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Abstract

A new method has been introduced to add an extra parameter to a family of distributions to get
more flexibility in the new model. A special case namely; two parameter Weibull distribution has
been considered. The proposed distribution has a desirable property to model monotone and non
monotone hazard rate functions, which are very common in reliability theory. Various properties
of the proposed distribution are derived including moments, quantiles, entropy, moment generating
function, mean residual life time and stress-strength reliability. A simulation study has been carried
out to describe the performance of the model. Two data sets have been analyzed to illustrate how the
proposed model works in practice.

Keywords: Weibull distribution, hazard rate function, p-p plot, mean residual life, maximum
likelihood estimation

1. Introduction

Statistical distributions are very important in describing and predicting real world phenomena.
Although researchers have developed many distributions but still there is scope for developing distri-
butions which are either more flexible or for fitting specific real world scenarios. Due to the impor-
tance of statistical distributions, their theory is widely studied and new distributions are developed.
This has motivated researchers to develop new and more flexible distributions. As a result, many new
distributions have been developed and studied.

Adding an extra parameter to an existing family of distribution functions, is very common in the
statistical distribution theory. Often introducing an extra parameter brings more flexibility to a class
of distribution functions, and it can be very useful for data analysis purposes. For example, Marshall
and Olkin (1997) proposed a general method for generating a new family of life time distributions
defined in terms of survival function as

- _aF(x)  oF(x)

Gx,o) = = = = 5 Ra o RJra
(50) =T GFm ~ Fl) taf@ € <

where & = 1 — ot and F'(x) = 1 — F(x) is the survival function of the random variable X.
The corresponding cumulative distribution function (cdf) and is given by
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Eugene et al. (2002) proposed the beta generated method that uses the beta distribution with parame-
ters o and B as the generator to develop the beta generated distributions. The cdf of a beta-generated
random variable X is defined as

where b(¢) is the probability density function (pdf) of a beta random variable and F(x) is the cdf of
any random variable X. Alzaatreh et al. (2013) introduced a new method for generating families of
continuous distributions called T-X family by replacing the beta pdf with a pdf, r(z), of a continuous
random variable and applying a function W (F (x)) that satisfies some specific conditions.

Recently, Mahdavi and Kundu (2017) proposed a new method to introduce an extra parameter
to a family of distributions for more flexibility. The proposed method is called Alpha Power Trans-
formation (APT) and it is useful to consolidate skewness to a family of distributions. Let F(x) be the
cdf of a continuous random variable X, then they define the APT of F(x) for x € R as follows:

af®W_1 | +

22— ;aeR a#1
Fapr(x) =4 o1~ ’
apr (%) {F(x) I

They applied the proposed method to a one-parameter exponential distribution and generated a two-
parameter Alpha Power Exponential distribution. They also studied the various properties of the
proposed distribution.

The main objective of this paper is to introduce a new method that adds an extra parameter to a
family of distribution functions to bring more flexibility to the given family. We call this new method
as MIT method. The proposed MIT method is very easy to use, hence it can be used quite effectively
for data analysis purposes. First we discuss some general properties of this class of distribution
functions. Then, the MIT method has been specialized to a two-parameter Weibull distribution and
generated a three-parameter MIT Weibull (MITW) distribution.

The rest of the paper is organised as follows. In Section 2, we introduce the MIT method and
discuss some general properties of this family of distributions. In Section 3, MITW distribution has
been introduced and some special cases are presented. Some of its structural properties including
quantile function, median, moment generating function, moments, mean residual life function, Rnyi
entropy, order statistic and stress-strength reliability have been discussed. In Section 4, Maximum
likelihood estimators of unknown parameter as well as simulation study have been carried out. In
Section 5, Two real data sets have been analyzed to illustrate the potency of the proposed model.
Finally, the paper is concluded in Section 6.

