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Abstract 

Missing data is a common phenomenon most analysts have experienced. Even if the dataset 
includes a significant number of data points, many of the variables of interest will have missing values. 
The most prevalent method for dealing with such data points is to leave them out of the analysis. This 
method is not ideal for multiple reasons. One is that unless the data are missing completely at random, 
leaving out data points with missing values will bias the results of analysis. A second is that it leads 
to smaller datasets used for analysis. In this paper, we discuss some commonly used imputation 
methods, such as Expectation-Maximization (EM), multiple imputation by chained equations, and K-
nearest neighbor. Furthermore, we propose a new imputation (EPK) method. The Monte Carlo 
simulation study is conducted to examine the efficiency of nine imputation methods in the binary 
logistic regression model when the missingness mechanism is missing at random. Moreover, we used 
a real data on social network advertising, as an empirical study, to examine these methods. The results 
of our simulation and empirical studies indicated that the EPK and EM methods are more efficient 
than other imputation methods; where the EPK and EM have smallest values of Akaike information 
criterion (AIC) and Bayesian information criterion (BIC), whether the missing data is in the 
independent variables only, the dependent variable only, or in both together. 
______________________________ 
Keywords:  Expectation maximization, imputation by random forests, K- nearest neighbor, multivariate 
imputation by chained equations, predictive mean matching. 
 
1.  Introduction 

The logistic regression (LR) is a tool for building models when there is a categorical response 
variable with two levels. The LR is a type of generalized linear model (GLM) for response variables 
where regular multiple regression does not work very well. The LR sometimes called the logistic 
model or logit model analyzes the relationship between multiple independent variables and a 
categorical dependent variable and estimates the probability of occurrence of an event by fitting data 
to a logistic curve. There are two models of LR, binary logistic regression (BLR), and multinomial 
logistic regression (MLR). BLR is typically used when the dependent variable is dichotomous, and 
the independent variables are either continuous or categorical. When the dependent variable is not 
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dichotomous and is comprised of more than two categories, an MLR can be employed. Many variables 
of interest are dichotomous, e.g., whether someone voted in the last election, whether someone is a 
smoker, whether one has a child, whether one is unemployed, etc. These types of variables are often 
referred to as discrete or qualitative. The goal of the binary logistic analysis is to find the best fitting 
and most parsimonious, yet reasonable model to describe the relationship between an outcome 
(dependent or response variable) and a set of independent (predictor or explanatory) variables 
(Tranmer and Elliot 2008).  

There are various imputation methods for dealing with missing data. According to these methods, 
the missing values are replaced by estimates obtained from statistical procedures. The problem is that 
most of the imputation methods produce in general continuous estimates, which are not realistic 
replacements of the missing values when the variables are categorical. The aim of this paper is to 
propose a new imputation method, and study the performance of these methods in the BLR model 
when the missingness mechanism is missing at random by conducting a Monte Carlo simulation study 
and real data application. In our study, we allow the missing data to be in all the variables, whether in 
the independent variables only, in the dependent variable only, or in both together. 

The paper is organized as follows. Section 2 introduces logistic regression (transformations, 
model, assumptions, and the maximum likelihood estimator). Section 3 discusses the main methods 
to deal with missing values (expectation-maximization, K-nearest neighbor, multivariate imputation 
by chained equations). Section 4 presents the Monte Carlo simulation study. In Section 5, an empirical 
study has been presented for assessing the performance of different estimation methods under the 
existence of missing data. Finally, Section 6 offers concluding remarks. 
 
2. The Logistic Regression Model 

The logistic (logit) function is a common transformation for linearizing sigmoid distributions of 
proportions (El-Masry et al. 2021). A sigmoid function is a mathematical function having a 
characteristic “S”-shaped curve or sigmoid curve. The sigmoid function is used to convert the input 
into ranges 0 and 1 (Armitage and Berry 1994). The logit function asymptotically approaches 0 as the 
input approaches negative infinity and 1 as the input approaches positive infinity. Since the results are 
bounded by 0 and1, it can be directly interpreted as a probability. To achieve this, a regression is first 
performed with a transformed value of Y, called the “logit function”.  

