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Abstract

The article discusses the distribution of the logit-type link function for estimating quantile function
in a generalized distributional setting. Besides this, the important properties including the quantile
function of the proposed distribution are specified. In addition, the estimation of quantile function
in a generalized quantile-based asymmetric family of the distributional framework via logit-type link
function is proposed. The proposed method is illustrated in an actual data application concerning the
daily proportion of SARS-CoV-2 infected people tested for COVID-19 infection.
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1. Introduction

The probability distribution is one of the fundamental statistical tools for statistical inferences.
There are many classes of probability distributions are available in the literature [see, (Jones, 2015;
Karim, 2019)]. Classical distributions such as normal distribution are very popular for estimating
the convenient location (for example, mean, median, mode, etc.) of the response variable. But the
mean provides a single characteristic of a distribution. It performs better result with excellent mathe-
matical properties for the symmetric response variable. It is also not suitable when data comes from
the skewed distribution [see, for example, Gijbels et al. (2019)]. When we focus on estimating pa-
rameters and asymptotic properties of the estimators, the exponential family is a very suitable class
(Steland et al., 2019). The probability distribution function of an exponential family of the response
variable Y can be written as

Frw) = exp (L2 + ey 9)) (1)

where, a(-), b(-) and ¢(-,) are measurable functions [see for example, Fan et al. (1996)]. The pa-
rameter 6 is called a canonical parameter and ¢ is a scale parameter. The mean and variance of Y
are

EY)=v(0) and var(Y) = a(p)b' (),
respectively. The function g(b')~1, which links the mean to canonical parameter (')~ (E(Y)) = 0
is called canonical link.
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It is well known that the mean is highly influenced by extreme values. It is not usable when the
quantile of distribution is the main interest [see for example, Koenker (2005)]. Therefore, Komunjer
(2005) proposed a tick-exponential family for the (conditional) quantile estimation which is an analog
to the linear exponential family (1) for the (conditional) mean estimation. The general form of tick
exponential family for y € R is given by

) — exp [—(1 —a)(g(n) — 9(y))] if y<n
falysm) = ol = a)g/(y) { exp [a(g(n) — 9(y))] if y>n, @
where 7 is the ath quantile of Y and g is a monotone link function. It is noted that the tick-exponential
family (2) is only used for the whole real-line continuous variable. It is not useful for the semi-
infinite supported response variable or boundary response variable. Besides this, asymmetric Laplace
distribution is the only member of this family.

On the other hand, Koenker et al. (1978) proposed (conditional) quantile, which minimizes
tick loss function. Unlike the mean function, the quantile function provides complete characteristics
of the distribution. But this quantile proposed by Koenker et al. (1978) is actually nonparametric
because it does not need the underlying parametric assumption. It is more robust to outliers than
mean estimation. In conditional settings, it is only a tool used to find the effect of the covariate
on different quantile levels of the response variable. A friendly discussion of conditional quantile
estimation was presented by Koenker (2005). Many problems arise in nonparametric quantile due to
the unknown underlying distribution—for example, crossing problem in quantile curves which leads
to invalid inference, less efficiency, etc.

To solve the problems of nonparametric quantile, Gijbels et al. (2019) proposed a generalized
quantile-based asymmetric family of distributions for estimating quantile function of any continuous
variable Y which takes the form

20(1 —a)g'(y) | f{A—a) W)) if y<n

f9(y;n, ¢) = -4 7 (a (g(y);g(n))) 3)

it y>mn,

where, 7 is the location parameter (which is a ath quantile of Y)), ¢ is the scale parameter and f is a
unimodal symmetric density at zero.