2. General Properties of MIT Method

Let F(x) be the cdf of any continuous random variable X. Then the cdf of MIT method can be
obtained by inverting the following equation

this implies,

ey
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to avoid the ambiguity, we write (1) as

oF (x)
F =2
T ) = T aF )
Clearly, Fyr(x) is a proper cdf. If F(x) is an absolute continuous distribution function with the pdf
f(x), then Fpyyr(x) is also an absolute continuous distribution function with the pdf

of(x)

. + ~ — 1
7[1—65F(x)]2 ; aeR , a=1—-a. 2)

furr (x) =

It is clear that fy7(x) is a weighted version of f(x), where the weight function

1
" Tarp
and fyyr(x) can be written as
Suir (x) = 7f(x)wc(x;a) :

Here the normalizing constant ¢ = E[w(X)].

The reliability function Ry7 (x) for MIT distribution is defined as

Ryr (x) = 11—_(;;)(6))6). 3

If the hazard function of X is denoted by hp(x), then the hazard function for MIT distribution is
defined as

(04

haiir (x)

Thus

lim hM]T()C) =o lim hp(x)
X—r—o0 X—p—00

and
g haerr () = Ji e ()

It follows from (4) that

he(x) <hr(x) < ahp(x) 3 xeR, a>1
he(x) > hpgr(x) > ahp(x) ; xeR, a<l
P i
Y <R <P : xeR ax1
F i
9> Rur@W =Pl ¢ xeR a<l

Obviously, hl}‘fﬁy is increasing in x for & > 1 and decreasing in x for 0 < & < 1.
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The p-th quantile y, of Fyr (x) can be obtained as

— p
=F"! .
Ip <Oc+dp>

If x,, denotes the p-th quantile for F(x), then it follows that

p
a+ap

yp ley lf S p.

Thus it is possible to determine for what values of @, Fyyr (x) will be heavier tail than F(x).
yp<x, ifa>1 and y,>x, ifa<l.
Therefore, if o > 1 then F(x) has a heavier tail than Fy;7(x), and for @ < 1, it is the other way.

Theorem 2.1 If f(x) is a decreasing function, and o > 1, then fyr(x) is a decreasing function.

Proof. We have,

d _fw) | 2af(x)
08T () = S T

Since, both the terms on the right hand side are negative. Therefore, fur(x) is a decreasing function.
O

Theorem 2.2 If f(x) is a decreasing function, and f(x) is log-convex, then for a > 1, the hazard
Sunction hyyr(x) is a decreasing function.

Proof. We have,
d2 2

2 lngMIT(X) = 12

(1-aF(x) af (x)+af?(x)
logf(x) + 2{ (- aF () }

since, both the terms on the right hand side are positive, it implies that fy;7(x) is log-convex. Hence
the result follows from Barlow and Proschan (1975). O

3. MITW Distribution and Its Properties
In this section, the MIT method is specialized to two parameter Weibull distribution and now
onwards it is called as the three-parameter MITW distribution.

Definition: A random variable X is said to have a three-parameter MITW distribution denoted
by MITW(a, B, 1) with parameters &, 3 and A , if the cdf of X for x > 0, is

x\B
1—e (%)
Fyrrw (x) = a(l-e x)ﬁ ;oa,B,A >0 5)
1—a (1—e(x) )
and the corresponding pdf is given by
B (x)F1 ()
o e \1
Surrw (x) = x (1) ;o o,B,A >0. (6)
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Figure 1 Plots of the MITW density for A = 1 and various values of o and .

The Reliability functon Ry rw (x) and the hazard rate function Ayrw (x) for x > 0 are given by

Ryrrw (x) =

o,B,A >0
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Figure 2 Plots of the MITW hazard rate function for A = 1 and various values of ¢ and 3.

a=03, B=0.75
a=0.7, p=02
a=0.01,B=11

Note that for all o, A > 0, we have

o for0<p<l, 0 forO<pB<I1,
h(0) =9 % forB=1, h(e)={ 3 forB=1,
0 forfB>1, oo forB>1.

)

®
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Theorem 3.1 If h(x) is the hazard rate function of the MITW distribution.
(i) For o> 1and B <1, then h(x) is decreasing.
(ii) For oo <1 and B > 1, then h(x) is increasing.

