(44.76) 0.92(163.79) 0.68(43.42) 0.95(41.33) 0.95(54.44)
0.10 0.95(60.78) 0.95(137.87) 0.95(82.26) 0.94(64.90) 0.93(239.61) 0.02(55.61) 0.95(61.79) 0.95(76.71)
0.25 0.95(107.52) 0.95(220.18) 0.95(138.82) 0.94(111.88) 0.93(436.76) 0.00(64.49) 0.96(116.20) 0.95(125.04)

N = 5,000
0.05 0.95(91.94) 0.95(215.67) 0.95(126.97) 0.94(100.11) 0.94(340.95) 0.06(97.05) 0.95(92.35) 0.95(121.82)
0.10 0.95(135.82) 0.95(305.20) 0.95(183.84) 0.94(145.09) 0.94(509.74) 0.00(124.32) 0.96(138.07) 0.95(171.55)
0.25 0.98(241.97) 0.97(487.63) 0.98(309.17) 0.99(250.66) 0.95(939.75) 0.00(145.27) 0.99(261.61) 0.99(279.62)

N = 10,000
0.05 0.95(130.02) 0.95(304.27) 0.95(179.59) 0.95(141.59) 0.94(479.63) 0.00(137.25) 0.95(130.61) 0.95(172.32)
0.10 0.95(192.09) 0.95(431.41) 0.95(260.12) 0.94(205.24) 0.94(717.44) 0.00(175.81) 0.95(195.27) 0.95(242.72)
0.25 0.95(339.52) 0.95(689.10) 0.95(438.29) 0.94(353.36) 0.95(1,321.58) 0.00(203.92) 0.97(366.74) 0.95(395.05)

Table 9 Coverage probability (Average length) of estimators following the CMP distribution λ = 0.5
ν N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.1 0.97(71.87) 0.94(127.89) 0.96(82.98) 0.97(77.41) 0.87(1,167.28) 0.00(17.18) 0.99(96.35) 0.97(80.77)
0.5 0.95(134.62) 0.98(192.69) 0.99(141.12) 1.00(163.51) 0.92(2,901.07) 0.00(14.08) 1.00(226.93) 1.00(165.92)
0.8 0.94(190.02) 0.99(272.09) 0.99(198.71) 1.00(262.00) 0.93(3,171.35) 0.00(12.31) 1.00(367.21) 1.00(264.20)

N = 500
0.1 0.88(153.92) 0.96(253.93) 0.94(178.25) 0.93(164.23) 0.94(768.09) 0.00(38.29) 0.98(201.37) 0.94(171.94)
0.5 0.12(283.47) 0.84(368.55) 0.44(294.20) 0.40(330.49) 0.99(2,389.71) 0.00(31.33) 0.82(457.96) 0.47(335.84)
0.8 0.01(408.08) 0.56(483.40) 0.13(408.21) 0.17(523.35) 1.00(6,787.60) 0.00(27.17) 0.89(755.28) 0.21(527.43)

N = 1,000
0.1 0.75(216.48) 0.95(353.36) 0.90(250.63) 0.85(230.68) 0.97(1,000.75) 0.00(54.12) 0.93(282.45) 0.88(241.60)
0.5 0.00(396.15) 0.56(510.94) 0.10(410.69) 0.04(459.24) 1.00(2,684.47) 0.00(44.34) 0.11(635.85) 0.06(466.80)
0.8 0.00(569.77) 0.14(669.96) 0.00(569.46) 0.00(724.98) 1.00(5,998.95) 0.00(38.40) 0.02(1,045.89) 0.00(730.75)

N = 5,000
0.1 0.12(481.89) 0.87(781.46) 0.55(557.81) 0.30(512.96) 0.93(2,083.02) 0.00(121.03) 0.29(627.34) 0.40(537.40)
0.5 0.00(879.10) 0.00(1,128.15) 0.00(911.55) 0.00(1,015.78) 0.14(5,219.32) 0.00(99.12) 0.00(1,404.73) 0.00(1,032.75)
0.8 0.00(1,260.35) 0.00(1,472.95) 0.00(1,258.35) 0.00(1,593.50) 0.01(10,550.22) 0.00(85.92) 0.00(2,298.62) 0.00(1,606.37)

