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Abstract
Simple and flexible lifetime distributions are appreciated by practitioners in all applied fields.

They allow the construction of fairly manageable statistical models. In this article, a new simple
lifetime distribution involving two parameters is proposed. It is based on a simple modification
of the construction of the so-called weighted exponential distribution, by replacing the exponential
distribution with the Erlang distribution. This choice is motivated by solid mathematical and physical
interpretations. The new distribution is naturally named the new two-parameter weighted distribution.
In the first part, we present the main mathematical properties of this distribution, with an emphasis
on the flexibility of the probabilistic functions, the closed forms of various moments, and the analysis
of the skewness and kurtosis coefficients. The remaining part is devoted to the associated model,
showing how it can be applied in a real statistical scenario dealing with data. In this regard, four
data sets are considered, two complete and two censored data sets; one on the survival times of
guinea pigs injected with a certain bacteria, one on the COVID-19 daily death rate in Israel, one on
censored data about survival times of patients infected with HIV, and one on censored data about
remission times for leukemia patients treated with a special drug. The performance of the new model
is compared with that of the weighted exponential, two-parameter weighted exponential and extended
weighted exponential models. The obtained comparison results are quite favorable to the proposed
methodology.

Keywords: Lifetime distributions, Azzalini technique, moments, maximum likelihood estimation,
applications

1. Introduction
The weighted exponential (WE) distribution introduced by Gupta and Kundu (2009) is a flexible

two-parameter lifetime distribution that finds numerous applications in reliability, finance, economet-
rics, engineering, and biology. Concerning the main point of interest, it provides a genuine alternative
to the Weibull and gamma distributions; it is more pliant on certain functional and probabilistic as-
pects, as detailed in (Gupta and Kundu, 2009, Table 2). From the mathematical point of view, the
construction of the WE distribution is based on the Azzalini technique [see Azzalini (1985)] ap-
plied to the exponential distribution. It was further generalized and extended by the two-parameter
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weighted exponential (TWE) distribution by Shakhatreh (2012), generalized weighted exponential
(GWE) distribution by Kharazmi et al. (2015), new weighted exponential (NWE) distribution by
Kharazmi and Jabbari (2017) and the (three-parameter) extended weighted exponential (EWE) dis-
tribution by Mahdavi and Jabbari (2017). All these distributions have demonstrated a high ability for
several statistical purposes, and in data fitting in particular.

In this paper, inspired by the construction of the WE and EWE distributions, we introduce a
new two-parameter weighted exponential distribution defined by the following probability density
function (pdf):

f (x;α,β ) =
α(β +1)2

β 2 exp(−αx) [1− (1+αβx)exp(−αβx)] , x > 0. (1)

As with any lifetime distribution, we set f (x;α,β ) = 0 for x ≤ 0. This distribution is named the
new two-parameter weighted exponential (NTWE) distribution. Some motivational facts behind its
construction are discussed below. To begin, the NTWE distribution comes from the Azzalini tech-
nique under a special configuration involving the Erlang distribution. More precisely, we can express
f (x;α,β ) as

f (x;α,β ) =
1

P(V ≤ βU)
g1(x;α)G2(βx;α),

where g1(x;α) =α exp(−αx) for x > 0 and g1(x;α) = 0 for x ≤ 0, which is the pdf of the exponential
distribution with parameter α , G2(y;α)= 1−(1+αy)exp(−αy) for y> 0 and G2(y;α)= 0 for y≤ 0,
which is the cdf of the Erlang distribution with parameters 2 and α [also known under the name of
length-biased exponential distribution, see Dara and Ahmad (2012)], U and V are two independent
random variables, U following the exponential distribution with parameter α , and V following the
Erlang distribution with parameters 2 and α . Thus, in comparison to the construction of the WE and
EWE distributions, the Erlang distribution takes the place of the former exponential distribution and
the extended exponential distribution, respectively. Consequently, the WE distribution is not a special
case of the NTWE distribution. In addition, as noticed in (Gupta and Kundu, 2009, Interpretation 4),
the WE distribution is a sub-case of the beta exponential distribution introduced by Jones (2004),
whereas the NTWE distribution is not (due to the polynomial term in the pdf). Thus, there is no
immediate connection between the EWE and NTWE distributions, making them complementary in
the modeling sense.