1
(iii) Foroo > 1, B > 1l and y(o,B) = (B —1)+Bde F >0, then h(x) is increasing, otherwise,
h(x) is increasing-decreasing-increasing.

1
(iv) Fora<1l, B<land y(a,f)=a(B—1)+Pae P <O, then h(x) is decreasing, otherwise,
h(x) is decreasing-increasing-decreasing.
Proof. Since A is a scale parameter, we assume, without loss of generality, that A = 1. The first
derivative of h(x) with respect to x is given by:
n (x) = s(x)t(xP), x>0
where s(x) > 0and #(y) = (B — 1)[1 — (1 —e )]+ aBye >,y =xF > 0.
(i) Fora>1,B < 1, clearly (y) < 0, this implies ' (x) < 0. Therefore, i(x) is decreasing.
(i) By using similar approach as (i).

(iii) For o > 1, > 1, the first derivative of #(y) with respect to x is given by

!/

t(y)=ae(1-By);  y>0,

" _ 1
which implies that 7(y) has a stationary point at y* = 1/f. Since t (y*) = —afe F > 0. This
implies #(y) has the global minimum at y*. The global minimum value of #(y) is given by

1
ty)=a(f—-1)+pae P = y(a,p), say. Clearly, for § > 1, lin?)t(y) =B—-1>0and
y—
limz(y)=a(f—1)>0.
y—roo

If1(y*) = w(at, B) > 0, then 7(y) >0 ¥y > 0. Hence, b (x) >0 Vx> 0, i.e. h(x) is increasing.
If 7(y*) = y(a, ) < 0, then #(y) has exactly two zeros x| < xp, such that A(x) increases on
(0,x1), decreases on (x1,x2) and finally increases on (x2,0). So, A(x) is increasing-decreasing-
increasing (see Figure 2).

(iv) By using similar approach as (iii).
O

Remark: When o = 1, the MITW distribution reduces to the Weibull distribution. In that case
the shapes for hazard rate function are well known in the literature. Table 1 lists seven important
special models of the new distribution.

Figure 1 displays some plots of the MITW density for selected parameter values. Plots of the
h(x) of the MITW distribution for selected parameter values are given in Figure 2.
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Table 1 Sub-models of the MITW Distribution

o A B Reduced model
1

- MIT one-parameter Weibull distribution
- - Two-parameter Weibull distribution
One-parameter Weibull distribution

—_
—

- - 2 MIT-Rayleigh distribution

1 - 2 Rayleigh distribution

- - 1 MlIT-exponential distribution
1 - 1 Exponential distribution

3.1. Simulation and quantile
The MITW distribution can be simulated using inverse cdf method

(2120

where U follows uniform (0, 1) distribution. The p-th quantile function of MITW distribution is given
by

1

verlon(555))"
s =1 (1os (2.

3.2. Moment generating function and moment
Using the series representations

The median can be obtained as

oo

(1=x)72=Y (k+1)X*; <1, (10)
k=0
(I_X)n:];O(Z>Xk; |x| <1, an
" /n
and 1—x)"= —1)kxk x| <1, 12
(=3 ()t (12)
the moment-generating function (mgf) of MITW distribution can be obtained as
o ok ook r(4+1
aY ¥y O -y a<l,
j=0k=0i=0 7 (1B
My (t) = ., f )oi i ) (k+l)(k+2) T(f+1) w1
moksoSy ot (et .
Hence, the rth moment of X becomes
N . I(%+1
ah’ ¥ ¥ (i) (- a<l,
E(X") = j=0k=0 (i) (k+1)B
ar" ¥ ¥ () o> 1.

j=0k=0 (k+1)P
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3.3. Mean residual life and mean waiting time

Suppose that X is a continuous random variable with reliability function R(x), the mean residual
life is the expected additional lifetime given that a component has survived until time . The mean
residual life function, say p(z), is given by

t

E() f/xf(x)dx 1
0

The mean residual life of MITW distribution is obtained by using (10), (11) and (12) and is given

by
Fora <1
—a (1) .
T O T
{r(;ﬂ) y<<;)ﬁ(k+l),é+1>}—t
For ¢ > 1
(o) {1_5‘ (l_e_(i)lj}mii (J+1)(j+21)

fon
{F(;+1)—y((;)ﬁ(k+l),;+1)}—t7

a
where y(a,b) = [x*~'e~*dx is the lower incomplete gamma function.
0

The mean waiting time represents the waiting time elapsed since the failure of an object on
condition that this failure had occurred in the interval [0, t]. The mean waiting time of X, say fi(¢), is
defined by

