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Abstract

The gamma zero-truncated Poisson (GZTP) distribution is introduced in this work as a novel
lifetime distribution created by compounding the gamma and zero-truncated Poisson distributions with
the minimum function. The proposed distribution’s features are examined, including proofs of its
probability density function and cumulative distribution function and formulas for its survival
function, hazard function, moment, mean, variance, and quantile. The shape of the GZTP
distribution’s hazard function is flexible and can be increasing, decreasing, or unimodal. The
estimation process utilizes maximum likelihood. Asymptotic properties of maximum likelihood
estimators are studied, and simulations are used to test how well parameter estimation works.

Keywords: Compounding, gamma distribution, Zero-truncated Poisson distributions.

1. Introduction

The modeling of lifetimes is an important statistical work in many fields. The new lifetime
distributions have been proposed in a lot of literature. One way to make a lifetime distribution is to
combine a lifetime model with a discrete distribution. The most common idea of a compound model
is that it has a lifetime of N (discrete random variables) components and a non-negative continuous

random variable, X,. The minimum of positive continuous random variables can be denoted by
Y =min{X,,X,,...,X,}. The model is obtained under the concept of a series system with identical

components. In a series system, if any part fails, the whole system fails. This means that the
distribution of Y can be used to model the time to the first failure of a system with N protected parts
or the time it takes for a person to get sick again after treatment.

Several authors have proposed new distributions for the minimum of X,. Adamidis and Loukas

(1998) proposed an exponential-geometric (EG) distribution by compounding geometric distribution
and exponential distribution for modeling the time to the first failure of the devices and the time
interval in days between explosions in coalmines. Adamidis et al. (2005) investigated the extended
exponential geometric (EEG) distribution. The different estimation procedures for the unknown
parameters of the EEG distribution presented by Louzada et al. (2016). The Weibull-geometric (WG)
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distribution with the minimum compounded function was proposed by Barreto-Souza et al. (2011) and
can be applied to the data on the fatigue life for 67 specimens of Alloy T7987. Zakerzadeh and
Mahmoudi (2013) introduced a Lindley-geometric (LG) distribution, which is a strong competitor to
other distributions used in fitting the data on the waiting times before service of 100 bank customers.
Tahmasbi and Rezaei (2008) introduced an exponential-logarithmic (EL) distribution. Ciumara and
Preda (2009) proposed a Weibull-logarithmic distribution that generalizes the EL distributions. In
addition, several new compounds of Poisson distribution and some lifetime models have been
introduced in their closed forms. Kus (2007) proposed an exponential-Poisson (EP) distribution and
fitted the model to the successive earthquake data. Barreto-Souza and Silva (2015) and Louzada et al.
(2020), respectively, discuss a likelihood ratio test to discriminate between the EP and gamma
distributions and various frequentist estimation techniques for the parameters of the EP distribution.
In addition, Xu et al. (2016) examined Bayes estimations of the parameter of the EP distribution under
some symmetrical and unsymmetrical loss functions. Hemmati et al. (2011) and Lu and Shi (2012)
proposed a Weibull-Poisson (WP) and discussed various of its statistical properties along with its
reliability features. Alkarni and Oraby (2012) defined the class of Poisson with some lifetime
distributions, presented the density, survival, and hazard functions, and gave some of their properties.
In their works, they also present some Rayleigh-Poisson and Pareto-Poisson distribution properties.
Gui et al. (2014) developed the Lindley-Poisson (LP) distribution and used it to model the time
between earthquakes and the length of time guinea pigs lived after being injected with varying
amounts of tubercle bacilli.

One of the most common ways to model lifetime data is by using the gamma distribution. But,
the gamma distribution gave a monotone hazard function, which is different from the hazard functions
of many physical phenomena. In many situations, the hazard function goes through three phases: it
first goes up, then stays almost the same, and then goes down. This hazard function, which we shall
refer to as upside-down bathtub-shaped, can be discovered through reliability and biological research.
Consequently, life-cycle models that exhibit a hazard function with an upside-down bathtub shape are
very helpful in survival analysis. In this article, the gamma and zero- truncated Poisson distributions
are compounded to create a new lifetime distribution by using the minimum function, which the hazard
function can perform in an upside-down bathtub shape.

The remainder of the paper is structured as follows: After defining the density function of the
GZTP distribution, probability density function plots of the GZTP distribution are shown. Second, the
GZTP distribution’s properties are introduced. This section derives its moment-generating function,
quantile, survival, and hazard rate functions. The generation of random numbers for the GZTP
distribution is also discussed. Thirdly, estimation of the parameters using the maximum likelihood
method, inference for large samples, and simulation analysis are provided. Fourth, an application to
real datasets is provided. Finally, there is a discussion and some conclusions.

2. Gamma Zero-Truncated Poisson Distribution
Let X,,X,,...,X, be N independent and identically distributed random variables from gamma

distribution with the following probability density function (pdf):
axa—le—ﬂx
f(xa,p) :F—, x>0,

(@)
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where a >0 is a shape parameter, £ >0 is a rate parameter, and F(a) is a gamma function of «,

and N is itself a random variable with a zero-truncated Poisson distribution and independence of
X,'s. The probability mass function of N is the following:

67/{2,,1
n!(l—e”1 ) ’

Assuming that random variables X and N are independent, and Y =min{X1,X2,...,Xn}.

P(N =n)= n=12,...and 1 >0.

Then, g(y|n) = n[l —F(y)]nil f(»), where f(y) isapdfand F(y) is the cumulative distribution

function (cdf) of Y. The joint distribution between Y and N are obtained as follow:

2t fo [A1-F (y))]"_l
(1-¢7) (n-1t 7’

and the marginal distribution for Y is

Ae” f(Y)[ ( (y))j|"’1 Ae” f(y) MF
e (e g

g(via, B, A) = Zg(y,n) Z (e

I'(a, T oal . .
where F ( y) = 1—% and F(a, Jij y) = I t*"e”'dt is the upper incomplete gamma function.
a
By
The pdf of the compound gamma zero-truncated Poisson distribution can be written as
['(a,By)
ie—ﬂ a a—le—ﬂy A -
g(:0) = —— £y e[ ) ] )
(1 —e ) I'(a)

where 8 =(4,a,)..

In the sequel, the distribution of Y will be referred to as the GZTP, and the plots of its pdf are
displayed in Figure 1 for selected parameter values. When 0 < o <1, the shape of the density is strictly
decreasing as shown in Figure 1(a), whereas when « > 1, the density becomes unimodal and the
curves show that the GZTP has a positively skewed distribution as shown in Figure 1(b). For a =1,
the GZTP distribution reduces to the density of the EP distribution introduced by Kus (2007).

Theorem 1 Considering the GZTP distribution with the pdf of Equation (1), the distribution is reduced
to a two-parameter gamma distribution as A — 0.

Proof: The proof is shown in Appendix.
Theorem 2 The density function of GZTP distribution is strictly decreasing if 0<a <1.

Proof: The first derivative of the GZTP distribution is
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[F(asﬁ’y)}ﬂy%
P I A g, ABy) e
g0 = (l—e_l)l“(a) a-1-Fy I(a) .

The sign of g'(y;0) depends on the sign of the second bracket. Let % = Sy, the second bracket
will be « —1—(h +Ah“e”’/l“(a)). If 0<a <1, then g'(y;0)<0. Hence, g(y;0) is a decreasing

function.

(b)
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Figure 1 Probability density functions of the GZTP distribution with (a) 0 <@ <land (b) & >1
3. Properties of the GZTP

3.1. Distribution function and moments
The cdf of the GZTP distribution is given by

7}&/11"(0(,,8)’)
G(y;9)=[1—e e J/(l—e‘). 2)

The proof of the cdf is given in Appendix. The " quantile for this distribution is defined as the

value y, such that
M(a) (1-r(1-¢*
I'a,py,) = (/l)ln[ (e;” )J

Proof: Since the r" quantile denoted by y, and y, =G'(r). This implies that G(y,)=r. As
Y ~ GZTP, then

22T py)
G(y,:0)=|1-e '@ | [(1-e?)=r.