The above remarks are encouraging for a more in-depth study of the NTWE distribution, which
is the scope of this paper. We begin by giving important and attractive mathematical interpretations
of the NTWE distribution. Then, we examine its main mathematical characteristics. Specifically, we
analyze the possible shapes of f (x;α,β ), as well as those of the corresponding hazard rate function
(hrf). We show that the pdf is exclusively unimodal with a varying tail weight, and that the hrf
increases with concave or convex features. They are revealed to be sufficiently pliant to produce a
competitor model to the EWE and WE models. Theoretical results and graphics support this claim.
Also, we highlight the moment properties of the NTWE distribution, illustrated by a numerical study.
After these mathematical developments, the NTWE model is the subject of a complete statistical
study. We apply the maximum likelihood method to estimate the parameters α and β . The NTWE
model is then used to fit two complete data sets and two censored data sets. We show that it is
competitive in this regard, with the TWE, EWE, and WE models in particular achieving higher results
in terms of reference statistical criteria.

We structure the rest of the paper as follows. More mathematical interpretations of the NTWE
distribution are given in Section 2. Section 3 highlights its modeling capabilities by conducting a
functional analysis. Its mathematical properties are developed in Section 4. The two other sections
emphasize the NTWE model: Section 5 investigates the estimation of the model parameters, and
Section 6 provides applications to real data sets. Some concluding notes are given in Section 7.
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2. Mathematical Interpretations
Following the spirit of (Gupta and Kundu, 2009, Section 2), some mathematical interpretations

on the NTWE distribution are presented below.

• After some algebra, we can express f (x;α,β ) as the convolution product:

f (x;α,β ) =
∫ +∞

−∞
g1(x− t;α)g2(t;α(β +1))dt, (2)

where g1(t;α) = α exp(−αt) for t > 0 and g1(t;α) = 0 for t ≤ 0, which is the pdf of the
exponential distribution with parameter α , and g2(t;α(β + 1)) = α2(β + 1)2t exp(−α(β +
1)t) for t > 0 and g2(t;α(β + 1)) = 0 for t ≤ 0, which is the pdf of the Erlang distribution
with parameters 2 and α(β + 1). In other words, the NTWE distribution corresponds to the
distribution of

X =U +W,

where U and W are independent random variables, U follows the exponential distribution with
parameter α , and W follows the Erlang distribution with parameters 2 and α(β +1).

– Because the exponential and Erlang distributions are well-known, a number of features
of the NTWE distribution would be accessible.

– In the distribution sense, we can write W as W = Y +Z, where Y and Z are two indepen-
dent random variables which follow the exponential distribution with parameter α(β +1).
As a result, we have X =U +W =U +Y +Z ≥ T , where T =U +Y is a random variable
which follow the WE distribution. This inequality implies that the NTWE distribution
first order stochastically dominates the WE distribution, showing an interesting hierarchy
between them on this stochastic aspect.

– Values from the exponential and Erlang distributions can be generated via standard com-
puter programs. From them and the sum representation, we easily generate values from
the NTWE distribution. This can be useful for diverse computational investigations.

• As another remark, for x > 0, we can express f (x;α,β ) as the following three-term linear
combination:

f (x;α,β ) =
(β +1)2

β 2 f1(x;α)− β +1
β 2 f2(x;α,β )− 1

β
f3(x;α,β ), (3)

where f1(x;α) = α exp(−αx), which is the pdf of the exponential distribution with parameter
α , f2(x;α,β ) = α(β + 1)exp(−α(β + 1)x), which is the pdf of the exponential distribution
with parameter α(β +1), and f3(x;α,β ) = α2(β +1)2xexp(−α(β +1)x) which is the pdf of
the Erlang distribution with parameters 2 and α(β + 1). Since (β + 1)2/β 2 − (β + 1)/β 2 −
1/β = 1, the NTWE distribution is a generalized mixture of the three above mentioned distri-
butions. Again, we can use this manageable mixture to deduce some properties of the NTWE
distribution.

• Finally, the NTWE distribution belongs to the family of the hidden truncation distributions as
developed by Arnold and Beaver (2000). Indeed, let Y and Z be two random variables such
that (Y,Z) has the following joint pdf:

f (y,z;α) = α3y2zexp(−αy(z+1)), y,z > 0,

and f (y,z;α) = 0 otherwise. Then, the conditional random variable Y | {Z ≤ β} follows the
NTWE distribution.

All of these interpretations illustrate that the NTWE distribution is mathematically approachable and
offers a distinct alternative to the WE distribution. When we see the impact of the WE distribution in
Statistics, we are motivated to do a more in-depth analysis of the NTWE distribution, hoping for the
same outcome for it.
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3. Functional Analysis
We recall that the pdf of the NTWE distribution is determined in Eqn. (1). We now study this pdf

analytically to identify its main functional properties. At the limit points, the following equivalence
and limit results hold. When x tends to 0, we have f (x;α,β )∼α3(β +1)2x2/2→ 0, and when x tends
to +∞, we have f (x;α,β )∼ [α(β +1)2/β 2]exp(−αx)→ 0. For this last case, the exponential term
is dominant in the convergence, and the parameter β plays a major role in the decay rate, compared
to α .