N = 10,000
0.1 0.00(681.67) 0.75(1,104.75) 0.24(789.02) 0.05(725.60) 0.84(2,912.40) 0.00(171.15) 0.02(887.36) 0.09(760.18)
0.5 0.00(1,242.59) 0.00(1,594.11) 0.00(1,288.63) 0.00(1,435.44) 0.00(7,264.65) 0.00(140.16) 0.00(1,984.71) 0.00(1,459.46)
0.8 0.00(1,781.10) 0.00(2,082.00) 0.00(1,779.01) 0.00(2,251.30) 0.00(14,473.64) 0.00(121.48) 0.00(3,246.32) 0.00(2,269.56)
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Table 10 Coverage probability (Average length) of estimators following the PL distribution with 5%
one-inflation

θ N̂MLEgeo N̂Chao N̂Censored N̂GT geo N̂MC N̂BO N̂MLEupa N̂GTupa

N = 100
0.3 0.61(19.67) 1.00(67.16) 0.87(26.86) 0.68(21.04) 0.88(114.4897) 0.98(18.1171) 0.63(19.99) 0.82(24.93)
0.6 0.77(32.63) 1.00(84.99) 0.91(43.44) 0.78(34.26) 0.89(174.7998) 0.68(21.3377) 0.82(34.75) 0.85(38.79)
1.0 0.87(50.44) 0.99(116.90) 0.94(65.42) 0.88(53.68) 0.88(359.1516) 0.01(20.2592) 0.96(59.01) 0.91(58.28)

N = 500
0.3 0.00(43.76) 0.37(130.30) 0.08(59.92) 0.01(46.98) 0.95(124.6446) 0.81(40.3912) 0.00(44.44) 0.05(55.82)
0.6 0.06(72.32) 0.57(172.57) 0.21(96.06) 0.08(76.05) 0.96(242.9618) 0.09(47.6781) 0.08(76.83) 0.14(86.23)
1.0 0.22(110.56) 0.65(236.40) 0.35(143.09) 0.22(117.48) 0.95(413.7706) 0.00(45.2807) 0.35(128.20) 0.28(127.84)

N = 1,000
0.3 0.00(61.80) 0.03(181.39) 0.00(84.75) 0.00(66.41) 0.97(167.6844) 0.56(57.0557) 0.00(62.75) 0.00(78.96)
0.6 0.00(102.11) 0.14(241.39) 0.02(135.73) 0.00(107.44) 0.97(328.6457) 0.00(67.3927) 0.00(108.44) 0.01(121.88)
1.0 0.02(155.74) 0.25(330.76) 0.05(201.89) 0.02(165.59) 0.97(556.7300) 0.00(63.9985) 0.05(180.34) 0.03(180.29)

N = 5,000
0.3 0.00(138.17) 0.00(400.03) 0.00(189.33) 0.00(148.45) 0.84(356.9896) 0.00(127.6087) 0.00(140.29) 0.00(176.50)
0.6 0.00(228.13) 0.00(535.54) 0.00(303.22) 0.00(240.10) 0.83(706.9182) 0.00(150.6790) 0.00(242.20) 0.00(272.40)
1.0 0.00(347.57) 0.00(733.11) 0.00(450.38) 0.00(369.50) 0.89(1187.2977) 0.00(143.1100) 0.00(402.16) 0.00(402.38)

N = 10,000
0.3 0.00(195.37) 0.00(564.78) 0.00(267.79) 0.00(209.95) 0.66(502.3754) 0.00(180.4411) 0.00(198.37) 0.00(249.63)
0.6 0.00(322.56) 0.00(756.50) 0.00(428.67) 0.00(339.47) 0.64(993.4746) 0.00(213.0924) 0.00(342.44) 0.00(385.15)
1.0 0.00(491.29) 0.00(1035.78) 0.00(636.62) 0.00(522.27) 0.78(1668.3064) 0.00(202.3949) 0.00(568.35) 0.00(568.77)

6. Applications
In this section, two real datasets are used to demonstrate the suitability of the proposed estimator

in comparison to existing estimators. The daily numbers of COVID-19 deaths in Switzerland between
1 March to 30 June 2021, where the number of zeros is known. The total number of COVID-19
deaths is 121. As seen in Table 1, there are zero daily deaths for 15 days, one daily death for 11 days,
two daily deaths for 12 days, and so on. The maximum likelihood estimation was used to estimate
the parameters under the UPA and geometric distributions, where α̂ = n

2(S−n) and p̂ = n
S . The total

number of deaths estimated is presented in Table 11. N̂MLEgeo, N̂GT geo, N̂MLEupa, and N̂GTupa provide
estimations close to total number. Moreover, the MLE of the UPA distribution parameter is 0.06,
which is relatively low and indicates the absence of one-inflation, that is consistent with the observed
data. The confidence intervals for all estimators include the true population size. However, N̂Chao and
N̂MC are inappropriate because the lower bounds are less than the observed count.

