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Abstract 

The gamma zero-truncated Poisson (GZTP) distribution is introduced in this work as a novel 
lifetime distribution created by compounding the gamma and zero-truncated Poisson distributions with 
the minimum function. The proposed distribution’s features are examined, including proofs of its 
probability density function and cumulative distribution function and formulas for its survival 
function, hazard function, moment, mean, variance, and quantile. The shape of the GZTP 
distribution’s hazard function is flexible and can be increasing, decreasing, or unimodal. The 
estimation process utilizes maximum likelihood. Asymptotic properties of maximum likelihood 
estimators are studied, and simulations are used to test how well parameter estimation works. 
______________________________ 
Keywords: Compounding, gamma distribution, Zero-truncated Poisson distributions. 
 
1. Introduction 

The modeling of lifetimes is an important statistical work in many fields. The new lifetime 
distributions have been proposed in a lot of literature. One way to make a lifetime distribution is to 
combine a lifetime model with a discrete distribution. The most common idea of a compound model 
is that it has a lifetime of N  (discrete random variables) components and a non-negative continuous 
random variable, .iX  The minimum of positive continuous random variables can be denoted by 

{ }1 2min , , , .NY X X X=   The model is obtained under the concept of a series system with identical 

components. In a series system, if any part fails, the whole system fails. This means that the 
distribution of Y can be used to model the time to the first failure of a system with N  protected parts 
or the time it takes for a person to get sick again after treatment.  

Several authors have proposed new distributions for the minimum of .iX  Adamidis and Loukas 
(1998) proposed an exponential-geometric (EG) distribution by compounding geometric distribution 
and exponential distribution for modeling the time to the first failure of the devices and the time 
interval in days between explosions in coalmines. Adamidis et al. (2005) investigated the extended 
exponential geometric (EEG) distribution. The different estimation procedures for the unknown 
parameters of the EEG distribution presented by Louzada et al. (2016). The Weibull-geometric (WG) 
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distribution with the minimum compounded function was proposed by Barreto-Souza et al. (2011) and 
can be applied to the data on the fatigue life for 67 specimens of Alloy T7987. Zakerzadeh and 
Mahmoudi (2013) introduced a Lindley-geometric (LG) distribution, which is a strong competitor to 
other distributions used in fitting the data on the waiting times before service of 100 bank customers. 
Tahmasbi and Rezaei (2008) introduced an exponential-logarithmic (EL) distribution. Ciumara and 
Preda (2009) proposed a Weibull-logarithmic distribution that generalizes the EL distributions. In 
addition, several new compounds of Poisson distribution and some lifetime models have been 
introduced in their closed forms. Kus (2007) proposed an exponential-Poisson (EP) distribution and 
fitted the model to the successive earthquake data. Barreto-Souza and Silva (2015) and Louzada et al. 
(2020), respectively, discuss a likelihood ratio test to discriminate between the EP and gamma 
distributions and various frequentist estimation techniques for the parameters of the EP distribution. 
In addition, Xu et al. (2016) examined Bayes estimations of the parameter of the EP distribution under 
some symmetrical and unsymmetrical loss functions. Hemmati et al. (2011) and Lu and Shi (2012) 
proposed a Weibull-Poisson (WP) and discussed various of its statistical properties along with its 
reliability features. Alkarni and Oraby (2012) defined the class of Poisson with some lifetime 
distributions, presented the density, survival, and hazard functions, and gave some of their properties. 
In their works, they also present some Rayleigh-Poisson and Pareto-Poisson distribution properties. 
Gui et al. (2014) developed the Lindley-Poisson (LP) distribution and used it to model the time 
between earthquakes and the length of time guinea pigs lived after being injected with varying 
amounts of tubercle bacilli. 

One of the most common ways to model lifetime data is by using the gamma distribution.  But, 
the gamma distribution gave a monotone hazard function, which is different from the hazard functions 
of many physical phenomena.  In many situations, the hazard function goes through three phases:  it 
first goes up, then stays almost the same, and then goes down.  This hazard function, which we shall 
refer to as upside-down bathtub-shaped, can be discovered through reliability and biological research. 
Consequently, life-cycle models that exhibit a hazard function with an upside-down bathtub shape are 
very helpful in survival analysis.  In this article, the gamma and zero- truncated Poisson distributions 
are compounded to create a new lifetime distribution by using the minimum function, which the hazard 
function can perform in an upside-down bathtub shape. 

 The remainder of the paper is structured as follows: After defining the density function of the 
GZTP distribution, probability density function plots of the GZTP distribution are shown. Second, the 
GZTP distribution’s properties are introduced. This section derives its moment-generating function, 
quantile, survival, and hazard rate functions. The generation of random numbers for the GZTP 
distribution is also discussed. Thirdly, estimation of the parameters using the maximum likelihood 
method, inference for large samples, and simulation analysis are provided. Fourth, an application to 
real datasets is provided. Finally, there is a discussion and some conclusions. 
 
2. Gamma Zero-Truncated Poisson Distribution 

Let 1 2, , , NX X X   be N  independent and identically distributed random variables from gamma 
distribution with the following probability density function (pdf): 
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where 0α >  is a shape parameter, 0β >  is a rate parameter, and ( )αΓ  is a gamma function of ,α  

and N  is itself a random variable with a zero-truncated Poisson distribution and independence of 
' .iX s  The probability mass function of N  is the following: 

( )
( ) ,  1, 2,  and 0.
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Assuming that random variables X  and N  are independent, and { }1 2min , , , .nY X X X=   

Then, ( ) 1
( ) 1 ( ),

n
g y n n F y f y

−
= −    where ( )f y  is a pdf and ( )F y  is the cumulative distribution 

function (cdf) of .Y  The joint distribution between Y  and N  are obtained as follow: 
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and the marginal distribution for Y  is 
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where ( ) ( )
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,

1
y

F y
α β
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= −

Γ
 and ( ) 1, t

y

y t e dtα

β

α β
∞

− −Γ = ∫  is the upper incomplete gamma function. 

The pdf of the compound gamma zero-truncated Poisson distribution can be written as 

( ) ( )
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e

αλ α α β λ
α

λ

λ β
α

 Γ− − −   Γ 
−

 
=   Γ−  

θ                                      (1) 

where ( ), , .λ α β=θ . 

In the sequel, the distribution of Y  will be referred to as the GZTP, and the plots of its pdf are 
displayed in Figure 1 for selected parameter values. When 0 1α< ≤ , the shape of the density is strictly 
decreasing as shown in Figure 1(a), whereas when 1,α >  the density becomes unimodal and the 
curves show that the GZTP has a positively skewed distribution as shown in Figure 1(b). For 1,α =  
the GZTP distribution reduces to the density of the EP distribution introduced by Kus (2007). 
 
Theorem 1 Considering the GZTP distribution with the pdf of Equation (1), the distribution is reduced 
to a two-parameter gamma distribution as 0.λ →   
 
Proof: The proof is shown in Appendix. 
 
Theorem 2 The density function of GZTP distribution is strictly decreasing if  0 1.α< ≤  
 
Proof: The first derivative of the GZTP distribution is 



866                                                                   Thailand Statistician, 2023; 21(4): 863-886 

( )
( )

( ) ( )
( )

( )

,

2

( ; ) 1 .
1

By
y

yy ey eg y y
e

α
λ β λ α βαα α

λ

λ βλβ α β
αα

 Γ
− −   −Γ−  

−

 
  

′ = − − −  
Γ− Γ     

  

θ  

The sign of ( ; )g y′ θ  depends on the sign of the second bracket. Let ,h yβ=  the second bracket 

will be ( )( )1 .hh h eαα λ α−− − + Γ  If 0 1,α< ≤  then ( ; ) 0.g y′ <θ  Hence, ( ; )g y θ  is a decreasing 

function. 

