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Abstract
A new method has been introduced to add an extra parameter to a family of distributions to get

more flexibility in the new model. A special case namely; two parameter Weibull distribution has
been considered. The proposed distribution has a desirable property to model monotone and non
monotone hazard rate functions, which are very common in reliability theory. Various properties
of the proposed distribution are derived including moments, quantiles, entropy, moment generating
function, mean residual life time and stress-strength reliability. A simulation study has been carried
out to describe the performance of the model. Two data sets have been analyzed to illustrate how the
proposed model works in practice.

Keywords: Weibull distribution, hazard rate function, p-p plot, mean residual life, maximum
likelihood estimation

1. Introduction
Statistical distributions are very important in describing and predicting real world phenomena.

Although researchers have developed many distributions but still there is scope for developing distri-
butions which are either more flexible or for fitting specific real world scenarios. Due to the impor-
tance of statistical distributions, their theory is widely studied and new distributions are developed.
This has motivated researchers to develop new and more flexible distributions. As a result, many new
distributions have been developed and studied.

Adding an extra parameter to an existing family of distribution functions, is very common in the
statistical distribution theory. Often introducing an extra parameter brings more flexibility to a class
of distribution functions, and it can be very useful for data analysis purposes. For example, Marshall
and Olkin (1997) proposed a general method for generating a new family of life time distributions
defined in terms of survival function as

Ḡ(x;α) =
αF̄(x)

1− ᾱF̄(x)
=

αF̄(x)
F(x)+αF̄(x)

;x ∈ R, α ∈ R+,

where ᾱ = 1−α and F̄(x) = 1−F(x) is the survival function of the random variable X.
The corresponding cumulative distribution function (cdf) and is given by

G(x) =
F(x)

1− ᾱF̄(x)
.
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Eugene et al. (2002) proposed the beta generated method that uses the beta distribution with parame-
ters α and β as the generator to develop the beta generated distributions. The cdf of a beta-generated
random variable X is defined as

G(x) =

F(x)∫
0

b(t)dt,

where b(t) is the probability density function (pdf) of a beta random variable and F(x) is the cdf of
any random variable X . Alzaatreh et al. (2013) introduced a new method for generating families of
continuous distributions called T-X family by replacing the beta pdf with a pdf, r(t), of a continuous
random variable and applying a function W (F(x)) that satisfies some specific conditions.

Recently, Mahdavi and Kundu (2017) proposed a new method to introduce an extra parameter
to a family of distributions for more flexibility. The proposed method is called Alpha Power Trans-
formation (APT) and it is useful to consolidate skewness to a family of distributions. Let F(x) be the
cdf of a continuous random variable X , then they define the APT of F(x) for x ∈ R as follows:

FAPT (x) =

{
αF(x)−1

α−1 ;α ∈ R+, α ̸= 1
F(x) ;α = 1.

They applied the proposed method to a one-parameter exponential distribution and generated a two-
parameter Alpha Power Exponential distribution. They also studied the various properties of the
proposed distribution.

The main objective of this paper is to introduce a new method that adds an extra parameter to a
family of distribution functions to bring more flexibility to the given family. We call this new method
as MIT method. The proposed MIT method is very easy to use, hence it can be used quite effectively
for data analysis purposes. First we discuss some general properties of this class of distribution
functions. Then, the MIT method has been specialized to a two-parameter Weibull distribution and
generated a three-parameter MIT Weibull (MITW) distribution.

The rest of the paper is organised as follows. In Section 2, we introduce the MIT method and
discuss some general properties of this family of distributions. In Section 3, MITW distribution has
been introduced and some special cases are presented. Some of its structural properties including
quantile function, median, moment generating function, moments, mean residual life function, Rnyi
entropy, order statistic and stress-strength reliability have been discussed. In Section 4, Maximum
likelihood estimators of unknown parameter as well as simulation study have been carried out. In
Section 5, Two real data sets have been analyzed to illustrate the potency of the proposed model.
Finally, the paper is concluded in Section 6.

