Thailand Statistician
January 2024; 22(1): 76-101
http://statassoc.or.th
Contributed paper

New Variance Estimators in the Presence of Nonresponse Under
Unequal Probability Sampling, with Application to Fine

Particulate Matter in Thailand

Chugiat Ponkaew [a] and Nuanpan Lawson*[b]

[a] Department of Mathematics and Data Science, Faculty of Science and Technology, Phetchabun
Rajabhat University, Phetchabun, Thailand.

[b] Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of
Technology North Bangkok, Bangkok, Thailand.

*Corresponding author; e-mail: nuanpan.n@sci.kmutnb.ac.th

Received: 2 January 2023
Revised: 6 September 2023
Accepted: 13 September 2023

Abstract

Fine particulate matter exacerbates the environmental problem of air pollution in Thailand and
contributes to premature deaths. Monitoring of levels of fine particulate matter data is imperative,
however, values are seldom complete. One of the most important issues for variance estimation of
population total estimators using ratio and generalized regression estimators under unequal probability
sampling without replacement is that it requires joint inclusion probability which can be difficult to
find. In this paper we solve this problem by proposing new variance estimators for population total in
the presence of nonresponse under unequal probability sampling without replacement under the
uniform nonresponse mechanism. Two approaches are used to construct the new variance estimators;
estimating the joint inclusion probability and free joint inclusion probability. Simulation studies and
an application to fine particulate matter in the north of Thailand are considered in the study. The results
show that the variance estimators from the latter method give a smaller relative root mean square error
and relative bias than the variance estimator from the former one. Nevertheless, the proposed variance
estimator with the free joint inclusion probability provides a narrower confidence interval compared
to others.

Keywords: Generalized regression estimator, joint inclusion probability, ratio estimator, response probability,
variance estimator.

1. Introduction

The levels of fine particulate matter (PM2.5) in cities all over Thailand are perpetually higher
than the World Health Organization’s (WHO) guidelines. Thailand was ranked as the 45" most
polluted country according to the 2021 IQAir World Air Quality Report. However, some data on the
amount of PM2.5 may not be completely recorded due to technical difficulties. Missing data can
hinder national assessments of health risks and proper management, leading to estimation being crucial
to mitigate the prevailing issue of pollution. Horvitz and Thompson’s (1952) estimator is a well-known
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population total estimator under unequal probability sampling without replacement. However, the
calculation of the variance of Horvitz and Thompson’s estimator requires joint inclusion probabilities
or second order inclusion probabilities, which are the probability of two different units in the
population to be selected in the sample and sometimes are difficult to be calculated. Under unequal
probability sampling with replacement, the formulas of the variance estimators are in their simple
forms because they do not require joint inclusion probability, which is different from the variance
formula under unequal probability sampling without replacement which requires joint inclusion
probabilities. Berger (2003) stated that the size of the joint inclusion probabilities set is equal to
n(n—1)/2 where n denotes sample size, therefore it might be inconvenient to calculate the variance

when 7 is large.
Furthermore, a computational procedure for determining the value of the joint inclusion
probability of units 7 and ; in sample § require first order inclusion probability for all units i in

population U, whereas in practice they are often unknown. Hansen and Hurwitz (1943) proposed a

new unbiased estimator for estimating population total under unequal probability sampling with
replacement in the case of full response. They also discussed variance and its estimator which is in a
simple form because it does not require joint inclusion probability. Horvitz and Thompson (1952)
suggested an unbiased estimator for estimating population total under unequal probability sampling
without replacement. Horvitz and Thompson’s (1952) estimator’s formula is a function of the ratio of
the study variable and first order inclusion probability where the variance estimator requires both first
order inclusion and joint inclusion probabilities. When the units in the sample have high inclusion
probabilities, the variance estimator proposed by Horvitz and Thompson (1952) may lead to negative
values. The alternative formulas of the variance estimators when the sample size is fixed were
proposed by Sen (1953) and was implemented by Yates and Grudy (1953). Nevertheless, these
alternative variance estimators require the joint inclusion probability similarly to Horvitz and
Thompson’s (1952) estimator, which is sometimes unknown or complicated in calculation. To address
this issue, Hartley and Rao (1962) suggested to approximate the joint inclusion probability under
randomized systematic sampling. Héjek (1964) also approximated joint inclusion probability and
modified the variance of Horvitz and Thompson’s (1952) estimator for large-entropy sampling designs
such as rejective sampling. Under stratified sampling, Hajek (1981) used the first inclusion probability
to approximate the joint inclusion probability in each stratum and showed that this procedure for the
estimation of joint inclusion probability is valid when rejective sampling is used in each stratum.
Brewer (2002) proposed two methods to approximate joint inclusion probability based on Hartley and
Rao (1962) and Hajek (1964). Brewer and Donadio (2003) also proposed four methods to estimate
joint inclusion probability. Sichera (2020) constructed the “jipApprox” package in R to estimate joint
inclusion probability based on Hartley and Rao (1962), Hajek (1964), and Brewer and Donadio (2003).