 
Figure 1 Probability density functions of the GZTP distribution with (a) 0 1α< ≤ and (b) 1α >  

 
3. Properties of the GZTP 
3.1. Distribution function and moments 

The cdf of the GZTP distribution is given by 
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The proof of the cdf is given in Appendix. The thr  quantile for this distribution is defined as the 
value ry  such that 
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Proof: Since the thr  quantile denoted by ry  and ( )1 .ry G r−=  This implies that ( ) .rG y r=  As 

,Y GZTP  then 
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Hence,  it can be analytically solved for ry  to obtain 
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The moment-generating function is defined by 
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The numerical values of the thk  moment can be obtained by using numerical integration. By using 
direct integration, we can calculate the raw moments of Y  from Equation (1). The k  raw moments 
are given by 
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Therefore, the mean and variance of the GZTP distribution are given, respectively, as follows: 
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3.2. The survival and hazard functions 

From Equations (1) and (2), the survival function and hazard function of the GZTP distribution 
are given by 
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For 0 1,α< ≤  ( ) 0yη′ <  for all ' .y s  Then, the hazard function is a decreasing function, which 

follows Glaser (1980). Figure 2 illustrates some of the possible shapes of the hazard functions for 
selected values of .θ  
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Figure 2 Hazard functions of the GZTP distribution (a) 0 1,α< ≤  (b) 2,  1.5,λ β= =   

(c) 2,  1,α β= =  (d) 2,  2λ α= =   
 
3.3. Random number generation 

The rejection sampling algorithm is used to generate random samples from the target distribution 
or Equation (1) by using random samples from a convenient distribution, which is called a proposal 
distribution. Here, the continuous uniform distribution, ( ; ),p y θ  is selected as a proposal distribution. 
The algorithm is shown as follows: 

Step 1: find a constant c  such that ( )cp y ≥ ( ; );g y θ  
Step 2: obtain a sample y from the proposal; 
Step 3: obtain a sample  u  from (0,1)U ; 

Step 4: check whether ( ) ( ; ).cp y u g y≤ θ  If this holds, accept y as a sample drawn from g. 

Otherwise, y  will be rejected. 
 

4. Estimation of the Parameters 
4.1. Maximum likelihood estimators 

Let 1 2, , , nY Y Y  be random samples with observed values 1 2, , , ny y y  from the GZTP 
distribution with parameters θ . The likelihood function based on the observed random sample size 
of ,n  1 2( , , , )obs nZ y y y=   is given by 
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and subsequently the associated gradients are found to be 
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where 0 ( )ψ α  is a digamma function that define as the st1  derivative of the logarithm of gamma 
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Therefore, the maximum likelihood estimator (MLE) of λ  is 
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conditional upon the value of α̂  and ˆ,β  where α̂  and β̂  are maximum likelihood estimates. For α  
and ,β  there are no closed forms, but the estimates can be calculated by numerical methods such as 
the Newton–Raphson method or probabilistic methods such as simulated annealing. The following 
theorems express the conditions that must be met in order for the MLEs to exist. 
 
 
Theorem 3  
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Proof: The proofs of Theorem 3 are given in the Appendix. 
 
4.2. Asymptotic variance-covariance matrix of the MLEs 

The MLE of θ  is approximately multivariate normal with mean θ  and a variance-covariance 

matrix that is the inverse of expected information matrix ( ) ( ) ,J E I=   θ θ  where ( )I θ  is the 

observed information matrix with elements 2 ,ij i jI l= −∂ ∂ ∂θ θ , 1, 2,3.i j =  By differentiating 

Equations (3)-(5), the elements of the symmetric and second order observed information matrix, 
( ) ,I θ  are found as follows: 
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4.3. Simulation study  

The samples were generated by using the rejection sampling method, where 0.5, 3, 7,λ =

0.25, 0.5, 1, 2,α =  and 0.05, 1, 3.β =  These values of parameters are selected such that all different 
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shapes of distributions are represented.  When all parameters are assumed unknown, the MLEs of 
,  λ α  and β  are numerically calculated by the simulated-annealing method via the function maxLik 

in R program. The maxLik package (Henningsen and Toomet 2011) is used to calculate the MLEs, 
and the simulated annealing method is chosen because it gives stable solutions. The number of 
replications is chosen to be 3,000 as it provided stable results. Tables 1–3 give the averages of the 
MLEs, ˆ( ),AV θ  and the corresponding standard errors, ˆ( ).SE θ  The values of ˆ( )AV θ  and ˆ( )SE θ  
suggest that the MLEs performed consistently. The standard errors of MLEs decrease as the sample 
size increases, and the bias of the MLEs is reduced for a large sample size, i.e., 1,000n = . For 
example, when 50,100,1000n =  for θ = (7, 2, 3), the averages of MLEs are (7.9780, 2.1839, 5.1052), 
(7.4028, 2.1696, 4.9561), and (6.8333, 2.0391, 3.4088), respectively. The estimates tend to be close 
to their actual values as sample sizes increase; however, it is noticed that, with the same sample size, 

ˆ( )SE λ  is larger than ˆ( )SE α  and ˆ( )SE β  in most situations. 

For the variances, the estimates of  ˆ ˆ ˆ ˆ ˆˆ ˆ( ), ( ), ( ), ( , ), ( , ),Var Var Var Cov Covλ α β λ α λ β and ˆˆ( , )Cov α β  

can be directly calculated using the derived formulas in the previous section, i.e., 11 12 13 22, , , ,I I I I  and 

23I . Then, 11 12, ,I I 13 22, ,I I  and 23I  are estimated by replacing all unknown parameters with the 
corresponding MLEs. Taking the inverse of the negative Hessian matrix results in the variance-
covariance matrix. In addition, Monte-Carlo simulations (MCs) can also be used to estimate such 

variances. For example, the estimate of ˆ( )Var λ  is  ( ) ( )
2

1
ˆ ˆ 1N

i
Nλ λ

=
− −∑  and the estimate of 

ˆ ˆ( , )Cov λ α  is 

( )( )

( ) ( )
1

2 2

1 1

ˆ ˆ ˆ ˆ
,

ˆ ˆ ˆ ˆ

N

i

N N

i i

λ λ α α

λ λ α α

=

= =

− −

− −

∑

∑ ∑
 

where N  is the number of iterations. Tables 4-6 summarize variance estimates obtained using the 
analytic method and MCs.  

It is observed that the variance of λ̂  increases as λ  increases given that α  and β  are fixed. For 

instance, comparing cases with 0.5λ =  and 7λ =  at 0.25α = , 3β =  and 50,n =   ˆ( )Var λ  from MCs 
increases from 1.2809 to 7.4205, respectively, and the variance from the analytical method rises from 

3.9718 to 11.2405. Also, when λ  and β  are fixed,  ˆ( )Var α  increases as α  increases. For example, 

for cases with 0.25α =  and 2α =  at 3λ = , 1β =  and 100n = ,  ˆ( )Var α  from MCs increases from 

0.0008 to 0.0666,  and by analytic method,  ˆ( )Var α  rises from 0.0013 to 0.1010. Likewise, when λ  

and α  are fixed, the variance of β̂  increases as β  increases. In particular, comparing cases with 

0.05β =  and 3,β =  at 0.5,λ = 0.25α =  and 100,n =   ˆ( )Var β  increases from 0.0004 to 1.2414 in 
MCs and from 0.0011 to 1.9535 in the analytic method. 