2. General Properties of MIT Method
Let F(x) be the cdf of any continuous random variable X . Then the cdf of MIT method can be

obtained by inverting the following equation

G(x) =
F(x)

1− ᾱF̄(x)

this implies,
G(x)− ᾱG(x)F̄(x) = F(x)

after solving the above equation, we get

F(x) =
αG(x)

1− ᾱG(x)
(1)



Murtiza A. Lone et al. 3

to avoid the ambiguity, we write (1) as

FMIT (x) =
αF(x)

1− ᾱF(x)
.

Clearly, FMIT (x) is a proper cdf. If F(x) is an absolute continuous distribution function with the pdf
f (x), then FMIT (x) is also an absolute continuous distribution function with the pdf

fMIT (x) =
α f (x)

[1− ᾱF(x)]2
; α ∈ R+ , ᾱ = 1−α. (2)

It is clear that fMIT (x) is a weighted version of f (x), where the weight function

w(x,α) =
1

[1− ᾱF(x)]2

and fMIT (x) can be written as

fMIT (x) =
f (x)w(x;α)

c
.

Here the normalizing constant c = E[w(X)].

The reliability function RMIT (x) for MIT distribution is defined as

RMIT (x) =
1−F(x)

1− ᾱF(x)
. (3)

If the hazard function of X is denoted by hF(x), then the hazard function for MIT distribution is
defined as

hMIT (x) =
α

1− ᾱF(x)
hF(x); x ∈ R, α > 0 (4)

Thus

lim
x→−∞

hMIT (x) = α lim
x→−∞

hF(x)

and

lim
x→∞

hMIT (x) = lim
x→∞

hF(x)

It follows from (4) that

hF(x)≤ hMIT (x)≤ α hF(x) ; x ∈ R, α ≥ 1
hF(x)≥ hMIT (x)≥ α hF(x) ; x ∈ R, α ≤ 1

F̄(x)
α

≤ RMIT (x)≤ F̄(x) ; x ∈ R, α ≥ 1

F̄(x)
α

≥ RMIT (x)≥ F̄(x) ; x ∈ R, α ≤ 1.

Obviously, hMIT (x)
hF (x)

is increasing in x for α > 1 and decreasing in x for 0 < α < 1.
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The p-th quantile yp of FMIT (x) can be obtained as

yp = F−1
(

p
α + ᾱ p

)
.

If xp denotes the p-th quantile for F(x), then it follows that

yp ≤ xp i f
p

α + ᾱ p
≤ p.

Thus it is possible to determine for what values of α , FMIT (x) will be heavier tail than F(x).

yp ≤ xp i f α ≥ 1 and yp ≥ xp i f α ≤ 1.

Therefore, if α > 1 then F(x) has a heavier tail than FMIT (x), and for α < 1, it is the other way.

Theorem 2.1 If f (x) is a decreasing function, and α ≥ 1, then fMIT (x) is a decreasing function.

Proof. We have,

d
dx

log fMIT (x) =
f
′
(x)

f (x)
+

2ᾱ f (x)
1− ᾱF(x)

.

Since, both the terms on the right hand side are negative. Therefore, fMIT (x) is a decreasing function.

Theorem 2.2 If f (x) is a decreasing function, and f (x) is log-convex, then for α ≥ 1, the hazard
function hMIT (x) is a decreasing function.

Proof. We have,

d2

dx2 log fMIT (x) =
d2

dx2 log f (x) + 2

{
(1− ᾱF(x)) ᾱ f

′
(x)+ ᾱ2 f 2(x)

(1− ᾱF(x))2

}

since, both the terms on the right hand side are positive, it implies that fMIT (x) is log-convex. Hence
the result follows from Barlow and Proschan (1975).

3. MITW Distribution and Its Properties
In this section, the MIT method is specialized to two parameter Weibull distribution and now

onwards it is called as the three-parameter MITW distribution.
Definition: A random variable X is said to have a three-parameter MITW distribution denoted

by MITW(α,β ,λ ) with parameters α, β and λ , if the cdf of X for x > 0, is

FMITW (x) =
α (1− e−(

x
λ )

β
)

1− ᾱ
(

1− e−(
x
λ )

β
) ; α ,β ,λ > 0 (5)

and the corresponding pdf is given by

fMITW (x) =
α β

λ
( x

λ
)β−1 e−(

x
λ )

β(
1− ᾱ(1− e−(

x
λ )

β
)

)2 ; α ,β ,λ > 0. (6)
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Figure 1 Plots of the MITW density for λ = 1 and various values of α and β .

