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Abstract

Missing data is a common phenomenon most analysts have experienced. Even if the dataset
includes a significant number of data points, many of the variables of interest will have missing values.
The most prevalent method for dealing with such data points is to leave them out of the analysis. This
method is not ideal for multiple reasons. One is that unless the data are missing completely at random,
leaving out data points with missing values will bias the results of analysis. A second is that it leads
to smaller datasets used for analysis. In this paper, we discuss some commonly used imputation
methods, such as Expectation-Maximization (EM), multiple imputation by chained equations, and K-
nearest neighbor. Furthermore, we propose a new imputation (EPK) method. The Monte Carlo
simulation study is conducted to examine the efficiency of nine imputation methods in the binary
logistic regression model when the missingness mechanism is missing at random. Moreover, we used
a real data on social network advertising, as an empirical study, to examine these methods. The results
of our simulation and empirical studies indicated that the EPK and EM methods are more efficient
than other imputation methods; where the EPK and EM have smallest values of Akaike information
criterion (AIC) and Bayesian information criterion (BIC), whether the missing data is in the
independent variables only, the dependent variable only, or in both together.

Keywords: Expectation maximization, imputation by random forests, K- nearest neighbor, multivariate
imputation by chained equations, predictive mean matching.

1. Introduction

The logistic regression (LR) is a tool for building models when there is a categorical response
variable with two levels. The LR is a type of generalized linear model (GLM) for response variables
where regular multiple regression does not work very well. The LR sometimes called the logistic
model or logit model analyzes the relationship between multiple independent variables and a
categorical dependent variable and estimates the probability of occurrence of an event by fitting data
to a logistic curve. There are two models of LR, binary logistic regression (BLR), and multinomial
logistic regression (MLR). BLR is typically used when the dependent variable is dichotomous, and
the independent variables are either continuous or categorical. When the dependent variable is not
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dichotomous and is comprised of more than two categories, an MLR can be employed. Many variables
of interest are dichotomous, e.g., whether someone voted in the last election, whether someone is a
smoker, whether one has a child, whether one is unemployed, etc. These types of variables are often
referred to as discrete or qualitative. The goal of the binary logistic analysis is to find the best fitting
and most parsimonious, yet reasonable model to describe the relationship between an outcome
(dependent or response variable) and a set of independent (predictor or explanatory) variables
(Tranmer and Elliot 2008).

There are various imputation methods for dealing with missing data. According to these methods,
the missing values are replaced by estimates obtained from statistical procedures. The problem is that
most of the imputation methods produce in general continuous estimates, which are not realistic
replacements of the missing values when the variables are categorical. The aim of this paper is to
propose a new imputation method, and study the performance of these methods in the BLR model
when the missingness mechanism is missing at random by conducting a Monte Carlo simulation study
and real data application. In our study, we allow the missing data to be in all the variables, whether in
the independent variables only, in the dependent variable only, or in both together.

The paper is organized as follows. Section 2 introduces logistic regression (transformations,
model, assumptions, and the maximum likelihood estimator). Section 3 discusses the main methods
to deal with missing values (expectation-maximization, K-nearest neighbor, multivariate imputation
by chained equations). Section 4 presents the Monte Carlo simulation study. In Section 5, an empirical
study has been presented for assessing the performance of different estimation methods under the
existence of missing data. Finally, Section 6 offers concluding remarks.

2. The Logistic Regression Model
The logistic (logit) function is a common transformation for linearizing sigmoid distributions of
proportions (El-Masry et al. 2021). A sigmoid function is a mathematical function having a
characteristic “S”-shaped curve or sigmoid curve. The sigmoid function is used to convert the input
into ranges 0 and 1 (Armitage and Berry 1994). The logit function asymptotically approaches 0 as the
input approaches negative infinity and 1 as the input approaches positive infinity. Since the results are
bounded by 0 andl, it can be directly interpreted as a probability. To achieve this, a regression is first
performed with a transformed value of Y, called the “logit function”.
log(odds) = f, + pix, +---+ Bx;., (1)
where “odds” refers to the odds of ¥ being equal to 1. In other words, "odds" is defined as the
probability of belonging to one group divided by the probability of belonging to the other:

odds = [ILJ The odds are always positive: odds = (lij - [O,oo[, this means that the values of
- -

odds are always positive. But the log(odds) is continuous: log(odds) = log (ILJ — (—o0,0). The
-z

LR will model the chance of an outcome based on individual characteristics. Because chance is a ratio,
what will be modeled is the logarithm of the chance given by:

log[éj =B+ Bx, +--+ Bx,, 2)

where 7 is the probability of an event, f,,f,,:-, B, are the regression coefficients associated with

the reference group, and x,,...,x, are the explanatory variables.
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2.1. Logistic regression assumptions

No matter how one goes about selecting the explanatory or independent variables, basic
assumptions for conducting LR must always be met. One assumption is the independence of errors,
whereby all sample group outcomes are separate from each other. A second assumption is a linearity
in the logit for any continuous independent variables. A third assumption is the absence of exact
multicollinearity between the independent variables. A final assumption is the lack of strongly
influential outliers (Stoltzfus 2011).