 0 1 1log( ) ,k kodds x xβ β β= + + +  (1) 
where “odds” refers to the odds of Y  being equal to 1. In other words, "odds" is defined as the 
probability of belonging to one group divided by the probability of belonging to the other: 
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LR will model the chance of an outcome based on individual characteristics. Because chance is a ratio, 
what will be modeled is the logarithm of the chance given by: 
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where π  is the probability of an event, 0 1, , , kβ β β  are the regression coefficients associated with 

the reference group, and 1, , kx x  are the explanatory variables. 
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2.1.  Logistic regression assumptions 
No matter how one goes about selecting the explanatory or independent variables, basic 

assumptions for conducting LR must always be met. One assumption is the independence of errors, 
whereby all sample group outcomes are separate from each other. A second assumption is a linearity 
in the logit for any continuous independent variables. A third assumption is the absence of exact 
multicollinearity between the independent variables. A final assumption is the lack of strongly 
influential outliers (Stoltzfus 2011). 

 
2.2. Maximum likelihood estimation 

In general, the maximum likelihood estimation (MLE) method yields estimates for the unknown 
parameters that maximize the probability of obtaining the observed set of data. To apply this method, 
we must first construct a function, called the likelihood function. This function expresses the 
probability of the observed data as a function of the unknown parameters. The MLE of the parameters 
is the values that maximize likelihood function. Thus, the resulting estimators are those that agree 
most closely with the observed data. A convenient way to express the contribution to the likelihood 
function for the pair ( ),i ix y  is through the expression 

 ( )1( ) 1 ( ) .ii
yy

i ix xπ π −−  (3) 

As the observations are assumed to be independent, the likelihood function is obtained as the 
product of the terms given in Equation (3) as follows 
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To estimate of β  that maximizes ( )L β  we differentiate ( )L β  with respect to 0β  and 1β  and 
set the resulting expressions equal to zero. These equations, known as the likelihood equations 
(Hosmer et al. 2013). 

Although you will probably use a statistical package to compute the estimates, here is a brief 
description of the underlying procedure. Because LR predicts probabilities, rather than just classes, 
one can fit it using likelihood. Usually, we will distinguish the log-likelihood concerning the 
conditions, set the derivatives to zero, and solve to find the MLE. Because this equation is nonlinear 
in ,β  certain special methods for obtaining the approximate parameters should be employed. The 
iterative re-weighted least squares (IRLS) method can be applied to get the solutions, which can be 
found in Hilbe (2011). The MLE estimator of β can be obtained by using the IRLS algorithm as 
follows 
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equations show the iterative process. 
 
3. Missing Data 

Missing data typically refers to the absence of one or more values within a study variable(s) 
contained in a dataset. The development is often the result of a study participant choosing not to 
provide a response to a survey item. Missing data plagues almost all surveys, and quite a several 
designed experiments. No matter how carefully an investigator tries to have all questions fully 
responded to in a survey, or how well designed an experiment is; examples of how this can occur are 
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when a question is unanswered in a survey, or a flood has removed a crop planted close to a river. The 
problem is, how to deal with missing data, once it has been deemed impossible to recover the actual 
missing values (Scheffer 2002). Because of these problems, methodologists routinely advise 
researchers to design studies to minimize the occurrence of missing values. Appearing in the literature 
from 1985 to 1989, Concato et al. (1993) reported that the LR was the most frequently used procedure 
comprising an average of 43% of the multivariate methods in the five-year period reviewed. Two 
reports (Khan et al. 1999) described a significant increase in the use of the LR in the public health, 
epidemiology, obstetrics, and gynecology research literature. Bender (2009) reviewed the statistical 
methods reported in a probability sample of 348 articles published between 1970 and 1998 in the 
American Journal of Public Health and the American Journal of Epidemiology. The study revealed 
significant increases in the use of LR. 
 
3.1. Missing data mechanisms 

Rubin (1976), Little and Rubin (1987), Little (1992), Little and Schenker (1995), and Little and 
Rubin (2002) established the foundations of missing data theory. Central to missing data theory is his 
classification of missing data problems into three categories: 

 Missing completely at random (MCAR): means that there is no relationship between the 
missingness of the data and any values, observed or missing.  

 Missing at random (MAR): means that there is a systematic relationship between the propensity 
of missing values and the observed data, but not the missing data.  

 Missing not at random (MNAR): means that there is a relationship between the propensity of 
a value to be missing and its values.  

These three classes of missing data are referred to as missing data mechanisms (for a slightly 
different classification; see Gelman and Hill 2007, Nakagawa 2015). Missing data mechanisms 
represent the statistical relationship between observations (or the variables) and the probability of 
missing data.  