The Reliability functon RMITW (x) and the hazard rate function hMITW (x) for x > 0 are given by

RMITW (x) =
e−(

x
λ )

β

1− ᾱ
(

1− e−(
x
λ )

β
) ; α ,β ,λ > 0 (7)

hMITW (x) =
α β

λ
( x

λ
)β−1

1− ᾱ
(

1− e−(
x
λ )

β
) ; α ,β ,λ > 0. (8)
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Figure 2 Plots of the MITW hazard rate function for λ = 1 and various values of α and β .

Note that for all α,λ > 0, we have

h(0) =


∞ f or 0 < β < 1,
α
λ f or β = 1,
0 f or β > 1,

h(∞) =


0 f or 0 < β < 1,
1
λ f or β = 1,
∞ f or β > 1.
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Theorem 3.1 If h(x) is the hazard rate function of the MITW distribution.

(i) For α ≥ 1 and β < 1, then h(x) is decreasing.

(ii) For α ≤ 1 and β > 1, then h(x) is increasing.

(iii) For α > 1, β > 1 and ψ(α,β ) = α(β −1)+βᾱe−
1
β > 0, then h(x) is increasing, otherwise,

h(x) is increasing-decreasing-increasing.

(iv) For α < 1, β < 1 and ψ(α,β ) = α(β −1)+βᾱe−
1
β < 0, then h(x) is decreasing, otherwise,

h(x) is decreasing-increasing-decreasing.

Proof. Since λ is a scale parameter, we assume, without loss of generality, that λ = 1. The first
derivative of h(x) with respect to x is given by:

h
′
(x) = s(x)t(xβ ), x > 0

where s(x)> 0 and t(y) = (β −1)[1− ᾱ(1− e−y)]+ ᾱβye−y, y = xβ > 0.

(i) For α ≥ 1,β < 1, clearly t(y)< 0, this implies h
′
(x)< 0. Therefore, h(x) is decreasing.

(ii) By using similar approach as (i).

(iii) For α > 1,β > 1, the first derivative of t(y) with respect to x is given by

t
′
(y) = ᾱe−y(1−βy) ; y > 0,

which implies that t(y) has a stationary point at y∗ = 1/β . Since t
′′
(y∗) =−ᾱβe−

1
β > 0. This

implies t(y) has the global minimum at y∗. The global minimum value of t(y) is given by

t(y∗) = α(β − 1) + βᾱe−
1
β = ψ(α,β ), say. Clearly, for β > 1, lim

y→0
t(y) = β − 1 > 0 and

lim
y→∞

t(y) = α(β −1)> 0.

If t(y∗) = ψ(α,β )> 0, then t(y)> 0 ∀ y > 0. Hence, h
′
(x)> 0 ∀ x > 0, i.e. h(x) is increasing.

If t(y∗) = ψ(α,β ) < 0, then t(y) has exactly two zeros x1 < x2, such that h(x) increases on
(0,x1), decreases on (x1,x2) and finally increases on (x2,∞). So, h(x) is increasing-decreasing-
increasing (see Figure 2).

(iv) By using similar approach as (iii).

Remark: When α = 1, the MITW distribution reduces to the Weibull distribution. In that case
the shapes for hazard rate function are well known in the literature. Table 1 lists seven important
special models of the new distribution.

Figure 1 displays some plots of the MITW density for selected parameter values. Plots of the
h(x) of the MITW distribution for selected parameter values are given in Figure 2.
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Table 1 Sub-models of the MITW Distribution

α λ β Reduced model

- 1 - MIT one-parameter Weibull distribution
1 - - Two-parameter Weibull distribution
1 1 - One-parameter Weibull distribution
- - 2 MIT-Rayleigh distribution
1 - 2 Rayleigh distribution
- - 1 MIT-exponential distribution
1 - 1 Exponential distribution

3.1. Simulation and quantile
The MITW distribution can be simulated using inverse cdf method

X = λ
(

log
(

α + ᾱU
α(1−U)

)) 1
β

(9)

where U follows uniform (0,1) distribution. The p-th quantile function of MITW distribution is given
by

xp = λ
(

log
(

α + ᾱ p
α(1− p)

)) 1
β
.