Table 11 COVID-19 deaths data: population size estimates (n = 106,N = 121)

Estimator N̂ ŜE(N̂) 95%CI

MLEgeo(θ̂ = 0.11) 119 4.11 (111 ,127)
Chao 116 7.45 (101 , 131)

Censored 118 5.38 (108 , 129)
GTgeo 119 4.37 (110 , 127)

MC 133 30.19 (74 , 192)
BO 116 4.21 (108 , 125)

MLEupa(α̂ = 0.06) 119 5.17 (108, 129)
GTupa 119 4.14 (111 , 127)

Another area of interest is determining the size of a population with addiction problems. Cruyff
MJ and Van Der Heijden (2008) provide data on the number of applications for a methadone treatment
programme made by opiate users in Rotterdam. Frequency distribution of opiate users is provided in
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Table 12. The maximum likelihood method was used to estimate the UPA and geometric distribution
parameters, as was done with the COVID-19 deaths data. The population size of opiate users in
Rotterdam is estimated in Table 13. The Chi-square test provided χ2 = 5.4412,d f = 6 (p− value =
0.4886) for the zero-truncated UPA distribution with α̂ = 0.71. At a 0.05 level of significance, there
was sufficient evidence to conclude that the distribution of the opiate users in Rotterdam was not
different from the zero-truncated UPA distribution with α̂ = 0.71. Clearly, α̂ is rather high indicating
that the data has one inflation. This corresponds to the observed data, with one count accounting for
approximately 60% of the total observed data.

Table 12 Frequencies of opiate users in Rotterdam

i 0 1 2 3 4 5 6 7 8 9 10 n
fi - 1,206 474 198 95 29 19 5 2 0 1 2,029

Table 13 Estimates of the population size of opiate users in Rotterdam

Estimator N̂ ŜE(N̂) 95%CI

MLEgeo(θ̂ = 0.59) 4,930 130.88 (4,674 , 5,187)
Chao 5,097 232.72 (4,641 , 5,554)

Censored 5,002 159.38 (4,690 , 5,315)
GTgeo 4,966 147.12 (4,678 , 5,254)

MC 4,745 537.76 (3,691 , 5,799)
BO 2,272 26.64 (2,220 , 2,325)

MLEupa(α̂ = 0.71) 4,930 177.60 (4,582 , 5,278)
GTupa 4,975 153.74 (4,674 , 5,276)

7. Discussion and Conclusion
This study introduced two population size estimators based on a re-parameterized geometric dis-

tribution known as the UPA distribution that is well-suited for modeling over-dispersed count data.
The first estimator presented was the maximum likelihood estimator for the UPA distribution. The
generalized Turing estimator for the UPA distribution was the second. We evaluate the proposed es-
timators’ accuracy and precision by comparing them to existing estimators. In the UPA scenario, the
proposed estimators appear to be accurate as well as having low bias and mean square error. The pro-
posed estimators also perform well despite misspecification. For example, the case of CMP with small
ν indicating overdispersion. In addition, the proposed estimators provide reasonable estimates based
on PL distribution with 5% one-inflation, which are not conducive to estimators developed under UPA
or geometric distributions. We also provide the variance approximation formula for the proposed es-
timators to construct confidence intervals. Although the proposed estimators have a slightly higher
variance than the maximum likelihood and generalized Turing based on geometric distribution, the
presented confidence intervals can improve the coverage probabilities.

