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Abstract 

Logistic-exponential (LE) distribution is one of the rare distributions in existence for 

modeling lifetime data due to its unique features. It is the only two-parameter distribution with 

quintuplet characteristics of hazard failure rates. However, its limitation is inability to model 

extremely skewed real life situation phenomena appropriately. This study proposed, 

developed and studied a new transmuted logistic-exponential distribution with three 

parameters with the aim of increasing the shape flexibility of LE distribution that will be more 

applicable to skewed lifetime data in various fields. We adopt the cumulative distribution 

function of LE and the quadratic rank transmutation map (QRTM) function in its development. 

Its quantile, survival, hazard functions, order statistics, skewness and kurtosis were derived. 

Its hazard function was found to have increasing, decreasing and constant failure rates while 

the survival function has a decreasing shape. Again, the estimates of the parameters were 

obtained using maximum likelihood estimation technique. Its efficiency was examined using 

real life dataset. The maximum likelihood estimates obtained were compared with the existing 

similar distributions using Akaike information criteria (AIC) and log-likelihood. The result 

showed that the newly transmuted LE distribution outperformed other models fitted to the 

dataset. The fitness of the distributions was also examined using two goodness of fit test. Both 

Kolmogorov-Smirnov and Anderson-Darling tests statistics confirmed that NTLE has a good 

fit. Hence, the new transmuted logistic-exponential (NTLE) distribution is more appropriate 

in modeling skewed lifetime datasets. In future research, we intend to study some other 

properties of this newly transmuted distribution and compare different estimation procedures 

for its parameters. 

______________________________ 
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1. Introduction 

Distributions have been numerously used in several areas of life such as health, finance, 

meteorology, insurance and many others. Many new classes of distributions had been 

introduced and studied recently by adding at least a parameter or extend the existing known 

families of distributions. Studies have shown that these new distributions are most times better 

in terms of flexibility and goodness of fit when compared with the existing families of 

distributions. Gupta et al. (1998) stated that there are different methods of extending or 

modifying existing distributions to obtain new ones with greater flexibility. Some of these 

methods include but not limited to differential equation technique pioneered by Pearson 

(1895), transformation method proposed by Johnson (1949), quantile function techniques by 

Hasting et. al. (1947), parameter induction method, exponentiation technique by Gompertz 

(1825), transform the transformer approach credited to Alzaatreh et al. (2013), transmutation 

method by Shaw and Buckley (2007). 

A new generalization of the exponential distribution was proposed by Lan and Leemis 

(2008) which was named logistic-exponential (LE) distribution. The probability distribution 

function (pdf) and cumulative distribution function (cdf) of LE are given respectively as: 
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These two researchers stated that this LE distribution is the only distribution with two 

parameters that exhibits quintuplet failure rate shapes. (constant, decreasing, increasing, 

bathtub and upside–down bathtub). However, as interesting as the properties of LE 

distribution is, its moments cannot be expressed in a close form but can be computed 

numerically. 

According to Shaw and Buckley (2007), it has been shown that the QRTM distributions 

obtained from the base distributions performed better than the parent distributions when fitted 

to datasets, because they tend to have more parameters and they are more flexible in shape. 

Suppose that Z is a real-valued random variable and ( )z  is the cumulative distribution of the 

parent or base distribution the transmutation function is given as:  

 ( ) ( ) ( )[1 ( )],G z z z z         (3) 

where 1,  ( )G z  is the transmuted cdf and   is the transmuting parameter of the base 

distribution ( ).z  

Researchers have introduced several generalizations of distributions that are more flexible 

to investigate the properties of models and their fitness. Khan et al. (2016) proposed the 

transmuted generalized exponential distribution using the QRTM method. In 2013, Merovci 

derived the transmuted exponentiated exponential distribution for modelling lifetime 

phenomenon. Samuel (2019) developed the transmuted logistic distribution and studied its 

properties. Mansoor et al. (2018) also introduced a three-parameter LE distribution called 

Marshall-Olkin logistic-exponential distribution (MOLE) using Marshall-Olkin approach but 

logistic-exponential distribution is yet to be transmuted. Owoloko et al. (2015) obtained the 

pdf and the cdf of transmuted exponential distributions respectively as  
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 for 0, 0, 1 ,x      where   is the scale parameter and   is the transmuted parameter. 