The median can be obtained as

x0.5 = λ
(

log
(

1+α
α

)) 1
β
.

3.2. Moment generating function and moment
Using the series representations

(1− x)−2 =
∞

∑
k=0

(k+1)xk ; |x|< 1, (10)

(1− x)−n =
∞

∑
k=0

(
n
k

)
xk ; |x|< 1, (11)

and (1− x)n =
n

∑
k=0

(
n
k

)
(−1)kxk ; |x|< 1, (12)

the moment-generating function (mgf) of MITW distribution can be obtained as

MX (t) =


α

∞
∑
j=0

∞
∑

k=0

k
∑

l=0

(tλ ) jᾱk

j! (k+1)
(k

l

)
(−1)l Γ( j

β +1)

(l+1)
j

β +1
; α < 1,

α
∞
∑
j=0

∞
∑

k=0

∞
∑

l=0

(tλ ) j

j!
(k+1)
ᾱk+2

(k+2
l

) Γ( j
β +1)

(l+1)
j

β +1
; α > 1.

Hence, the rth moment of X becomes

E(X r) =


αλ r

∞
∑
j=0

j
∑

k=0
ᾱ j( j+1)

( j
k

)
(−1)k Γ( r

β +1)

(k+1)
r
β +1 ; α < 1,

αλ r
∞
∑
j=0

∞
∑

k=0

( j+1)
ᾱ j+2

( j+2
k

) Γ( r
β +1)

(k+1)
r
β +1 ; α > 1.
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3.3. Mean residual life and mean waiting time
Suppose that X is a continuous random variable with reliability function R(x), the mean residual

life is the expected additional lifetime given that a component has survived until time t. The mean
residual life function, say µ(t), is given by

µ(t) =
1

R(t)

E(t)−
t∫

0

x f (x)dx

− t.

The mean residual life of MITW distribution is obtained by using (10), (11) and (12) and is given
by

For α < 1

µ(t) =

{
1− ᾱ

(
1− e−(

t
λ )

β
)}

e−(
t
λ )

β αλ
∞

∑
j=0

j

∑
k=0

ᾱ j( j+1)

(k+1)
1
β +1

(
j
k

)
(−1)k

{
Γ(

1
β
+1)− γ

(( t
λ

)β
(k+1),

1
β
+1

)}
− t.

For α > 1

µ(t) =

{
1− ᾱ

(
1− e−(

t
λ )

β
)}

e−(
t
λ )

β αλ
∞

∑
j=0

∞

∑
k=0

( j+1)
( j+2

k

)
ᾱ j+2(k+1)

1
β +1{

Γ(
1
β
+1)− γ

(( t
λ

)β
(k+1),

1
β
+1

)}
− t,

where γ(a,b) =
a∫
0

xb−1e−xdx is the lower incomplete gamma function.

The mean waiting time represents the waiting time elapsed since the failure of an object on
condition that this failure had occurred in the interval [0, t]. The mean waiting time of X , say µ̄(t), is
defined by

µ̄(t) = t − 1
F(t)

t∫
0

x f (x)dx.

For α < 1,

µ̄(t) =t −

{
1− ᾱ

(
1− e−(

t
λ )

β
)}

1− e−(
t
λ )

β λ
∞

∑
j=0

j

∑
k=0

ᾱ j( j+1)

(k+1)
1
β +1

(
j
k

)
(−1)k

γ
(( t

λ

)β
(k+1),

1
β
+1

)
.

For α > 1,

µ̄(t) =t −

{
1− ᾱ

(
1− e−(

t
λ )

β
)}

1− e−(
t
λ )

β λ
∞

∑
j=0

∞

∑
k=0

( j+1)
( j+2

k

)
ᾱ j+2(k+1)

1
β +1

γ
(( t

λ

)β
(k+1),

1
β
+1

)
.
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3.4. Rnyi entropy
The entropy of a random variable measures the variation of the uncertainty. A large value of

entropy indicates the greater uncertainty in the data. The Rnyi entropy, sayREX (u) is defined as

REX (u) =
1

1−u
log

 ∞∫
−∞

f (x)udx

 ; u > 0, u ̸= 1.