2.2. Maximum likelihood estimation

In general, the maximum likelihood estimation (MLE) method yields estimates for the unknown
parameters that maximize the probability of obtaining the observed set of data. To apply this method,
we must first construct a function, called the likelihood function. This function expresses the
probability of the observed data as a function of the unknown parameters. The MLE of the parameters
is the values that maximize likelihood function. Thus, the resulting estimators are those that agree
most closely with the observed data. A convenient way to express the contribution to the likelihood

function for the pair (x,. R y,) is through the expression

7(x)" (1- ﬂ(x,.))l_y‘ . 3)
As the observations are assumed to be independent, the likelihood function is obtained as the
product of the terms given in Equation (3) as follows

L(p) =f[n(x,- Y (1-2(x)) @)

To estimate of S that maximizes L(f) we differentiate L(f) with respectto £, and S, and

set the resulting expressions equal to zero. These equations, known as the likelihood equations
(Hosmer et al. 2013).

Although you will probably use a statistical package to compute the estimates, here is a brief
description of the underlying procedure. Because LR predicts probabilities, rather than just classes,
one can fit it using likelihood. Usually, we will distinguish the log-likelihood concerning the
conditions, set the derivatives to zero, and solve to find the MLE. Because this equation is nonlinear
in f, certain special methods for obtaining the approximate parameters should be employed. The

iterative re-weighted least squares (IRLS) method can be applied to get the solutions, which can be
found in Hilbe (2011). The MLE estimator of f can be obtained by using the IRLS algorithm as

follows

N S -1 PRSP
Bue = (XWX) (XWZ). O)
where W = diag(#,(1-#))and 7 =(%,...2,):2, :10g(ﬁi)+%;i:1,...,n. The hats in the
7Z'i —ﬂ'i

equations show the iterative process.

3. Missing Data

Missing data typically refers to the absence of one or more values within a study variable(s)
contained in a dataset. The development is often the result of a study participant choosing not to
provide a response to a survey item. Missing data plagues almost all surveys, and quite a several
designed experiments. No matter how carefully an investigator tries to have all questions fully
responded to in a survey, or how well designed an experiment is; examples of how this can occur are



Salah M. Mohamed et al. 929

when a question is unanswered in a survey, or a flood has removed a crop planted close to a river. The
problem is, how to deal with missing data, once it has been deemed impossible to recover the actual
missing values (Scheffer 2002). Because of these problems, methodologists routinely advise
researchers to design studies to minimize the occurrence of missing values. Appearing in the literature
from 1985 to 1989, Concato et al. (1993) reported that the LR was the most frequently used procedure
comprising an average of 43% of the multivariate methods in the five-year period reviewed. Two
reports (Khan et al. 1999) described a significant increase in the use of the LR in the public health,
epidemiology, obstetrics, and gynecology research literature. Bender (2009) reviewed the statistical
methods reported in a probability sample of 348 articles published between 1970 and 1998 in the
American Journal of Public Health and the American Journal of Epidemiology. The study revealed
significant increases in the use of LR.

3.1. Missing data mechanisms

Rubin (1976), Little and Rubin (1987), Little (1992), Little and Schenker (1995), and Little and
Rubin (2002) established the foundations of missing data theory. Central to missing data theory is his
classification of missing data problems into three categories:

[J Missing completely at random (MCAR): means that there is no relationship between the

missingness of the data and any values, observed or missing.

[ Missing at random (MAR): means that there is a systematic relationship between the propensity

of missing values and the observed data, but not the missing data.

[J Missing not at random (MNAR): means that there is a relationship between the propensity of

a value to be missing and its values.

These three classes of missing data are referred to as missing data mechanisms (for a slightly
different classification; see Gelman and Hill 2007, Nakagawa 2015). Missing data mechanisms
represent the statistical relationship between observations (or the variables) and the probability of
missing data.