 
3.2. Statistical methods for handling the missing data 

The concept of missing values is important to understand to successfully manage data.  If the 
missing values are not handled properly by the researcher, then may end up drawing an inaccurate 
inference about the data, due to improper handling. The researcher may leave the data or do data 
imputation to replace them.  Suppose the number of cases of missing values is extremely small; then, 
an expert researcher may drop or omit those values from the analysis.  In statistical language, if the 
number of cases is less than 5% of the sample, then the researcher can drop them. The best possible 
method of handling the missing data is to prevent the problem by well-planning the study and 
collecting the data carefully; see Tsikriktsis (2005), and Wisniewski et al. (2006). In the next section 
we will introduce some of the methods used in our paper, you can also find more details about those 
methods through the following references (e.g., Sentas and Angelis 2006, Peng and Zhu 2008, Meeyai 
2016). 

Missing data reduces the representativeness of the sample and can therefore distort inferences 
about the population. There are three main approaches to handle missing data: (1) Omission 
“deletion”: where samples with invalid data are discarded from further analysis and (2) imputation: 
where values are filled in the place of missing data, (3) analysis: by directly applying methods 
unaffected by the missing values. In the next lines, we will explain K-nearest neighbor, expectation 
maximization, and other multivariate important methods. 
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3.2.1. K-nearest neighbor 
It is good practice to identify and replace missing values for each column in your input data prior 

to modeling your prediction task. This is called missing data imputation or imputing for short. A 
popular approach to missing data imputation is to use a model to predict the missing values. This 
requires a model to be created for each input variable that has missing values. Although any one among 
a range of different models can be used to predict the missing values, the K-nearest neighbor (KNN) 
algorithm has proven to be generally effective, often referred to as “nearest neighbor imputation (Pan 
et al. 2015). The KNN algorithm is one of the top ten data mining algorithms and known as an instance-
based learning method (Wu et al. 2008). 

This method does not perform well when there are large amounts of missing data. To date, there 
is no theoretical result for selecting the optimal K-value. The most frequent value among K-nearest 
neighbor and the mean among the KNN can be predicted by KNN imputation. In this method, the 
main factor is the distance metrics. In the KNN imputation method, we can replace the missing values 
with the nearest neighbor. But if the value of K is greater than one then replaces the missing values 
with the mean or weighted average of KNN. By setting K-value between 10 and 20 brings the best 
results for KNN imputation.  
 
3.2.2. Expectation maximization algorithm 

The expectation-maximization (EM) algorithm is a broadly applicable approach to the iterative 
computation of maximum likelihood estimates, useful in a variety of incomplete data problems, where 
algorithms such as the Newton-Raphson method may turn out to be more complicated. On each 
iteration of the EM algorithm, there are two steps-called the expectation step or the E-step and the 
maximization step or the M-step. Because of this, the algorithm is called the EM algorithm. This name 
was given by Dempster et al. (1977) in their fundamental paper. The essential idea behind the EM 
algorithm is to calculate the maximum likelihood estimates for the incomplete data problem by using 
the complete data likelihood instead of the observed likelihood because the observed likelihood might 
be complicated or numerically infeasible to maximize. To do this, we augment the observed data with 
manufactured data to create a complete likelihood that is computationally more tractable. We then 
replace, at each iteration, the incomplete data, which are in the sufficient statistics for the parameters 
in the complete data likelihood, by their conditional expectation given the observed data and the 
current parameter estimates (Expectation step: E-step) The new parameter estimates are obtained from 
these replaced sufficient statistics as though they had come from the complete sample (Maximization 
step: M-step) alternating E- and  M-steps, the expected log-likelihood is maximized to produce new 
values of the parameters. The EM algorithm is closely related to the following ad hoc process of 
handling missing data: 

Step 1: Fill in the missing values by their estimated values. 
Step 2: Estimate the parameters for this completed dataset. 
Step 3: Use the estimated parameters to re-estimate the missing values. 
Step 4: Re-estimate the parameters from this updated completed dataset.  

We alternate between steps 3 and 4 until convergence of parameter estimates is achieved. 
 