Hence, it can be analytically solved for y, to obtain
r l1-r(l-¢*
F(a’ﬂyr): (ﬂa)ln{ <7/1 )J
e

The moment-generating function is defined by
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B RN £ CY )5}
M, ()= AB%e i J'ym ) gy,
I'(a) (1 —e ) 0
The numerical values of the k™ moment can be obtained by using numerical integration. By using
direct integration, we can calculate the raw moments of Y from Equation (1). The & raw moments
are given by

A1B8% - o Ar(afy)—ﬂy
ﬂ € J‘ya71+ke I(a) dy.

F(a)(l —e"l) 0
Therefore, the mean and variance of the GZTP distribution are given, respectively, as follows:
4 w I(a,fy)
lﬂ“e Y Y AT,ﬂy
— J Ve (a) dy,
I'(a) (1 —e ) 0

E(Y") = [y g(y)dy =

E(Y)=

and
JL@pn

a -4 0
Var(Y):F/l’B—eJ-y‘”'e r() }dy—[E(Y)]z.

3.2. The survival and hazard functions
From Equations (1) and (2), the survival function and hazard function of the GZTP distribution

are given by
A, By)
_a ey
l-e @ @)
l—e*—1+e "

S(:0) =1-G(y;0) =1~ =5 N (1-¢7)

Al(a.By)
) et1-e "
e (@ gt

(1-e*) (1-¢*)

and
o (e B
. g(y;90) (l_e%) F(a) ARy e ()
H(y:8)= 0 AT (a = o .
s(»;0) Aiefy) _ (e, fy)
_el[l_e I(a) J/(l_e/u) F(a)[l—e () J
' ;0 Qe Py a-1 1
Let 77(y)=—gg((;0)),then 77()’)=ﬂ{1+ e 1“25;}) ]_(ay )’
and 7'(y)=——— x[(a—l)l"(a)—/l(ﬂy)a (ﬂy_aﬂ)efﬂy]

T(a)y
For 0<a <1, 77'( y) <0 forall y's. Then, the hazard function is a decreasing function, which

follows Glaser (1980). Figure 2 illustrates some of the possible shapes of the hazard functions for
selected values of 0.
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Figure 2 Hazard functions of the GZTP distribution (a) 0 <a <1, (b) 41 =2, f=1.5,
) a=2, =1, A1=2, a=2

3.3. Random number generation

The rejection sampling algorithm is used to generate random samples from the target distribution
or Equation (1) by using random samples from a convenient distribution, which is called a proposal
distribution. Here, the continuous uniform distribution, p(y;0), is selected as a proposal distribution.
The algorithm is shown as follows:

Step 1: find a constant ¢ such that cp(y) > g(y;0);

Step 2: obtain a sample y from the proposal;

Step 3: obtain a sample u from U(0,1);

Step 4: check whether cp(y)u < g(y;0). If this holds, accept y as a sample drawn from g.

Otherwise, y will be rejected.

4. Estimation of the Parameters
4.1. Maximum likelihood estimators
Let V,Y,,....Y, be random samples with observed values y,,y,,...,», from the GZTP

19495.

distribution with parameters 0 . The likelihood function based on the observed random sample size

of n, Z, =(y,,,....»,) is given by
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1 2 \" na n a-l -p i)’; *%ir(a’ﬂyr)
L(B;Zobs)z[l_ee-zJ ( b )n](l:[y,) e [‘:‘ ] G .

[(a)
The corresponding log-likelihood function is
l(B;zobS):n(log/l—/i—log(l—e"))+nalogﬂ—nlogF(a)+(a—I)Zn:logyl.
i=1
n ﬂ( n
- N+ =T (e, By,),
ﬁ[zl:yJ r(a); (a.By,)

and subsequently the associated gradients are found to be

; (€))

e

M_[l e j+;F(a,ﬂy,~)
[l

oA F(a)
G L1 +(a, By,)x
> 0,0, P

ﬁy,-‘
» | (log(By,)~w,(a))

81(9;zobs) 3 z

T_nlog,B m//o(a)+;logyi +l; F(a) s 4

o(0:2,,,) na & AL sy,

—_— O = e, (5)
B g 2 T

where w,(«) is a digamma function that define as the 1* derivative of the logarithm of gamma

a ER a . . . . .
functionand G/ [ By, bl bp j is Meijer G-function. Equation (5) can be solved analytically for A
15--b,
as follows:
ol(8;z,,) se 0
op
na n iﬂa—l n « —py set
—t ) V- yie =0,
B Z‘ [(a) Z‘
I'a u
]
ﬂa—l Zyl e*ﬂy, ﬁ i=1
i=1
: - : N I'(a) na &
Therefore, the maximum likelihood estimator (MLE) of 4 is 4 =———+——— 74— z Yils
i=1

B e

i=1
conditional upon the value of ¢ and ,B, where & and 8 are maximum likelihood estimates. For «
and g, there are no closed forms, but the estimates can be calculated by numerical methods such as

the Newton—Raphson method or probabilistic methods such as simulated annealing. The following
theorems express the conditions that must be met in order for the MLEs to exist.

Theorem 3
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61(0, zom) .
(a) Let /| (/1 a, f, Zobv) —al a and [ are known. Then A is the uniquely exists root of
Zr(a,ﬂyi) n
(4, p, =0if &= ———>—,
l( ﬂ Zabs) F(Ot) 2
o1(8;2,,) .
(b) Let L,(B;4.a,z,,)= T, A and a are known. Then, there exists at least one

solution of Iy (B;2,a,z,, ) =0.

Proof: The proofs of Theorem 3 are given in the Appendix.

4.2. Asymptotic variance-covariance matrix of the MLEs
The MLE of 0 is approximately multivariate normal with mean @ and a variance-covariance

matrix that is the inverse of expected information matrix J (9) = E[[ (9)], where [ (0) is the
observed information matrix with elements :—612/861.80 ;> 6,j=1,2,3. By differentiating
Equations (3)-(5), the elements of the symmetric and second order observed information matrix,

1(9), are found as follows:

n(e“ —(lz +2)ei +1)
I, = >

A2 (e/1 —1)2
1 n 1 0 3,0 L1
S ST R AT

2" (a)log(By,) +y"” (a)zJ
" (a)+log*(By,)

+F(a,,3yl.)[

b= 2 (a1 e ),

3,0 1 0
G; [ﬂyl 0.0, j+F(a,ﬁy,-)(log(ﬂy,-)—w< "()))
I,=1 :—z
12 21 P r(a) 4
_ ﬂa 1 *ﬂl
]l - F(O_’ ZyL and

I, =1, :—%+/12e”5"" X

i=1

¥ B~ (@) +log(B) +log(y,))
I (a) '

4.3. Simulation study
The samples were generated by using the rejection sampling method, where 1 =0.5,3,7,

a=0.25,0.5,1,2, and =0.05,1,3. These values of parameters are selected such that all different
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shapes of distributions are represented. When all parameters are assumed unknown, the MLEs of
A, a and B are numerically calculated by the simulated-annealing method via the function maxLik

in R program. The maxLik package (Henningsen and Toomet 2011) is used to calculate the MLEs,
and the simulated annealing method is chosen because it gives stable solutions. The number of
replications is chosen to be 3,000 as it provided stable results. Tables 1-3 give the averages of the