One of the specialties of the family (3) is that the location parameter (n) is a specific quan-
tile of this family. There are many members of this family available in the literature. For instance,
asymmetric normal, asymmetric Laplace, asymmetric ¢, and at least three big families such as tick
exponential family (2), asymmetric power family (see, Komunjer (2007)), quantile-based asymmetric
family (see, Gijbels et al. (2019)) are are a subset of family (3). For any 5 € (0, 1), the Sth-quantile
of Y ~ f9(y;n, ¢) in (3) of the family equals

g7 (g + 1257 () it B<a
g (s + 2P (5E)) it B>

with in particular {F9}~!(a;n,$) = 1 and F~! the quantile function associated to the reference
symmetric density f. The family (3) and the quantile function (4) depend on two vital elements:

{FI} ' (Bin, ¢) = @)

* the reference symmetric density f or its cuamulative distribution function F' and
* the monotone strictly increasing link function g.

When the link function is identity (i.e., g(y) = y) then family tends to quantile-based asymmet-
ric family given in Gijbels et al. (2019). In this study, the main focus is to estimate the logit-type link
function g.

Section 2 discusses the logit-type link function based on a general distribution function. The
possible logit-type link functions for some known distribution are mentioned in this section. The
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distribution of the logit-type link function is derived here. We also discuss the distributional properties
and parameter estimation of the proposed distribution in this section. Section 3 illustrates applying
the proposed method for a real dataset. Finally, the concluding remarks are presented in Section 4.

2. Logit-type Link Function

Let the density of Y is a member of the generalized quantile-based family of distributions, and
G is a distribution function of Y. Suppose g be a logit-type link function of Y depends on G such
that

g(Y) =logit(G(Y)) =In <1f(7(1;/()y)> . 5)

If we know the distribution function of GG, we can easily derive the logit-type link function by using
(5). The link function of different probability distributions is presented in Table 1 in Appendix. The
graphical presentation of the some link functions under some real-valued random variable and semi-
infinite supported random variables are depicted in Figure 1. From Table 1, it is noticed that the
link function of the logistic distribution is an “identity” function, i.e., g(n) = 7 and Figure 1(a) also
confirm this.

Since 7 is the ath quantile of Y and g is the monotone strictly increasing link function, then
g(n) is also the ath quantile of Z = ¢g(Y) [see for example, Koenker (2005)]. By introducing the ath
quantile parameter ;4 € R and a scale parameter ¢ > 0 in the density (7), we get

eia(z;“) .
——— if z>up
,Q(Z H)
2a(1 — «) (He ¢ )
fa(zp,0) = — ez, (6)
£ if z<uy,

2
—(1—a)(EZ
(1+e =55 ))

where F; (o) = p. The density given in (6) is denoted by ALD(y, ¢, ) and called quantile-based
asymmetric logistic density (ALD) proposed in Gijbels et al. (2019). The graphical presentation of
this distribution is displayed in Figure 2. From Figure 2, it is seen that the curves are unimodal and
the densities are right-skewed (left-skewed) for the value of o < 0.50 (for the value of o > 0.50).
The density is symmetric if and only if the index parameter o = 0.50.

s = <4
> o
o / - Normal
§ A / h o o ’ i
cauchy ’ Lo / —— exponential
| _— Iog_lstlc ’ N s - - gamma
| <—- tdist o] o~ 7 weibull
g 1 — - gumble : B - =+ lognormal
i | Laplace & e chi square
| o~ - ,/ -—- uniform
! 1 /
T T s T T T T T T T T T
-10 -5 0 5 10 0 2 4 6 8 10
y y

Figure 1 Link function curve for (a). the real-valued random variable; (b). the semi-infinite supported
random variable
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2.1. Distribution of logit-type link function
We now want to find the distribution of Z = g(Y) when Y ~ G. We get

Pr(Z < z)=Pr <ln (%) < z)

G(Y) < —& ) [since, G(Y) ~ U(0,1)]
= Trer = Tre—> ;0 —oo <z < oo.