In order to complete the previous asymptotic study, let us investigate the possible mode(s) of the
NTWE distribution, given as the point(s) x making f (x;α,β ) maximal. Since limx→0 or x→+∞ f (x;α,β )=
0 with f (x;α,β ) > 0, we already know that f (x;α,β ) is “at least” unimodal. More information is
given in the next proposition.

Proposition 1 The NTWE distribution is unimodal, with a mode given as

xo =− 1
αβ

[
1

β +1
+W

(
− 1

β +1
exp

(
− 1

β +1

))]
, (4)

where W (x) denotes the Lambert function.

Proof. After some simplification, the derivative of f (x;α,β ) with respect to x is given as a main tool
by

d
dx

f (x;α,β ) =
α2(β +1)2

β 2 exp(−α(β +1)x) [αβ (β +1)x− exp(αβx)+1] .

Therefore, a critical point for f (x;α,β ) is a solution of the following equation: αβ (β + 1)x −
exp(αβx)+1 = 0. For x > 0, owing to (Jodrá, 2010, Lemma 1), the unique positive solution is given
by Eqn. (4), and it is a maximum point since limx→0 f (x;α,β ) = 0 with f (x;α,β ) > 0. Thus, x0 is
the unique mode of the NTWE distribution, making it unimodal. This ends the proof of Proposition
1.

As a precision, we can mention that the negative branch of the Lambert function is considered
in the definition of x0 in Eqn. (4); it is more mathematically correct to adopt the notation: W (x) =
W−1(x).

For a direct graphical illustration, Figure 1 shows some plots of f (x;α,β ) for selected values of
α and β .
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Figure 1 Illustrations of the pdf of the NTWE distribution for various values of α and β .

From Figure 1, we can see that the pdf has great mode-shape flexibility, and it can be “almost
symmetric” and ”right skewed”. Diverse degrees of platedness are also observed.
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By integrating f (t;α,β ) for t ∈ (0,x) with x > 0, the cdf of the NTWE distribution is given as

F(x;α,β ) = 1− 1
β 2 exp(−α(β +1)x)

[
exp(αβx)(β +1)2 −αβ (β +1)x−2β −1

]
, x > 0.

We naturally take F(x;α,β ) = 0 for x ≤ 0.
The hrf is specified by h(x;α,β ) = f (x;α,β )/[1−F(x;α,β )], wich yields

h(x;α,β ) = α(β +1)2 exp(αβx)− (1+αβx)
exp(αβx)(β +1)2 −αβ (β +1)x−2β −1

, x > 0

and h(x;α,β ) = 0 for x ≤ 0.
A functional study of this hrf is now being conducted. The following equivalence and limit

results hold at the limit points. When x tends to 0, we have h(x;α,β ) ∼ α3(β + 1)2x2/2 → 0, and
when x tends to +∞, we have h(x;α,β ) ∼ α . So, for large values of x, a constant shape at y = α is
expected. The following result is about an important monotonicity property of this hrf.

Proposition 2 The hrf of the NTWE distribution is increasing; the increasing failure rate property is
satisfied.

Proof. After non-trivial developments, the derivative of h(x;α,β ) with respect to x can be expressed
as

d
dx

h(x;α,β ) = α2β 2(β +1)2 exp(αβx) [αβ (β +1)x+ exp(−αβx)−1]

[exp(αβx)(β +1)2 −αβ (β +1)x−2β −1]2
.

By virtue of the following exponential inequality: exp(y)≥ 1+ y for y ∈ R, for x > 0, we get

αβ (β +1)x+ exp(−αβx)−1 ≥ αβ (β +1)x−αβx = αβ 2x > 0.

Therefore, dh(x;α,β )/dx > 0, implying that h(x;α,β ) is an increasing function in x, with a mini-
mum attains when x tends to 0, and a maximum attains when x → +∞. This concludes the proof of
Proposition 2.

In Figure 2, we plot the hrf of the NTWE distribution for selected values of α and β .
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Figure 2 Illustrations of the hrf of the NTWE distribution for various values of α and β
.

From Figure 2, we have visual confirmation that the hrf is increasing. As for new facts of
importance, convex or concave shapes are observed.
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The previous investigations show that the NTWE distribution has a wide range of possible ap-
plications in lifetime modeling. This is especially true when it comes to portraying wear-out or aging
phenomena over time. The research continues with a moment analysis in the next part.