3.2.3. Multiple imputation by chained equations 

Just as there are multiple methods of single imputation, there are multiple methods of multiple 
imputation (MI) as well. One advantage that MI has over the single imputation and complete case 
methods is that MI is flexible and can be used in a wide variety of scenarios. MI can be used in cases 
where the data is MCAR, MAR, and even when the data is MNAR. However, the primary method of 
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MI is multiple imputation by chained equations (MICE). It is also known as “fully conditional 
specification” (Azur et al., 2011).  The MICE has been shown to work very well on MAR. MI is not 
very difficult to implement. There are a wide range of different statistical packages in different 
statistical software that readily allow someone to perform MI. For example, the “mice” R-package 
allows users in R to perform MI using the MICE method. 

The MICE algorithm, designed by Buuren and Groothuis-Oudshoorn (2010), is based on a 
Markov chain Monte Carlo method wherein the state space is the collection of all imputed values. The 
merit of MICE is that the results are computed after a comparatively few iterations. As per some 
studies (Buuren and Groothuis-Oudshoorn 2010), in general, five iterations are usually sufficient. In 
MICE, the user can specify an elementary imputation method for each incomplete data column. The 
elementary imputation method takes a set of (at that moment) complete predictors and returns a single 
imputation for each missing entry in the incomplete target column. Multiple imputations are created 
by repeated calls to the function. The “mice” R-package supplies several built-in elementary 
imputation models, which are given in Table 1. For more details about this package, see Azur et al. 
(2011). 
 

Table 1 Some built-in methods in “mice” R-package 
Method Description Type of target 
Mean Unconditional mean imputation Numeric 

RI Regression imputation Numeric 
PMM Predictive mean matching Any type 
LRI Logistic regression 2 categories 
RF Imputation by random forests Any type 

 
4. Simulation Study 

Monte Carlo simulation is a method of repeating a statistical analysis using multiple iterations, with 
a subset of data sampled, changed, or deleted at random with each iteration as described in Abonazel 
(2018) and Abonazel (2020). To explore the performance of imputation methods under different missing 
data percentages, different sample sizes, and different numbers of independent variables, we used the 
complete training dataset, to artificially generate missing values by imitating the MAR mechanism. The 
programming of the simulation study is written in R-software, see Abonazel (2018) and Abonazel (2020). 
 
4.1.  Data model 

The explanatory variables (X’s) are simulated from a multivariate normal distribution  
(1, ).kMVN I  The response variable ( )y  of the logistic model is obtained by using the Bernoulli 

distribution ( ).π  
 
4.2.  Missing data methods 

Via simulations, we compared the performance of eight imputation methods that have been 
applied using R-packages for handling missing data with the proposed EPK method. These methods 
are KNN, EM, hot deck (HD), and using of “mice” package for each of the: mean imputation (Mean), 
regression imputation (RI), logistic regression imputation (LRI), predictive mean matching (PMM), 
and random forest (RF). Based on the results of Mohamed et al. (2021), we can suggest a new 
imputation method (EPK) by combining (simple average) of the imputed values of the three best MI 
methods (EM, PMM, and KNN) as follows (El-Sheikh et al. 2022):    
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 ( )1 .
3

EPK EM PMM KNN= + +  (6) 

 
4.3. Missing data generation 

In our simulation study, 500 Monte Carlo samples were generated at different sample size are 
chosen random samples of n = 50, 100, and 150 observations were withdrawn. As for our selection of 
the number of independent variables, the simulation was performed with two different independent 
variables: 2,k = and 4. Simulations were started by deleting MAR with two percentages of data 
missing (10% and 40%). The missing data stage was worked on all the variables, either combined or 
separately for each case, as it was divided into three cases: i) Missing in independent variables (X’s), 
ii) Missing in dependent variable ( ),y  and iii) Missing in independent and dependent variables (X’s, 
y). To evaluate the performance of methods, we used the following goodness-of-fit criteria: Akaike 
information criterion (AIC) and Bayesian information criterion (BIC). 
 
4.4. Simulation results  

The simulation results are presented in Tables 4-15 in the Appendix. Tables 4-7 presents the 
values of AIC and BIC of different imputation methods for different k and missingness percentage 
(%) when the missing data in X’s only. While Tables 8-11 present the AIC and BIC values of different 
imputation methods when the missing data in y only when the same values of k and missingness 
percentage. While the simulation results for the case of the missing data in X’s and y  together are 
presented in Tables 12-15. 