Also, the cdf and pdf of transmuted logistic distribution by Samuel (2019) are given as  
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 respectively. Mansoor et al 

(2018) also gave the pdf and cdf of Marshall-Olkin logistic exponential (MOLE) distribution 

respectively as 
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where 0, 0, 0     . Recently, Tabassum et al. (2021) proposed and studied the 

transmuted Burr type X model with application to life time data.  

In this research work, a new probability distribution called the transmuted logistic-

exponential with three parameters is proposed, developed and studied with the aim of 

increasing the shape flexibility of LE distribution which will be more applicable to lifetime 

datasets. We also derived its properties, obtained the estimates of the parameters and compare 

the new transmuted logistic-exponential (TLE) distribution with the existing similar 

distributions (logistic-exponential (LE), transmuted exponential (TE) and exponentiated 

exponential (EE)). This new transmuted LE distribution was found to be more flexible than 

LE. It also has the best fit when compared with the existing similar distributions. Its hazard 

failure rate has an increasing, decreasing and constant shapes and survival function tends to 

decrease with time.  

The next section discusses the methodology for the NTLE derivation. The properties and 

application of the new transmuted distribution are discussed in Sections 3 and 4 respectively. 

Section 5 gave the concluding part while the codes for the maximum likelihood estimation of 

the model parameters were given in the appendix. 

 

2.  Methodology 

2.1. Derivation of the cumulative distribution function of the new transmuted logistic-

exponential (NTLE) distributions 

This new continuous distribution was developed by transmuting the logistic-exponential 

distribution using its cumulative distribution function derived by Lan and Leemis (2008) in 

(2) above and plugging it into the transmutation function developed by Shaw and Buckley 

(2007) in Equation (3). Then,  
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The CDF of NTLE is given by (4) above.

  

2.2. Derivation of probability density function of the new transmuted logistic-

exponential (NTLE) distributions 
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The Equation (5) above can also be expressed as 
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where 1, 0, 0, 0.z       It is worthy to note that, if 0, 0, 1,      the 

distribution ( ) zg z e    which is the primary distribution from which both the logistic-

exponential (LE) and transmuted logistic-exponential (TLE) distributions were obtained.  
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Also, if 0, 0, 0,      the function 
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 which is the LE 

distribution from which NTLE was obtained. 

It is to be noted that the NTLE has three parameters–two shape parameters and one scale 

parameter. The plot of the pdf and cdf at different values of the parameters are shown in 

Figures 1 and 2. 

 

 
Figure 1 Pdf of NTLE distribution  

 

Figure 1 (a) and (b) shows the pdf of NTLE when the parameters are (beta = 2.0, lambda = 

0.1, delta = 0.2) and (beta = 1.5, lambda = 0.07, delta = 0.6), respectively. 

 

Figure 2 Pdf (beta = -1.5, lambda = 0.05, delta = 0.8) and CDF of NTLE distribution, 

respectively  
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3.  Properties of New Transmuted Logistic-Exponential (NTLE) Distribution 

In this section, we discussed some properties of the new transmuted logistic-exponential 

(NTLE) distribution. 

 

3.1. Survival function of NTLE distribution

 The survival function of a distribution is usually used to determine the probability that an 
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The survival function of the new transmuted logistic-exponential (NTLE) distribution is 

given in Equation (7) above. The plot of the survival function shows that the survival rate 

decreases as the time increases (see Figure 3 below). 