4. Moment Analysis
A moment analysis on the NTWE distribution is now conducted. The standard moments are the

subject of the next result.

Proposition 3 Let s be a positive integer, and X be a random variable following the NTWE distribu-
tion, with the pdf specified by Eqn. (1). Then, the sth standard moment of X is given as

ms = E(X s) =
s!
αs

1
β 2(β +1)s

(
(β +1)s+2 − (β +1)−β (s+1)

)
.

Here, E refers to the expecation operator.

Proof. For this result, we propose two different proofs based on two interpretations discussed in
Section 2.

• Proof 1. In the distribution sense, based on Eqn. (2), we can write X = U +W , where U and
W are independent random variables, U following the exponential distribution with parameter
α , and W following the Erlang distribution distribution with parameters 2 and α(β +1).

As a first result, the sth standard moment of X is obtained using the standard binomial formula
and the well-known standard moments of the exponential and Erlang distributions. Precisely,
we have

ms = E((U +W )s) =
s

∑
k=0

(
s
k

)
E(U s−k)E(W k) =

s

∑
k=0

(
s
k

)
(s− k)!

αs−k
(k+1)!

αk(β +1)k

=
s!
αs

s

∑
k=0

(k+1)(β +1)−k =
s!
αs

1
β 2(β +1)s

(
(β +1)s+2 − (β +1)−β (s+1)

)
.

• Proof 2. A more direct but more calculated approach is based on the mixture representation
given as Eqn. (3). Precisely, we have

ms =
∫ +∞

−∞
xs f (x;α,β )dx

=
(β +1)2

β 2

∫ +∞

0
xs f1(x;α)dx− β +1

β 2

∫ +∞

0
xs f2(x;α,β )dx− 1

β

∫ +∞

0
xs f3(x;α,β )dx

=
(β +1)2

β 2
s!
αs −

β +1
β 2

s!
αs(β +1)s −

1
β

(s+1)!
αs(β +1)s

=
s!
αs

1
β 2(β +1)s

(
(β +1)s+2 − (β +1)−β (s+1)

)
.

In each proof, the stated result is obtained, concluding the proof of Proposition 3.

Hereafter, for further moment analysis, X is a random variable following the NTWE distribution.
From Proposition 3, we deduce the mean and variance of X are

m = m1 =
β +3

α(β +1)
and σ2 = m2 −m2 =

β 2 +2β +3
α2(β +1)2 , respectively.
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The standard binomial formula and Proposition 3 yield the sth central moment of X . Indeed, we
have

m∗
s = E((X −m)s) =

s

∑
k=0

(
s
k

)
(−1)s−kms−kmk

=
1

β 2
(−1)ss!(β +3)s

αs(β +1)s

s

∑
k=0

1
(s− k)!

(−1)k(β +3)−k
(
(β +1)k+2 − (β +1)−β (k+1)

)
.

Thus, m∗
s is simply calculable as a finite sum of coefficients. The skewness coefficient of X is derived

as S = m∗
3/σ3 and the kurtosis coefficient of X is derived as K = m∗

4/σ4. Traditionally, the sign of S
indicates the direction ”left-symmetric-right” of the skewness, whereas the comparison of K with the
value 3 indicates the nature of the kurtosis of the distribution ”platykurtic-mesokurtic-leptokurtic”

Table 1 indicates numerical values for the quantities above, i.e., m, σ2, m∗
3, m∗

4, S and K, for
selected values of α and β . In some senses, Table 1 confirms what we have observed in Figure 1; For

Table 1 Numerical values of m, σ2, m∗
3, m∗

4, S and K for various values of α and β

Parameter m σ2 m∗
3 m∗

4 S K

α = 0.5, β = 3 3.0000 4.5000 16.5000 157.5000 1.7285 7.7778

α = 1.6, β = 2 1.0417 0.4774 0.5245 1.6219 1.5898 7.1157

α = 3.65, β = 0.01 0.8165 0.2222 0.1209 0.2469 1.1547 5.0002

α = 30, β = 10 0.0394 0.0012 0.0000 0.0000 1.9543 8.8072

α = 3.5, β = 10 0.3377 0.0829 0.0467 0.0606 1.9543 8.8072

α = 1, β = 1 2.0000 1.5000 2.5000 13.5000 1.3608 6.0000

α = 3.4901, β = 10 0.5730 0.1231 0.0588 0.0909 1.3608 6.0000

α = 3.6, β = 0.05 0.8069 0.2171 0.1169 0.2359 1.1556 5.0043

α = 5, β = 1 0.4000 0.0600 0.0200 0.0216 1.3608 6.0000

the considered values, it is clear that S > 0 and K > 3 meaning that the NTWE distribution is right
skewed and leptokurtic.