The most important conclusions that have been concluded from these results can be summarized 
as follows: 

 In general, the EM and EPK methods performed better than other methods in the three cases, 
even with a different loss rate was (10%, or 40 %). Since EM and EPK methods have minimum 
values of AIC and BIC. 

 From Tables 4-7, we note that the RI method works well with small samples, while the PMM 
method is more suitable for large samples when the sample size is greater than 50 and it 
performed well when increasing the proportion of missing data to 40 % and k = 2.  

  Methods such as (RI, KNN, PMM) their results were much converged when they were n = 50 
and k = 4, but the superiority of the KNN method appeared when the sample size reached 150, 
and the values of both (RF, PMM) converged when the sample size is large. 

 The results of some methods converge, such as (KNN, PMM, and RF) with the best methods 
"EM and EPK", when handling missing data in y only.  

 The performance of the LRI method is also like the KNN method when the sample size is 
greater than 100, but its performance remains poor when the loss ratio reaches 40%, k = 4; as 
shown in Tables 8-11. The large similarity condition did not differ in the results between the 
PMM and RF as in the case of the missing data in X’s. 

 The methods (Mean, LRI, PMM, RF) converge in the results when handling missing data in y 
only and when k = 2, and the sample size is 50 or 100, the slight difference appears when the 
sample size reaches 150. But when the percentage of missing data was increased to 40%, the 
results differed between them. 

 The situation did not change much when dealing with the missing data in X’s and y together, 
considering the superiority of the EM and EPK methods in processing the missing data with 
the logistic model, our focus was on the performance of all methods alongside the EM and EPK 
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methods, as it was noted that the LRI method performed well in handling the missing data in 
(X’s, y). Even when the proportion of missing data is high, the KNN method has been shown 
to be efficient in large samples and high rates of lost data, see Tables 12-15. 

 The mean imputation method achieved the highest rates when the missing data in X’s as shown 
Tables 4-7. 

 The results of most methods converge in handling missing data, whether in the independent 
variables only or the dependent variable only or both, especially when the sample size is at the 
lowest level. 

 The HD method achieves its maximum value for the two criteria (AIC, BIC). 
 
5. Empirical Application: Social Network Advertising  

In this section, the real dataset is used as an application on the BLR model in case of the dataset 
contains missing values. Our dataset contains some information about the users of social network 
advertising (SNA), including their user gender, age, and estimated salary. The SNA is a group of terms 
that are used to describe forms of online advertising that focus on social networking services. One of 
the major benefits of this type of advertising is that advertisers can take advantage of the user's 
demographic information and target their ads appropriately. Patnana et al. (2020) analyzed this data 
by machine learning models. This data is also available in “mephas” R-package. The used sample size 
is 400 users (observations), and the definitions of the used variables are: Gender: Person can male or 
female, where “0” means Male and “1” means Female. Estimated Salary: Contains the salary of a 
person as a salary can affect the shopping. Age: Age of the person. Purchased (dependent variable): 
Contains two numbers 0 or 1, where “0” means not purchased and “1” means purchased. 
 
5.1. Complete data analysis 

We have a case study on information about all our users in the SNA, the aim is to understand the 
characteristics that to identify whether everyone ended up clicking on the advertisement. To learn 
more about our data, let us look at the most important descriptive statistics, to start with our dependent 
variable, which ranked not purchased, “0”, 64.25 % compared to 35.75 % for purchased, with 257 and 
143 frequencies, respectively. Regarding the independent variables, the variable “gender” contained 
two numbers (0,1), where the percentage of females occupied the most with 51 % compared to 49   %
for males, with a frequency of 204 for females and 196 for males. The second variable of the 
independent variables “age”, which is one of the continuous variables, came with a mean of 37.66 and 
a standard deviation of 10.48. While the third variable is the “estimated salary” with two values 
(69743, 34097) for both the mean and the standard deviation, respectively. 

It notes that some independent variables are weakly correlated; since all correlation coefficient 
less than 0.5. Moreover, the VIF for all independent variables are less than 5. This means that we have 
not multicollinearity problem and the MLE estimation method is a property for estimating the 
parameters of logistic regression (Abonazel and Farghali 2019, Dawoud and Abonazel 2021, Awwad 
et al. 2022, Abonazel et al. 2022, Akram et al. 2022, Farghali et al. 2023). Table 2 gives us some 
indicators to measure the efficiency of our model (Rady et al. 2021). 
 