This is the cumulative distribution function of a standard logistic distribution. The probability density
function of Z can be written as

d 1 e *?
= = . 7
fZ(Z) dz |:]_+€Z:| (1+efz)2 ( )
=)

-30 -20 -10 0 10 20 30

Figure 2 The density plots of a quantile-based asymmetric logistic distribution with o =
(0.15,0.25,0.50,0.75,0.85)th Quantile of 4 = 0 and ¢ = 1

The mean and variance of Y ~ ALD(u, ¢, o) are following:
1 -2«
E(Z) = pu+2 [7} In(2),
@)=+ 20[ s we)

¢’ E = 2a)2{12 @)’} + ma(l - o)1

7= 2
varlZ) = 5 —a 3 3

We can easily find the cumulative distribution function and the quantile function of Z which respec-
tively are

2a : if z2<p
Pz = el (58]
* 20[—14-%; lf ZZN»
expy —a| ¢
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and

ln(%l—l); if f<a

_ 1
F7Y(B) = e TN .
) {u Sln(AsEl) it B> a

Figure 3 depicts the cumulative distribution function (left panel) and the quantile function (right
panel) when Z ~ ALD(p, ¢, a), for two values of . Recall that F,, (; p, ¢) = o and F; 1 (a) = pu.

— Fol®
-10] — FolslP)

71‘0 —‘5 (‘) é 1‘0 1‘5 2‘0 2‘5 0.‘0 0.‘2 O‘.4 0‘.6 0‘.8 1‘,0
Figure 3 Cumulative distribution function (left) and quantile function {right) for © = 0, ¢ = 1 and
= (0.25,0.50)

2.2, Maximum Likelihood Estimation
Based on an independent and identically distributed (i.i.d.) sample 71,...,7Z, from Z ~
ALD(u, ¢, @) the likelihood function of @ = (1, ¢, a)T is defined by

-Z;
n (1= (A5

Ln(p, ¢,a) = [W]"H[ ;Zi))Q

—a(Zigt)
]1[(21' <w) [ e @ ]H(Z¢>u)
X .
i=1 (1 + e (e
And the log-likelihood function for @ = (u, ¢, o) can be written as

In[L, (1, ¢, )] = nln2a(1l — a)] — nln(é I(Z; < p)
i=1
-2) In (1 + e*“*“)(“f”)l(zi <p)— az(%)ﬂ(& > p)
i=1 i=1

-2 zn:ln (1 + e_o‘(%))]l(Zi > ).
i=1

The MLE of u, ¢ and « is obtained from the optimization problem maxgce In[L, (1, ¢, ).
We now can easily estimate 7 by using the inverted link function 7 = ¢g~!(u) and hence can easily
estimate the quantile function by using (4).

Notably, this log-likelihood function is nonlinear and complex as well. It is also a nondifferen-
tiable function at y = p. In this situation, we can estimate the parameter by using an algorithm offered
by Gijbels et al. (2019). They also implemented this algorithm in the R package OBAsyDist.

3. Real Data Application

For illustrative purposes, we consider the daily proportion of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infected people who have tested for Coronavirus disease (COVID-19)
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infection from August 3, 2020 to February 12, 2021 in Bangladesh. The number of daily new SARS-
CoV-2 infected cases and daily new tested peoples are reported by the Institute of Epidemiology
Disease Control and Research (IEDCR), Dhaka, Bangladesh. The data are available on the website
with web-link https://covid19.who.int/. Notice that the daily proportion of SARS-CoV-2 infected
people (Y) is a bounded variable with support [0, 1]. It is observed that on average each day, 13.61%
of peoples are infected who have tested for COVID-19 infection.
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Figure 4 (a) Histogram and fitted density estimate (solid red line) of the uniform logit-type trans-
formation of the proportion of daily SARS-CoV-2 infected people (left); (b) the estimated quantile
function (right) the uniform logit-type transformation of the proportion of daily SARS-CoV-2 in-
fected people

For the bounded random variable, we can not directly compute the quantile function of the
distribution. Therefore, many authors including Bottai et al. (2010) and Columbu (2016) used the
uniform logit-type link function in quantile estimation. That is the link function is Z = logit(G(Y")),
where G(y) = (y — a)/(b — a). We also consider this link function to estimate the quantile function
of the proportion of daily SARS-CoV-2 infected cases among the people who have tested for COVID-
19 infection on that day. In Section 2, we have shown that the distribution of Z is a quantile-based
asymmetric logistic distribution given in (6).