MLEs, AV(@), and the corresponding standard errors, SE(é). The values of AV(é) and SE(é)

suggest that the MLEs performed consistently. The standard errors of MLEs decrease as the sample
size increases, and the bias of the MLEs is reduced for a large sample size, i.e., n=1,000. For

example, when n =50,100,1000 for 6 =(7, 2, 3), the averages of MLEs are (7.9780, 2.1839, 5.1052),

(7.4028, 2.1696, 4.9561), and (6.8333, 2.0391, 3.4088), respectively. The estimates tend to be close
to their actual values as sample sizes increase; however, it is noticed that, with the same sample size,

SE(/i) is larger than SE(&) and SE(ﬁ') in most situations.
For the variances, the estimates of Var(1),Var(&),Var(f),Cov(4,é&),Cov(A, B), and Cov(é, )

can be directly calculated using the derived formulas in the previous section, i.e., /,,,1,,/,;,1,,, and

1y,. Then, 1,,1,, I;,1

wotdiys 13,15, and 1, are estimated by replacing all unknown parameters with the

corresponding MLEs. Taking the inverse of the negative Hessian matrix results in the variance-
covariance matrix. In addition, Monte-Carlo simulations (MCs) can also be used to estimate such

variances. For example, the estimate of Var(i) is Zl](i—i )2 /(N —1) and the estimate of
Cov(4,4) is
X(A-4)(e-4)
Ay a-a)

where N is the number of iterations. Tables 4-6 summarize variance estimates obtained using the

analytic method and MCs.

It is observed that the variance of A increases as A increases given that & and g are fixed. For
instance, comparing cases with A =0.5 and A =7 at  =0.25, =3 and n =50, I7a\r(i) from MCs
increases from 1.2809 to 7.4205, respectively, and the variance from the analytical method rises from

3.9718 to 11.2405. Also, when A and g are fixed, @(&) increases as « increases. For example,
for cases with ¢ =0.25 and ¢ =2 at A=3,6=1 and n=100, 17;17(0?) from MCs increases from
0.0008 to 0.0666, and by analytic method, @(0}) rises from 0.0013 to 0.1010. Likewise, when A
and o are fixed, the variance of /Af increases as [ increases. In particular, comparing cases with

B=0.05and =3, at A1 =0.5, ¢ =0.25 and n =100, I7a\r(ﬁ) increases from 0.0004 to 1.2414 in
MCs and from 0.0011 to 1.9535 in the analytic method.

For large values of 7, it is observed that the variance estimates derived from the MC simulations
are relatively close to the analytic estimates. For example, at A =7, ¢ =0.25 and g =3, the
I7a\r(0?)'s from MCs for n=50,100 and 1,000 are 0.0029,0.0014, and 0.0002, while @(d)'s
from the analytic method are 0.0040, 0.0019 and 0.0002, respectively. It is noted that the
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approximation becomes quite accurate as »n increases. In the same way, Tables 7-9 show that the
covariances of the MLEs found in the Hessian matrix are very close to the covariances found in
simulations when » is large, i.e., n=1,000.

5. Applications

In this section, two real datasets are used to illustrate the use of the proposed GZTP distribution.
The remission time of bladder cancer patients and March precipitation are considered. Because the
probability density function of these datasets is unimodal, the GZTP, WP, and gamma distributions
are employed to model the data. For these distributions, the MLEs are used to estimate the parameters,
and the p-values of the Kolmogorov-Smirnov (K-S) test are compared. Those comparative pdfs are
given, respectively:

a-1 o
WP: fl(y;el)=—051ﬁ_’1 ey e 50,0, =(4,a, )

o a-1_-By

Gamma: f,(y;0,) :’By—eﬂy, y>0,0,=(ap).

I'(a)

5.1. Remission time of bladder cancer patients

According to Lee and Wang (2003), the dataset consists of the number of months that 128 bladder
cancer patients spent in remission. Table 10 shows the MLEs and Kolmogorov-Smirnov (K-S)
statistics for the GZTP, WP, and gamma models, along with their p-values. The results show that all
distributions can be used to model the data at a significance level of 0.05. However, the K-S test
statistic has the largest p-value under the GZTP distribution, so this means the GZTP distribution is
the most suitable for the data.

5.2. March precipitation

A dataset has 30 measurements of how much rain fell in March in Minneapolis/St. Paul. Each
measurement is in inches. Lu and Shi (2012) have discussed this data. It can be observed from Table
10 that the GZTP distribution fits the model as well as any other comparative distribution.

6. Conclusions and Discussion

The GZTP distribution is newly constructed by compounding the gamma and zero- truncated
Poisson distributions. The plots of the probability density function and hazard function were presented
to show the flexibility of this distribution. The maximum likelihood estimators were studied, and it
was found that some MLEs have no closed form. The formula of asymptotic variance-covariance
matrix of the MLEs was also explicitly derived.

Simulations were performed to demonstrate the behavior of MLEs in the GZTP distribution. The
result showed that as sample sizes increase, both standard errors and biasness diminish. When standard
error is taken into account, the parameters of the zero-truncated Poisson distribution are more difficult
to estimate than those of the gamma distribution. When the variance and covariance are taken into
account, estimates from Monte Carlo simulations are close to those from the analytical method when
the sample size is large.
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Appendix
The proof of Theorem 1
If A approaches to 0, then

(a.By)
- At (e AN gty
glil%g(%@)—glgg(l_el)( (@) Je =lim

di
_ﬂa - H lel -By _:Ba - : d7 : A -By
e [‘fi‘é(g_l)}e )= W) (ime’)(e)
_ﬂaya—l lmL efﬂy _ ﬂaya—l efﬂy _ ﬁaya—le—ﬁy .
i (e ) B (e ) -

Therefore, the GZTP distribution reduces to the two- parameter gamma distribution.

The proof of cdf
The cumulative distribution function of the GZTP distribution is given by

X - By e L(a.py)
G(y,ﬂ) J‘g(y,o)dy _ -[ (lﬂ,e A ( ]e ]eﬂ[ r(a)} ]dy
0

I'(a)

l'(a By) ﬁ

e, T
!y

(

lr(a,ﬂyL
Now, find the value of [y*'e "4 by letting T'(a,By) be u, then du__ge y<le .
y 'y dy

BACN PN PACH I e py u

Therefore, Jy" e " gy = J.y"’le ORI (— Y ,3: du} = —#Ier(“)du
Au F
Consider J' "y, Let F/zu) be v, then ?:% and du = (j)dv, and
a u a
Au
J-erfg) F(a)J a)e _ [(a)e™™ .
A
: E ad gl

(e, })_ u I I

Therefore, J.y"']el F() ﬂy = ——_[ ( 2; =- F(aleﬂa , and then
Ar(a.fy) ’ @py)_, Y
_ a T(a a
G(y;0)= he ' p —F(a)e - +C| = —L+C
’ (l—e’l)l“(a) Ap° (l—e’ﬁ)
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[ Ar(a.By) AL(e,0) Al(a,fy) Al(a)
b e e ML e e
(1-¢7)

(1=e )L

Al(a.py) AT (a,fy)
- e I(a) - -1 l-—e I(a) -
1 Ar(@.fy)_,
e I'(a) _el—l __ _ .

i) )

The proof of Theorem 3
. (. py,)
(a) Since [, (A;a, f.2,,,) = [;—1— ]+ =] () ,
. 2 T(@py) 2.I(a.py)
lim/, (Aa. B, zglm)——E III"T and lim/ (La,pB,z,,)=—n+2 o)
S Sriem)
It can be shown that lim/, (4;, 8,2, )= ——+————>0 as =———>—.
20 2 I'(a) I'(a) 2
zr(avﬂyz')
Si (a,ﬂy,) iml
ince ———==<1 forall y,, then lim/, (L a,B,2,, ) =—n+-————<0. Therefore, at
() r'(a)

least one solution of /, (4;a, 8,2, ) =0 exists. For the proof of uniqueness of solution, it is needed
to show function /; is strictly decreasing in A. The first derivative of /, is considered and given by
n(—e*(A* +2)+e* +1) _ ne* (et +e* —(A* +2))

(e/1 - 1)2 A ¢’ .