 
 
 
 
 



934                                                                   Thailand Statistician, 2023; 21(4): 926-942 

Table 2 Model summary and goodness-of-fit tests 
Statistic Value 

Cox-Snell R-Square 0.458 
Nagelkerke R-Square 0.630 
McFadden pseudo R-Square 0.471 
AIC 283.84 
Area under curve (AUC) 92.7% 
Pearson’s Chi-squared test 2χ  = 397.82 with p-value = 0.231 
Osius-Rojek’s test Z = 0.54 with p-value = 0.589 

 
From Table 2, we can say that the model is good to fit the data, because p-values of Pearson’s 

Chi-squared and Osius-Rojek’s (1992) tests are higher than the usual significance level of 0.05, this 
means that there is no evidence to reject the null hypothesis, so the fitted model is correct. Moreover, 
the values of 2R  for Cox-Snell, Nagelkerke, and McFadden are in good range (0.458 to 0.630). 
Moreover, the higher value of the area under the ROC (AUC = 0.927) curve corresponds to the better 
quality of the regression model. 
 

Table 3 Maximum likelihood estimation results 
Variable Estimate Standard error p-value 
Intercept −12.78 1.3590 2E−16 
Gender 0.334 0.3052 0.274 

Age 0.237 0.0026 2E-16 
Estimated Salary 3.644E−5 5.47E−06 2.77E−11 

 
From Table 3, we note that all variables have a positive impact on the response variable. Gender 

variable shows up as not statistically significant. Age and estimated salary variables show up as 
statistically significant. According to the site of “Statista”, the statistic shows the age distribution of 
the SNA audience in Singapore as of January 2020, sorted by gender. As of this date, approximately 
18% of the social media advertising audience in Singapore were between 25 and 34 years old and 
male. New technology increases user participation and real-time content and existing networks 
enhance their platform and product (e.g., Facebook, Twitter, Pinterest, and Instagram launching ‘buy’ 
buttons).  If the first era of social was engagement, the new era is acquisition and conversion, where 
social commerce has been growing over the last few years. 
 
5.2. Incomplete data analysis 

In this section, we have focused on discussing dealing with the different methods of missing data 
that can be used to analyze our dataset with missing data. We assume that some of our data are missing 
approximately 10% and 40% respectively, the data missing by the mechanism is 'MAR'. It should be 
noted that we use the same methods that were applied in the simulation study, as the missing data was 
applied to all variables, whether the independent variables X’s only or the dependent variable y only 
or both X’s and y together. Then we compare these methods using two goodness-of-fit criteria (AIC 
and BIC), see Abonazel and Ibrahim (2018).  The data has been handled by the statistical R-software. 
After the imputation of the missing values based on the nine methods (Note that: there are 7 similar 
methods for handle missing data in the three cases. In addition, the RI method was used to handle the 
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missing data in the independent variables X’s. Also, the LRI method was used for handling the missing 
data in other two cases. 
 
5.3. Application results 

In our datasets was dealt with in two parts, namely I) Complete data analysis II) Incomplete data 
analysis, the most important conclusions on our application can be presented as follows: 

 In case of complete data analysis, we have shown our data without the missing data issue, the 
goodness-of-fit of the model was checked using different tests. The results of these tests 
indicate that the model is fit. And the variables such as age and the estimated salary appeared 
statistically significant. 

 In case of incomplete data analysis, with the same methods that were applied in the simulation 
study. AIC and BIC criteria have been calculated at each step of this procedure implementation, 
see Figures 1-3. It was also evident that the simulation study and the application were consistent 
in concluding the best method. The results shown that the best methods are EM and EPK.  

 
 

Figure 1 Goodness-of-fit criteria when the missing values in X’s 
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Figure 2 Goodness-of-fit criteria when the missing values in y  
 

 
Figure 3 Goodness-of-fit criteria when the missing values in X’s and y  

 
6. Conclusion   

In this paper, we have studied the performance of eight imputation methods that have been 
commonly used for handling missing data in the logistic regression model. Furthermore, we have 
proposed a new multiple imputation (EPK) method. To evaluate the performance of these methods, 
we have conducted a simulation study with different proportions of the missing data in all variables; 
whether the missingness is in the independent variables only, the dependent variable only, or both. 
Moreover, a real data has been used to examine the nine imputation methods and confirm the 
simulation results. The results of the simulation study and real data application indicated that the 
expectation-maximization and EPK methods are more efficient than other imputation methods, even 
if the missingness present in the data up to 40% and whether the missing data is in the independent 
variables only, the dependent variable only, or both. 
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Appendix 
 