5O =1 s 0/ X (x)dx
For o < 1,
1—a (1-e () . i
8 (’)_’_{ l(em" >}%o,§£ﬁ;3 (ljc)(_ *
y((k)ﬁ(kﬂ),éﬂ)
For o > 1,

{1_6‘ (“emﬁ)}lii G+DOP)

J=0k=0 aJ+2 (k + 1)%+l
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3.4. Rnyi entropy

The entropy of a random variable measures the variation of the uncertainty. A large value of
entropy indicates the greater uncertainty in the data. The Rnyi entropy, sayREx () is defined as

1

1—u

REx (u) = log /f(x)“dx ;o u>0, u#l

The Rnyi entropy of MITW distribution is obtained by using (10), (11) and (12) and is given by

Fora <1
REx (1) =—“—log(a) — log(2)
X =108 %8\
. . (u—1)
1 > (2u) [ kr(u—ﬁ)
J B D A
e | L@ () ()0 e
J=0k= (ut+k)™ P
For o > 1
REx (1) = log(a) — Log(2)
X =1,008 %87
2u\ (j+2u (u—1)
1 = = (T Tu—257)
+ log S - —
I=u /gbk);b Ay

3.5. Order statistics

Let X1,X>, ..., X, be a random sample of size n, and let X,., denote the rth order statistic, then,
the pdf of X;.,, say f.n(x) is given by

— I’l—‘ X r—1 X —F(x))T
Fenl) = G P @ (1 F @)
We can write f.,(x) as
. (%)[i(n—rﬂ)

ﬂmb‘ﬂicf1@ﬁ<ﬁyl

B(r,n—r+1) \4 (1—@(1_e(i>ﬁ)>”ﬂ )

where B(a, b) is the beta function.
3.6. Stress strength reliability

Suppose X; and X, be independent strength and stress random variables respectively, where

X) ~ MITW (o1, A1, B) and X, ~ MITW (02,2, 3), then the stress strength reliability P(X; > X»),
say SSR, is defined as

SSR = / AP (x)dx.

The stress strength reliability SSR, is obtained by using (5), (6), (10), (11) and (12) and is given by

gl o2 LK. j ltm _ (ktD)ofod
SSR /{fﬁf i§0k§OZ§0;n§0(]+ D) om0 <l o<l

00 o0 o0 oo

a1 iy

J+2\ (k J+1 .
—— ;oar>1, 0> 1.
dlz(ag—l)llﬁil j=0k§01:0m20 ( ! ) (m) A ok (mAy+(1+1)42) ! 2
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4. Statistical Inference

4.1. Maximum likelihood estimators
Let x1,x3,...,x, be a random sample from MITW distribution, then the logarithm of the likeli-
hood function becomes

v, ]
I =nlogo.+nlogf —nPBlogh + (B —1) Zlogx, 7;3_221%’(1_ (1—6_(7')13)), (13)

The MLEs of &, A and 3 are obtained by partially differentiating (13) with respect to the corre-
sponding parameters and equating to zero we have

n oL
ﬁzﬁ_zz (1—e Ax)ﬁ 0
Joo o 5 1—&(1—e‘(7’>)
n g ;
ﬂ——@Jrﬁ’EIXi 2.9 ¥ fe @ —0
oA A TR TR &S 1—‘(1—e (N) B
o (5B
ol B\~ p-1, logh ap(3)P-te )
— —nlogh+) logx;— X, = +2 - =0.
R M P B T M F p

Since the normal equations are complex in nature and are solved by R software.