3.2. Statistical methods for handling the missing data

The concept of missing values is important to understand to successfully manage data. If the
missing values are not handled properly by the researcher, then may end up drawing an inaccurate
inference about the data, due to improper handling. The researcher may leave the data or do data
imputation to replace them. Suppose the number of cases of missing values is extremely small; then,
an expert researcher may drop or omit those values from the analysis. In statistical language, if the
number of cases is less than 5% of the sample, then the researcher can drop them. The best possible
method of handling the missing data is to prevent the problem by well-planning the study and
collecting the data carefully; see Tsikriktsis (2005), and Wisniewski et al. (2006). In the next section
we will introduce some of the methods used in our paper, you can also find more details about those
methods through the following references (e.g., Sentas and Angelis 2006, Peng and Zhu 2008, Meeyai
2016).

Missing data reduces the representativeness of the sample and can therefore distort inferences
about the population. There are three main approaches to handle missing data: (1) Omission
“deletion”: where samples with invalid data are discarded from further analysis and (2) imputation:
where values are filled in the place of missing data, (3) analysis: by directly applying methods
unaffected by the missing values. In the next lines, we will explain K-nearest neighbor, expectation
maximization, and other multivariate important methods.
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3.2.1. K-nearest neighbor

It is good practice to identify and replace missing values for each column in your input data prior
to modeling your prediction task. This is called missing data imputation or imputing for short. A
popular approach to missing data imputation is to use a model to predict the missing values. This
requires a model to be created for each input variable that has missing values. Although any one among
a range of different models can be used to predict the missing values, the K-nearest neighbor (KNN)
algorithm has proven to be generally effective, often referred to as “nearest neighbor imputation (Pan
etal. 2015). The KNN algorithm is one of the top ten data mining algorithms and known as an instance-
based learning method (Wu et al. 2008).

This method does not perform well when there are large amounts of missing data. To date, there
is no theoretical result for selecting the optimal K-value. The most frequent value among K-nearest
neighbor and the mean among the KNN can be predicted by KNN imputation. In this method, the
main factor is the distance metrics. In the KNN imputation method, we can replace the missing values
with the nearest neighbor. But if the value of K is greater than one then replaces the missing values
with the mean or weighted average of KNN. By setting K-value between 10 and 20 brings the best
results for KNN imputation.

3.2.2. Expectation maximization algorithm

The expectation-maximization (EM) algorithm is a broadly applicable approach to the iterative
computation of maximum likelihood estimates, useful in a variety of incomplete data problems, where
algorithms such as the Newton-Raphson method may turn out to be more complicated. On each
iteration of the EM algorithm, there are two steps-called the expectation step or the E-step and the
maximization step or the M-step. Because of this, the algorithm is called the EM algorithm. This name
was given by Dempster et al. (1977) in their fundamental paper. The essential idea behind the EM
algorithm is to calculate the maximum likelihood estimates for the incomplete data problem by using
the complete data likelihood instead of the observed likelihood because the observed likelihood might
be complicated or numerically infeasible to maximize. To do this, we augment the observed data with
manufactured data to create a complete likelihood that is computationally more tractable. We then
replace, at each iteration, the incomplete data, which are in the sufficient statistics for the parameters
in the complete data likelihood, by their conditional expectation given the observed data and the
current parameter estimates (Expectation step: E-step) The new parameter estimates are obtained from
these replaced sufficient statistics as though they had come from the complete sample (Maximization
step: M-step) alternating E- and M-steps, the expected log-likelihood is maximized to produce new
values of the parameters. The EM algorithm is closely related to the following ad hoc process of
handling missing data:

Step 1: Fill in the missing values by their estimated values.

Step 2: Estimate the parameters for this completed dataset.

Step 3: Use the estimated parameters to re-estimate the missing values.

Step 4: Re-estimate the parameters from this updated completed dataset.
We alternate between steps 3 and 4 until convergence of parameter estimates is achieved.

3.2.3. Multiple imputation by chained equations

Just as there are multiple methods of single imputation, there are multiple methods of multiple
imputation (MI) as well. One advantage that MI has over the single imputation and complete case
methods is that MI is flexible and can be used in a wide variety of scenarios. MI can be used in cases
where the data is MCAR, MAR, and even when the data is MNAR. However, the primary method of
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MI is multiple imputation by chained equations (MICE). It is also known as “fully conditional
specification” (Azur et al., 2011). The MICE has been shown to work very well on MAR. MI is not
very difficult to implement. There are a wide range of different statistical packages in different
statistical software that readily allow someone to perform MI. For example, the “mice” R-package
allows users in R to perform MI using the MICE method.