For large values of n , it is observed that the variance estimates derived from the MC simulations 
are relatively close to the analytic estimates. For example, at 7λ = , 0.25α =  and 3,β =  the 
 ˆ( ) 'Var sα  from MCs for 50,100n =  and 1,000  are 0.0029, 0.0014,  and 0.0002 , while  ˆ( ) 'Var sα  

from the analytic method are 0.0040, 0.0019  and 0.0002 , respectively. It is noted that the 
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approximation becomes quite accurate as n  increases. In the same way, Tables 7-9 show that the 
covariances of the MLEs found in the Hessian matrix are very close to the covariances found in 
simulations when n  is large, i.e., 1,000.n =  

 
5. Applications 

In this section, two real datasets are used to illustrate the use of the proposed GZTP distribution. 
The remission time of bladder cancer patients and March precipitation are considered. Because the 
probability density function of these datasets is unimodal, the GZTP, WP, and gamma distributions 
are employed to model the data. For these distributions, the MLEs are used to estimate the parameters, 
and the p-values of the Kolmogorov-Smirnov (K-S) test are compared. Those comparative pdfs are 
given, respectively: 

WP: ( ) ( )
1

1 1 1; ,  0 ,  , ,
1

yy eyf y e y
e

αα β
α

λ β λ
λ

αβλ λ α β
−

−
− − +

−= > =
−

θ θ  

Gamma: 
( ) ( )

1

2 2 2( ; ) ,  0 ,  , .
yy ef y y

α α ββ α β
α

− −

= > =
Γ

θ θ  

5.1. Remission time of bladder cancer patients 
According to Lee and Wang (2003), the dataset consists of the number of months that 128 bladder 

cancer patients spent in remission. Table 10 shows the MLEs and Kolmogorov-Smirnov (K-S) 
statistics for the GZTP, WP, and gamma models, along with their p-values. The results show that all 
distributions can be used to model the data at a significance level of 0.05. However, the K-S test 
statistic has the largest p-value under the GZTP distribution, so this means the GZTP distribution is 
the most suitable for the data. 
 
5.2. March precipitation 

A dataset has 30 measurements of how much rain fell in March in Minneapolis/St. Paul. Each 
measurement is in inches. Lu and Shi (2012) have discussed this data. It can be observed from Table 
10 that the GZTP distribution fits the model as well as any other comparative distribution. 

 
6. Conclusions and Discussion 

The GZTP distribution is newly constructed by compounding the gamma and zero- truncated 
Poisson distributions. The plots of the probability density function and hazard function were presented 
to show the flexibility of this distribution.  The maximum likelihood estimators were studied, and it 
was found that some MLEs have no closed form.  The formula of asymptotic variance- covariance 
matrix of the MLEs was also explicitly derived. 

Simulations were performed to demonstrate the behavior of MLEs in the GZTP distribution. The 
result showed that as sample sizes increase, both standard errors and biasness diminish. When standard 
error is taken into account, the parameters of the zero-truncated Poisson distribution are more difficult 
to estimate than those of the gamma distribution.  When the variance and covariance are taken into 
account, estimates from Monte Carlo simulations are close to those from the analytical method when 
the sample size is large. 
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Appendix 
The proof of Theorem 1 
If λ  approaches to 0, then 
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Therefore, the GZTP distribution reduces to the two- parameter gamma distribution. 
 
The proof of cdf 
The cumulative distribution function of the GZTP distribution is given by 
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least one solution of ( )1 ; , , 0obsl zλ α β =  exists. For the proof of uniqueness of solution, it is needed 

to show function 1l  is strictly decreasing in .λ  The first derivative of 1l  is considered and given by  

( )
( )

2 2 2

1 2 2

( ( 2) 1) ( ( 2)); , , .
1

obs
n e e ne e el z

ee

λ λ λ λ λ

λλ

λ λλ α β
λ

−− + + + + − +′ = − = −
−

 

If 2( 2) 0,e eλ λ λ− + − + >  then ( )1 ; , , 0obsl zλ α β′ <  and 1l  is strictly decreasing in .λ  

Consider 2 31 11
2 3!

eλ λ λ λ= + + + +  and 2 31 11 ,
2 3!

e λ λ λ λ− = − + − +  then 

2 4 222 2,
4!

e eλ λ λ λ λ− + = + + + > +  or 2( 2) 0.e eλ λ λ− + − + >  

Therefore, ( )1 ; , , 0obsl zλ α β′ <  for 0.λ >  This completes the proof. 

(b) Since ( ) ( )
1

3
1 1

; , , ,i

n n
y

obs i i
i i

nl z y y e
α

βαα λββ λ α
β α

−
−

= =

= − −
Γ∑ ∑  

( ) ( )
1

30 0 0 01 1
lim ; , , lim lim lim ,i

n n
y

obs i i
i i

nl z y y e
α

βα

β β β β

α λββ λ α
β α

−
−

→ → → →
= =

= − − = ∞
Γ∑ ∑   and 

( ) ( ) ( )
1 1

3
1 1 1 1

lim ; , , lim lim lim 0 limi i

n n n n
y y

obs i i i i
i i i i

nl z y y e y y e
α α

β βα α

β β β β β

α λβ λββ λ α
β α α

− −
− −

→∞ →∞ →∞ →∞ →∞
= = = =

= − − = − −
Γ Γ∑ ∑ ∑ ∑  



876                                                                   Thailand Statistician, 2023; 21(4): 863-886 

Consider 
( ) ( )

1
1

1 1
lim limi i

n n
y y

i i
i i

y e y e
α

β βα α α

β β

λβ λ β
α α

−
− −−

→∞ →∞
= =

=
Γ Γ∑ ∑  

                                                   
( ) ( ) ( )

( ) 1
1

1 1
lim lim ,i

i

n n
iy

i i y
i i

y
y e y

e

α
βα α

ββ β

βλ λβ
α α

−
−−

→∞ →∞
= =

 
 = =
 Γ Γ  

∑ ∑  

and 

( ) ( )

( ) ( )

1 1 1
1

1

1 1
1 1

lim lim lim 1 , 1

1                     1 lim = 1 lim  = 0 

i i

i i
iy y c

c c

y y c c y
ee e

c
e e

α α α
α

β β αβ β β

α α
α α

β β

β β
α β α

α α

− − −
−

−→∞ →∞ →∞

− −
− −

→∞ →∞

   = = − = −     

   = − −   
   

 

Then, ( ) ( )
1

3
1 1

lim ; , , lim lim lim i

n n
y

obs i i
i i

nl z y y e
α

βα

β β β β

α λββ λ α
β α

−
−

→∞ →∞ →∞ →∞
= =

= − −
Γ∑ ∑

1 1
0 0 0

n n

i i
i i

y y
= =

= − − = − <∑ ∑  

Therefore, at least one solution of ( )3 ; , , 0obsl zβ λ α =  exists. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Niyomdecha et al. 877 

Table 1 The averages of MLEs and standard errors of θ̂  from 3,000 samples with 50n =  