4.2. Simulation study

Table 2 Average values of MLEs and the corresponding MSEs (n = 50)

Parameter MLE MSE

A oa B 2 a B p) & B

1 05 1.5 105747 075566 1.56545 0.10484 0.78746 0.09050
3098845 0.67483 3.04906 0.03264 044393 0.40167
5 096303 055106 4.78708 0.01358 0.20574 1.04465

1.5 1.5 099033 1.70767 1.49440 0.05723 1.49425 0.03295
3099146 1.74764 3.01389 0.01914 1.17414 0.16121
5 1.00293 1.78810 5.07979 0.00390 0.93316 0.36411

3 1.5 0098824 3.18791 1.48676 0.05300 3.31959 0.02204
3099084 3.28670 297711 0.01503 3.54019 0.10937
5 099197 3.33680 491370 0.01241 3.64137 0.11320

2 05 1.5 200867 0.65565 1.49673 0.50871 0.27872 0.10405
3 1.98480 0.67958 3.00840 0.11882 0.40014 0.35086
5 201576 0.74818 5.15706 0.04045 0.46083 0.88584

1.5 1.5 196822 1.69830 147213 0.30443 1.78864 0.04046
3 197723 1.72749 297728 0.07864 0.94075 0.16896
5 198308 1.63773 4.95950 0.01788 1.02682 0.31782

3 1.5 205793 3.27554 1.51815 0.22557 3.84219 0.02552
3 1.94835 3.18430 2.98372 0.08831 3.10406 0.15714
5 196153 3.09219 494148 0.02398 3.18379 0.29821
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Table 3 Average values of MLEs and the corresponding MSEs (n = 100)

Parameter MLE MSE

A oa B 2 a B 2 & B

1 05 1.5 100902 058267 151253 0.05540 0.09670 0.04514
3 1.00192 059944 3.03499 0.01377 0.12031 0.18619
5 101386 0.65760 521095 0.00477 0.12943 0.50492

15 1.5 099723 1.61885 1.49753 0.03470 0.75210 0.02021
3099210 1.58804 2.99378 0.00885 0.50492 0.09625
5 1.00127 1.54214 498210 0.00151 0.39571 0.12154

3 1.5 1.02508 3.15421 1.50571 0.03497 2.73379 0.01438
3099922 3.18673 2.99201 0.00762 2.97769 0.04753
5 1.00254 3.21548 5.01278 0.00421 2.98912 0.04523

2 05 1.5 208277 0.62822 1.53828 0.24562 0.13707 0.05472
3 201662 0.54063 298488 0.06391 0.09677 0.19660
5 197359 0.56653 4.98672 0.03361 0.13124 0.66129

1.5 1.5 201562 1.63873 1.49667 0.12487 0.55183 0.02047
3 198943 1.61163 2.99938 0.02895 0.60416 0.08303
5 199889 1.72353 5.05222 0.02150 0.55681 0.26121

3 1.5 195387 3.04062 1.48687 0.11099 1.58212 0.01051
3 1.99222 3.12137 3.00127 0.03531 2.05399 0.05250
5 200254 3.27214 5.00246 0.01043 2.18099 0.15539

The simulation study has been performed using R Software to show the behaviour of the MLEs
in terms of the sample size n. Two sets of sample (n = 50,n = 100) each replicated 100 times with
different values of parameters A = (1,2), o = (0.5,1.5,3) and 8 = (1.5,3,5) were generated from
MITW. In each setting, the average values of MLEs and the corresponding empirical mean squared
errors (MSEs) were obtained. The simulation results are presented in Table 2 and Table 3. From
Tables 2 and 3, it can be seen that the estimates are stable and quite close to the true parameter values.
As the sample size increases the MSE decreases in all the cases.

5. Applications

In this section, we analyse two data sets to describe the significance and flexibility of the MITW
distribution. The data set one corresponds to intervals in days between 109 successive coal-mining
disasters in Great Britain, for the period 1875-1951, reported by Nassar et al. (2017), originally
published by Maguire et al. (1952). The sorted data are given as follows:
1,4,4,7,11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50, 54, 54,
55,59, 59, 61, 61, 66, 72, 72,75, 78, 78, 81, 93, 96, 99, 108, 113, 114, 120, 120, 120, 123, 124, 129,
131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224, 228, 233,
255, 271, 275, 275, 275, 286, 291, 312, 312, 312, 315, 326, 326, 329, 330, 336, 338, 345, 348, 354,
361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 1312, 1357, 1613, 1630.