The next finding is about the incomplete moments of the NTWE distribution.

Proposition 4 Let s be a positive integer, X be a random variable following the NTWE distribution,
y > 0 be a certain threshold variable, and I(X ≤ y) be a binary random variable such that I(X ≤ y) = 1
if {X ≤ y} is realized, and I(X ≤ y) = 0 otherwise. Then, the sth incomplete moment of X is given as

ms(y) = E(X sI(X ≤ y)) =
(β +1)2

β 2
1

αs γ(s+1,αy)− β +1
β 2

1
αs(β +1)s γ(s+1,α(β +1)y)

− 1
β

1
αs(β +1)s γ(s+2,α(β +1)y),

where γ(a,b) denotes the lower incomplete gamma function: γ(a,x) =
∫ x

0 ta−1 exp(−t)dt for x > 0.
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Proof. Thanks to the mixture representation in Eqn. (3) and some integral developments, we get

ms(y) =
∫ y

−∞
xs f (x;α,β )dx

=
(β +1)2

β 2

∫ y

0
xs f1(x;α)dx− β +1

β 2

∫ y

0
xs f2(x;α,β )dx− 1

β

∫ y

0
xs f3(x;α,β )dx

=
(β +1)2

β 2
1

αs γ(s+1,αy)− β +1
β 2

1
αs(β +1)s γ(s+1,α(β +1)y)

− 1
β

1
αs(β +1)s γ(s+2,α(β +1)y).

The stated result is obtained.

In particular, from Proposition 4, the incomplete mean of X is obtained by putting s = 1, and it
is given by

m1(y) =
(β +1)2

β 2
1
α

γ(2,αy)− β +1
β 2

1
α(β +1)

γ(2,α(β +1)y)− 1
β

1
α(β +1)

γ(3,α(β +1)y),

with γ(2,z) = 1− (1+ z)exp(−z) and γ(3,z) = 2− (2+2z+ z2)exp(−z).
In full generality, the incomplete mean naturally appears in the definition of important quantities,

such as the Lorenz and Bonferroni curves. These curves may have applications in insurance, medical
science, demography, economics, and reliability [see Bonferroni (1930) and Zenga (2007)]. In the
context of the NTWE distribution, the Lorenz and Bonferroni curves are defined a given probability
p by L(p) = m1(q)/m and B(p) = L(p)/p, respectively, where q = F−1(p;α,β ) and p ∈ (0,1). We
can investigate it numerically, thanks to the expression of m1(y), and the evaluation of q. Other
residual life functions also depend on the incomplete moment, and can be examined in the setting of
the NTWE distribution.

We now end this moment analysis by presenting the moment generating function of the NTWE
distribution.

Proposition 5 Let X be a random variable following the NTWE distribution. Then,

• for t < α , the moment generating function of X is given as

M(t) =
α3(β +1)2

(α − t)[α(β +1)− t]2
.

• for t ∈ R, the characteristic function of X is given as

φ(t) =
α3(β +1)2

(α − it)[α(β +1)− it]2
.

Proof. Let us prove the two points in turn. Both points using the fact that, in the distribution sense, we
can write X =U +W , where U and W are independent random variables, U following the exponential
distribution with parameter α , and W following the Erlang distribution distribution with parameters
2 and α(β +1).

• For t < α , by using the well-known expressions of the moment generating functions of the
exponential and Erlang distributions, we get

M(t) = E(etX ) = E(etU )E(etW ) =

(
α

α − t

)(
α(β +1)

α(β +1)− t

)2

=
α3(β +1)2

(α − t)[α(β +1)− t]2
.



Christophe Chesneau et al. 25

• Similarly, for t ∈ R, by using the well-known expressions of the characteristic functions of the
exponential and Erlang distributions, we obtain

φ(t) = E(eitX ) = E(eitU )E(eitW ) =
α3(β +1)2

(α − it)[α(β +1)− it]2
.

The proof of Proposition 5 ends.

From Proposition 5, we see that the moment generating and characteristic functions have man-
ageable expressions, which can be of interest for the use of the NTWE distribution in several branches
of applied statistics using such functions, as in time series models (autoregressive (AR) model, . . . ),
queuing theory, and so on.