When auxiliary information is available, the generalized regression estimator (GREG) is popular
for estimating the population total. The formula of the GREG estimator is in the form of the Horvitz
and Thompson (1952) estimator with additional adjustments calculated from an auxiliary variable.
There are some papers concerning the optimal GREG estimator. Montanari (1987) proposed an
optimal GREG estimator when the true value of the population regression coefficient is available.
However, this value is usually unknown in practice because its formula depends on the population’s
elements therefore an estimated value of regression coefficient from the sample elements is required.
Under single stratified sampling, Berger et al. (2003) used an estimated value of the regression
coefficient to construct an optimal GREG estimator based on the estimator of Montanari (1987).
Nangsue and Berger (2014) also proposed an optimal GREG estimator under stratified two-stage
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cluster sampling following Berger et al. (2003) and Estevao and Sarndal (2006). The variance and
associated estimator of the GREG estimator can be obtained by the Taylor linearization approach
because the GREG estimator has a form of a nonlinear estimator. Under the Taylor linearization
approach, the approximate linear estimator of the GREG estimator is obtained by using the first-order
Taylor series approximation then the variance of the GREG estimator is calculated by deriving the
variance of the approximate linear estimator. The formula for variance of the GREG estimator under
unequal probability sampling without replacement requires joint inclusion probabilities similar to the
variance from Horvitz and Thompson (1952). Therefore, the value of the variance estimator of the
GREG estimator requires complicated computation because the joint inclusion probabilities in the
formula are large. Furthermore, the exact value of joint inclusion probabilities cannot be determined
for many sampling designs such as the rejective sampling, Rao-Sampord sampling, and successive
sampling, so the true value of the variance estimator is impossible to find (Berger 1998).

In the presence of nonresponse, Sérndal and Lundstrém (2005) have proposed an almost unbiased
GREG estimator for estimating population total and also an associated variance estimator under two-
phase framework which requires nonresponse propensities. Later, a new almost unbiased GREG
estimator for estimating population total was proposed by Lawson and Ponkaew (2019) along with its
variance estimators. The GREG estimator and its variance estimators are considered under the uniform
nonresponse mechanism where the sampling fraction is negligible which does not require response
probabilities. Ponkaew and Lawson (2018) proposed a new ratio estimator for estimating population
total under the reverse framework where the sampling fraction is negligible. Their variance estimators
require the true value of joint inclusion probabilities. Then, Midzuno’s (1952) scheme was used to
determine the true value of the joint inclusion probability for computing variance estimators. In 2020,
Lawson (2020) proposed a new method for estimating the variance of the population total estimator
with free joint inclusion probabilities based on Hajek’s (1964) method. In the full response, Berger
(2003) used Hajek’s (1981) method and weighted least squares regression to investigate the free joint
inclusion probability of the variance of the population total estimator under stratified sampling.
Berger’s (2003) variance estimators are also discussed with three different methods in each stratum,
the first one used Héjek’s (1981) variance estimator, the second considered simple random sampling,
and finally Berwer’s (2002) variance estimators were discussed.

This paper aims to propose a new variance estimator using the ratio and GREG estimators under
unequal probability sampling without replacement with uniform nonresponse. The new variance
estimators do not require the true value of the joint inclusion probability. Two estimation methods
have been suggested; free joint inclusion probability following Lawson (2020) and estimated joint
inclusion probability. The basic setup is shown in Section 2 .In section 3, the estimators of the joint
inclusion probabilities are reviewed. In Section 4, we discuss variance estimation with free joint
inclusion probability. In Section 5, the existing estimators under uniform nonresponse are discussed.
Then, the proposed variance estimators are given in section 6. In Sections 7 and 8, we lay down the
results of the simulation studies and application to Thai maize data in 2018 and 2019. Finally, some
conclusions are given in Section 9.