(/IC( ﬁa n[n):_

If e* +e" —(A*+2)>0, then /| (;a,f,z,, ) <0 and [, is strictly decreasing in A.

Consider ¢* =l+ﬂb+l/l2 +l/13 +...and e™* =1—/1+l/12 —l/f +..., then
2 3! 2 3!
et +e :2+22+%/14+...>/12+2, or e’ +e* —(A*+2)>0.

Therefore, I (4;c, B,2,,,) <0 for A > 0. This completes the proof.

. na & AP L
b) Since L, (B;4,a,z, ) =—— ) yie
( ) 3(ﬁ b) ﬁ i:]y l_,(a) ;y

a-1 p

hml (ﬂia,zg,ﬂ)-hm;—gg > /Hor‘ ;yl e =0, and

a-1 n

Zy“ = (- Zy hm ’B )Zy,.“e‘ﬁy'

/13139013(/3;/1,05,2”“) llm——hmZy lim 2

ﬂ P~ poe T Py
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/’LﬂU‘*I C a - al zz AL
. e
()& Zl

:LZ(hmﬂ‘“ “ /j}) Lvn {yl. lim(ﬂyi)lal}

Consider lim
Lo

F(a) =\ e r a) | 7 pom QP
and
() By, Y e e )
%11;1(}0 P _éﬁw eﬂ,\ a1 Zglilolo(a—l) ? ’c:ﬂyi/a_l

a-l a-1
C _ _ a-1 1 _
_(a—l) (}gr;e j =(a-1) (})’E}oe J 0
et =0-3y, 0=y, <0
a) i=1 i=1 i=1

Therefore, at least one solution of 7, (8;4,a,z,, ) =0 exists.

Then, /l,if}cls (BsA,a,z,, )= llm—— lim Zy, lim

p—oo poo [
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Table 1 The averages of MLEs and standard errors of 0 from 3,000 samples with »n =50

n 0=(4a,p) AV (0) SE(A) SE(&) SE(f)
50  (0.5,0.25,0.05  (0.7740, 03419, 0.1089) 0.0228 0.0016  0.0010
(0.5,025,1)  (1.8920,0.4072, 1.0290) 0.0369 0.0017  0.0168
(0.5,0.25,3)  (1.9664, 0.4360, 3.0202) 0.0361 0.0017  0.0474
(0.5,0.5,0.05)  (0.1536, 0.5788, 0.1259) 0.0094  0.0035 0.0009
(0.5,0.5,1)  (1.0143,0.5492, 1.0175) 0.0350  0.0060  0.0132
(0.5,0.5,3)  (1.1301,0.5737, 3.0636) 0.0441 0.0031 0.0377
(0.5,1,0.05)  (0.0666, 1.4296, 0.1808) 0.0070  0.0062  0.0007
(05, 1,1) (11179, 1.0645, 0.9856) 0.0537 0.0064  0.0112
(0.5,1,3)  (1.3310, 1.0695, 2.8908) 0.0743 0.0066  0.0328
(0.5,2,0.05)  (1.7073,3.2283,0.3143) 0.1231 0.0432  0.0049
05,2, 1) (1.4524,2.1125 0.9549) 0.0406  0.0075 0.0059
(0.5,2,3)  (1.6255,2.1118, 2.8408) 0.0498 0.0078 0.0189
(3,0.25,0.05)  (3.0282,0.3361, 0.1329) 0.0330  0.0011 0.0031
(3,025,1)  (3.9823,0.3959, 1.6154) 0.0381 0.0013 0.0423
(3,0.25,3)  (4.5719,0.4297, 3.6947) 00626  0.0014  0.0759
(3,0.5,0.05)  (1.2933,0.5037,0.1572) 0.0336  0.0027  0.0018
(3,05,1)  (2.6305,0.5260, 1.5961) 0.0437 0.0035 0.0334
(3,0.5,3)  (3.3085,0.5455,4.0771) 0.0768 0.0024  0.0790
(3,1,0.05)  (0.2925,1.1489, 0.1955) 0.0253 0.0071 0.0013
(B,1,1)  (2.5052,0.9942, 1.3947) 0.0752 0.0055 0.0219
(3,1,3)  (2.8688,0.9983, 4.0033) 0.0931 0.0053 0.0672
(3,2,0.05)  (1.2485,3.7371,0.3098) 0.1052 0.0345 0.0041
(3,2,1)  (2.3025,2.0699, 1.3427) 0.0693 0.0128 0.0180
(3,2,3)  (2.7822,2.0512, 3.7918) 0.0970  0.0126  0.0549
(7,0.25,0.05)  (5.0467,0.3695, 0.7512) 0.0530  0.0012  0.0310
(7,0.25,1)  (6.9508,0.4514, 5.5962) 0.0888 0.0019  0.1276
(7,0.25,3)  (8.4013,0.4879, 9.2526) 0.0995 0.0020  0.1533
(7,0.5,0.05)  (3.9643,0.5126, 0.3498) 0.0910  0.0025 0.0094
(7,0.5,1)  (5.1392, 0.5569, 4.0841) 0.1315 0.0025 0.1107
(7,0.5,3)  (8.6819, 0.5842, 5.0566) 0.1532 0.0023 0.1299
(7,1,0.05)  (4.2653,1.0818,0.2413) 0.1026  0.0064  0.0038
(7,1,1)  (4.2506, 1.0432, 3.1315) 0.1601 0.0060  0.0696
(7,1,3)  (7.3358, 1.0310, 5.5968) 0.2252 0.0063 0.1729
(7,2,0.05)  (4.0828,2.9785,0.2220) 0.1573 0.0249  0.0050
(7,2,1)  (3.8889,2.3360, 2.4612) 0.1548 00170  0.0455
(7,2,3)  (6.9780,2.1839, 5.1052) 02380  0.0171 0.1312
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Table 2 The averages of MLEs and standard errors of 0 from 3,000 samples with n =100