 

3.2. Hazard function of NTLE distribution 

One major property of a distribution is the hazard function behavior. The hazard function 

is also known as failure rate. The term used for this function depends on the area of use. For 

instance, it is called age-age specific death rate in vital statistics and life sciences. It is the 

probability that an object will fail or a person will die at a particular time given that the event 

has not occurred previously. Hazard function is defined given as 
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  (8) 

 

The hazard function of the transmuted logistic-exponential (NTLE) distribution is given 

in Equation (8) above. The hazard function has three major shapes. It can be increasing, 

decreasing or constant as shown in Figures 3(a) and 3(b) below. 

 

 

(a)                                            (b)                                             (c)   

 

Figure 3 Survival and hazard functions of NTLE distribution 

 

The plot of the survival function is given in Figure 3(a) above. Also, Figures 3(b) and 

3(c) shows the plots of the hazard function for different values of the parameters and when 

the parameters are equal, respectively. The hazard function has three major shapes. It can be 

increasing, decreasing or constant as shown in Figures 3(b) and 3(c). 

 

3.3. Quantile function and random number generation

 Given that ( )G z  is a cdf of a random variable ,Z  a value of z  such that 

1( ) ( )G z P Z z p     is called a quantile of order p  for the distribution and where 

( ) ( ) .G z P Z z p    The quantile function is defined as 

1( ) ( ) inf{ : ( ) }, (0,1)G z Q p z G z p p       



Adesegun et al.  951 

( ) , 0 1.pQ z p p    

 

3.3.1.  Derivation of quantile function of the new transmuted logistic-exponential 

distribution (NTLE) 

To find the quantile function, we equate the cdf of NTLE to a point p  and solve for 

,pz  where p  is any quantile. We have  
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Equation (9) above is the quantile function of the transmuted logistic-exponential 

distribution where ,   and   are to be estimated. 

 

3.3.2. Median 

To find median, we put 
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Equation (10) above is the median of NTLE. The median tends to decrease as   and   

increases and increases as   and   decreases. Other quantiles can be obtained using Equation 

(9) above. 

 

3.3.3. Random number generation 

If ~ (0,1),P U  and 0,   then we can compute a random number,
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We will repeat this procedure until the required amount of random numbers to be completed 

are obtained. 

 

3.4. Order statistics 

 Generally, Let 
1 2, ,..., nZ Z Z  be independently and identically distributed random variable 

with pdf ( )g z  and cdf ( )G z the density of the thi  order statistics which is given as 
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3.4.1. Derivation of the smallest and largest order statistics of the new transmuted 

logistic-exponential distribution 

The smallest order statistics is given by    : 1 .
n i

i nf n g z G z


     Therefore, the 

smallest order statistics for the new transmuted logistic-distribution is given as 
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                      (11)

 Equation (11) is the smallest or minimum order statistics of NTLE. Again, the largest order 

statistics is given by  
1

: ( ) ( ) .
n

n nf n g z G z


  Therefore, the largest order statistics for the new 

transmuted logistic-distribution is given as 
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(12) 

Equation (12) is the largest or maximum order statistics of NTLE. 

 

3.5. Moments   

The thr  moment of a random variable Z  is given as ( ) ( ) .r rE Z z f z dz   Hence, the thr  

moment of the new transmuted logistic exponential distribution is given as 
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Lan and Leemis (2008) stated that the moments of logistic exponential distribution is finite 

but cannot be expressed in close form. We also, conclude here that the moments of NTLE 

cannot also be expressed in closed form since it is a combination of moments of LE 

distribution and  
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Now, we will investigate the skewness and kurtosis of NTLE distribution using the 

relation between moments and the quantile function. Kenny and Keeping (1962) gave the 

Bowley skewness based on quantiles given which is given as 
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And also, Moors (1988) gave Moor kurtosis based on quantiles as 
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where 1G  is the quantile function. Therefore, the skewness of NTLE distribution is given as 
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Also, the Moore’s kurtosis of NTLE distribution is given as 
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where ,   and   are parameters of the distribution that needs to be estimated.  