n  ( ), ,λ α β=θ  ˆ( )AV θ  ˆ( )SE λ  ˆ( )SE α  ˆ( )SE β  

50 (0.5, 0.25, 0.05) (0.7740, 0.3419, 0.1089) 0.0228 0.0016 0.0010 
 (0.5, 0.25, 1) (1.8920, 0.4072, 1.0290) 0.0369 0.0017 0.0168 
 (0.5, 0.25, 3) (1.9664, 0.4360, 3.0202) 0.0361 0.0017 0.0474 
 (0.5, 0.5, 0.05) (0.1536, 0.5788, 0.1259) 0.0094 0.0035 0.0009 
 (0.5, 0.5, 1) (1.0143, 0.5492, 1.0175) 0.0350 0.0060 0.0132 
 (0.5, 0.5, 3) (1.1301, 0.5737, 3.0636) 0.0441 0.0031 0.0377 
 (0.5, 1, 0.05) (0.0666, 1.4296, 0.1808) 0.0070 0.0062 0.0007 
 (0.5, 1, 1) (1.1179, 1.0645, 0.9856) 0.0537 0.0064 0.0112 
 (0.5, 1, 3) (1.3310, 1.0695, 2.8908) 0.0743 0.0066 0.0328 
 (0.5, 2, 0.05) (1.7073, 3.2283, 0.3143) 0.1231 0.0432 0.0049 
 (0.5, 2, 1) (1.4524, 2.1125 0.9549) 0.0406 0.0075 0.0059 
 (0.5, 2, 3) (1.6255, 2.1118, 2.8408) 0.0498 0.0078 0.0189 
 (3, 0.25, 0.05) (3.0282, 0.3361, 0.1329) 0.0330 0.0011 0.0031 
 (3, 0.25, 1) (3.9823, 0.3959, 1.6154) 0.0381 0.0013 0.0423 
 (3, 0.25, 3) (4.5719, 0.4297, 3.6947) 0.0626 0.0014 0.0759 
 (3, 0.5, 0.05) (1.2933, 0.5037, 0.1572) 0.0336 0.0027 0.0018 
 (3, 0.5, 1) (2.6305, 0.5260, 1.5961) 0.0437 0.0035 0.0334 
 (3, 0.5, 3) (3.3085, 0.5455, 4.0771) 0.0768 0.0024 0.0790 
 (3, 1, 0.05) (0.2925, 1.1489, 0.1955) 0.0253 0.0071 0.0013 
 (3, 1, 1) (2.5052, 0.9942, 1.3947) 0.0752 0.0055 0.0219 
 (3, 1, 3) (2.8688, 0.9983, 4.0033) 0.0931 0.0053 0.0672 
 (3, 2, 0.05) (1.2485, 3.7371, 0.3098) 0.1052 0.0345 0.0041 
 (3, 2, 1) (2.3025, 2.0699, 1.3427) 0.0693 0.0128 0.0180 
 (3, 2, 3) (2.7822, 2.0512, 3.7918) 0.0970 0.0126 0.0549 
 (7, 0.25, 0.05) (5.0467, 0.3695, 0.7512) 0.0530 0.0012 0.0310 
 (7, 0.25, 1) (6.9508, 0.4514, 5.5962) 0.0888 0.0019 0.1276 
 (7, 0.25, 3) (8.4013, 0.4879, 9.2526) 0.0995 0.0020 0.1533 
 (7, 0.5, 0.05) (3.9643, 0.5126, 0.3498) 0.0910 0.0025 0.0094 
 (7, 0.5, 1) (5.1392, 0.5569, 4.0841) 0.1315 0.0025 0.1107 
 (7, 0.5, 3) (8.6819, 0.5842, 5.0566) 0.1532 0.0023 0.1299 
 (7, 1, 0.05) (4.2653, 1.0818, 0.2413) 0.1026 0.0064 0.0038 
 (7, 1, 1) (4.2506, 1.0432, 3.1315) 0.1601 0.0060 0.0696 
 (7, 1, 3) (7.3358, 1.0310, 5.5968) 0.2252 0.0063 0.1729 
 (7, 2, 0.05) (4.0828, 2.9785, 0.2220) 0.1573 0.0249 0.0050 
 (7, 2, 1) (3.8889, 2.3360, 2.4612) 0.1548 0.0170 0.0455 
 (7, 2, 3) (6.9780, 2.1839, 5.1052) 0.2380 0.0171 0.1312 
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Table 2 The averages of MLEs and standard errors of θ̂  from 3,000 samples with 100n =  

n  ( ), ,λ α β=θ  ˆ( )AV θ  ˆ( )SE λ  ˆ( )SE α  ˆ( )SE β  

100 (0.5, 0.25, 0.05) (0.6503, 0.3356, 0.1082) 0.0161 0.0011 0.0007 
 (0.5, 0.25, 1) (1.9562, 0.4042, 0.9342) 0.0277 0.0012 0.0114 
 (0.5, 0.25, 3) (2.0653, 0.4355, 2.8513) 0.0331 0.0013 0.0355 
 (0.5, 0.5, 0.05) (0.0748, 0.5660, 0.1236) 0.0044 0.0025 0.0006 
 (0.5, 0.5, 1) (0.9284, 0.5508, 1.0028) 0.0298 0.0023 0.0089 
 (0.5, 0.5, 3) (1.0714, 0.5670, 2.9489) 0.0345 0.0023 0.0271 
 (0.5, 1, 0.05) (0.0243, 1.3968, 0.1781) 0.0009 0.0077 0.0009 
 (0.5, 1, 1) (1.0183, 1.0434, 0.9648) 0.0485 0.0048 0.0085 
 (0.5, 1, 3) (1.1229, 1.0501, 2.8765) 0.0596 0.0057 0.0260 
 (0.5, 2, 0.05) (0.7135, 3.2249, 0.3359) 0.0863 0.0335 0.0036 
 (0.5, 2, 1) (1.2695, 2.0442, 0.9367) 0.0626 0.0091 0.0083 
 (0.5, 2, 3) (1.6502, 2.0593, 2.7370) 0.0864 0.0096 0.0286 
 (3, 0.25, 0.05) (3.2172, 0.3373, 0.1075) 0.0251 0.0008 0.0016 
 (3, 0.25, 1) (4.3747, 0.3941, 1.1819) 0.0314 0.0009 0.0256 
 (3, 0.25, 3) (4.4825, 0.4278, 3.4289) 0.0485 0.0015 0.0978 
 (3, 0.5, 0.05) (1.5568, 0.4936, 0.1372) 0.1929 0.0150 0.0070 
 (3, 0.5, 1) (2.9546, 0.5271, 1.3430) 0.0416 0.0016 0.0230 
 (3, 0.5, 3) (3.3096, 0.5489, 3.6419) 0.0505 0.0016 0.0622 
 (3, 1, 0.05) (0.1898, 1.1017, 0.1920) 0.0249 0.0049 0.0010 
 (3, 1, 1) (2.5910, 0.9841, 1.2950) 0.0619 0.0037 0.0183 
 (3, 1, 3) (2.6937, 0.9896, 3.8590) 0.0646 0.0039 0.0536 
 (3, 2, 0.05) (0.8058, 3.6090, 0.3096) 0.0869 0.0242 0.0032 
 (3, 2, 1) (2.8093, 2.0122, 1.1734) 0.0732 0.0039 0.0570 
 (3, 2, 3) (3.0028, 2.0120, 3.4572) 0.0866 0.0086 0.0426 
 (7, 0.25, 0.05) (5.4649, 0.3661, 0.4725) 0.0507 0.0013 0.0192 
 (7, 0.25, 1) (6.5506, 0.4469, 5.5509) 0.0593 0.0014 0.1241 
 (7, 0.25, 3) (7.8929, 0.4849, 9.5024) 0.0711 0.0014 0.1265 
 (7, 0.5, 0.05) (4.1455, 0.5194, 0.2557) 0.0896 0.0018 0.0069 
 (7, 0.5, 1) (4.8483, 0.5524, 3.6499) 0.0910 0.0017 0.0828 
 (7, 0.5, 3) (6.5427, 0.5802, 6.6263) 0.1184 0.0019 0.1571 
 (7, 1, 0.05) (2.2317, 1.0855, 0.2415) 0.1026 0.0065 0.0037 
 (7, 1, 1) (4.1421, 1.0517, 3.1891) 0.1543 0.0065 0.0695 
 (7, 1, 3) (7.1496, 1.0116, 5.0158) 0.1465 0.0032 0.1163 
 (7, 2, 0.05) (4.0264, 2.9367, 0.2188) 0.1545 0.0240 0.0048 
 (7, 2, 1) (4.2215, 2.3144, 2.3648) 0.1611 0.0173 0.0467 
 (7, 2, 3) (7.4028, 2.1696, 4.9561) 0.2388 0.0168 0.1333 
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Table 3 The averages of MLEs and standard errors of θ̂  from 3,000 samples with 1,000n =  