n 0=(4a,p) AV () SE(A) SE(&) SE(f)
100 (0.5,0.25,0.05)  (0.6503,0.3356, 0.1082) 0.0161 0.0011 0.0007
(0.5,025,1)  (1.9562, 0.4042, 0.9342) 0.0277 0.0012 0.0114
(0.5,025,3)  (2.0653, 0.4355,2.8513) 0.0331 0.0013 0.0355
(0.5,0.5,0.05)  (0.0748, 0.5660, 0.1236) 0.0044 0.0025 0.0006
(0.5,05,1)  (0.9284,0.5508, 1.0028) 0.0298 0.0023 0.0089
(0.5,05,3)  (1.0714,0.5670, 2.9489) 0.0345 0.0023 0.0271
(0.5,1,0.05)  (0.0243, 1.3968, 0.1781) 0.0009 0.0077 0.0009
(0.5,1,1)  (1.0183, 1.0434, 0.9648) 0.0485 0.0048 0.0085
(0.5,1,3)  (1.1229, 1.0501, 2.8765) 0.0596 0.0057 0.0260
(0.5,2,0.05)  (0.7135,3.2249, 0.3359) 0.0863 0.0335 0.0036
(0.5,2,1)  (1.2695,2.0442, 0.9367) 0.0626 0.0091 0.0083
(0.5,2,3)  (1.6502,2.0593, 2.7370) 0.0864 0.0096 0.0286
(3,0.25,0.05)  (3.2172,0.3373, 0.1075) 0.0251 0.0008 0.0016
(3,0.25,1)  (4.3747,0.3941, 1.1819) 0.0314 0.0009 0.0256
(3,0.25,3)  (4.4825,0.4278, 3.4289) 0.0485 0.0015 0.0978
(3,0.5,0.05)  (1.5568, 0.4936, 0.1372) 0.1929 0.0150 0.0070
(3,0.5,1)  (2.9546,0.5271, 1.3430) 0.0416 0.0016 0.0230
(3,0.5,3)  (3.3096, 0.5489, 3.6419) 0.0505 0.0016 0.0622
(3,1,0.05)  (0.1898, 1.1017, 0.1920) 0.0249 0.0049 0.0010
(3,1,1)  (2.5910, 0.9841, 1.2950) 0.0619 0.0037 0.0183
(3,1,3)  (2.6937, 0.9896, 3.8590) 0.0646 0.0039 0.0536
(3,2,0.05)  (0.8058, 3.6090, 0.3096) 0.0869 0.0242 0.0032
(3,2,1)  (2.8093,2.0122, 1.1734) 0.0732 0.0039 0.0570
(3,2,3)  (3.0028,2.0120, 3.4572) 0.0866 0.0086 0.0426
(7,0.25,0.05)  (5.4649, 0.3661, 0.4725) 0.0507 0.0013 0.0192
(7,025,1)  (6.5506, 0.4469, 5.5509) 0.0593 0.0014 0.1241
(7,0.25,3)  (7.8929, 0.4849, 9.5024) 0.0711 0.0014 0.1265
(7,0.5,0.05)  (4.1455,0.5194, 0.2557) 0.0896 0.0018 0.0069
(7,0.5,1)  (4.8483,0.5524, 3.6499) 0.0910 0.0017 0.0828
(7,0.5,3)  (6.5427,0.5802, 6.6263) 0.1184 0.0019 0.1571
(7,1,0.05)  (2.2317, 1.0855, 0.2415) 0.1026 0.0065 0.0037
(7,1,1)  (4.1421, 1.0517, 3.1891) 0.1543 0.0065 0.0695
(7,1,3)  (7.1496, 1.0116, 5.0158) 0.1465 0.0032 0.1163
(7,2,0.05)  (4.0264,2.9367,0.2188) 0.1545 0.0240 0.0048
(7,2,1)  (4.2215,2.3144, 2.3648) 0.1611 0.0173 0.0467
(7,2,3)  (7.4028,2.1696, 4.9561) 0.2388 0.0168 0.1333
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Table 3 The averages of MLEs and standard errors of 0 from 3,000 samples with n=1,000

n 0=(1a,p5) AV (0) SE(A) SE(Q) SE()
1,000  (0.5,0.25,0.05)  (0.5732,0.3259, 0.1062) 0.0088 0.0005 0.0003
0.5,025,1)  (1.9473, 0.4041, 0.8584) 0.0120 0.0005 0.0044
(0.5,025,3)  (2.1669, 0.4386,2.5179) 0.0118 0.0005 0.0125
(0.5,0.5,0.05)  (0.0170,0.5482, 0.1214) 0.0006 0.0009 0.0002
(0.5,0.5,1)  (0.8081,0.5403, 0.9743) 0.0131 0.0011 0.0036
(0.5,0.5,3)  (0.9409, 0.5608, 2.8985) 0.0128 0.0010 0.0111
(0.5,1,0.05)  (0.0075, 1.3425,0.1710) 0.0002 0.0027 0.0003
0.5,1,1)  (0.5189,0.9991, 0.9951) 0.0160 0.0024 0.0033
0.5,1,3)  (0.5471, 1.0026, 2.9828) 0.0168 0.0018 0.0081
(0.5,2,0.05)  (0.0039, 3.0754, 0.3404) 0.0001 0.0106 0.0008
0.5,2,1)  (0.5951,2.0036, 0.9893) 0.0297 0.0044 0.0041
(0.5,2,3)  (0.5971,2.0084, 2.9734) 0.0223 0.0033 0.0089
(3,0.25,0.05)  (3.3539,0.3372, 0.0903) 0.0124 0.0004 0.0005
(3,025,1)  (4.8809,0.3921, 0.7578) 0.0166 0.0004 0.0070
(3,0.25,3)  (3.3429, 0.4338, 2.5060) 0.0599 0.0006 0.0173
(3,0.5,0.05)  (1.1796, 0.4921, 0.1484) 0.0134 0.0010 0.0006
(3,0.5,1)  (3.4121,0.5320, 0.9663) 0.0265 0.0006 0.0096
(3,0.5,3)  (3.5870,0.5507, 2.8279) 0.0240 0.0006 0.0262
(3,1,0.05)  (0.3405, 1.0618, 0.1822) 0.0483 0.0017 0.0012
G, 1,1)  (3.0369, 0.9946, 1.0316) 0.0337 0.0011 0.0083
(3,1,3)  (3.0159, 0.9933, 3.0920) 0.0308 0.0010 0.0235
(3,2,0.05)  (4.0241,3.2407,0.2164) 0.1829 0.0153 0.0047
(3,2,1)  (3.0607,1.9917, 1.0210) 0.0368 0.0032 0.0075
(3,2,3)  (2.9388, 1.9939, 3.1180) 0.0323 0.0028 0.0216
(7,0.25,0.05)  (6.4174,0.3611, 0.2239) 0.0227 0.0004 0.0031
(7,025,1)  (6.7969, 0.4452, 4.4480) 0.0335 0.0005 0.0609
(7,0.25,3)  (7.7530, 0.4865, 9.4380) 0.0333 0.0006 0.0889
(7,0.5,0.05)  (6.9969, 0.5185, 0.0646) 0.0521 0.0006 0.0016
(7,0.5,1)  (5.2841, 0.5530, 2.4849) 0.0513 0.0006 0.0434
(7,0.5,3)  (5.8831,0.5763, 6.2887) 0.0392 0.0006 0.0799
(7,1,0.05)  (7.7062, 1.0288, 0.0539) 0.0596 0.0017 0.0016
(7,1,1)  (6.1109, 1.0176, 1.5166) 0.1127 0.0022 0.0439
(7,1,3)  (6.8551, 1.0084, 3.6359) 0.1049 0.0019 0.0919
(7,2,0.05)  (9.4414,2.4936,0.0781) 0.0407 0.0050 0.0003
(7,2,1)  (6.8195,2.0363, 1.1450) 0.0945 0.0066 0.0240
(7,2,3)  (6.8333,2.0391, 3.4088) 0.0930 0.0063 0.0645
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Table 4 Estimated variances of MLEs for n =50

Monte-Carlo simulations Analytic method

n 0=(1,a,B) - N A - - N
Var(l) —Var(@)  Var(B) Var(l) — Var(@)  Var(p)
50  (0.5,0.25,0.05) 0.5148 0.0025 0.0010 1.5843 0.0062 0.0027
(0.5,0.25, 1) 1.3467 0.0028 0.2793 3.8851 0.0059 0.4865
(0.5,0.25, 3) 1.2809 0.0029 2.2036 3.9718 0.0063 4.7511
(0.5, 0.5, 0.05) 0.0837 0.0114 0.0007 2.0434 0.0256 0.0020
(0.5,0.5, 1) 1.1883 0.0354 0.1680 3.1241 0.0181 0.2181
(0.5,0.5,3) 1.9358 0.0094 1.4144 2.0658 0.0170 1.7158
(0.5, 1, 0.05) 0.1294 0.0989 0.0013 6.0531 0.1950 0.0043
05,1, 1) 2.6950 0.0385 0.1162 7.4961 0.0862 0.1850
(05,1, 3) 5.0574 0.0394 0.9844 6.2039 0.0829 1.6006
(0.5,2,0.05) 10.1080 1.2450 0.0159 12.6787 1.0056 0.0114
05,2, 1) 4.5356 0.1553 0.0951 8.6845 0.2852 0.1505
(0.5,2,3) 6.6810 0.1629 0.9634 10.9382 0.3287 1.3033
(3, 0.25, 0.05) 1.0438 0.0012 0.0091 6.0534 0.0026 0.0223
(3,025, 1) 1.3888 0.0015 1.7175 9.3077 0.0029 7.7007
(3,0.25, 3) 3.4624 0.0018 5.0874 9.5963 0.0032 5.8813
(3,0.5,0.05) 1.0979 0.0070 0.0032 3.0873 0.0119 0.0067
(3,05, 1) 1.8580 0.0120 1.0857 7.9966 0.0082 1.6357
(3,0.5,3) 5.3327 0.0052 5.6391 7.4157 0.0077  14.7862
(3,1,0.05 0.5971 0.0472 0.0017 4.4781 0.1219 0.0046
G, 1,1 5.2591 0.0277 0.4475 9.5822 0.0439 0.7465