 

3.6. Maximum likelihood estimation (MLE) 

There are different methods of estimating the parameters of a model. Here, we adopt the 

maximum likelihood estimation technique. In MLE technique, the parameters are selected to 

maximize the likelihood that the assumed model results in the observed data. Its estimates are 

unbiased but it relied on the assumptions of the model and may be sensitive to the choice of 

the initial values. Given a random samples 
1 2, ,..., nZ Z Z  with probability density function of 

each 
iZ
 
as ( ; ),i if z   then the joint probability density function of  

1 2, ,..., nX X X   is given as 

1 2 1

1

( ) ( ; ) ( ; ) ( ; ) ( ; ).

n

n

i

L f z f z f z f z    


 
 

 

3.6.1. Derivation of the maximum likelihood estimates of the parameters of the new 

transmuted logistic-exponential distribution (NTLE) 

The probability density function (pdf) of the new transmuted logistic-exponential 

distribution is given as 

        
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The joint pdf is given as 
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Taking the log of the likelihood, we have 
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(17) 

 

Now, to obtain the estimates of the parameters, we differentiate the log of the likelihood 

functions in Equation (17) with respect to each of the parameters. To obtain the estimate for 

,  we differentiate in Equation (17) with respect to   and we have 
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(18) 
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To obtain the estimate for ,  we differentiate in Equation (17) with respect to   and we 

have 
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(19) 

 

To obtain the estimate for ,  we differentiate Equation (17) with respect to   and we have 
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             (20) 

Setting in Equations (18), (19) and (20) to zeros and solving them simultaneously, we 

obtain the estimates of the model parameters. It is to be noted that the estimates of these 

parameters can be solved numerically. (See Appendix for the codes) 

 

4.  Application

   In this section, we fitted the new transmuted logistic-exponential distribution to a data set 

and compare its fitness with existing similar distributions like transmuted exponential (TE), 

logistic-exponential (LE) and exponentiated exponential (EE) distributions using Akaike 

information criteria and log-likelihood. We also gave a summary statistics of the data, plotted 

the density and the QQ-norm plots to examine the skewness in the data set. The data is on the 

remission times (in months) of a random sample of 128 bladder cancer patients adapted from 

Lee and Wang (2003). The summary of statistics of the data is given in Table 1 below. Table 

2 shows the estimates of the parameters and their corresponding standard errors. Table 3 shows 

the AICs and the log-likelihood of the models. 

 

Table 1 Summary of data on cancer patients 

Min Max Median Mean Variance Std. Dev. Skewness Kurtosis 

0.08 79.050 6.395 9.366 110.425 10.508 3.287 18.483 

 

The histogram with density and QQ-norm plots of the cancer patients are given in Figures 

4(a) and 4(b), respectively. 

 

5. Discussion 

It was observed form both the density and QQ-norm plots that the data is skewed in 

nature. The low standard errors of the estimates of the parameters of the models showed that 

the estimates are precise and reliable. NTLE distribution has the least AIC and the highest log-

likelihood and thereby fits the data better than the similar distributions compared with. Both 

Kolmogorov-Smirnov and Anderson-Darling tests statistics also confirm the goodness of 

NTLE distribution. The results validate the flexibility of NTLE distribution in modeling 

skewed data than the existing similar distributions compared with 
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Figure 4 QQ-norm plot and histogram of the cancer patients 

 

Table 2 MLEs and their standard errors (in parentheses) for the cancer patients’ data 

Models Estimates and their standard errors 

Transmuted exponential (TE)  

distribution 
̂  16.3476  

(4.3768) 

̂  0.8617  

(0.2544) 

- 

Logistic-exponential (LE)  

distribution 

̂  1.1634  

(0.0916) 

̂   0.1007  

(0.0085) 