For the uniform logit-type link function for this data set, we consider a as the minimum propor-
tion of infected people minus k and b as the maximum infected people plus k, where k is very small
number. In this case, we use £ = 0.01. To add (subtract) a small value of k to b (a) to avoid the
zero value of denomination (numerator) in the logit-type link function. The resulting link function

isz=g(y) =l ( ) for y € (a,b). Using this link function Z = ¢(Y"), we estimate parame-

ter @ = (u, ¢, )T of the distribution of Z via the method of maximum likelihood estimation. The
maximum likelihood estimates of 6 are (—0.1467,0.1824,0.7234)T. Using these maximum likeli-
hood estimates, we draw estimated density and estimate quantile function. The histogram of Z with
estimated density is presented in Figure 4 (a). From the histogram, it is clear that the variable Z is
left-skewed which also confirm by getting @ = 0.7234 (;0.5). Based on the estimated density, the
estimated quantile function is also depicted in Figure 4 (b). We now can easily estimate the quantile
function of Y using the link function. In this case, Y = (a + be?)/(1 + e%) and for any 8 € (0, 1),
the estimated Sth-quantile of Y equals

a+bex In(2& —
(11 p(“ ¢ 1((5 11))))) it f<a
exp(pu— 1=z In(F —
{FO ' Bno) =4 ., gl ’,
G oPAR “(B ) if 8>a

14+exp (u—f In(5= 2a+1 ))

The estimated quantile curve of Y and the QQ-plot are presented in Figure 5. The QQ-plot
looks like a curve, but actually, it is very close to a straight line. Because the scale of both axes is


https://covid19.who.int/

Md Rezaul Karim and Sejuti Haque 765

tiny, therefore it seems like a curve. Otherwise, it is very close to the 45° line. This is confirmed
by looking at the linear correlation coefficient of theoretical quantile and sample quantile which is
0.9863, indicating a nearly perfect relationship between theoretical quantile and sample quantile.
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Figure 5 (a) Estimated quantile function of Y'; (b) The QQ-plot (right)

4. Concluding Remarks

This article discusses the quantile estimation of the generalized quantile-based asymmetric fam-
ily of distributions discussed in Gijbels et al. (2019). This quantile function depends on two funda-
mental elements: (i) the link function g and (ii) reference density f. We derive the distribution of
the logit-type link function of the response variable Y. The properties with the parameter estimation
of this distribution are discussed. A real data application regarding the proportion of daily SARS-
Cov-2 infected people tested for COVID-19 infection is added to illustrate the proposed methods to
estimate the quantile function. Note that the proportion of daily SARS-Cov-2 infected people tested
for COVID-19 infection may depend on meteorological factors such as temperature, humidity, wind
speed, etc. In that case, the parameter 17 and ¢ would be a function of these covariates. Therefore,
further research would be to develop a method for estimating the conditional quantile function in the
regression settings.
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Appendix
Table 1 Link function for different distribution
Distribution name Link function g(y) Support
Normal log (%) yeR
Exponential log (1;;’(<p£;)'” >) y € [0,00)
Gamma log (WE%(:(L)) y € (0,00)
0.5— detan(y)
Cauchy log (W) Y€ (7007 OO)
Weibull log (%"ﬁ;)) y € [0,00)
xp[—exp(—y)]
Gumble log (;;’xp[ig’xp(;yﬂ) yeR
#(In(y)/o
Lognormal lo (7 € (0,00
g S\ (/o) v & (0)
Logistic Y y € (—00,00)
ep(y) N\ .
log (22 ify <0
Laplace { (11:522((?)) yeR
z .
10g(71 %eﬁp(yy) ify >0
(3. itk =
N r17(z2 ) y € (—oo,00) ifk=1
Chi-square log (1_i%%%) y € [—00,00)  otherwise
1 1\ 2F(3.3:3-07)
3+ul(3) ()
Student-t log(l 1 2F1(%,%;%;—y2) ) y € (—O0,00)
3 -l (3) =1(3)
Uniform log (y / (1 —y)) 0<y<1
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