The Rnyi entropy of MITW distribution is obtained by using (10), (11) and (12) and is given by

For α < 1

REX (u) =
u

1−u
log(α)− log(

β
λ
)

+
1

1−u
log

 ∞

∑
j=0

j

∑
k=0

ᾱ j
(

2u
j

)(
j
k

)
(−1)k

Γ(u− (u−1)
β )

(u+ k)(u−
(u−1)

β )

 .

For α > 1

REX (u) =
u

1−u
log(α)− log(

β
λ
)

+
1

1−u
log

 ∞

∑
j=0

∞

∑
k=0

(2u
j

)( j+2u
k

)
ᾱ j+2u

Γ(u− (u−1)
β )

(u+ k)(u−
(u−1)

β )

 .

3.5. Order statistics
Let X1,X2, ...,Xn be a random sample of size n, and let Xr:n denote the rth order statistic, then,

the pdf of Xr:n, say fr:n(x) is given by

fr:n(x) =
n!

(r−1)!(n− r)!
F(x)r−1 f (x)(1−F(x))n−r.

We can write fr:n(x) as

fr:n(x) =
αr β

λ
B(r,n− r+1)

( x
λ

)β−1

(
1− e−(

x
λ )

β
)r−1

e−(
x
λ )

β (n−r+1)

(
1− ᾱ(1− e−(

x
λ )

β
)

)n+1 ,

where B(a,b) is the beta function.

3.6. Stress strength reliability
Suppose X1 and X2 be independent strength and stress random variables respectively, where

X1 ∼ MITW (α1,λ1,β ) and X2 ∼ MITW (α2,λ2,β ), then the stress strength reliability P(X1 > X2),
say SSR, is defined as

SSR =

∞∫
−∞

f1(x)F2(x)dx.

The stress strength reliability SSR, is obtained by using (5), (6), (10), (11) and (12) and is given by

SSR =


α1α2λ2

λ β−1
1

∞
∑
j=0

∞
∑

k=0

j
∑

l=0

k+1
∑

m=0
( j+1)

( j
l

)
(−1)l+m (k+1)α j

1αk
2

m(mλ1+(l+1)λ2)
; α1 < 1, α2 < 1

α1α2λ2

ᾱ1
2(α2−1)λ β−1

1

∞
∑
j=0

∞
∑

k=0

∞
∑

l=0

∞
∑

m=0

( j+2
l

)(k
m

) j+1
ᾱ1

jᾱ2
k(mλ1+(l+1)λ2)

; α1 > 1, α2 > 1.
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4. Statistical Inference
4.1. Maximum likelihood estimators

Let x1,x2, ...,xn be a random sample from MITW distribution, then the logarithm of the likeli-
hood function becomes

l = nlogα +nlogβ −nβ logλ +(β −1)
n

∑
i=1

log(xi)−

n
∑

i=1
xβ

i

λ β −2
n

∑
i=1

log
(

1− ᾱ
(

1− e−(
xi
λ )β

))
. (13)

The MLEs of α , λ and β are obtained by partially differentiating (13) with respect to the corre-
sponding parameters and equating to zero we have

∂ l
∂α

=
n
α
−2

n

∑
i=1

 (1− e−(
xi
λ )β

)

1− ᾱ
(

1− e−(
xi
λ )β

)
= 0

∂ l
∂λ

=− nβ
λ

+β

n
∑

i=1
xβ

i

λ β+1 +2
ᾱβ

λ β+1

n

∑
i=1

 xβ
i e−(

xi
λ )β

1− ᾱ
(

1− e−(
xi
λ )β

)
= 0

∂ l
∂β

=
n
β
−nlogλ +

n

∑
i=1

logxi −
β

λ β

n

∑
i=1

xβ−1
i +

logλ
λ β

n

∑
i=1

xβ
i +2

n

∑
i=1

 ᾱβ ( xi
λ )

β−1e−(
xi
λ )β

1− ᾱ
(

1− e−(
xi
λ )β

)
= 0.