The MICE algorithm, designed by Buuren and Groothuis-Oudshoorn (2010), is based on a
Markov chain Monte Carlo method wherein the state space is the collection of all imputed values. The
merit of MICE is that the results are computed after a comparatively few iterations. As per some
studies (Buuren and Groothuis-Oudshoorn 2010), in general, five iterations are usually sufficient. In
MICE, the user can specify an elementary imputation method for each incomplete data column. The
elementary imputation method takes a set of (at that moment) complete predictors and returns a single
imputation for each missing entry in the incomplete target column. Multiple imputations are created
by repeated calls to the function. The “mice” R-package supplies several built-in elementary
imputation models, which are given in Table 1. For more details about this package, see Azur et al.
(2011).

Table 1 Some built-in methods in “mice” R-package

Method Description Type of target
Mean Unconditional mean imputation Numeric
RI Regression imputation Numeric
PMM Predictive mean matching Any type
LRI Logistic regression 2 categories
RF Imputation by random forests Any type

4. Simulation Study

Monte Carlo simulation is a method of repeating a statistical analysis using multiple iterations, with
a subset of data sampled, changed, or deleted at random with each iteration as described in Abonazel
(2018) and Abonazel (2020). To explore the performance of imputation methods under different missing
data percentages, different sample sizes, and different numbers of independent variables, we used the
complete training dataset, to artificially generate missing values by imitating the MAR mechanism. The
programming of the simulation study is written in R-software, see Abonazel (2018) and Abonazel (2020).

4.1. Data model
The explanatory variables (X’s) are simulated from a multivariate normal distribution
MVN(1,1,). The response variable (y) of the logistic model is obtained by using the Bernoulli

distribution (7).

4.2. Missing data methods

Via simulations, we compared the performance of eight imputation methods that have been
applied using R-packages for handling missing data with the proposed EPK method. These methods
are KNN, EM, hot deck (HD), and using of “mice” package for each of the: mean imputation (Mean),
regression imputation (RI), logistic regression imputation (LRI), predictive mean matching (PMM),
and random forest (RF). Based on the results of Mohamed et al. (2021), we can suggest a new
imputation method (EPK) by combining (simple average) of the imputed values of the three best MI
methods (EM, PMM, and KNN) as follows (El-Sheikh et al. 2022):
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EPK = %(EM +PMM +KNN). (6)

4.3. Missing data generation

In our simulation study, 500 Monte Carlo samples were generated at different sample size are
chosen random samples of n = 50, 100, and 150 observations were withdrawn. As for our selection of
the number of independent variables, the simulation was performed with two different independent
variables: k =2, and 4. Simulations were started by deleting MAR with two percentages of data

missing (10% and 40%)- The missing data stage was worked on all the variables, either combined or
separately for each case, as it was divided into three cases: 1) Missing in independent variables (X’s),
ii) Missing in dependent variable (), and iii) Missing in independent and dependent variables (X’s,

y). To evaluate the performance of methods, we used the following goodness-of-fit criteria: Akaike
information criterion (AIC) and Bayesian information criterion (BIC).

4.4. Simulation results

The simulation results are presented in Tables 4-15 in the Appendix. Tables 4-7 presents the
values of AIC and BIC of different imputation methods for different £ and missingness percentage
(%) when the missing data in X’s only. While Tables 8-11 present the AIC and BIC values of different
imputation methods when the missing data in y only when the same values of k& and missingness
percentage. While the simulation results for the case of the missing data in X’s and y together are

presented in Tables 12-15.

The most important conclusions that have been concluded from these results can be summarized

as follows:

[] In general, the EM and EPK methods performed better than other methods in the three cases,
even with a different loss rate was (10%, or 40 %). Since EM and EPK methods have minimum
values of AIC and BIC.

[J From Tables 4-7, we note that the RI method works well with small samples, while the PMM
method is more suitable for large samples when the sample size is greater than 50 and it
performed well when increasing the proportion of missing data to 40 % and &k = 2.

[J Methods such as (RI, KNN, PMM) their results were much converged when they were n = 50
and k = 4, but the superiority of the KNN method appeared when the sample size reached 150,
and the values of both (RF, PMM) converged when the sample size is large.

[J The results of some methods converge, such as (KNN, PMM, and RF) with the best methods
"EM and EPK", when handling missing data in y only.