Table 4 AIC and BIC values of different imputation methods when missingness = 10 %  
in X’s and k = 2 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 49.595 55.331 106.830 114.646 162.220 171.252 
LRI 48.207 53.943 104.519 112.334 158.704 167.736 

KNN 50.335 56.071 108.447 116.263 165.113 174.145 
HD 48.321 54.057 103.980 111.796 159.118 168.149 

PMM 48.581 54.3177 104.683 112.498 158.731 167.763 
RF 48.072 53.808 103.373 111.189 156.976 166.007 
EM 47.423 53.159 102.445 110.260 155.643 164.675 
EPK 47.212 52.948 101.476 109.292 154.366 163.398 

 
Table 5 AIC and BIC values of different imputation methods when missingness = 40 % 

 in X’s and k = 2 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 52.180 57.916 112.401 120.217 170.456 179.488 
LRI 45.806 51.542 102.163 109.978 156.482 165.514 

KNN 54.034 59.770 116.835 124.650 177.894 186.926 
HD 48.791 54.527 101.995 109.811 156.210 165.241 

PMM 47.967 53.703 102.941 110.757 156.684 165.716 
RF 46.039 51.775 93.677 101.492 142.388 151.420 
EM 39.680 45.416 89.395 97.211 137.072 146.104 
EPK 42.392 48.128 88.817 96.633 135.816 144.847 

 
Table 6 AIC and BIC values of different imputation methods when missingness = 10 %  

in X’s and k = 4 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 54.982 64.542 112.478 125.504 167.469 182.523 
LRI 52.879 62.439 109.557 122.583 163.825 178.879 

KNN 55.984 65.544 114.330 127.356 170.348 185.401 
HD 53.024 62.584 109.934 122.960 163.820 178.873 

PMM 54.065 63.625 110.441 123.467 164.459 179.512 
RF 52.697 62.257 108.920 121.946 162.322 177.376 
EM 52.229 61.790 107.823 120.849 161.022 176.075 
EPK 52.256 61.817 107.905 120.931 160.721 175.774 
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Table 7 AIC and BIC values of different imputation methods when missingness = 40 %  
in X’s and k = 4 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 58.040 67.600 116.904 129.930 175.937 190.990 
LRI 45.098 54.658 103.772 116.798 160.134 175.187 

KNN 60.542 70.102 120.694 133.720 182.277 197.330 
HD 49.432 58.992 105.494 118.519 160.529 175.582 

PMM 54.354 63.915 108.694 121.720 164.368 179.421 
RF 51.948 61.5090 106.277 119.303 158.018 173.071 
EM 49.275 58.836 100.427 113.453 153.859 168.912 
EPK 48.002 57.562 99.846 112.872 151.239 166.292 

 
Table 8 AIC and BIC values of different imputation methods when missingness = 10 %  

in y  and k = 2 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 47.112 52.848 102.249 110.064 156.082 165.114 
LRI 48.633 54.369 103.864 111.679 159.445 168.477 

KNN 46.648 52.384 101.030 108.846 154.858 163.890 
HD 49.735 55.472 108.093 115.908 164.873 173.905 

PMM 47.924 53.660 103.615 111.431 159.950 168.982 
RF 47.813 53.549 103.342 111.157 158.048 167.080 
EM 46.587 52.323 100.702 108.518 154.275 163.307 
EPK 46.259 51.995 100.167 107.983 153.479 162.511 

 
Table 9 AIC and BIC values of different imputation methods when missingness = 40 %  

in y  and k = 2 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 42.726 48.462 95.317 103.133 146.561 155.593 
LRI 47.776 53.512 102.458 110.273 157.448 166.480 

KNN 40.131 45.867 90.337 98.152 139.486 148.518 
HD 52.471 58.207 115.653 123.468 177.121 186.153 

PMM 43.828 49.564 101.884 109.699 155.755 164.787 
RF 46.857 52.593 101.078 108.894 154.249 163.281 
EM 39.487 45.223 86.848 94.664 132.588 141.620 
EPK 38.468 44.204 86.072 93.887 132.347 141.379 
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Table 10 AIC and BIC values of different imputation methods when missingness = 10 %  
in y and k = 4 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 52.460 62.020 108.269 121.294 162.291 177.344 
LRI 52.827 62.387 109.987 123.013 164.699 179.752 