The rest of the study is about the practical side of the NTWE distribution; the NTWE distribution
is thus turned out to be a statistical model, and estimation techniques are examined to make it suitable
for the fitting of lifetime data of interest.

5. Estimation Method
In the NTWE model, the parameters α and β are now supposed to be unknown. As a result,

they can be approximated using a variety of estimation methods. In this section, we will look at the
maximum likelihood estimation method, which is described in detail in Casella and Berger (1990).
Some basics are recalled below.

To begin, let x1,x2, . . . ,xn represent n observations of a random variable X with the NTWE
distribution. These observations are supposed to be independent of each other and represent possible
data for a lifetime phenoma whose value distribution is in adequation with the NTWE distribution.
Then, from Eqn. (1), the log-likelihood function based on these observations is obtained as

ℓ(x1, . . . ,xn;α,β ) =
n

∑
i=1

log[ f (xi;α,β )] = n logα +2n log(β +1)−2n log(β )−α
n

∑
i=1

xi

+
n

∑
i=1

log [1− (1+αβxi)exp(−αβxi)] .

The maximum likelihood estimates (MLEs) of α and β , say α̂ and β̂ , are obtained by maximizing
the function ℓ(x1, . . . ,xn;α,β ) with respect to α and β . They should ideally satisfy the following
equations: ∂ℓ(x1, . . . ,xn;α,β )/∂α = 0 and ∂ℓ(x1, . . . ,xn;α,β )/∂β = 0, where

∂ℓ(x1, . . . ,xn;α,β )
∂α

=
n
α
−

n

∑
i=1

xi +αβ 2
n

∑
i=1

x2
i exp(−αβxi)

1− (1+αβxi)exp(−αβxi)

and

∂ℓ(x1, . . . ,xn;α,β )
∂β

=
2n

β +1
− 2n

β
+α2β

n

∑
i=1

x2
i exp(−αβxi)

1− (1+αβxi)exp(−αβxi)
.

Clearly, α̂ and β̂ cannot be determined explicitly, but efficient numerical methods exist to allow a
precise numerical evaluation of them. As main asymptotic distribution result, when n is large enough
and under precise but technical regularity hypotheses, the subjacent distribution of the random vec-
tor giving (α̂, β̂ ) can be approximate by the bivariate Gaussian distribution N2

(
(α,β ),J(α̂, β̂ )−1

)
,

where J(α̂, β̂ )−1 denotes the inverse of the following matrix taken at (α,β ) = (α̂, β̂ ):

J(α,β ) =−


∂ 2ℓ(x1, . . . ,xn;α,β )

∂α2
∂ 2ℓ(x1, . . . ,xn;α,β )

∂α∂β
∂ 2ℓ(x1, . . . ,xn;α,β )

∂β∂α
∂ 2ℓ(x1, . . . ,xn;α,β )

∂β 2

 ,
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with

∂ 2ℓ(x1, . . . ,xn;α,β )
∂α2 =− n

α2 −β 2
n

∑
i=1

x2
i ((αβxi −1)exp(αβxi)+1)
(exp(αβxi)− (1+αβxi))2 ,

∂ℓ(x1, . . . ,xn;α,β )
∂β 2 =− 2n

(β +1)2 +
2n
β 2 −α2

n

∑
i=1

x2
i ((αβxi −1)exp(αβxi)+1)
(exp(αβxi)− (1+αβxi))2

and

∂ℓ(x1, . . . ,xn;α,β )
∂α∂β

=−αβ
n

∑
i=1

x2
i ((αβxi −2)exp(αβxi)+αβxi +2)

(exp(αβxi)− (1+αβxi))2 .

On the basis of this asymptotic result, asymptotic confidence intervals for α and β , and likelihood
statistical tests can be established, which remain undeniable advantages of considering the maximum
likelihood method in comparison to other methods. Also, criteria of goodness-of-fit of the NTWE
model with concrete data are simply defined with the estimated log-likelihood function given as
ℓ̂ = ℓ(α̂, β̂ ), such as the Akaike information criterion (AIC), Bayesian information criterion (BIC),
correct Akaike information criterion (AICc), and Hannan-Quinn information criterion (HQIC). These
statistical objects are concretely defined as AIC = 2k−2ℓ̂, BIC = k log(n)−2ℓ̂, AICc = AIC +2k(k+
1)/(n− k−1), and HQIC =−2ℓ̂+2k log(log(n)), where k denotes the number of parameters in the
model under consideration. These definitions can be adapted to other models by substituting their
log-likelihood function and MLEs in the appropriate places. The interpretation of these statistical
objects is simple: When several models are considered, the model with the minimum values of AIC,
BIC, AICc, and HQIC is considered as the best to fit the considered data.