[] The performance of the LRI method is also like the KNN method when the sample size is
greater than 100, but its performance remains poor when the loss ratio reaches 40%, k = 4; as
shown in Tables 8-11. The large similarity condition did not differ in the results between the
PMM and RF as in the case of the missing data in X’s.

[J The methods (Mean, LRI, PMM, RF) converge in the results when handling missing data in y
only and when &k = 2, and the sample size is 50 or 100, the slight difference appears when the
sample size reaches 150. But when the percentage of missing data was increased to 40%, the
results differed between them.

[J The situation did not change much when dealing with the missing data in X’s and y together,
considering the superiority of the EM and EPK methods in processing the missing data with
the logistic model, our focus was on the performance of all methods alongside the EM and EPK



Salah M. Mohamed et al. 933

methods, as it was noted that the LRI method performed well in handling the missing data in
(X’s, y). Even when the proportion of missing data is high, the KNN method has been shown
to be efficient in large samples and high rates of lost data, see Tables 12-15.

[ The mean imputation method achieved the highest rates when the missing data in X’s as shown
Tables 4-7.

[J The results of most methods converge in handling missing data, whether in the independent
variables only or the dependent variable only or both, especially when the sample size is at the
lowest level.

[J The HD method achieves its maximum value for the two criteria (AIC, BIC).

5. Empirical Application: Social Network Advertising

In this section, the real dataset is used as an application on the BLR model in case of the dataset
contains missing values. Our dataset contains some information about the users of social network
advertising (SNA), including their user gender, age, and estimated salary. The SNA is a group of terms
that are used to describe forms of online advertising that focus on social networking services. One of
the major benefits of this type of advertising is that advertisers can take advantage of the user's
demographic information and target their ads appropriately. Patnana et al. (2020) analyzed this data
by machine learning models. This data is also available in “mephas” R-package. The used sample size
is 400 users (observations), and the definitions of the used variables are: Gender: Person can male or
female, where “0” means Male and “1” means Female. Estimated Salary: Contains the salary of a
person as a salary can affect the shopping. Age: Age of the person. Purchased (dependent variable):
Contains two numbers 0 or 1, where “0” means not purchased and “1” means purchased.

5.1. Complete data analysis

We have a case study on information about all our users in the SNA, the aim is to understand the
characteristics that to identify whether everyone ended up clicking on the advertisement. To learn
more about our data, let us look at the most important descriptive statistics, to start with our dependent
variable, which ranked not purchased, “0”, 64.25 % compared to 35.75 % for purchased, with 257 and
143 frequencies, respectively. Regarding the independent variables, the variable “gender” contained
two numbers (0,1), where the percentage of females occupied the most with 51 % compared to 49 %
for males, with a frequency of 204 for females and 196 for males. The second variable of the
independent variables “age”, which is one of the continuous variables, came with a mean of 37.66 and
a standard deviation of 10.48. While the third variable is the “estimated salary” with two values
(69743, 34097) for both the mean and the standard deviation, respectively.

It notes that some independent variables are weakly correlated; since all correlation coefficient
less than 0.5. Moreover, the VIF for all independent variables are less than 5. This means that we have
not multicollinearity problem and the MLE estimation method is a property for estimating the
parameters of logistic regression (Abonazel and Farghali 2019, Dawoud and Abonazel 2021, Awwad
et al. 2022, Abonazel et al. 2022, Akram et al. 2022, Farghali et al. 2023). Table 2 gives us some
indicators to measure the efficiency of our model (Rady et al. 2021).
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Table 2 Model summary and goodness-of-fit tests

Statistic Value
Cox-Snell R-Square 0.458
Nagelkerke R-Square 0.630
McFadden pseudo R-Square 0.471
AIC 283.84
Area under curve (AUC) 92.7%
Pearson’s Chi-squared test ~ »* = 397,82 with p-value = 0.231
Osius-Rojek’s test Z = 0.54 with p-value = 0.589

From Table 2, we can say that the model is good to fit the data, because p-values of Pearson’s
Chi-squared and Osius-Rojek’s (1992) tests are higher than the usual significance level of 0.05, this
means that there is no evidence to reject the null hypothesis, so the fitted model is correct. Moreover,
the values of R*> for Cox-Snell, Nagelkerke, and McFadden are in good range (0.458 to 0.630).
Moreover, the higher value of the area under the ROC (AUC = 0.927) curve corresponds to the better
quality of the regression model.