The results from real data examples need some comments. According to daily counts of COVID-
19 deaths in Switzerland with known f0. The UPA parameter estimate α̂ was relatively low indicat-
ing that the data was not one inflation. Furthermore, using data of opiate users in Rotterdam with
unknown f0, it was discovered that the estimated parameter α̂ was quite high. This indicates that the



Rattana Lerdsuwansri et al. 739

data has one inflation corresponding to the observed data, and that f1 was found to be greater than
half the number of observed data. In conclusion, the proposed estimators are an appropriate choice
for estimating the population size of overdispersion data. It has the advantage of being simple to
calculate and can point out how much of the data is one-inflated based on the estimated parameters
α̂ .
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Böhning D, Friedl H. Population size estimation based upon zero-truncated, one-inflated and sparse

count data. Stat Methods Appt. 2021; 30(4): 1197-217.
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Godwin RT, Böhning D. Estimation of the population size by using the one-inflated positive Poisson

model. J R Stat Soc Ser C Appl Stat. 2017; 66(2): 425-448.
Jongsomjit T, Lerdsuwansri R, Lanumteang K. Estimation of population size based on zero-

truncated,one-inflated and covariate information. In: Proceedings of the 2nd International Con-
ference on Science Technology and Innovation Maejo University; 2022 Mar 18; Thailand. 2022.
pp. 29-35.
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A. Appendix

According to the conditional technique (Böhning 2008)

VarN̂ =VarnE(N̂|n)︸ ︷︷ ︸
(1)

+EnVar(N̂|n)︸ ︷︷ ︸
(2)

, (21)

where En and Varn are referred to the distribution of n which follows the binomial distribution with
parameter N and 1− p0.

A.1. Variance of maximum likelihood estimator
For the first term of (21), since E(N̂|n)≈ n

1−p0
,

VarnE(N̂MLEupa|n)≈Varn(
n

1− p0
) =

1

(1− p0)
2 Var(n) =

1

(1− p0)
2 N p0(1− p0). (22)

Since E(n) = N(1− p0) and p̂0 =
n
S , the first term of (21) can be estimated as

V̂arnE(N̂MLEupa|n) = np̂0
(1−p̂0)2

=
n n

S
(1− n

S )
2

= Sn2

(S−n)2 . (23)

The second term of (21) can be determined as

ÊnVar(N̂MLEupa|n) = Var
(

n
1− n

S
|n
)

= n2Var
(

1
1− n

S

)
. (24)
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Var
(

1
1− n

S

)
can be estimated by the delta method. Assume y = n

S , g(y) = 1
1−y , and g′(y) = 1

(1−y)2 , so

Var
(

1
1− n

S

)
=

1
(1− n

S )
4 Var

(
n
S

)
=

n2

(1− n
S )

4 Var
(

1
S

)
. (25)

Using the delta method, we achieved

Var
(

1
S

)
=

1
S4 Var(S)

=
1
S4 Var(NX̄)

=
1
S4 N2 Var(X)

N

=
1
S4 NVar(X). (26)

Note that X has the UPA distribution with E(X)= 1
2α

and Var(X)= 2α+1
4α2 . Since E(X)= S

N , Var(X)=
S
N +

( S
N

)2
, and N = nS

S−n ,

Var(
1
S
) =

1
S4 N

(
S
N
+

S2

N2

)
=

1
S3

(
1+

S
N

)
=

1
S3

(
1+

S−n
n

)
=

1
S2n

. (27)

Therefore, Var
(

1
1− n

S

)
= n2

(1− n
S )

4
1

S2n = nS2

(S−n)4 . The second term of (21) can be determined as

ÊnVar(N̂MLEupa|n) = n2Var
(

1
1− n

S

)
=

S2n3

(S−n)4 . (28)

The variance of maximum likelihood estimator is

V̂ar(N̂MLEupa) =
Sn2

(S−n)2 +
S2n3

(S−n)4 . (29)
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A.2. Variance of generalized Turing estimator

Since E(N̂|n)≈ n
1− p0

, VarnE(N̂GTupa|n) ≈ Varn(
n

1− p0
)

=
1

(1− p0)
2 Var(n)

=
1

(1− p0)
2 N p0(1− p0).

Since E(n) = N(1− p0) and p̂0 =
n f1+S f1
Sn+S f1

(5), the first term of (21) can be estimated as

V̂arnE(N̂GTupa|n) =
np̂0

(1− p̂0)
2

=
S f1(n+ f1)(n+S)

n(S− f1)
2 . (30)

For the second term of (21),

EnVar(N̂GTupa|n) = Var
(

n

1− n f1+S f1
Sn+S f1

|n
)

= n2Var
(

1

1− n f1+S f1
Sn+S f1

)
.

If y = n f1+S f1
Sn+S f1

and g(y) = 1
1−y , then g′(y) = 1

(1−y)2 . By the delta method, Var
(

1
1− n f1+S f1

Sn+S f1

)
can be

approximated as

Var
(

1

1− n f1+S f1
Sn+S f1

)
=

1(
1− n f1+S f1

Sn+S f1

)4 Var
(

n f1 +S f1

Sn+S f1

)
.