n  ( ), ,λ α β=θ  ˆ( )AV θ  ˆ( )SE λ  ˆ( )SE α  ˆ( )SE β  

1,000 (0.5, 0.25, 0.05) (0.5732, 0.3259, 0.1062) 0.0088 0.0005 0.0003 
 (0.5, 0.25, 1) (1.9473, 0.4041, 0.8584) 0.0120 0.0005 0.0044 
 (0.5, 0.25, 3) (2.1669, 0.4386, 2.5179) 0.0118 0.0005 0.0125 
 (0.5, 0.5, 0.05) (0.0170, 0.5482, 0.1214) 0.0006 0.0009 0.0002 
 (0.5, 0.5, 1) (0.8081, 0.5403, 0.9743) 0.0131 0.0011 0.0036 
 (0.5, 0.5, 3) (0.9409, 0.5608, 2.8985) 0.0128 0.0010 0.0111 
 (0.5, 1, 0.05) (0.0075, 1.3425, 0.1710) 0.0002 0.0027 0.0003 
 (0.5, 1, 1) (0.5189, 0.9991, 0.9951) 0.0160 0.0024 0.0033 
 (0.5, 1, 3) (0.5471, 1.0026, 2.9828) 0.0168 0.0018 0.0081 
 (0.5, 2, 0.05) (0.0039, 3.0754, 0.3404) 0.0001 0.0106 0.0008 
 (0.5, 2, 1) (0.5951, 2.0036, 0.9893) 0.0297 0.0044 0.0041 
 (0.5, 2, 3) (0.5971, 2.0084, 2.9734) 0.0223 0.0033 0.0089 
 (3, 0.25, 0.05) (3.3539, 0.3372, 0.0903) 0.0124 0.0004 0.0005 
 (3, 0.25, 1) (4.8809, 0.3921, 0.7578) 0.0166 0.0004 0.0070 
 (3, 0.25, 3) (3.3429, 0.4338, 2.5060) 0.0599 0.0006 0.0173 
 (3, 0.5, 0.05) (1.1796, 0.4921, 0.1484) 0.0134 0.0010 0.0006 
 (3, 0.5, 1) (3.4121, 0.5320, 0.9663) 0.0265 0.0006 0.0096 
 (3, 0.5, 3) (3.5870, 0.5507, 2.8279) 0.0240 0.0006 0.0262 
 (3, 1, 0.05) (0.3405, 1.0618, 0.1822) 0.0483 0.0017 0.0012 
 (3, 1, 1) (3.0369, 0.9946, 1.0316) 0.0337 0.0011 0.0083 
 (3, 1, 3) (3.0159, 0.9933, 3.0920) 0.0308 0.0010 0.0235 
 (3, 2, 0.05) (4.0241, 3.2407, 0.2164) 0.1829 0.0153 0.0047 
 (3, 2, 1) (3.0607, 1.9917, 1.0210) 0.0368 0.0032 0.0075 
 (3, 2, 3) (2.9388, 1.9939, 3.1180) 0.0323 0.0028 0.0216 
 (7, 0.25, 0.05) (6.4174, 0.3611, 0.2239) 0.0227 0.0004 0.0031 
 (7, 0.25, 1) (6.7969, 0.4452, 4.4480) 0.0335 0.0005 0.0609 
 (7, 0.25, 3) (7.7530, 0.4865, 9.4380) 0.0333 0.0006 0.0889 
 (7, 0.5, 0.05) (6.9969, 0.5185, 0.0646) 0.0521 0.0006 0.0016 
 (7, 0.5, 1) (5.2841, 0.5530, 2.4849) 0.0513 0.0006 0.0434 
 (7, 0.5, 3) (5.8831, 0.5763, 6.2887) 0.0392 0.0006 0.0799 
 (7, 1, 0.05) (7.7062, 1.0288, 0.0539) 0.0596 0.0017 0.0016 
 (7, 1, 1) (6.1109, 1.0176, 1.5166) 0.1127 0.0022 0.0439 
 (7, 1, 3) (6.8551, 1.0084, 3.6359) 0.1049 0.0019 0.0919 
 (7, 2, 0.05) (9.4414, 2.4936, 0.0781) 0.0407 0.0050 0.0003 
 (7, 2, 1) (6.8195, 2.0363, 1.1450) 0.0945 0.0066 0.0240 
 (7, 2, 3) (6.8333, 2.0391, 3.4088) 0.0930 0.0063 0.0645 
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Table 4 Estimated variances of MLEs for 50n =  

n  ( ), ,λ α β=θ  
Monte-Carlo simulations  Analytic method 

ˆ( )Var λ  ( )ˆVar α  ˆ( )Var β   ˆ( )Var λ  ( )ˆVar α  ˆ( )Var β  

50 (0.5, 0.25, 0.05) 0.5148 0.0025 0.0010  1.5843 0.0062 0.0027 
 (0.5, 0.25, 1) 1.3467 0.0028 0.2793  3.8851 0.0059 0.4865 
 (0.5, 0.25, 3) 1.2809 0.0029 2.2036  3.9718 0.0063 4.7511 
 (0.5, 0.5, 0.05) 0.0837 0.0114 0.0007  2.0434 0.0256 0.0020 
 (0.5, 0.5, 1) 1.1883 0.0354 0.1680  3.1241 0.0181 0.2181 
 (0.5, 0.5, 3) 1.9358 0.0094 1.4144  2.0658 0.0170 1.7158 
 (0.5, 1, 0.05) 0.1294 0.0989 0.0013  6.0531 0.1950 0.0043 
 (0.5, 1, 1) 2.6950 0.0385 0.1162  7.4961 0.0862 0.1850 
 (0.5, 1, 3) 5.0574 0.0394 0.9844  6.2039 0.0829 1.6006 
 (0.5, 2, 0.05) 10.1080 1.2450 0.0159  12.6787 1.0056 0.0114 
 (0.5, 2, 1) 4.5356  0.1553  0.0951  8.6845  0.2852   0.1505 
 (0.5, 2, 3) 6.6810   0.1629   0.9634  10.9382   0.3287   1.3033 
 (3, 0.25, 0.05) 1.0438 0.0012 0.0091  6.0534 0.0026 0.0223 
 (3, 0.25, 1) 1.3888 0.0015 1.7175  9.3077 0.0029 7.7007 
 (3, 0.25, 3) 3.4624 0.0018 5.0874  9.5963 0.0032 5.8813 
 (3, 0.5, 0.05) 1.0979 0.0070 0.0032  3.0873 0.0119 0.0067 
 (3, 0.5, 1) 1.8580 0.0120 1.0857  7.9966 0.0082 1.6357 
 (3, 0.5, 3) 5.3327 0.0052 5.6391  7.4157 0.0077 14.7862 
 (3, 1, 0.05) 0.5971 0.0472 0.0017  4.4781 0.1219 0.0046 
 (3, 1, 1) 5.2591 0.0277 0.4475  9.5822 0.0439 0.7465 
 (3, 1, 3) 7.9690 0.0255 4.1552  13.2599 0.0564 9.2401 
 (3, 2, 0.05) 8.1678 0.8753 0.0124  11.4873 0.8723 0.0127 
 (3, 2, 1) 4.5226 0.1546 0.3058  7.2964 0.1977 0.3590 
 (3, 2, 3) 8.5590 0.1439 2.7418  8.7134 0.1971 4.2162 
 (7, 0.25, 0.05) 2.5686 0.0014 0.8756  16.9288 0.0021 2.0530 
 (7, 0.25, 1) 5.9948 0.0027 12.3860  7.6041 0.0028 18.8064 
 (7, 0.25, 3) 7.4205 0.0029 17.5966  11.2459 0.0040 21.8596 
 (7, 0.5, 0.05) 7.1020 0.0055 0.0766  16.0608 0.0074 0.0847 
 (7, 0.5, 1) 13.0415 0.0046 9.2447  15.9675 0.0073 22.7584 
 (7, 0.5, 3) 19.7570 0.0043 14.1992  27.8015 0.0068 28.6425 
 (7, 1, 0.05) 8.9690 0.0348 0.0125  9.6951 0.0608 0.0132 
 (7, 1, 1) 20.9617 0.0299 3.9588  12.1720 0.0450 3.7378 
 (7, 1, 3) 31.8948 0.0250 18.8088  27.3020 0.0602 25.0770 
 (7, 2, 0.05) 18.1048 0.4534 0.0183  21.1529 0.5630 0.0073 
 (7, 2, 1) 19.6920 0.2375 1.7050  14.5430 0.2756 1.4748 
 (7, 2, 3) 36.4370 0.1872 11.0638  24.3434 0.2780 20.3718 
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Table 5 Estimated variances of MLEs for 100n =  