Table 3 Maximum likelihood estimation results

Variable Estimate Standard error p-value
Intercept -12.78 1.3590 2E-16
Gender 0.334 0.3052 0.274
Age 0.237 0.0026 2E-16
Estimated Salary 3.644E-5 5.47E-06 2. 77E-11

From Table 3, we note that all variables have a positive impact on the response variable. Gender
variable shows up as not statistically significant. Age and estimated salary variables show up as
statistically significant. According to the site of “Statista”, the statistic shows the age distribution of
the SNA audience in Singapore as of January 2020, sorted by gender. As of this date, approximately
18% of the social media advertising audience in Singapore were between 25 and 34 years old and
male. New technology increases user participation and real-time content and existing networks
enhance their platform and product (e.g., Facebook, Twitter, Pinterest, and Instagram launching ‘buy’
buttons). If the first era of social was engagement, the new era is acquisition and conversion, where
social commerce has been growing over the last few years.

5.2. Incomplete data analysis

In this section, we have focused on discussing dealing with the different methods of missing data
that can be used to analyze our dataset with missing data. We assume that some of our data are missing
approximately 10% and 40% respectively, the data missing by the mechanism is '"MAR'". It should be
noted that we use the same methods that were applied in the simulation study, as the missing data was
applied to all variables, whether the independent variables X’s only or the dependent variable y only
or both X’s and y together. Then we compare these methods using two goodness-of-fit criteria (AIC
and BIC), see Abonazel and Ibrahim (2018). The data has been handled by the statistical R-software.
After the imputation of the missing values based on the nine methods (Note that: there are 7 similar
methods for handle missing data in the three cases. In addition, the RI method was used to handle the
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missing data in the independent variables X’s. Also, the LRI method was used for handling the missing
data in other two cases.

5.3. Application results

In our datasets was dealt with in two parts, namely I) Complete data analysis IT) Incomplete data

analysis, the most important conclusions on our application can be presented as follows:

[J In case of complete data analysis, we have shown our data without the missing data issue, the
goodness-of-fit of the model was checked using different tests. The results of these tests
indicate that the model is fit. And the variables such as age and the estimated salary appeared
statistically significant.

[ In case of incomplete data analysis, with the same methods that were applied in the simulation
study. AIC and BIC criteria have been calculated at each step of this procedure implementation,
see Figures 1-3. It was also evident that the simulation study and the application were consistent
in concluding the best method. The results shown that the best methods are EM and EPK.

Missing = 10% Missing = 40%
w0 mAIC mBIC issing o

Mean RI KNN HD PMM RFI EM EPK Mean RI KNN HD PMM RFI EM EPK
mAIC 304.2 290 269.5328.2300.6 287 265.3 2744 376.5 286.8 203.2 444 308.2 384.9 177.9 191.8

EBIC 320.1 285.9 285.5 344.2 316.6 303 281.2 290.4 392.5302.8 219.2 460 324.1 400.8 193.9 207.8

450
400
350
3

[ 3
0N <o
]

2
1
1

n o h <2
S o o <o

0

Figure 1 Goodness-of-fit criteria when the missing values in X’s
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Missing = 10% Missing = 40%
EAIC mBIC

500
450
400
350
300
250
200
150
100
50
0

Mean LRI KNN HD PMM RFI EM EPK Mean LRI KNN HD PMM RFI EM EPK

mAIC 319.1 293.1 288.7 354.7 291.3 328.5 279.6 278.3 331.9 291.5 242.3 466.7 241.4 381.6 224.4 216.6

mBIC 335.1 309.1 304.7 370.7 307.2 344.4 295.5 296.4 347.8 307.4 258.2 482.7 257.4 397.5 240.3 232.6

Figure 2 Goodness-of-fit criteria when the missing values in y
Missing = 10% issing = 40
g = AIC 1 BIC Missing = 40%

600
500
400
300
200

" I I
0

Mean LRI KNN HD PMM RF EM EPK Mean LRI KNN HD PMM RF EM EPK

WAIC 3244 268.5 265.8 367.6 281.8 327.5 255.3 260.2 3704 326.8 217 511.6 216.9 437.9 159.4 178.3

WBIC 340.4 284.4 281.7 383.6 297.8 3435 271.3 276.2 386.4 342.8 233 527.6 232.8 453.8 175.4 194.3

Figure 3 Goodness-of-fit criteria when the missing values in X’s and y

6. Conclusion

In this paper, we have studied the performance of eight imputation methods that have been
commonly used for handling missing data in the logistic regression model. Furthermore, we have
proposed a new multiple imputation (EPK) method. To evaluate the performance of these methods,
we have conducted a simulation study with different proportions of the missing data in all variables;
whether the missingness is in the independent variables only, the dependent variable only, or both.
Moreover, a real data has been used to examine the nine imputation methods and confirm the
simulation results. The results of the simulation study and real data application indicated that the
expectation-maximization and EPK methods are more efficient than other imputation methods, even
if the missingness present in the data up to 40% and whether the missing data is in the independent
variables only, the dependent variable only, or both.
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Appendix