Since the normal equations are complex in nature and are solved by R software.

4.2. Simulation study

Table 2 Average values of MLEs and the corresponding MSEs (n = 50)

Parameter MLE MSE

λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 1.5 1.05747 0.75566 1.56545 0.10484 0.78746 0.09050
3 0.98845 0.67483 3.04906 0.03264 0.44393 0.40167
5 0.96303 0.55106 4.78708 0.01358 0.20574 1.04465

1.5 1.5 0.99033 1.70767 1.49440 0.05723 1.49425 0.03295
3 0.99146 1.74764 3.01389 0.01914 1.17414 0.16121
5 1.00293 1.78810 5.07979 0.00390 0.93316 0.36411

3 1.5 0.98824 3.18791 1.48676 0.05300 3.31959 0.02204
3 0.99084 3.28670 2.97711 0.01503 3.54019 0.10937
5 0.99197 3.33680 4.91370 0.01241 3.64137 0.11320

2 0.5 1.5 2.00867 0.65565 1.49673 0.50871 0.27872 0.10405
3 1.98480 0.67958 3.00840 0.11882 0.40014 0.35086
5 2.01576 0.74818 5.15706 0.04045 0.46083 0.88584

1.5 1.5 1.96822 1.69830 1.47213 0.30443 1.78864 0.04046
3 1.97723 1.72749 2.97728 0.07864 0.94075 0.16896
5 1.98308 1.63773 4.95950 0.01788 1.02682 0.31782

3 1.5 2.05793 3.27554 1.51815 0.22557 3.84219 0.02552
3 1.94835 3.18430 2.98372 0.08831 3.10406 0.15714
5 1.96153 3.09219 4.94148 0.02398 3.18379 0.29821
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Table 3 Average values of MLEs and the corresponding MSEs (n = 100)

Parameter MLE MSE

λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 1.5 1.00902 0.58267 1.51253 0.05540 0.09670 0.04514
3 1.00192 0.59944 3.03499 0.01377 0.12031 0.18619
5 1.01386 0.65760 5.21095 0.00477 0.12943 0.50492

1.5 1.5 0.99723 1.61885 1.49753 0.03470 0.75210 0.02021
3 0.99210 1.58804 2.99378 0.00885 0.50492 0.09625
5 1.00127 1.54214 4.98210 0.00151 0.39571 0.12154

3 1.5 1.02508 3.15421 1.50571 0.03497 2.73379 0.01438
3 0.99922 3.18673 2.99201 0.00762 2.97769 0.04753
5 1.00254 3.21548 5.01278 0.00421 2.98912 0.04523

2 0.5 1.5 2.08277 0.62822 1.53828 0.24562 0.13707 0.05472
3 2.01662 0.54063 2.98488 0.06391 0.09677 0.19660
5 1.97359 0.56653 4.98672 0.03361 0.13124 0.66129

1.5 1.5 2.01562 1.63873 1.49667 0.12487 0.55183 0.02047
3 1.98943 1.61163 2.99938 0.02895 0.60416 0.08303
5 1.99889 1.72353 5.05222 0.02150 0.55681 0.26121

3 1.5 1.95387 3.04062 1.48687 0.11099 1.58212 0.01051
3 1.99222 3.12137 3.00127 0.03531 2.05399 0.05250
5 2.00254 3.27214 5.00246 0.01043 2.18099 0.15539

The simulation study has been performed using R Software to show the behaviour of the MLEs
in terms of the sample size n. Two sets of sample (n = 50,n = 100) each replicated 100 times with
different values of parameters λ = (1,2), α = (0.5,1.5,3) and β = (1.5,3,5) were generated from
MITW. In each setting, the average values of MLEs and the corresponding empirical mean squared
errors (MSEs) were obtained. The simulation results are presented in Table 2 and Table 3. From
Tables 2 and 3, it can be seen that the estimates are stable and quite close to the true parameter values.
As the sample size increases the MSE decreases in all the cases.