n  ( ), ,λ α β=θ  
Monte-Carlo simulations  Analytic method 

ˆ( )Var λ  ( )ˆVar α  ˆ( )Var β   ˆ( )Var λ  ( )ˆVar α  ˆ( )Var β  

100 (0.5, 0.25, 0.05) 0.2591 0.0012 0.0004  0.7401 0.0031 0.0011 
 (0.5, 0.25, 1) 0.7636 0.0014 0.1289  1.6064 0.0027 0.2001 
 (0.5, 0.25, 3) 1.0804 0.0016 1.2414  1.9674 0.0031 1.9535 
 (0.5, 0.5, 0.05) 0.0168 0.0055 0.0003  1.1341 0.0139 0.0009 
 (0.5, 0.5, 1) 0.8619 0.0052 0.0770  2.4689 0.0122 0.1453 
 (0.5, 0.5, 3) 1.1622 0.0051 0.7177  1.7142 0.0091 0.9841 
 (0.5, 1, 0.05) 0.0007 0.0485 0.0006  1.9577 0.0755 0.0016 
 (0.5, 1, 1) 2.1622 0.0214 0.0671  3.8082 0.0597 0.1068 
 (0.5, 1, 3) 3.2651 0.0300 0.6193  3.0352 0.0395 0.7425 
 (0.5, 2, 0.05) 4.5836 0.6907 0.0082  4.7394 0.4891 0.0063 
 (0.5, 2, 1) 3.5698 0.0746 0.0634  3.7908 0.1339 0.0640 
 (0.5, 2, 3) 6.7487 0.0836 0.7426  4.2481 0.1218 0.8205 
 (3, 0.25, 0.05) 0.6069 0.0006 0.0024  5.0483 0.0013 0.0106 
 (3, 0.25, 1) 0.9296 0.0008 0.6169  9.8013 0.0013 2.0758 
 (3, 0.25, 3) 0.8218 0.0008 3.3405  5.4918 0.0015 8.5921 
 (3, 0.5, 0.05) 0.5581 0.0034 0.0007  1.1545 0.0045 0.0029 
 (3, 0.5, 1) 1.7149 0.0026 0.5260  4.1991 0.0036 0.6759 
 (3, 0.5, 3) 2.2422 0.0024 3.3976  6.6116 0.0036 9.4159 
 (3, 1, 0.05) 0.5710 0.0226 0.0010  1.9538 0.0522 0.0018 
 (3, 1, 1) 3.6297 0.0130 0.3185  5.2027 0.0177 0.3912 
 (3, 1, 3) 4.9457 0.0139 2.9974  5.0933 0.0178 3.4364 
 (3, 2, 0.05) 5.2210 0.4037 0.0072  3.9637 0.3791 0.0053 
 (3, 2, 1) 4.8152 0.0666 0.1931  7.0270 0.1010 0.2707 
 (3, 2, 3) 6.9059 0.0679 1.6732  7.3455 0.0920 2.3630 
 (7, 0.25, 0.05) 1.1526 0.0008 0.1655  6.9089 0.0010 0.4321 
 (7, 0.25, 1) 2.1204 0.0012 9.2776  4.2917 0.0014 13.6663 
 (7, 0.25, 3) 3.3119 0.0014 10.4939  7.8267 0.0019 15.5661 
 (7, 0.5, 0.05) 6.3296 0.0026 0.0372  14.5278 0.0033 0.0473 
 (7, 0.5, 1) 6.4718 0.0024 5.3612  8.8099 0.0029 9.7279 
 (7, 0.5, 3) 7.9378 0.0022 13.9765  9.6126 0.0028 19.9803 
 (7, 1, 0.05) 8.9059 0.0358 0.0118  39.7043 0.0759 0.0178 
 (7, 1, 1) 19.0367 0.0335 3.8634  13.9862 0.0430 4.0673 
 (7, 1, 3) 23.6772    0.0115   14.9294  15.7604   0.0146   20.8320 
 (7, 2, 0.05) 17.7533 0.4270 0.0172  18.4690 0.5155 0.0073 
 (7, 2, 1) 21.1447 0.2452 1.7752  19.3761 0.3020 1.5975 
 (7, 2, 3) 36.6068 0.1821 11.4014  57.5472 0.3381 15.7911 
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Table 6 Estimated variances of MLEs for 1,000n =  

n  ( ), ,λ α β=θ  
Monte-Carlo simulations  Analytic method 

ˆ( )Var λ  ( )ˆVar α  ˆ( )Var β   ˆ( )Var λ  ( )ˆVar α  ˆ( )Var β  

1,000 (0.5, 0.25, 0.05) 0.0384 0.0001 0.0000  0.0673 0.0003 0.0001 
 (0.5, 0.25, 1) 0.0856 0.0002 0.0113  0.1260 0.0003 0.0169 
 (0.5, 0.25, 3) 0.0904 0.0002 0.1011  0.1489 0.0003 0.1673 
 (0.5, 0.5, 0.05) 0.0002 0.0005 0.0000  0.0991 0.0012 0.0001 
 (0.5, 0.5, 1) 0.0964 0.0007 0.0074  0.1163 0.0009 0.0089 
 (0.5, 0.5, 3) 0.0976 0.0006 0.0742  0.1202 0.0009 0.0849 
 (0.5, 1, 0.05) 0.0000 0.0045 0.0001  0.7758 0.0195 0.0004 
 (0.5, 1, 1) 0.1273 0.0030 0.0056  0.1740 0.0038 0.0065 
 (0.5, 1, 3) 0.2748 0.0032 0.0646  0.1983 0.0042 0.0612 
 (0.5, 2, 0.05) 0.0000 0.0621 0.0004  0.1873 0.0370 0.0004 
 (0.5, 2, 1) 0.4400 0.0099 0.0086  0.2433 0.0127 0.0056 
 (0.5, 2, 3) 0.4763 0.0106 0.0757  0.2440 0.0126 0.0487 
 (3, 0.25, 0.05) 0.0783 0.0001 0.0001  0.2946 0.0001 0.0007 
 (3, 0.25, 1) 0.1477 0.0001 0.0261  0.8861 0.0001 0.1197 
 (3, 0.25, 3) 1.8345 0.0002 0.1537  0.7022 0.0002 0.7337 
 (3, 0.5, 0.05) 0.0894 0.0005 0.0002  0.1173 0.0006 0.0003 
 (3, 0.5, 1) 0.3899 0.0002 0.0507  0.8282 0.0003 0.0906 
 (3, 0.5, 3) 0.3265 0.0002 0.3894  1.3872 0.0003 1.2635 
 (3, 1, 0.05) 1.8817 0.0023 0.0012  0.3339 0.0055 0.0002 
 (3, 1, 1) 1.0363 0.0011 0.0630  1.2085 0.0013 0.0823 
 (3, 1, 3) 0.9611 0.0011 0.5603  1.0361 0.0013 0.6053 
 (3, 2, 0.05) 1.1011 0.1406 0.0135  0.7770 0.0238 0.0003 
 (3, 2, 1) 1.2201 0.0093 0.0507  1.8760 0.0122 0.0672 
 (3, 2, 3) 0.9669 0.0074 0.4328  1.0888 0.0091 0.4621 
 (7, 0.25, 0.05) 0.2573 0.0001 0.0047  2.3858 0.0001 0.0208 
 (7, 0.25, 1) 0.5568 0.0001 1.8371  0.7094 0.0002 1.8145 
 (7, 0.25, 3) 0.5587 0.0002 3.9725  0.9507 0.0002 4.4882 
 (7, 0.5, 0.05) 1.3938 0.0002 0.0014  3.6506 0.0002 0.0034 
 (7, 0.5, 1) 1.3175 0.0002 0.9428  3.0960 0.0003 1.9842 
 (7, 0.5, 3) 0.7830 0.0002 3.2487  0.8338 0.0003 3.1858 
 (7, 1, 0.05) 1.3853 0.0012 0.0010  1.9336 0.0012 0.0002 
 (7, 1, 1) 5.7144 0.0021 0.8653  2.4750 0.0015 0.2991 
 (7, 1, 3) 4.5041 0.0015 3.4543  3.5295 0.0017 2.1812 
 (7, 2, 0.05) 0.7022 0.0108 0.0000  1.9520 0.0092 0.0001 
 (7, 2, 1) 4.1513 0.0201 0.2679  9.1907 0.0291 0.2156 
 (7, 2, 3) 4.0194 0.0183 1.9366  3.2583 0.0196 1.1301 
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Table 7 Estimated covariances of MLEs for 50n =  