Table 4 AIC and BIC values of different imputation methods when missingness = 10 %

inX’sand k=2
n=>50 n=100 n=150
Method
AIC BIC AIC BIC AIC BIC
Mean 49.595  55.331 106.830 114.646  162.220 171.252
LRI 48207  53.943 104.519 112.334  158.704  167.736
KNN 50.335 56.071 108.447 116.263  165.113 174.145
HD 48.321  54.057 103.980 111.796  159.118  168.149
PMM 48.581 543177 104.683 112.498 158.731 167.763
RF 48.072  53.808 103.373 111.189  156.976  166.007
EM 47423  53.159 102.445 110.260  155.643 164.675

EPK 47212 52948 101.476 109.292 154366  163.398

Table S AIC and BIC values of different imputation methods when missingness = 40 %
inX’sand k=2

Method n=>50 n=100 n=150
AIC BIC AIC BIC AIC BIC
Mean 52.180 57.916 112.401 120.217 170.456 179.488
LRI 45.806 51.542 102.163 109.978 156.482 165.514
KNN 54.034  59.770 116.835 124.650 177.894 186.926
HD 48.791  54.527 101.995 109.811 156.210 165.241
PMM 47.967  53.703 102.941 110.757 156.684 165.716
RF 46.039 51.775 93.677 101.492 142.388 151.420
EM 39.680 45416 89.395 97.211 137.072 146.104
EPK 42392  48.128 88.817 96.633 135.816 144.847

Table 6 AIC and BIC values of different imputation methods when missingness = 10 %

inX’sand k=4
=50 =100 =150
Method AIC BIC AIC BIC AIC BIC
Mean 54980 64542 112478 125504 167469  182.523
LRI 52879 62439  109.557 122583  163.825  178.879
KNN 55.984  65.544 114330 127356 170348  185.401
HD 53.024  62.584  109.934 122960 163.820  178.873
PMM 54065 63.625 110441 123467 164459  179.512
RF 52697 62257 108920 121.946 162.322  177.376
EM 52229 61790 107.823  120.849  161.022  176.075

EPK 52.256  61.817 107.905  120.931 160.721 175.774
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Table 7 AIC and BIC values of different imputation methods when missingness = 40 %

inX’sand k=4
n=>50 n=100 n=150
Method AIC BIC AIC BIC AIC BIC
Mean 58040  67.600 116904 129930 175937  190.990
LRI 45.098  54.658 103772 116798  160.134  175.187
KNN 60.542  70.102  120.694 133.720 182277 197330
HD 49432 58992 105494 118519  160.529  175.582
PMM 54354 63915  108.694 121.720 164368  179.421
RF 51.948  61.5090 106277 119303  158.018  173.071
EM 49275 58836 100427  113.453  153.859  168.912
EPK 48.002  57.562  99.846  112.872 151239  166.292

Table 8 AIC and BIC values of different imputation methods when missingness = 10 %

in y andk=2
n=50 n=100 n=150
Method AIC BIC AIC BIC AIC BIC
Mean 47112 52848 102249  110.064 156.082 165.114
LRI 48.633 54369  103.864  111.679 159.445 168.477
KNN 46.648 52384 101030  108.846  154.858 163.890
HD 49735 55472 108.093 115908 164.873 173.905
PMM 47924 53660  103.615 111431 159.950 168.982
RF 47813 53549 103342 111157  158.048 167.080
EM 46587 52323 100702 108518 154275 163307
EPK 46259 51995  100.167  107.983 153.479 162511

Table 9 AIC and BIC values of different imputation methods when missingness = 40 %

in y andk=2
n=>50 n=100 n=150
Method AIC BIC AIC BIC AIC BIC
Mean 42.726 48462 95317  103.133 146561  155.593
LRI 47.776 53512 102458 110273 157.448  166.480
KNN 40.131 45867 90337  98.152  139.486 148518
HD 52.471 58207  115.653 123.468  177.121  186.153
PMM 43.828 49564  101.884 109.699  155.755  164.787
RF 46.857 52593 101.078  108.894 154249  163.281
EM 39.487 45223 86.848 94664 132588  141.620