5. Applications
In this section, we analyse two data sets to describe the significance and flexibility of the MITW

distribution. The data set one corresponds to intervals in days between 109 successive coal-mining
disasters in Great Britain, for the period 1875-1951, reported by Nassar et al. (2017), originally
published by Maguire et al. (1952). The sorted data are given as follows:
1, 4, 4, 7, 11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50, 54, 54,
55, 59, 59, 61, 61, 66, 72, 72, 75, 78, 78, 81, 93, 96, 99, 108, 113, 114, 120, 120, 120, 123, 124, 129,
131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224, 228, 233,
255, 271, 275, 275, 275, 286, 291, 312, 312, 312, 315, 326, 326, 329, 330, 336, 338, 345, 348, 354,
361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 1312, 1357, 1613, 1630.

The data set second reported by Nassar et al. (2017), originally published by Smith and Naylor
(1987), corresponding to strengths of 1.5 cm glass fibers, measured at the National Physical Labora-
tory, England. The data are as follows:
0.55, 0.93,1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49,
1.53,1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66,
1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24,
1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.
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Figure 3 (i) The relative histogram and the fitted MITW distribution (ii) The fitted MITW reliability
function and empirical reliability function for first data set
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Figure 4 (i) The relative histogram and the fitted MITW distribution (ii) The fitted MITW reliability
function and empirical reliability function for second data set

We compare the fit of the proposed MITW with several other models, namely McDonald Weibull
(Mc-W) Cordeiro et al. (2014), beta Weibull (BW) Lee et al. (2007), modified Weibull (MW) Sarhan
and Zaindin (2009), gamma Lomax (GL) Cordeiro et al. (2015), ZografosBalakrishnan log-logistic
(ZBLL) Zografos and Balakrishnan (2009), Inverse Weibull (IW) Johnson et al. (1995).

From Table 4, Table 5, Table 6 and Table 7, it is evident that MITW distribution has lowest
−2l(θ̂), AIC, AICC, BIC, K-S values and highest p-value among all the other competitive models.
Hence the proposed model yields the better fit than the other models for both data sets.
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Figure 5 Q-Q plot for the MITW distribution for data set 1 and data set 2, respectively
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Figure 6 P-P plot for the MITW distribution for data set 1 and data set 2, respectively

The relative histogram and the fitted MITW distribution of the data set first and second are shown
in Figures 3(i) and 4(i), respectively. The plots of the fitted MITW reliability function and empirical
reliability function of the data set first and second are shown in Figures 3(ii) and 4(ii), respectively.
The Q-Q plots for data set first and second are shown in Figure 5(i) and 5(ii) respectively. Also,
The P-P plots for data set first and second are shown in Figure 6(i) and 6(ii) respectively that allows
us to differentiate between the empirical distribution of the data with the MITW distribution. These
graphical goodness of fit measures clearly support the results in Tables 4, Table 5, Table 6 and Table 7.



14 Thailand Statistician, 2024; 22(1): 1-16

Table 4 MLEs (standard errors in parentheses), K-S Statistic, and p-values for the first data set

Model Estimates Statistics

α̂ β̂ λ̂ b̂ k̂ K-S p-value

Mc-W 21.73374 0.05625 2.26312 20.26463 12.35624 0.07905 0.50359
(19.74300) (0.01956) (0.99590) (17.73100) (13.06030)

BW 6.26933 0.52681 0.25154 0.18992 - 0.08634 0.39084
(3.41100) (0.09100) (0.19300) (0.11700)

MW 0.00429 0.34131 0.00004 - - 0.07827 0.51645
(0.00047) (5.95200) (0.01100)

GL 7.41676 1.85007 2.24237 - - 0.11726 0.09984
(2.27150) (0.10700) (1.73700)

ZBLL 1.53280 1.19260 58.29380 - - 0.09001 0.34030
(0.09952) (0.09100) (0.82900)

IW - 0.64027 57.89748 - - 0.14526 0.02010
(0.04065) (9.21448)

MITW 0.00846 0.28979 0.64399 - - 0.05833 0.85210
(0.00628) (0.04578) (0.87546)