The second term of (21) can be estimated as

ÊnVar(N̂GTupa|n) = n2Var
(

1

1− n f1+S f1
Sn+S f1

)

=
n2(

1− n f1+S f1
Sn+S f1

)4 Var
(

n f1 +S f1

Sn+S f1

)
. (31)

The conditional technique is used to estimate Var
(

n f1+S f1
Sn+S f1

)
,

Var
(

n f1 +S f1

Sn+S f1

)
=Var f1E

(
n f1 +S f1

Sn+S f1
| f1

)
+E f1Var

(
n f1 +S f1

Sn+S f1
| f1

)
. (32)

Here, E f1 and Var f1 are referred to the distribution of f1 which follows the binomial distribution with
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parameter N and p1. Since E
(

n f1+S f1
Sn+S f1

| f1

)
≈ n f1+S f1

Sn+S f1
,

Var f1E
(

n f1 +S f1

Sn+S f1
| f1

)
≈ Var f1

(
n f1 +S f1

Sn+S f1

)
= Var f1

(
f1(n+S)
S(n+ f1)

)
=

(
n+S

S

)2

Var f1

(
1

1+ n
f1

)
.

Assume y = f1 and g(y) = 1
1+ n

y
, then g′(y) =

n
y2

(1+ n
y )

2 . By the delta method, Var f1

(
1

1+ n
f1

)
can be

approximated as

Var f1

(
1

1+ n
f1

)
=

( n
f 2
1

(1+ n
f1
)2

)2

Var( f1)

= n2

f 4
1 (1+

n
f1
)4 N p1(1− p1)

= n2

f 4
1 (1+

n
f1
)4 f1

(
1− f1

N

)
= n2

f 3
1 (1+

n
f1
)4

(
1− f1

N

)
.

This leads to

V̂ar f1E
(

n f1 +S f1

Sn+S f1
| f1

)
=

(
n+S

S

)2 n2

f 3
1 (1+

n
f1
)4

(
1− f1

N

)
. (33)

The expected value E f1Var
(

n f1+S f1
Sn+S f1

| f1

)
can be estimated as

Ê f1Var
(

n f1 +S f1

Sn+S f1
| f1

)
≈ Var

(
n f1 +S f1

Sn+S f1
| f1

)
= Var

(
f1(n+S)
S(n+ f1)

| f1

)
=

(
f1

n+ f1

)2

Var
(

1+
n
S
| f1

)
.

Assume y = S and g(y) = 1+ n
y , so g′(y) = − n

y2 . Using the delta method Var
(

1+ n
S | f1

)
can be
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estimated as

Var
(

1+
n
S
| f1

)
=

n2

S4 Var(S)

=
n2

S4 Var(NX̄)

=
n2

S4 N2 Var(X)

N

=
n2

S4 NVar(X).

Since X has the UPA distribution with E(X) = S
N and Var(X) = S

N +
( S

N

)2
, Var

(
1 + n

S | f1

)
=

n2

S4

(
S
N + S2

N2

)
= n2

S3

(
1+ S

N

)
. Therefore,

Ê f1Var
(

n f1 +S f1

Sn+S f1
f1

)
=

(
f1

n+ f1

)2 n2

S3

(
1+

S
N

)
. (34)

Substituting (33) and (34) into (32), this leads to

Var
(

n f1 +S f1

Sn+S f1

)
=

(
n+S

S

)2 n2

f 3
1 (1+

n
f1
)4
(1− f1

N
)+

(
f1

n+ f1

)2 n2

S3 (1+
S
N
). (35)

Substituting (35) into (31) leads to the second term of (21) as

ÊnVar(N̂GTupa|n) =
S f1(n+S)2(Sn+ f 2

1 )

(n+ f1)(S− f1)4 +
S f 2

1 (n+ f1)(n+S)
(S− f1)

4

.

Therefore, the variance of the generalized Turing estimator is

V̂ar(N̂GTupa) =
S f1(n+ f1)(n+S)

n(S− f1)2 +
S f1(n+S)2(Sn+ f 2

1 )

(n+ f1)(S− f1)4 +
S f 2

1 (n+ f1)(n+S)
(S− f1)4 . (36)
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