EPK 38.468 44.204 86.072 93.887 132.347 141.379
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Table 10 AIC and BIC values of different imputation methods when missingness = 10 %

inyand k=4
Method n=>50 n=100 n=150
AIC BIC AIC BIC AIC BIC
Mean 52.460 62.020 108.269 121.294  162.291 177.344
LRI 52.827  62.387 109.987 123.013  164.699 179.752
KNN 51.321 60.881 107.246 120.272 161.214 176.267
HD 55.133 64.693 113.557 126.583  169.885 184.938
PMM 52.286 61.846 109.586 122.611  164.952 180.005
RF 52.621  62.182 109.413 122.439 164.062 179.115
EM 51.249 60.809 107.317 120.343  160.488 175.541
EPK 50.795  60.355 106.061 119.087  159.152 174.205

Table 11 AIC and BIC values of different imputation methods when missingness = 40 %

in y andk=4
Method n=>50 n=100 n=150
AlIC BIC AIC BIC AIC BIC

Mean 49.905 59.466 102.105  115.131 150.730 165.783
LRI 51.202 60.763 107.782  120.808 159.969 175.023
KNN 44.386 53.946 97.171 110.197 144.719 159.772
HD 58.550 68.110 120.901 133.927 179.389 194.442
PMM 51.810 61.370 108.108  121.134 166.086 181.139
RF 51.961 61.522 107.071 120.097 158.421 173.474
EM 44,751 54.311 95.346 108.372 141.313 156.366
EPK 43.356 52.916 92.275 105.300 137.853 152.907

Table 12 AIC and BIC values of different imputation methods when missingness = 10 %
in(X’s, y)and k=2

Method n=>50 n=100 n=150
AIC BIC AIC BIC AIC BIC
Mean 48.375 54.111 103.592 111.407 159.742  168.774
LRI 48.499 54.236 103.524 111.340 160.044 169.076
KNN 46.359 52.095 99.647 107.463 153.828 162.860
HD 51.539 57.275 109.935 117.750 169.552  178.584
PMM 48.248 53.984 103.063 110.879 159.795 168.827
RF 48.481 54.217 103.575 111.391 159.018  168.050
EM 44319 50.055 95.681 103.496 147.341 156.373

EPK 45.474 51.211 97.778 105.594  150.970 160.002
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Table 13 AIC and BIC values of different imputation methods when missingness = 40 %
in(X’s, y)and k=2

Method n=>50 n=100 n=150
AIC BIC AIC BIC AIC BIC
Mean 44.635 50.371 98.996 106.811 150.747 159.779
LRI 45.851 51.587 99.217 107.032 152.208 161.240
KNN 39.238 44974 79.681 87.497 119.902 128.934
HD 53.600 59.336 118.709 126.524 180.754 189.786
PMM 45.213 50.949 98.356 106.172 150.646 159.678
RF 45.955 51.691 98.846 106.661 152.641 161.673
EM 29.568 35.304 68.161 75.977 106.083 115.115
EPK 36.528 42.264 78.185 86.001 118.775 127.807

Table 14 AIC and BIC values of different imputation methods when missingness = 10 %
in(X’s,y)and k=4

n=>50 n=100 n=150
Method
AIC BIC AIC BIC AIC BIC
Mean 53.242 62.803 110.074 123.099 164.975 180.028
LRI 52.152 61.712 109.515 122.541 164.724 179.777
KNN 50.494 60.055 107.143 120.169 160.498 175.551
HD 56.166 65.726 116.118 129.144 174.543 189.597
PMM 51.540 61.100 109.726 122.752 164.323 179.376
RF 53.343 62.903 110.516 123.542 165.112 180.165
EM 47.865 57.425 103.841 116.867 156.084 171.137

EPK 49.713 59.273 105.004 118.031 157.752 172.805

Table 15 AIC and BIC values of different imputation methods when missingness = 40 %
in(X’s,y)and k=4

n=>50 n=100 n=150
Method AIC BIC AIC BIC AIC BIC
Mean 51.860 61420 104381 117407 155611  170.664
LRI 45.426 54986 99417 112442 152014  167.067
KNN 46716 56276  99.660  112.686  148.950  164.003
HD 58547 68107  121.603 134629 183219 198272
PMM 44082 53.642 98321 111347 152407  167.460
RF 53.050  62.610  107.902 120928 161492  176.545
EM 36.864 46424 79912 92938 121268  136.322

EPK 42.440 52.006 90.143 103.168 135.430 150.483
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