n  ( ), ,λ α β=θ  
Monte-Carlo simulations  Analytic method 

( )ˆ ˆ,Cov λ α  ( )ˆ ˆ,Cov λ β  ( )ˆˆ ,Cov α β   ( )ˆ ˆ,Cov λ α  ( )ˆ ˆ,Cov λ β  ( )ˆˆ ,Cov α β  

50 (0.5, 0.25, 0.05) 0.0167 -0.0074 0.0004  0.0730 -0.0434 -0.0009 
 (0.5, 0.25, 1) 0.0260 -0.3685 0.0021  0.0785 -1.0115 -0.0118 
 (0.5, 0.25, 3) 0.0260 -1.0383 0.0086  0.0777 -3.1869 -0.0365 
 (0.5, 0.5, 0.05) 0.0082 0.0002 0.0019  0.1792 -0.0414 -0.0015 
 (0.5, 0.5, 1) 0.0527 -0.2516 0.0140  0.1504 -0.5952 -0.0148 
 (0.5, 0.5, 3) 0.0614 -0.9937 0.0112  0.1311 -1.3203 -0.0298 
 (0.5, 1, 0.05) 0.0098 -0.0013 0.0100  0.8501 -0.1269 -0.0091 
 (0.5, 1, 1) 0.0826 -0.3587 0.0215  0.3485 -0.8593 -0.0212 
 (0.5, 1, 3) 0.0827 -1.4204 0.0647  0.3461 -2.2946 -0.0506 
 (0.5, 2, 0.05) -0.9600 -0.3150 0.1106  0.6624 -0.2406 0.0279 
 (0.5, 2, 1) -0.0020  -0.4329   0.0721  0.4511    -0.8379 0.0253 
 (0.5, 2, 3) -0.0705  -1.7181   0.2408  0.5200  -2.6111 0.0695 
 (3, 0.25, 0.05) 0.0120 -0.0469 0.0009  0.0533 -0.2703 -0.0015 
 (3, 0.25, 1) 0.0025 -0.8461 0.0256  0.0433 -5.6072 -0.0099 
 (3, 0.25, 3) 0.0187 -1.9375 0.0392  0.0186 -14.7122 0.0385 
 (3, 0.5, 0.05) 0.0450 -0.0311 0.0004  0.1129 -0.1019 -0.0020 
 (3, 0.5, 1) 0.0334 -0.9693 0.0176  0.0930 -2.7954 -0.0186 
 (3, 0.5, 3) 0.0524 -3.4378 0.0144  0.0779 -8.0506 -0.0447 
 (3, 1, 0.05) 0.0403 -0.0081 0.0062  0.5758 -0.1046 -0.0063 
 (3, 1, 1) 0.0861 -1.0252 0.0251  0.1366 -2.0500 -0.0006 
 (3, 1, 3) 0.0762 -3.8528 0.0638  0.1965 -9.0941 -0.0445 
 (3, 2, 0.05) -0.6992 -0.2432 0.0830  1.2138 -0.2739 0.0061 
 (3, 2, 1) -0.0730 -0.7981 0.1382  0.0475 -1.2044 0.0994 
 (3, 2, 3) -0.1983 -3.3283 0.3961  -0.0612 -4.5892 0.3633 
 (7, 0.25, 0.05) -0.0023 -0.7181 0.0180  0.0261 -4.0791 0.0011 
 (7, 0.25, 1) 0.0447 -3.0238 0.0984  0.0274 -7.8428 0.0608 
 (7, 0.25, 3) 0.0821 -2.7226 0.1110  0.0673 -14.8206 0.1457 
 (7, 0.5, 0.05) 0.0511 -0.4967 -0.0001  0.0693 -0.6612 -0.0039 
 (7, 0.5, 1) 0.0580 -6.8978 0.0365  -0.0044 -16.1750 0.0794 
 (7, 0.5, 3) 0.0640 -11.6383 0.0566  -0.0588 -29.9746 0.2744 
 (7, 1, 0.05) -0.0115 -0.2802 0.0069  0.1803 -0.2204 -0.0006 
 (7, 1, 1) 0.0577 -6.7938 0.0600  0.0603 -4.3486 0.0315 
 (7, 1, 3) -0.0510 -19.2249 0.1667  0.0082 -33.4684 -0.4394 
 (7, 2, 0.05) -1.2498 -0.5239 0.0668  0.0360 -0.2732 0.0117 
 (7, 2, 1) -0.7951 -4.4318 0.4517  -0.4409 -3.0468 0.3499 
 (7, 2, 3) -1.2627 -15.5863 1.0759  -1.1463 -16.0017 1.6004 
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Table 8 Estimated covariances of MLEs for 100n =  

n  ( ), ,λ α β=θ  
Monte-Carlo simulations  Analytic method 

( )ˆ ˆ,Cov λ α  ( )ˆ ˆ,Cov λ β  ( )ˆˆ ,Cov α β   ( )ˆ ˆ,Cov λ α  ( )ˆ ˆ,Cov λ β  ( )ˆˆ ,Cov α β  