In the (right) censoring scheme, the log-likelihood function must be modified as follows:

ℓ(x1, . . . ,xn;α,β ) =
n

∑
i=1

δi log[ f (xi;α,β )]+
n

∑
i=1

(1−δi) log[1−F(xi;α,β )],

with δi = 1 if uncensored and δi = 0, if censored, and the main theory of the MLEs can be transposed
with a slight adaptation.

6. Applications
In this section, we illustrate the usefulness of the NTWE model. We fit the NTWE model to

four different data sets, two complete and two censored, and compare the results with those of the
fitted WE, TWE and EWE models. The details of these competitor models can be found in Gupta and
Kundu (2009), Shakhatreh (2012) and Mahdavi and Jabbari (2017), respectively. As a main point,
the TWE and EWE models are more complex than the NTWE model in the sense that they have one
more parameter. We will see that the NTWE model can, however, outperform them for the considered
data sets.

Guinea pigs data set Bjerkedal (1960) observed and reported the survival periods (in days) of 72
guinea pigs injected with various levels of tubercles. This constitutes a data set provided below.

{12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60,
60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96,
98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297,
341, 341, 376}
By applying our methodology to this data set, the essential numerical requirements for the four
fits based on the guinea pig data set are listed in Table 2.

The graphs of the estimated pdfs and cdfs of the considered models for the guinea pig data set
are shown in Figure 3.
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Table 2 Estimated parameter values, ℓ̂, AIC, BIC,AICc and HQIC for the guinea pigs data set

Model Estimates −ℓ̂ AIC BIC AICc HQIC

NTWE α̂ = 0.0141, β̂ = 3.9615 391.3671 786.7341 791.2875 786.908 788.5469

WE α̂ = 1.6241, λ̂ = 0.0138 393.5689 791.1379 795.6912 791.3118 792.9505

TWE α̂1 = 2.8464, α̂2 = 2.8464, λ̂ = 0.0141 391.5069 789.0138 795.8438 789.3667 791.7328

EWE α̂ = 3.9035, β̂ = 3.0313, λ̂ = 0.0141 391.3828 788.7657 795.5957 789.1186 791.4846
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Figure 3 Estimated pdfs (left) and cdfs (right) of the fitted models for the guinea pig data set

COVID-19 death data set This data set represents an actual daily death number because of COVID-
19 in Israel in a short period of the summer: {29th july 2021 to 17th august 2021}. This data is
taken from the given website https://www.worldometers.info/coronavirus/country/israel/, which
indicates the daily number of deaths due to COVID-19 in Israel. It is given below.

{4, 3, 4, 4, 10, 8, 8, 6, 7, 19, 7, 17, 12, 16, 17, 7, 11, 46, 19, 17}

Table 3 gives the relevant statistical criteria summaries for the four fits based on COVID-19
death data sets.

Table 3 Estimated parameter values, ℓ̂, AIC, BIC, AICc and HQIC for the COVID-19 death data set

Model Estimates −ℓ̂ AIC BIC AICc HQIC

NTWE α̂ = 0.1223, β̂ = 3.1731 66.0618 136.1237 138.1151 136.8296 136.5124

WE α̂ = 0.9379, λ̂ = 0.1253 66.7164 137.4328 141.9862 138.1387 137.8216

TWE α̂1 = 2.2270, α̂2 = 2.2270, λ̂ = 0.1234 66.0808 138.1616 144.9916 139.6616 138.7447

EWE α̂ = 3.1981, β̂ = 622.6428, λ̂ = 0.1219 66.06211 138.1242 141.1114 139.6242 138.7074

https://www.worldometers.info/coronavirus/country/israel/
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The graphs of the estimated pdfs and cdfs of the evaluated models for the COVID-19 death
data set are shown in Figure 4.
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Figure 4 Estimated pdfs (left) and cdfs (right) of the fitted models for the COVID-19 death data set

Censored HIV data set This data set represents the survival times (in months) of 100 patients in-
fected with HIV, observed and reported by Hosmer and Lemeshow (1999), where the + sign
indicates a right-censored time. It is given below.