Table 5 −2l(θ̂), AIC, AICC, BIC for the first data set

Model −2l(θ̂) AIC AICC BIC

Mc-W 1410.7460 1420.7460 1421.3285 1434.2027

BW 1410.4217 1418.4217 1418.8063 1429.1871

MW 1406.6267 1412.6267 1412.8553 1420.7007

GL 1433.4712 1439.4712 1439.6998 1447.5452

ZBLL 1443.6280 1449.6280 1449.8566 1457.7020

IW 1452.6029 1456.6029 1456.7161 1461.9856

MITW 1404.2839 1410.2839 1410.5125 1418.3580

6. Conclusion
A new family of distributions has been introduced based on the idea of Marshall and Olkin trans-

formation introduced by Marshall and Olkin (1997). MIT method has been specialized on the two
parameter Weibull distribution and a new three parameter MITW distribution has been introduced.
We have discussed various properties of MITW distribution. It is observed that the three-parameter
MITW distribution has more flexibility in the form of hazard and density functions. The effectiveness
of the proposed model is compared with other existing models by using goodness of fit measures. The
model has been fitted to two different data sets, the figures show that the proposed model provides
better fit for both data sets in comparison to all other competitive models.
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Table 6 MLEs (standard errors in parentheses), K-S Statistic, and p-values for the second data set

Model Estimates Statistics

α̂ β̂ λ̂ b̂ k̂ K-S p-value

Mc-W 0.38232 5.13668 0.02828 5.54804 2.48502 0.12955 0.24088
(0.37740) (4.62500) (0.06990) (22.94500) (2.73760)

BW 0.63515 7.61488 0.51284 2.31224 - 0.12977 0.23921
(0.26217) (2.07370) (0.20970) (6.65120)

MW 0.03108 6.38083 0.04071 - - 0.11725 0.35187
(0.04375) (0.97580) (0.02495)

GL 18.96058 128.71263 9.47211 - - 0.20380 0.01067
(3.9454) (89.38365) (7.98425)

ZBLL 1.64144 6.26230 1.28259 - - 0.16794 0.05723
(0.13178) (0.63220) (0.00390)

IW - 2.88755 1.26434 - - 0.24443 0.00107
(0.23443) (0.05885)

MITW 0.06040 3.20558 1.12147 - - 0.10002 0.55410
(0.07440) (0.93824) (0.24436)

Table 7 −2l(θ̂), AIC, AICC, BIC for the second data set

Model −2l(θ̂) AIC AICC BIC

Mc-W 28.6496 38.6496 39.7022 49.3653

BW 29.2396 37.2396 37.9293 45.8121

MW 29.7893 35.7893 36.1961 42.2187

GL 49.7569 55.7569 56.1637 62.1863

ZBLL 74.3721 80.3721 80.7789 86.8015

IW 93.7066 97.7066 97.9066 101.9929

MITW 24.0672 30.0672 30.4740 36.4966

Appendix

The ”R” code which is used to obtain the maximum likelihood estimates of the parameters.
Here ”a” is used for alpha, ”b” is used for beta and ”l” is used for lambda.
rm(list=ls(all=TRUE))
data=c(1, 4, 4, 7, 11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50,
54, 54, 55, 59, 59, 61, 61, 66, 72, 72, 75, 78, 78, 81, 93, 96, 99, 108, 113, 114, 120, 120, 120, 123,
124, 129, 131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224,
228, 233, 255, 271, 275,275, 275, 286, 291, 312, 312, 312, 315, 326, 326, 329, 330, 336, 338, 345,
348, 354, 361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 1312, 1357, 1613, 1630)
hist(data , prob = T,col = 3, angle = c(45), density = 20, main = ”Fig. 1.1: MITW Model Fitting”,
cex.main = 1)
mean(data)
length(data)
library(MASS)
MITW = function(x, a , b , l) ((a * (b/l)* (x/l)**(b-1)) * exp(- (x/l)**b)) / (1-(1-a)*(1-exp(-(x/l)**b)))**2
mle = fitdistr(x =data,densfun = MITW,start = list(a=.02,b=.4,l=1.5),lower=c(0.001,0.001,0.001),upper=c(Inf,Inf,Inf))
mle
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