- 

Exponentiated exponential (EE)  

distribution 

̂  1.2180  

(0.1489) 

̂   0.1212  

(0.0136) 

- 

New transmuted logistic-

exponential (NTLE) 

distribution 

̂  1.2021  

(0.09090) 

̂  0.07121 

(0.01216) 

̂  0.6507  

0.2544) 

 

Table 3 AICs and Log-likelihoods of the compared models 

Models AICs Log-likelihoods 

Transmuted exponential (TE) distribution  830.9945 413.4972 

Logistic-exponential (LE) distribution 829.2507 412.6254 

Exponentiated exponential (EE) distribution 830.1552 413.0776 

New transmuted logistic-exponential (NTLE) 

distribution 

827.6799 410.8400 

 

Table 4 Kolmogorov-Smirnov and Anderson-Darling test statistics of the fitted distributions 

Models 
Kolmogorov-Smirnov 

test statistics 

Anderson-Darling 

test statistics 

Transmuted exponential (TE) distribution  0.9922 44.852 

Logistic-exponential (LE) distribution 0.9453 37.652 

Exponentiated exponential (EE) 

distribution 

0.9131 33.318 

New transmuted logistic-exponential 

(NTLE) distribution 

0.6357 20.352 
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6.  Conclusion 

Transmuted logistic-exponential (NTLE) distribution is a new distribution which was 

obtained using cumulative distribution function (cdf) of logistic-exponential distribution and 

the quadratic rank transmutation map function. The essence of adding a parameter to a 

distribution is to improve its flexibility to give room for wider application. Despite the unique 

feature of logistic-exponential distribution, this distribution provides more shape flexibility 

and will be more appropriate in modeling real life data sets that are skewed in nature than the 

existing logistic-exponential (LE) and other similar distributions compared with. It also gives 

relationship with the other probability models in earlier researches, hence the NTLE will 

always be found useful in distribution and open room for more researches. It can also be 

modified or compounded to obtain new distributions. 
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Appendix 

Here, we present the codes for the estimation of the parameters of the new transmuted 

distribution and other compared models using their likelihood functions obtained through 

MLE and the maxlik function in R choosing suitable starting conditions. 

 

#Parameter Estimation 

> library(maxLik) 

> n=length(Cancer)   #where the data is stored in as Cancer 

> TE<-function(p) {n*log(1/p[1])-sum(Cancer/p[1])+sum(log(1-p[2]+2*p[2]*exp(-

(Cancer/p[1]))))} 

> Estimates1<-maxLik(TE, start=c(20,1)) 

> summary(Estimates1) 

> AIC(Estimates1) 

 

> NTLE<-function(p){n*log(p[1]*p[2]) +p[2]*sum(Cancer)+(p[1]-

1)*sum(log(exp(p[2]*Cancer)-1))+sum(log((1+ (exp(p[2]*Cancer)-1)^p[1])+p[3]*(1-

(exp(p[2]*Cancer)-1)^p[1])))-3*sum(log(1+ (exp(p[2]*Cancer)-1)^p[1]))} 

> Estimates2<-maxLik(NTLE, start=c(2,1,0)) 

> summary(Estimates2) 

> AIC(Estimates2) 

 

> EE<-function(p) {n*log(p[1])+n*log(p[2])+(p[1]-1)*sum(log(1-(exp(-p[2]*Cancer))))-

p[2]*sum(Cancer)} 

> Estimates3<-maxLik(EE, start=c(20,1)) 

> summary(Estimates3) 

> AIC(Estimates3) 
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> LE<- function(p){n*log(p[1]*p[2])+p[2]*sum(Cancer)+(p[1]-

1)*sum(log(exp(p[2]*Cancer)-1))-2*sum(log(1+(exp(p[2]*Cancer)-1)^p[1]))} 

> Estimates4<-maxLik(LE, start=c(2,1)) 

> summary(Estimates4) 

> AIC(Estimates4) 