3G, L3) 7.9690 0.0255 4.1552 13.2599
(3,2,0.05) 8.1678 0.8753 0.0124 11.4873

(3,2,1) 4.5226 0.1546 0.3058 7.2964
3,2,3) 8.5590 0.1439 2.7418 8.7134
(7,0.25, 0.05) 2.5686 0.0014 0.8756 16.9288
(7,025, 1) 5.9948 0.0027  12.3860 7.6041

(7,0.25, 3) 7.4205 0.0029  17.5966 11.2459
(7,0.5,0.05) 7.1020 0.0055 0.0766 16.0608
(7,0.5,1) 13.0415 0.0046 9.2447 15.9675
(7,05,3) 19.7570 0.0043  14.1992 27.8015
(7, 1,0.05) 8.9690 0.0348 0.0125 9.6951
(7,1,1) 20.9617 0.0299 3.9588 12.1720
(7,1,3)  31.8948 0.0250  18.8088 27.3020
(7,2,0.05) 18.1048 0.4534 0.0183 21.1529
(7,2,1) 19.6920 0.2375 1.7050 14.5430
(7,2,3) 36.4370 0.1872  11.0638 24.3434

0.0564 9.2401
0.8723 0.0127
0.1977 0.3590
0.1971 4.2162
0.0021 2.0530
0.0028  18.8064
0.0040  21.8596
0.0074 0.0847
0.0073  22.7584
0.0068  28.6425
0.0608 0.0132
0.0450 3.7378
0.0602  25.0770
0.5630 0.0073
0.2756 1.4748
0.2780  20.3718
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Table 5 Estimated variances of MLEs for n =100

Monte-Carlo simulations Analytic method

n 0=(1,a,B) - - N A - N
Var(A) Var(@)  Var(p) Var(R) Var(@)  Var(p)
100 (0.5, 0.25, 0.05) 0.2591 0.0012 0.0004 0.7401 0.0031 0.0011
(0.5,0.25, 1) 0.7636 0.0014 0.1289 1.6064 0.0027 0.2001
(0.5,0.25, 3) 1.0804 0.0016 1.2414 1.9674 0.0031 1.9535
(0.5, 0.5, 0.05) 0.0168 0.0055 0.0003 1.1341 0.0139 0.0009
(0.5,0.5, 1) 0.8619 0.0052 0.0770 2.4689 0.0122 0.1453
(0.5,0.5,3) 1.1622 0.0051 0.7177 1.7142 0.0091 0.9841
(0.5, 1, 0.05) 0.0007 0.0485 0.0006 1.9577 0.0755 0.0016
05,1, 1) 2.1622 0.0214 0.0671 3.8082 0.0597 0.1068
0.5,1,3) 3.2651 0.0300 0.6193 3.0352 0.0395 0.7425
(0.5, 2, 0.05) 4.5836 0.6907 0.0082 4.7394 0.4891 0.0063
05,2, 1) 3.5698 0.0746 0.0634 3.7908 0.1339 0.0640
0.5,2,3) 6.7487 0.0836 0.7426 4.2481 0.1218 0.8205
(3, 0.25, 0.05) 0.6069 0.0006 0.0024 5.0483 0.0013 0.0106
(3,0.25,1) 0.9296 0.0008 0.6169 9.8013 0.0013 2.0758
(3,0.25, 3) 0.8218 0.0008 3.3405 5.4918 0.0015 8.5921
(3,0.5,0.05) 0.5581 0.0034 0.0007 1.1545 0.0045 0.0029
(3,0.5,1) 1.7149 0.0026 0.5260 4.1991 0.0036 0.6759
(3,0.5,3) 2.2422 0.0024 3.3976 6.6116 0.0036 9.4159
(3, 1,0.05) 0.5710 0.0226 0.0010 1.9538 0.0522 0.0018
G, 1,1 3.6297 0.0130 0.3185 5.2027 0.0177 0.3912
(3,1,3) 4.9457 0.0139 2.9974 5.0933 0.0178 3.4364
(3, 2,0.05) 5.2210 0.4037 0.0072 3.9637 0.3791 0.0053
3,2, 4.8152 0.0666 0.1931 7.0270 0.1010 0.2707
(3,2,3) 6.9059 0.0679 1.6732 7.3455 0.0920 2.3630
(7,0.25, 0.05) 1.1526 0.0008 0.1655 6.9089 0.0010 0.4321
(7,0.25, 1) 2.1204 0.0012 9.2776 4.2917 0.0014  13.6663
(7,0.25, 3) 3.3119 0.0014  10.4939 7.8267 0.0019  15.5661
(7,0.5,0.05) 6.3296 0.0026 0.0372 14.5278 0.0033 0.0473
(7,0.5, 1) 6.4718 0.0024 5.3612 8.8099 0.0029 9.7279
(7,0.5,3) 7.9378 0.0022  13.9765 9.6126 0.0028  19.9803
(7, 1,0.05) 8.9059 0.0358 0.0118 39.7043 0.0759 0.0178
(7,1,1)  19.0367 0.0335 3.8634 13.9862 0.0430 4.0673
(7,1,3)  23.6772 0.0115  14.9294 15.7604 0.0146  20.8320
(7,2,0.05) 17.7533 0.4270 0.0172 18.4690 0.5155 0.0073
(7,2,1) 21.1447 0.2452 1.7752 19.3761 0.3020 1.5975

(7,2,3) 36.6068 0.1821 11.4014 57.5472 0.3381 15.7911
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Table 6 Estimated variances of MLEs for n =1,000