2. Basic Setup
In this paper, we aim to estimate the population total of a study variable y which is defined by
N z y, where U={L2,..,N}. Suppose the population information of auxiliary variables
ieU

Xy, %y,.5X,, W and k are known. The auxiliary variables Xp5Xy5e0s X, WETC used as calibration
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variables, we defined x,=(1 x, --- x, )" and X, =(x; x, --- x,))’ be the Nx(g+1)matrix values
of x, The vector (w, w, --- w,) was defined as the value of the auxiliary variables w for
constructing the ratio estimator. The vector of values of auxiliary variables &k are (k, &, - k)

and was used to determine values of first and joint inclusion probabilities under unequal probability
sampling without replacement.
Under unequal probability sampling without replacement (UPWOR), a sample s of size n was

selected. Let, & be the set of all possible subsets of U and the sampling design P(.) is the probability
measure on the possible s, i.e., P(s)>0 forall se¥.Let 7, =P(ies)= ZP(S) be the first order

$31

inclusion probability and 7, = P(in j€s) = Z P(s) be the second order inclusion probability.

521, j}
With a sample s of size n assume that the information of nx(g+1)matrix of values x or
X, =(x, x, --- x,)" is known for all x,when ies. We also define E (-) and V (-) as the

expectation and variance operators with respect to the UPWOR sampling design.
In the presence of nonresponse, let subscript R and r be the nonresponse mechanism and

nonresponse indicator variable of y, which 7 =1 if unit i responds to item y otherwise r, =0. Let,
R=(@; r, --- r,)" be the vector of the response indicator and p, = p= P(r; =1) be the response
probability under uniform nonresponse. Let E,(s) and V,(-) be the expectation and variance
operators with respect to the nonresponse mechanism. The linear assisting model & of Sérndal,

Swensson and Wretman (1992) and Sérndal (2007) is considered in this study which defines
E.(y)=p'x, and V. (y)=o, where f is the population regression coefficient,

N\l
/}V :(Z r,q,.xl.xij (Z 14, %) ’) is the estimator of f and ¢, is determined by the linear assisting
7 7T

ies i ies i

model £. In the presence of nonresponse, the sample set s of size n is classified into the response

sample set s, and nonresponse set s, . The size of s, and s, are n, and n,, respectively. Three

mo

N i
assumptions are defined; (4,) the response mechanism is uniform response (4,) B, —f=0,(n,*)

ies

and (4,) V(Zbiﬂ-ilJ_)O as n— oo where b, =w, or 7.

3. The Estimators of Joint Inclusion Probabilities
Recall from Section 2, the first and joint inclusion probabilities are given by 7, = ZP(S) and

KETS

T, = z P(s), let D, be the function of 7, and 7, and be defined by

g
sOfi,j}

B ﬂ'l-j —ﬂ'l-ﬂ'j

Dy =———+— (1)
T
The estimator of D, is given by
N T, -,
D, =—=~. 2)

grorg
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Let z, be a function of y,such as z, = f(y) =,z = f(y)=y,~Y or z, = f(y)=y,—xB, the

estimator for estimating Z = Z z, by using Horvitz and Thompson’s (1952) procedure is
ieU

A z,
_ i
Zip =) 5 ©)
ies 7[,'
where Z; is the estimator of z, if z, is unknown otherwise Z, =z,. The variance of Z,, is given
by

V(ZHT ) = ZD;Z,-Z + Z z D,zz, (@)

ieU ieU j\{i}eU
where D, =(1-7,)7;". The estimator of V(Z HT) is defined as follows
V(Zp)=2 D2+, Y, D2z, (5)
ies ies j\{i}es
where D,- =(1-7x,)x;> The joint inclusion probabilities 7, are difficult to calculate under unequal
probability sampling without replacement. Then, we consider two approximations of 7z, which were

proposed by Hajek (1981) and Brewer and Danadio (2003). The details are below.