{5, 6+, 8, 3, 22, 1+, 7, 9, 3, 12, 2+, 12, 1, 15, 34, 1, 4, 19+, 3+, 2, 2+, 6, 60+, 7+, 60+, 11, 2+,
5, 4+, 1+, 13, 3+, 2+, 1+, 30, 7+, 4+ ,8+, 5+, 10, 2+, 9+, 36, 3+, 9+, 3+, 35, 8+, 1+, 5+ ,11,
56+ ,2+, 3+, 15, 1+, 10, 1+, 7+, 3+ ,3+ ,2+, 32, 3+, 10+, 11 ,3+, 7+, 5+, 31, 5+, 58, 1+, 2+, 1,
3+, 43, 1+, 6+, 53, 14, 4+, 54, 1+, 1+, 8+, 5+, 1+, 1+ ,2+, 7+, 1+, 10, 24+, 7+, 12+, 4+, 57, 1+,
12+}.

The essential numerical criteria for the four fits based on the censored HIV data set are listed
in Table 4.

Table 4 Estimated parameter values, ℓ̂, AIC, BIC, AICc and HQIC for the censored HIV data set

Model Estimates −ℓ̂ AIC BIC AICc HQIC

NTWE α̂ = 0.0351, β̂ = 65.8195 162.1595 328.319 333.5294 328.4427 330.4277

WE α̂ = 15.8139, λ̂ = 0.03714 162.1599 328.3198 333.5302 328.4435 330.4285

TWE α̂1 = 16.5029, α̂2 = 67.0532, λ̂ = 0.0375 162.1321 330.2642 338.0797 330.5116 333.4273

EWE α̂ = 65.7086, β̂ = 33.6869, λ̂ = 0.0351 162.1599 330.3198 338.1353 330.5672 333.4829

Censored leukemia data set This data set represents the remission time (in weeks) for a set of 21
leukemia patients treated with a drug 6-mercaptopurine, observed and reported by Freireich et
al. (1963), where the + sign indicates a right-censored time. It is given below.

{ 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+}.

Table 5 displays the numerical criteria for the four fits based on the censored leukemia data set.
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Table 5 Estimated parameter values, ℓ̂, AIC, BIC, AICc and HQIC for the censored leukemia data set

Model Estimates −ℓ̂ AIC BIC AICc HQIC

NTWE α̂ = 0.0323, β̂ = 14.9627 40.7519 85.5039 87.593 86.1706 85.9573

WE α̂ = 7.4091, λ̂ = 0.0318 41.0916 86.18331 88.2723 86.8499 86.6366

TWE α̂1 = 10.8087, α̂2 = 10.7799, λ̂ = 0.0325 40.7813 87.5626 90.6961 88.89591 88.24264

EWE α̂ = 14.2838, β̂ = 1.9506, λ̂ = 0.0327 40.7625 87.52501 90.6586 88.8583 88.2051

As a result, the MLEs of the parameters for the fitted models, as well as −ℓ̂, AIC, BIC, AICc,
and HQIC, are presented in Tables 2 and 3 for two different complete data sets. Based on the lowest
values of the AIC, BIC, AICc, and HQIC, the NTWE model turns out to be a better model than the
WE, TWE and EWE models. Visual comparisons of the closeness of the estimated pdfs with the
observed histogram of the data and estimated cdfs with empirical cdfs for different complete data sets
are presented in Figures 3 and 4, respectively. These plots indicate that the proposed model provides
a closer fit to these data.

The MLEs of the parameters for the fitted models, as well as −ℓ̂, AIC, BIC, AICc, and HQIC
values, are presented in Tables 4 and 5 for two different censored data sets. Based on the lowest
values of the AIC, BIC, AICc and HQIC, the NTWE model turns out to be a better model than the
WE, TWE and EWE models.

7. Conclusion
In this paper, a new two-parameter lifetime distribution based on the Azzalini technique un-

der a special configuration involving the Erlang distribution, called the new two-parameter weighted
exponential (NTWE) distribution, is proposed. A consequent list of accessible mathematical interpre-
tations is provided. Among other functional properties, we show that the pdf is exclusively unimodal
with a varying tail weight, and that the hrf increases with concave or convex features. In addition, the
pdf can be expressed as a linear combination of the exponential and Erlanf pdfs. Based on this result,
we derive some structural properties of the NTWE distribution and provide the moments, incomplete
moments, skewness, kurtosis, moment generating function and characteristic function. Then, the
NTWE model is examined from the statistical viewpoint. The model parameters are estimated by the
maximum likelihood method. Four different data sets, including two complete and two censored data
sets, are applied to demonstrate that the NTWE model can provide a better fit than some reference
models, namely the weighted exponential (WE) model, two-parameter weighted exponential (TWE)
model and (three-parameter) extended weighted exponential (EWE) model. Future research includes
the construction of extended NTWE models involving one more parameter via weighted or powered
techniques, a NTWE discrete model for the analysis of count data, and a bivariate NTWE model for
the analysis of bivariate data.
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