Monte-Carlo simulations Analytic method

n 0= (xl,a,ﬂ) A R N N N .
Var() —Var(a)  Var(p) Var() —Var(&)  Var(B)
1,000 (0.5, 0.25,0.05) 0.0384 0.0001 0.0000 0.0673 0.0003 0.0001
(0.5,0.25, 1) 0.0856 0.0002 0.0113 0.1260 0.0003 0.0169
(0.5, 0.25, 3) 0.0904 0.0002 0.1011 0.1489 0.0003 0.1673
(0.5, 0.5, 0.05) 0.0002 0.0005 0.0000 0.0991 0.0012 0.0001
(0.5,0.5, 1) 0.0964 0.0007 0.0074 0.1163 0.0009 0.0089
(0.5,0.5,3) 0.0976 0.0006 0.0742 0.1202 0.0009 0.0849
(0.5, 1, 0.05) 0.0000 0.0045 0.0001 0.7758 0.0195 0.0004
0.5,1,1) 0.1273 0.0030 0.0056 0.1740 0.0038 0.0065
0.5,1,3) 0.2748 0.0032 0.0646 0.1983 0.0042 0.0612
(0.5, 2, 0.05) 0.0000 0.0621 0.0004 0.1873 0.0370 0.0004
0.5,2,1) 0.4400 0.0099 0.0086 0.2433 0.0127 0.0056
0.5,2,3) 0.4763 0.0106 0.0757 0.2440 0.0126 0.0487
(3, 0.25, 0.05) 0.0783 0.0001 0.0001 0.2946 0.0001 0.0007
(3,025, 1) 0.1477 0.0001 0.0261 0.8861 0.0001 0.1197
(3,0.25, 3) 1.8345 0.0002 0.1537 0.7022 0.0002 0.7337
(3, 0.5, 0.05) 0.0894 0.0005 0.0002 0.1173 0.0006 0.0003
(3,05, 1) 0.3899 0.0002 0.0507 0.8282 0.0003 0.0906
(3,05,3) 0.3265 0.0002 0.3894 1.3872 0.0003 1.2635
(3, 1,0.05) 1.8817 0.0023 0.0012 0.3339 0.0055 0.0002
(3,1, 1) 1.0363 0.0011 0.0630 1.2085 0.0013 0.0823
(3,1,3) 0.9611 0.0011 0.5603 1.0361 0.0013 0.6053
(3,2,0.05) 1.1011 0.1406 0.0135 0.7770 0.0238 0.0003
(3,2, 1) 1.2201 0.0093 0.0507 1.8760 0.0122 0.0672
(3,2,3) 0.9669 0.0074 0.4328 1.0888 0.0091 0.4621
(7,0.25, 0.05) 0.2573 0.0001 0.0047 2.3858 0.0001 0.0208
(7,025, 1) 0.5568 0.0001 1.8371 0.7094 0.0002 1.8145
(7,0.25, 3) 0.5587 0.0002 3.9725 0.9507 0.0002 4.4882
(7, 0.5, 0.05) 1.3938 0.0002 0.0014 3.6506 0.0002 0.0034
(7,05, 1) 1.3175 0.0002 0.9428 3.0960 0.0003 1.9842
(7,0.5, 3) 0.7830 0.0002 3.2487 0.8338 0.0003 3.1858
(7, 1,0.05) 1.3853 0.0012 0.0010 1.9336 0.0012 0.0002
(7,1, 1) 5.7144 0.0021 0.8653 2.4750 0.0015 0.2991
(7,1, 3) 4.5041 0.0015 3.4543 3.5295 0.0017 2.1812
(7,2, 0.05) 0.7022 0.0108 0.0000 1.9520 0.0092 0.0001
(7,2, 1) 4.1513 0.0201 0.2679 9.1907 0.0291 0.2156

(7,2,3) 4.0194 0.0183 1.9366 3.2583 0.0196 1.1301
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Table 7 Estimated covariances of MLEs for n =50

Monte-Carlo simulations Analytic method

n 0=(1.a.p) Cov(/i,o?) Cov(ﬂ:,[;’) Cov(&,,é) Cov(/‘{,d) Cov(/i,[;’) Cov(o?,[;’)

50 (0.5,0.25,0.05) 0.0167  -0.0074 0.0004 0.0730  -0.0434 -0.0009
(0.5,0.25, 1) 0.0260  -0.3685 0.0021 0.0785 -1.0115 -0.0118
(0.5,0.25, 3) 0.0260  -1.0383 0.0086 0.0777  -3.1869 -0.0365

(0.5,0.5,0.05) 0.0082 0.0002 0.0019 0.1792  -0.0414 -0.0015
(05,05, 1) 0.0527  -0.2516 0.0140 0.1504  -0.5952 -0.0148
(0.5,0.5,3) 0.0614  -0.9937 0.0112 0.1311 -1.3203 -0.0298

(0.5,1,0.05) 0.0098 -0.0013 0.0100 0.8501 -0.1269 -0.0091
05,1,1) 0.0826  -0.3587 0.0215 0.3485 -0.8593 -0.0212
0.5,1,3) 0.0827  -1.4204 0.0647 0.3461 -2.2946 -0.0506
(0.5,2,0.05)  -0.9600  -0.3150 0.1106 0.6624  -0.2406 0.0279
05,2,1)  -0.0020  -0.4329 0.0721 0.4511 -0.8379 0.0253
05,2,3) -0.0705 -1.7181 0.2408 0.5200  -2.6111 0.0695

(3, 0.25, 0.05) 0.0120  -0.0469 0.0009 0.0533 -0.2703 -0.0015
(3,0.25,1) 0.0025 -0.8461 0.0256 0.0433 -5.6072 -0.0099
(3,0.25,3) 0.0187  -1.9375 0.0392 0.0186 -14.7122 0.0385

(3,0.5,0.05) 0.0450  -0.0311 0.0004 0.1129  -0.1019 -0.0020
3,05, 1) 0.0334  -0.9693 0.0176 0.0930  -2.7954 -0.0186
(3,0.5,3) 0.0524  -3.4378 0.0144 0.0779  -8.0506 -0.0447
(3,1,0.05) 0.0403 -0.0081 0.0062 0.5758  -0.1046 -0.0063
G, LD 0.0861 -1.0252 0.0251 0.1366  -2.0500 -0.0006
3.1,3) 0.0762  -3.8528 0.0638 0.1965 -9.0941 -0.0445
(3,2,0.05) -0.6992  -0.2432 0.0830 1.2138  -0.2739 0.0061
3,2,1) -0.0730  -0.7981 0.1382 0.0475 -1.2044 0.0994
3,2,3) -0.1983 -3.3283 0.3961 -0.0612  -4.5892 0.3633

(7,0.25,0.05)  -0.0023 -0.7181 0.0180 0.0261 -4.0791 0.0011
(7,0.25, 1) 0.0447  -3.0238 0.0984 0.0274  -7.8428 0.0608
(7,0.25, 3) 0.0821 -2.7226 0.1110 0.0673  -14.8206 0.1457

(7, 0.5, 0.05) 0.0511 -0.4967 -0.0001 0.0693 -0.6612 -0.0039
(7,05, 1) 0.0580  -6.8978 0.0365 -0.0044 -16.1750 0.0794
(7,0.5,3) 0.0640 -11.6383 0.0566 -0.0588  -29.9746 0.2744
(7,1,0.05)  -0.0115 -0.2802 0.0069 0.1803 -0.2204 -0.0006
(7,1, 1) 0.0577  -6.7938 0.0600 0.0603 -4.3486 0.0315
(7,1,3)  -0.0510 -19.2249 0.1667 0.0082 -33.4684 -0.4394
(7,2,0.05)  -1.2498 -0.5239 0.0668 0.0360  -0.2732 0.0117
(7,2,1)  -0.7951 -4.4318 0.4517 -0.4409  -3.0468 0.3499

7,2,3) -1.2627  -15.5863 1.0759 -1.1463  -16.0017 1.6004
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Table 8 Estimated covariances of MLEs for n =100

Monte-Carlo simulations Analytic method

n ﬁz(l,a,ﬁ) Cov(/i,o?) Cov(/i,[;’) Cov(o?,[;’) Cov(/i,o?) Cov(ﬂt,,é) COV(O?,[;’)

100 (0.5, 0.25, 0.05) 0.0084  -0.0037 0.0002 0.0365  -0.0188 -0.0004
(0.5,0.25, 1) 0.0167  -0.2194 -0.0010 0.0391 -0.4453 -0.0064
(0.5,0.25, 3) 0.0187  -0.8036 -0.0008 0.0417  -1.5448 -0.0198

(0.5,0.5,0.05) 0.0014 0.0002 0.0009 0.1027  -0.0213 -0.0009
(05,05, 1) 0.0377  -0.1710 -0.0006 0.1233 -0.4897 -0.0180
(0.5,0.5,3) 0.0358  -0.6267 -0.0010 0.0805  -0.9822 -0.0257