3.1. Hajek’s (1981) approximation
Hajek (1981) proposed an approximation of 7, based on rejective sampling which is defined by

_<1—7r,->(1—7rj>}

G

Ty = 77T, {1

(6)

where ¢, :ch. and ¢, =7,(1-7,).
ieU

The formula of ¢, in (6) requires all values of the first order inclusion probabilities z,,7,,..., 7,
in population U. Hence, 7, cannot be computed when the first order inclusion probabilities are
only known in the sample. Therefore, the estimator of ¢, is,

R c w,(1-1,)
¢, :z;:z—ﬂ- :}’l—Zﬂ'i. (7)

Then, an alternative approximation of 7, is given by

. (-7)(1-7,)
Ry = T, {I—A—" . (8)
G
Alternatively, Hajek (1981) also estimated ¢, by,
¢, ~ Nn™' ZC,. Q)
Then, the estimator of joint inclusion probabilities is given by
R [ A-m)(-7)]
Ry = ;| 1= ——= |. (10)
L G i
Therefore, the general form of 7z, approximation of Hajek (1981) is defined by
[ A-z)1-x)]
7%[,'(1) =TT 1_(,{# . (1)
ai & ]
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where /=1,2,3 and ¢, =¢,.

3.2. Brewer and Danadio’s (2003) approximation
Brewer and Danadio (2003) also proposed formulas to estimate the joint inclusion probabilities
based on the first order inclusion probabilities in population U as follows. Let

. n-1 . n—1 N n—1
d = Zﬂ'[z, c4i = y CSi :—_1 , c6i e p— — s
P n-rm, n—-nd n=2m+n"d
n n-—1
&, = - —. (12)

n—-2n-)n-)"'z,+(n-1)"d
The general formula of joint inclusion probabilities approximation of Brewer and Danadio (2003) is,

. (¢, +¢,
By = ———— ,(2/, D 14,567, (13)

Ty =
In Subsection 3.1 and 3.2, two general forms of joint inclusion probability approximation were
discussed. One is the general form of Hajek (1981) approximation, and the other is the general form
of Brewer and Danadio (2003) approximation. From (11) and (13), the value of DAij in (2) can be
estimated by
— T .7Z' .

D. :fﬂ”—, 1=1,2,..,7. (14)

O]
7Z'U(,)7Z'7Z'

The formula of V(ZA ,,T) in (5) can be written as

V(2 )= D2+ Y Dyiiyn =127, (15)

ies ies i\{j}es

4. Variance estimation with free joint inclusion probability

Variance and associated variance estimators under unequal probability sampling without
replacement such as the Horvitz and Thompson (1952) estimator require joint inclusion probabilities
in the calculation process. Then, Hajek (1964) proposed an alternative variance of the Horvitz and
Thompson (1952) estimator in the case of high entropy sampling as follows. Let ¢, =z,(1-7,),

z, =1 forall ieU, z and Z, are defined in (3). From (3), we may write

Z =20

ies i ies

where 0, =—-. The variance of Z by using the method proposed by Hajek (1964) is given by

oyt (215505 (2o

Let ¢, = S then the estimator of V(Z ,,T) is defined by
T,

i

§|N>

P(2)=3e {0 —(Zé,-z,fojl (Zcolzloﬂ .

Jjes ies
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(16)

In the presence of nonresponse, Ponkaew and Lawson (2019) proposed a population total estimator
7O — z 1)
' ies ﬂ-fp ies i ies

82
under the reverse framework with uniform nonresponse which is defined by
z, R
= Z —_—= Z Oi ,
T

|N>

N

ieU

However, the variance estimator of I?;(l) in (16) requires the joint inclusion probability. Then,
Lawson (2020) investigated the variance proposed by Ponkaew and Lawson (2019). Lawson (2020)

where Z, =20 and 0, =—"
p
suggested to apply Hajek’s (1964) method under the reverse framework and when the sampling

fraction is negligible which is defined by
o]
-1
=2 H:j}, _(Zl;cjzjz‘u) (ZC,'J?/Z,’O
ja