100 (0.5, 0.25, 0.05) 0.0084 -0.0037 0.0002  0.0365 -0.0188 -0.0004 
 (0.5, 0.25, 1) 0.0167 -0.2194 -0.0010  0.0391 -0.4453 -0.0064 
 (0.5, 0.25, 3) 0.0187 -0.8036 -0.0008  0.0417 -1.5448 -0.0198 
 (0.5, 0.5, 0.05) 0.0014 0.0002 0.0009  0.1027 -0.0213 -0.0009 
 (0.5, 0.5, 1) 0.0377 -0.1710 -0.0006  0.1233 -0.4897 -0.0180 
 (0.5, 0.5, 3) 0.0358 -0.6267 -0.0010  0.0805 -0.9822 -0.0257 
 (0.5, 1, 0.05) 0.0003 0.0001 0.0049  0.2875 -0.0404 -0.0018 
 (0.5, 1, 1) 0.0758 -0.2760 0.0055  0.3186 -0.5176 -0.0315 
 (0.5, 1, 3) 0.0707 -1.0591 0.0198  0.1737 -1.1253 -0.0260 
 (0.5, 2, 0.05) -0.4530 -0.1468 0.0606  0.5685 -0.1266 0.0086 
 (0.5, 2, 1) 0.0025 -0.3729 0.0317  0.2101 -0.3593 0.0134 
 (0.5, 2, 3) -0.1178 -1.7554 0.1370  0.1295 -1.4932 0.0669 
 (3, 0.25, 0.05) 0.0075 -0.0207 0.0003  0.0332 -0.1929 -0.0010 
 (3, 0.25, 1) 0.0012 -0.4622 0.0101  0.0274 -3.6721 -0.0040 
 (3, 0.25, 3) -0.0004 -0.9413 0.0281  0.0106 -7.2806 0.0175 
 (3, 0.5, 0.05) 0.0323 -0.0076 0.0001  0.0458 -0.0457 -0.0007 
 (3, 0.5, 1) 0.0239 -0.7209 0.0007  0.0401 -1.3175 -0.0084 
 (3, 0.5, 3) 0.0232 -1.9506 0.0051  0.0389 -6.5461 -0.0293 
 (3, 1, 0.05) 0.0113 -0.0116 0.0031  0.2265 -0.0383 -0.0017 
 (3, 1, 1) 0.0421 -0.8400 0.0086  0.0440 -1.1681 0.0071 
 (3, 1, 3) 0.0428 -2.9136 0.0224  0.0441 -3.2982 0.3356 
 (3, 2, 0.05) -0.3975 -0.1575 0.0408  0.5790 -0.1047 0.0035 
 (3, 2, 1) -0.1374 -0.7827 0.0637  -0.3028 -1.1604 0.0978 
 (3, 2, 3) -0.1541 -2.5909 0.1930  -0.2575 -3.4547 0.2455 
 (7, 0.25, 0.05) -0.0036 -0.2745 0.0068  0.0103 -1.2154 0.0015 
 (7, 0.25, 1) 0.0082 -1.9151 0.0680  0.0087 -5.6556 0.0405 
 (7, 0.25, 3) 0.0384 -1.8403 0.0514  0.0607 -8.3301 0.0289 
 (7, 0.5, 0.05) 0.0182 -0.3725 0.0002  0.0262 -0.5455 -0.0022 
 (7, 0.5, 1) 0.0343 -4.1091 0.0092  0.0143 -9.2530 0.0017 
 (7, 0.5, 3) 0.0195 -7.5173 0.0508  -0.0017 -12.5261 0.0718 
 (7, 1, 0.05) 0.0265 -0.2651 0.0064  0.1609 -0.4968 -0.0050 
 (7, 1, 1) 0.0240 -6.4625 0.0838  0.0244 -4.5572 0.0466 
 (7, 1, 3) -0.0709 -14.8243    0.1200  -0.1172    -12.9119 0.1621 
 (7, 2, 0.05) -1.0704 -0.5007 0.0606  -0.2290 -0.2290 0.0202 
 (7, 2, 1) -0.8718 -4.7650 0.4776  -0.5568 -3.3656 0.3783 
 (7, 2, 3) -1.0943 -16.0831 1.0025  -3.1229 -25.3552 1.7878 
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Table 9 Estimated covariances of MLEs for 1,000n =  

n  ( ), ,λ α β=θ  
Monte-Carlo simulations  Analytic method 

( )ˆ ˆ,Cov λ α  ( )ˆ ˆ,Cov λ β  ( )ˆˆ ,Cov α β   ( )ˆ ˆ,Cov λ α  ( )ˆ ˆ,Cov λ β  ( )ˆˆ ,Cov α β  

1,000 (0.5, 0.25, 0.05) 0.0016 -0.0006 0.0000  0.0035 -0.0016 0.0000 
 (0.5, 0.25, 1) 0.0021 -0.0234 -0.0002  0.0039 -0.0381 -0.0007 
 (0.5, 0.25, 3) 0.0020 -0.0759 -0.0004  0.0041 -0.1341 -0.0020 
 (0.5, 0.5, 0.05) 0.0000 0.0000 0.0001  0.0088 -0.0018 -0.0001 
 (0.5, 0.5, 1) 0.0064 -0.0194 -0.0007  0.0079 -0.0241 -0.0009 
 (0.5, 0.5, 3) 0.0056 -0.0637 -0.0017  0.0078 -0.0776 -0.0027 
 (0.5, 1, 0.05) 0.0000 0.0000 0.0005  0.1132 -0.0155 -0.0019 
 (0.5, 1, 1) 0.0143 -0.0180 -0.0004  0.0200 -0.0249 -0.0013 
 (0.5, 1, 3) 0.0169 -0.1008 -0.0025  0.0228 -0.0832 -0.0048 
 (0.5, 2, 0.05) 0.0000 0.0000 0.0046  0.0336 -0.0061 0.0015 
 (0.5, 2, 1) 0.0142 -0.0523 0.0016  0.0352 -0.0271 -0.0003 
 (0.5, 2, 3) 0.0150 -0.1592 0.0052  0.0343 -0.0789 -0.0005 
 (3, 0.25, 0.05) 0.0010 -0.0023 0.0000  0.0031 -0.0129 -0.0001 
 (3, 0.25, 1) 0.0002 -0.0475 0.0006  0.0017 -0.3044 0.0001 
 (3, 0.25, 3) -0.0073 -0.0808 0.0007  0.0025 -0.6656 -0.0002 
 (3, 0.5, 0.05) 0.0043 -0.0027 0.0000  0.0058 -0.0043 -0.0001 
 (3, 0.5, 1) 0.0031 -0.1253 -0.0003  0.0056 -0.2523 -0.0011 
 (3, 0.5, 3) 0.0016 -0.3187 0.0008  0.0082 -1.2608 -0.0052 
 (3, 1, 0.05) 0.0287 -0.0447 -0.0004  0.0238 -0.0050 -0.0002 
 (3, 1, 1) -0.0019 -0.2356 0.0015  -0.0031 -0.2928 0.0017 
 (3, 1, 3) -0.0018 -0.6776 0.0046  -0.0023 -0.7279 0.0048 
 (3, 2, 0.05) -1.4915 -0.5162 0.0408  -0.0066 -0.0082 0.0009 
 (3, 2, 1) -0.0670 -0.2347 0.0164  -0.1065 -0.3273 0.0214 
 (3, 2, 3) -0.0449 -0.6157 0.0386  -0.0564 -0.6707 0.0450 
 (7, 0.25, 0.05) -0.0010 -0.0274 0.0004  0.0019 -0.2083 0.0001 
 (7, 0.25, 1) -0.0022 -0.7947 0.0115  -0.0005 -0.9451 0.0072 
 (7, 0.25, 3) 0.0020 -1.0225 0.0122  0.0056 -1.5546 0.0059 
 (7, 0.5, 0.05) -0.0017 -0.0393 0.0001  -0.0059 -0.0936 0.0001 
 (7, 0.5, 1) -0.0033 -0.9917 0.0056  -0.0051 -2.2976 0.0062 
 (7, 0.5, 3) -0.0012 -1.4329 0.0097  0.0000 -1.4271 0.0080 
 (7, 1, 0.05) -0.0124 -0.0324 0.0004  -0.0208 -0.0163 0.0003 
 (7, 1, 1) -0.0705 -2.0288 0.0270  -0.0315 -0.7068 0.0110 
 (7, 1, 3) -0.0535 -3.4799 0.0496  -0.0456 -2.4165 0.0404 
 (7, 2, 0.05) -0.0096 -0.0039 0.0006  -0.0564 -0.0123 0.0008 
 (7, 2, 1) -0.2439 -0.9459 0.0644  -0.4560 -1.2852 0.0722 
 (7, 2, 3) -0.2196 -2.4574 0.1641  -0.2043 -1.7280 0.1349 
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Table 10 Maximum likelihood estimates and goodness-of-fit testing for two datasets 
Data Distribution Estimate K-S p-value 

1 
( )128n =  

GZTP ( )ˆ 3.9201,  1.4169,  0.0623=θ  0.03598 0.9964 

WP ( )1̂ 4.0130,  1.2744,  0.0171=θ  0.04551 0.9536 

Gamma ( )2
ˆ 1.1726,  0.1252=θ  0.07330 0.4974 

2 
( )30n =  

GZTP ( )ˆ 0.3811,  3.1587,  1.7838=θ  0.05708 0.9999736 

WP ( )1̂ 2.1745,  2.1041,  0.1358=θ  0.05709 0.9999734 

Gamma ( )2
ˆ 2.9582,  1.7661=θ  0.05601 0.9999834 
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