(0.5,1,0.05) 0.0003 0.0001 0.0049 0.2875  -0.0404 -0.0018
05,1,1) 0.0758  -0.2760 0.0055 03186  -0.5176 -0.0315
0.5,1,3) 0.0707  -1.0591 0.0198 0.1737  -1.1253 -0.0260
(0.5,2,0.05)  -0.4530  -0.1468 0.0606 0.5685  -0.1266 0.0086
05,2,1) 0.0025 -0.3729 0.0317 0.2101 -0.3593 0.0134
05,2,3) -0.1178  -1.7554 0.1370 0.1295  -1.4932 0.0669

(3, 0.25, 0.05) 0.0075 -0.0207 0.0003 0.0332  -0.1929 -0.0010
(3,0.25,1) 0.0012  -0.4622 0.0101 0.0274  -3.6721 -0.0040
(3,0.25,3)  -0.0004  -0.9413 0.0281 0.0106  -7.2806 0.0175

(3,0.5,0.05) 0.0323 -0.0076 0.0001 0.0458  -0.0457 -0.0007
3,05, 1) 0.0239  -0.7209 0.0007 0.0401 -1.3175 -0.0084
(3,0.5,3) 0.0232  -1.9506 0.0051 0.0389  -6.5461 -0.0293
(3,1,0.05) 0.0113 -0.0116 0.0031 0.2265  -0.0383 -0.0017
G, LD 0.0421 -0.8400 0.0086 0.0440  -1.1681 0.0071
3.1,3) 0.0428  -2.9136 0.0224 0.0441 -3.2982 0.3356
(3,2,0.05) -0.3975 -0.1575 0.0408 0.5790  -0.1047 0.0035
3,2,1) -0.1374  -0.7827 0.0637 -0.3028  -1.1604 0.0978
(3,2,3) -0.1541 -2.5909 0.1930 -0.2575  -3.4547 0.2455

(7,0.25,0.05)  -0.0036  -0.2745 0.0068 0.0103 -1.2154 0.0015
(7,0.25, 1) 0.0082  -1.9151 0.0680 0.0087  -5.6556 0.0405
(7,0.25, 3) 0.0384  -1.8403 0.0514 0.0607  -8.3301 0.0289

(7, 0.5, 0.05) 0.0182  -0.3725 0.0002 0.0262  -0.5455 -0.0022
(7,05, 1) 0.0343 -4.1091 0.0092 0.0143 -9.2530 0.0017
(7,0.5,3) 0.0195 -7.5173 0.0508 -0.0017  -12.5261 0.0718
(7, 1,0.05) 0.0265 -0.2651 0.0064 0.1609  -0.4968 -0.0050
(7,1, 1) 0.0240  -6.4625 0.0838 0.0244  -4.5572 0.0466
(7,1,3)  -0.0709 -14.8243 0.1200 -0.1172 -12.9119 0.1621
(7,2,0.05) -1.0704  -0.5007 0.0606 -0.2290  -0.2290 0.0202
(7,2,1)  -0.8718  -4.7650 0.4776 -0.5568  -3.3656 0.3783

7,2,3) -1.0943  -16.0831 1.0025 -3.1229  -25.3552 1.7878
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Table 9 Estimated covariances of MLEs for n =1,000

Monte-Carlo simulations Analytic method

" 0=(4a.p) Cov(/i,d) Cov(/i,ﬁA) Cov(o?,,[;’) Cov(/i,d) Cov(/{,,BA) Cov(d,[;’)
1,000 (0.5, 0.25, 0.05) 0.0016 -0.0006 0.0000 0.0035 -0.0016 0.0000
(0.5,0.25, 1) 0.0021 -0.0234 -0.0002 0.0039 -0.0381 -0.0007
(0.5, 0.25, 3) 0.0020 -0.0759 -0.0004 0.0041 -0.1341 -0.0020
(0.5,0.5,0.05) 0.0000 0.0000 0.0001 0.0088 -0.0018 -0.0001
(0.5,0.5, 1) 0.0064 -0.0194 -0.0007 0.0079 -0.0241 -0.0009
(0.5,0.5, 3) 0.0056 -0.0637 -0.0017 0.0078 -0.0776 -0.0027
(0.5, 1, 0.05) 0.0000 0.0000 0.0005 0.1132 -0.0155 -0.0019
0.5,1, 1) 0.0143 -0.0180 -0.0004 0.0200 -0.0249 -0.0013
0.5, 1, 3) 0.0169 -0.1008 -0.0025 0.0228 -0.0832 -0.0048
(0.5, 2, 0.05) 0.0000 0.0000 0.0046 0.0336 -0.0061 0.0015
0.5,2,1) 0.0142 -0.0523 0.0016 0.0352 -0.0271 -0.0003
(0.5, 2, 3) 0.0150 -0.1592 0.0052 0.0343 -0.0789 -0.0005
(3, 0.25,0.05) 0.0010 -0.0023 0.0000 0.0031 -0.0129 -0.0001
(3,025, 1) 0.0002 -0.0475 0.0006 0.0017 -0.3044 0.0001
(3,0.25,3) -0.0073 -0.0808 0.0007 0.0025 -0.6656 -0.0002
3,0.5,0.05) 0.0043 -0.0027 0.0000 0.0058 -0.0043 -0.0001
3,05, 1) 0.0031 -0.1253 -0.0003 0.0056 -0.2523 -0.0011
(3,05,3) 0.0016 -0.3187 0.0008 0.0082 -1.2608 -0.0052
(3,1,0.05) 0.0287 -0.0447 -0.0004 0.0238 -0.0050 -0.0002
(3,1, 1) -0.0019 -0.2356 0.0015 -0.0031 -0.2928 0.0017
3, 1,3 -0.0018 -0.6776 0.0046 -0.0023 -0.7279 0.0048
(3,2,0.05) -1.4915 -0.5162 0.0408 -0.0066 -0.0082 0.0009
(3,2, 1) -0.0670 -0.2347 0.0164 -0.1065 -0.3273 0.0214
3,2,3) -0.0449 -0.6157 0.0386 -0.0564 -0.6707 0.0450
(7, 0.25,0.05) -0.0010 -0.0274 0.0004 0.0019 -0.2083 0.0001
(7,0.25, 1) -0.0022 -0.7947 0.0115 -0.0005 -0.9451 0.0072
(7,0.25,3) 0.0020 -1.0225 0.0122 0.0056 -1.5546 0.0059
(7, 0.5, 0.05) -0.0017 -0.0393 0.0001 -0.0059 -0.0936 0.0001
(7,0.5, 1) -0.0033 -0.9917 0.0056 -0.0051 -2.2976 0.0062
(7,0.5, 3) -0.0012 -1.4329 0.0097 0.0000 -1.4271 0.0080
(7, 1,0.05) -0.0124 -0.0324 0.0004 -0.0208 -0.0163 0.0003
(7,1, 1) -0.0705 -2.0288 0.0270 -0.0315 -0.7068 0.0110
7, 1,3) -0.0535 -3.4799 0.0496 -0.0456 -2.4165 0.0404
(7,2,0.05) -0.0096 -0.0039 0.0006 -0.0564 -0.0123 0.0008
(7,2, 1) -0.2439 -0.9459 0.0644 -0.4560 -1.2852 0.0722

(7,2,3) -02196  -2.4574 0.1641 -0.2043  -1.7280 0.1349
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Table 10 Maximum likelihood estimates and goodness-of-fit testing for two datasets

Data  Distribution Estimate K-S p-value
GZTP e (3.9201, 1.4169, 0.0623) 0.03598 0.9964

(n:ug)l WP 0, =(4.0130, 1.2744, 0.0171) 0.04551 0.9536
Gamma 0, =(1.1726, 0.1252) 0.07330 0.4974

GZTP 0 =(0.3811, 3.1587, 1.7838) 0.05708  0.9999736

(n _ 30)2 WP él = (2.1745, 2.1041, 0.1358) 0.05709  0.9999734
Gamma 0, =(2.9582, 1.7661) 0.05601  0.9999834
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