VL ()’}r(l) ) ~ ER |:VS' {YAI'(U‘ R}:| = ER |:VS‘ {
-1
= ch H:ER (6/)_[2 CjZ/2’0 j (Z CiER (6/ )Zi[) ):|}
ieU jeu ieU ieU
where 7, = 2% The estimator of V(I},“) ) is defined by
-1
v, (;}rm ) =>¢ [al. —(Z Ejzfoj (Z Eiéfzioj] , (17)
ies jes ies
where ¢, :i,éi =
7T, D
5. The existing estimators under uniform nonresponse
In this section, we discuss the existing ratio estimators proposed by Ponkaew and Lawson (2018)
and also the GREG estimators proposed by Lawson and Ponkaew (2019) along with their variance
estimators. The details are as follows.
5.1. The ratio estimator of Ponkaew and Lawson (2018)
The ratio estimator is a popular method for estimating population total when the information on
an auxiliary variable is known for all units in a population U. For full response, Bacanli and Kadilar
(2008) and Sirndal and Lundstrom (2005) introduced a ratio estimator under equal probability
sampling without replacement. Later, Ponkaew and Lawson (2018) extended their estimator for
estimating population total with the uniform nonresponse mechanism and is defined by,
nw
VARSI St Iy (18)
! Zﬁ i WIIT ’
ies ﬂ-i
, W= Zw,.. Under the reverse framework the variance of Y, is
19)

; W,
Whr :Z;
ies /b ieU
V() =EJV, (Y, | R)+V,E (Y, | R)=V, +V,

i

Ny ry.
where Y =Z’—y’,
ies ﬂp

defined by
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where ¥, =E, V. (Y, |R) and V,=V,E (Y, |R). We note that the second term in (19) can be omitted

when the sampling fraction (nN ') is negligible then the variance of Y '+ is approximately by

L2
- ies ﬂp
V¥,)= 2w R\
27‘ i€l
ies 7T,

i

However, f,: is in the form of a nonlinear estimator so Ponkaew and Lawson (2018) proposed to use

the Taylor linearization approach to transform I}; to a linear estimator and is defined by

A (20)

where z, = 243 —xR and R =L Then,
p W
ieU
V(Y) E V (Z J ZDzly +z z Dijeie/'_zDi(zyi_RM/i)RM}:’
ies 7L; ieU j\{iteU : iU

l-rm, Y
where D,, =——, ¢, =y, —Rw,, and R=—=.
I X
The variance of the ratio estimator of Ponkaew and Lawson (2018) is discussed under a situation
where the sampling fraction is large and the second component cannot be omitted. Let us consider the

second term in (19),

.
a o TP a-p)y
V, =V, E,(F | R)=V,E,| “LLy | R |~y S22
zm ieU iU P
ies TT;
The estimator of V, is given by
1—
( P)Z yl’ @

ies

ies 7; \ies 7%;

i

-1

. . . . A 7 1
where p' = p if p is known otherwise p'= p =Z—’(Z—)
Then, a new variance estimator is shown as follows.

. 1-p)y’
V(YR)zZD21y12+Z Z Dt/ete/ ZD[(zyI_R‘/VI)RM}I_i—Zﬂ
icU ieU j\{i}eU ieU ieU P
The estimator of variance of Ponkaew and Lawson (2018) under a large sampling fraction is given by

I}();,:) zL'Zr,.lA)z,.yiz 2 Z Z L, D,/ele/ —i,z;;lA)i(Zy,. —Ié,_wi)lérwi + Z y,,
p

ies ies j\{ites ies ies

. A A 1-p' 1 A 5
=—Zr Dyy! Di<2yi—RWi>wa+( Pl e oS S nnbjok, (22)
ies P (p) ies j\{i}es
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-1
. : . . - 1 A~ 1l
where p'= p if p is known otherwise p'=p = ZL(Z_J , D, = 2”1 and

ies 7T;
-1
Syl

ies ”[p’ ies ﬂ.l'
5.2. The GREG estimator of Lawson and Ponkaew (2019)

Under the reverse framework with uniform nonresponse Lawson and Ponkaew (2019) proposed
the GREG estimator for estimating population mean given by

i
S ; 7T, < ; T, Ij.qix[x‘.’ - rq,X,y, 2 — 2\ .
Yoreorr = + X- z z =Y +(X—XV p. (23)

rx
i

i

5 7 5 T z, = 7

ies 7T, ies T,

i i

The estimator of population total can be obtained by

YAGREG,LP :NYUREG.LP :N{YV—"_(X_X_vr) ﬂ/‘}’ (24)
x rgxx' ' (<rgxy 1
ES ry, rooa rX, rooa ‘g X X! X, =
h Y — _iJi i X — T i — Pt i1iTTi 0 d X:— .
where Y, % x gﬂ, ,» X, ; z gs:”, . B, (; P ] (g P j, an, N%‘,x,