The data set second reported by Nassar et al. (2017), originally published by Smith and Naylor
(1987), corresponding to strengths of 1.5 cm glass fibers, measured at the National Physical Labora-
tory, England. The data are as follows:
0.55, 0.93,1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49,
1.53,1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66,
1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24,
1.3,1.48,1.51,1.55,1.61, 1.63,1.67, 1.7, 1.78, 1.89.



12 Thailand Statistician, 2024; 22(1): 1-16

(0] (ii)

1.0

_ Empirical Reliability Function
- \ _ Fitted Reliability Function

0.6 0.8
1

Reliability Function
0.4

0.2

Density
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
1
0.0
1

Figure 3 (i) The relative histogram and the fitted MITW distribution (ii) The fitted MITW reliability
function and empirical reliability function for first data set
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Figure 4 (i) The relative histogram and the fitted MITW distribution (ii) The fitted MITW reliability
function and empirical reliability function for second data set

We compare the fit of the proposed MITW with several other models, namely McDonald Weibull
(Mc-W) Cordeiro et al. (2014), beta Weibull (BW) Lee et al. (2007), modified Weibull (MW) Sarhan
and Zaindin (2009), gamma Lomax (GL) Cordeiro et al. (2015), ZografosBalakrishnan log-logistic
(ZBLL) Zografos and Balakrishnan (2009), Inverse Weibull (IW) Johnson et al. (1995).

From Table 4, Table 5, Table 6 and Table 7, it is evident that MITW distribution has lowest
-2 (é), AIC, AICC, BIC, K-S values and highest p-value among all the other competitive models.
Hence the proposed model yields the better fit than the other models for both data sets.
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()Q-Q Plot for MITW distribution (i)Q-Q Plot for MITW distribution
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Figure 5 Q-Q plot for the MITW distribution for data set 1 and data set 2, respectively

(i)P-P Plot for MITW distribution (ii)P—P Plot for MITW distribution
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Figure 6 P-P plot for the MITW distribution for data set 1 and data set 2, respectively

The relative histogram and the fitted MITW distribution of the data set first and second are shown
in Figures 3(i) and 4(i), respectively. The plots of the fitted MITW reliability function and empirical
reliability function of the data set first and second are shown in Figures 3(ii) and 4(ii), respectively.
The Q-Q plots for data set first and second are shown in Figure 5(i) and 5(ii) respectively. Also,
The P-P plots for data set first and second are shown in Figure 6(i) and 6(ii) respectively that allows
us to differentiate between the empirical distribution of the data with the MITW distribution. These
graphical goodness of fit measures clearly support the results in Tables 4, Table 5, Table 6 and Table 7.
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Table 4 MLEs (standard errors in parentheses), K-S Statistic, and p-values for the first data set

Model ) EstlAmates Statistics
o B A b k K-S p-value
Me- 21.73374 0.05625 2.26312 20.26463 12.35624  0.07905 0.50359
(19.74300) (0.01956) (0.99590) (17.73100) (13.06030)
BW 6.26933 0.52681 0.25154 0.18992 - 0.08634  0.39084
(3.41100)  (0.09100) (0.19300)  (0.11700)
MW 0.00429 0.34131 0.00004 - - 0.07827 0.51645
(0.00047)  (5.95200) (0.01100)
GL 7.41676 1.85007 2.24237 - - 0.11726  0.09984
(2.27150)  (0.10700) (1.73700)
7BLL 1.53280 1.19260  58.29380 - - 0.09001  0.34030
(0.09952)  (0.09100) (0.82900)
W - 0.64027  57.89748 - - 0.14526  0.02010
(0.04065) (9.21448)
MITW 0.00846 0.28979 0.64399 - - 0.05833 0.85210

(0.00628)  (0.04578) (0.87546)