KNN 51.321 60.881 107.246 120.272 161.214 176.267 
HD 55.133 64.693 113.557 126.583 169.885 184.938 

PMM 52.286 61.846 109.586 122.611 164.952 180.005 
RF 52.621 62.182 109.413 122.439 164.062 179.115 
EM 51.249 60.809 107.317 120.343 160.488 175.541 
EPK 50.795 60.355 106.061 119.087 159.152 174.205 

 
Table 11 AIC and BIC values of different imputation methods when missingness = 40 %  

in y  and k = 4 

Method 
n = 50 n = 100 n = 150 
AIC BIC AIC BIC AIC BIC 

Mean 49.905 59.466 102.105 115.131 150.730 165.783 
LRI 51.202 60.763 107.782 120.808 159.969 175.023 

KNN 44.386 53.946 97.171 110.197 144.719 159.772 
HD 58.550 68.110 120.901 133.927 179.389 194.442 

PMM 51.810 61.370 108.108 121.134 166.086 181.139 
RF 51.961 61.522 107.071 120.097 158.421 173.474 
EM 44.751 54.311 95.346 108.372 141.313 156.366 
EPK 43.356 52.916 92.275 105.300 137.853 152.907 

 
Table 12 AIC and BIC values of different imputation methods when missingness = 10 %  

in (X’s, y ) and k = 2 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 48.375 54.111 103.592 111.407 159.742 168.774 
LRI 48.499 54.236 103.524 111.340 160.044 169.076 

KNN 46.359 52.095 99.647 107.463 153.828 162.860 
HD 51.539 57.275 109.935 117.750 169.552 178.584 

PMM 48.248 53.984 103.063 110.879 159.795 168.827 
RF 48.481 54.217 103.575 111.391 159.018 168.050 
EM 44.319 50.055 95.681 103.496 147.341 156.373 
EPK 45.474 51.211 97.778 105.594 150.970 160.002 
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Table 13 AIC and BIC values of different imputation methods when missingness = 40 %  
in (X’s, y ) and k = 2 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 44.635 50.371 98.996 106.811 150.747 159.779 
LRI 45.851 51.587 99.217 107.032 152.208 161.240 

KNN 39.238 44.974 79.681 87.497 119.902 128.934 
HD 53.600 59.336 118.709 126.524 180.754 189.786 

PMM 45.213 50.949 98.356 106.172 150.646 159.678 
RF 45.955 51.691 98.846 106.661 152.641 161.673 
EM 29.568 35.304 68.161 75.977 106.083 115.115 
EPK 36.528 42.264 78.185 86.001 118.775 127.807 

 
Table 14 AIC and BIC values of different imputation methods when missingness = 10 %  

in (X’s, y) and k = 4 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 53.242 62.803 110.074 123.099 164.975 180.028 
LRI 52.152 61.712 109.515 122.541 164.724 179.777 

KNN 50.494 60.055 107.143 120.169 160.498 175.551 
HD 56.166 65.726 116.118 129.144 174.543 189.597 

PMM 51.540 61.100 109.726 122.752 164.323 179.376 
RF 53.343 62.903 110.516 123.542 165.112 180.165 
EM 47.865 57.425 103.841 116.867 156.084 171.137 
EPK 49.713 59.273 105.004 118.031 157.752 172.805 

 
Table 15 AIC and BIC values of different imputation methods when missingness = 40 %  

in (X’s, y) and k = 4 

Method 
n = 50 n = 100 n = 150 

AIC BIC AIC BIC AIC BIC 
Mean 51.860 61.420 104.381 117.407 155.611 170.664 
LRI 45.426 54.986 99.417 112.442 152.014 167.067 

KNN 46.716 56.276 99.660 112.686 148.950 164.003 
HD 58.547 68.107 121.603 134.629 183.219 198.272 

PMM 44.082 53.642 98.321 111.347 152.407 167.460 
RF 53.050 62.610 107.902 120.928 161.492 176.545 
EM 36.864 46.424 79.912 92.938 121.268 136.322 
EPK 42.440 52.006 90.143 103.168 135.430 150.483 
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