Table 5 —2!/ (é), AIC, AICC, BIC for the first data set

Model ~ —21(6) AIC AICC BIC

Mc-W 14107460 14207460 1421.3285 1434.2027
BW 14104217 14184217 1418.8063 1429.1871
MW 1406.6267 1412.6267 1412.8553 1420.7007

GL 1433.4712  1439.4712 1439.6998  1447.5452
ZBLL  1443.6280 1449.6280 1449.8566 1457.7020
w 1452.6029 1456.6029 1456.7161 1461.9856

MITW  1404.2839 1410.2839 1410.5125 1418.3580

6. Conclusion

A new family of distributions has been introduced based on the idea of Marshall and Olkin trans-
formation introduced by Marshall and Olkin (1997). MIT method has been specialized on the two
parameter Weibull distribution and a new three parameter MITW distribution has been introduced.
We have discussed various properties of MITW distribution. It is observed that the three-parameter
MITW distribution has more flexibility in the form of hazard and density functions. The effectiveness
of the proposed model is compared with other existing models by using goodness of fit measures. The
model has been fitted to two different data sets, the figures show that the proposed model provides
better fit for both data sets in comparison to all other competitive models.
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Table 6 MLE:s (standard errors in parentheses), K-S Statistic, and p-values for the second data set

Model ] Esternates Statistics
o B A b k K-S p-value
Me-W 0.38232 5.13668 0.02828 5.54804 248502  0.12955 0.24088
(0.37740)  (4.62500)  (0.06990) (22.94500) (2.73760)
BW 0.63515 7.61488 0.51284 2.31224 - 0.12977  0.23921
(0.26217)  (2.07370)  (0.20970)  (6.65120)
MW 0.03108 6.38083 0.04071 - - 0.11725 0.35187
(0.04375)  (0.97580)  (0.02495)
GL 18.96058  128.71263  9.47211 - - 0.20380 0.01067
(3.9454)  (89.38365) (7.98425)
7BLL 1.64144 6.26230 1.28259 - - 0.16794  0.05723
(0.13178)  (0.63220)  (0.00390)
W - 2.88755 1.26434 - - 0.24443  0.00107
(0.23443)  (0.05885)
MITW 0.06040 3.20558 1.12147 - - 0.10002  0.55410

(0.07440)  (0.93824)  (0.24436)

Table 7 —2(6), AIC, AICC, BIC for the second data set

Model —2/(8)  AIC AICC BIC

Mc-W  28.6496 38.6496 39.7022  49.3653
BW 202396 372396 37.9293 458121
MW 297893 357893 36.1961  42.2187
GL 497569 557569 56.1637  62.1863
ZBLL 743721 803721 80.7789  86.8015
W 93.7066 97.7066  97.9066 101.9929
MITW 240672 30.0672 30.4740  36.4966

Appendix

The "R” code which is used to obtain the maximum likelihood estimates of the parameters.
Here ”a” is used for alpha, ’b” is used for beta and ”1” is used for lambda.
rm(list=Is(all=TRUE))
data=c(1, 4, 4,7, 11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50,
54, 54, 55, 59, 59, 61, 61, 66, 72, 72,75, 78, 78, 81, 93, 96, 99, 108, 113, 114, 120, 120, 120, 123,
124, 129, 131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224,
228, 233, 255, 271, 275,275, 275, 286, 291, 312, 312, 312, 315, 326, 326, 329, 330, 336, 338, 345,
348, 354, 361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 1312, 1357, 1613, 1630)
hist(data , prob = T,col = 3, angle = c(45), density = 20, main = "Fig. 1.1: MITW Model Fitting”,
cex.main = 1)
mean(data)
length(data)
library(MASS)
MITW = function(x, a, b, I) ((a * (b/)* (x/)**(b-1)) * exp(- (x/)**b)) / (1-(1-a)*(1-exp(-(x/1)**b)))**2
mle = fitdistr(x =data,densfun = MITW,start = list(a=.02,b=.4,1=1.5),lower=c(0.001,0.001,0.001),,upper=c(Inf,Inf,Inf))
mle
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