The GREG estimator for estimating population mean of Lawson and Ponkaew (2019) is in the
form of a nonlinear estimator so the modified automated linearization approach used to transform

A A

Yoreo.1r- YoreG.op 18 given by

= S 1 re,
YGRHG‘I,P ~ Xﬂ+ z_: (25)
ZL ies 7[1.

ies TT;

where e =y, —x!ff. However, the GREG estimator Y, is still in a nonlinear form so Lawson and

Ponkaew (2019) suggested to use two methods to adjust I%GREG_ . as follows:

Method 1: Replace Zi by Zrl.
i€s 7[,' ieU

Lzr_ From the assumption (4;) V(Zi] —0 as n—> o then

e
11
27; ies T,

ielU

Let ?

GREG.LP

o ~Xp+

ies i

7 . o . . 2
Z—’ converges to Zr,. in probability. Therefore, the linear estimator of Y., can be

ies i ieU

approximated by )ZREG'LP(I) because Y., converges to EREG‘LP(]) in probability.

Method 2: The Taylor linearization approach

Yireer from (25) can be rewritten as,

A
A
tl
s

YGREG.LP zg(fs)=)?'ﬁ’+ (26)

~
o



Chugiat Ponkaew and Nuanpan Lawson 85

r,

. . P e PO
where g() is a smooth function of ¢, 7 =Y -1 7, =r,t =[f t,]. Let t,=)re,t,=)r,
ies T, = ieU ieU

_ e
t=[t, 1], g@)=XP+ "Ei . Then, the linear estimator of ¥ nic.p Can be obtained by using the

ieU ‘

Taylor linearization approach and is defined by

v N g( ) 7 27
GREG.LP(2) g(t )+z (l‘/—l/.), ( )

i=t

Therefore, the variance of wrecop under the reverse framework and a negligible sampling fraction

can be approximated by

1 Zmi
V.( GREG.LP): ViE,| Vs Z_’;g; R\ (28)
iU
where m=1,2, z,=re,z,,=r(e,—¢e),e=(y,—x/f) and e = Zre/ The variance of
ieU

ieU

Yire.p can be approximated from

N
yZ ”m R ||, 29

ieU

Vm( GR[-G[P) V E V

where V, (Y ppc,r), M =12 are the first components of variance under the reverse framework and

using method m to transform the GREG estimator to a linear estimator.
Then, the variances of the GREG estimator for estimating population total are given by,

V( GRI-GLP ZDe +Z Z Dijeiej’

xeb ieU j\{i}eU

VZ(YAGREG,LP) ~ lle_ (e _E)2 +Z Z Dl.j (e —5)(ej —-e),

ieU ieU j\{i}eU
where D, =(1-z)7,) D, =(n,x,—7,))77,), e=(y,—xp), e ——g,e
Next, we extended the variances of I?GREG.LP to a situation where the sampling fraction was not

negligible and are defined by

~ 1
V](YGREG,LP)z_zDr'ei2 +Z Z Di/'eiej+ p)z( (30)
P icv ieU j\{i}eU ieU
(I-m, ) _ _ _. (- _
Vo) = — Z ¢-2y +Y Y Dl,.(e,»—e)(e,.—e)+ﬂz<ei—e>i 31)
Piecv 7, icU j\li}eU P i

where e = N~ Zel.. We note that, the third component in (30) and (31) is the second term of variance
ieU

of Y;pe . under the reverse framework that is,

N i (1-p)
V,=V | E, ﬁzn R ||~ ;(e (32)

ieU
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The estimator of V, is given by

—( -e). (33)

ies 7T;

. . . N . 1
where p'= p if p is known otherwise p'=p = ZL(Z—
ies 72-,‘ ies TT;

i

Therefore, the estimators of ¥, (V.. ,p) and V,(Yopsc,») are obtained respectively by,

2

X N L N
Vi Foneg.0) ¥ | — [ZD,-r,-ef 2 D,-,-r,-eme} Z (34)

i ies ies jl{ijes ies ,
ies 7[[
5 o N Yrep. s 2
V,Yorec.r) ® - l:z (e, —e,) +z Z U”L(e _e) ”(e _e) :|
Zij ies ies jl{ijes

iy (3)
e/,

where bf =(1—7r[)7z;2, b[j :(ﬂ[ﬂ 7 )(ﬂljﬂtﬂj) :(yi_xiﬂr)’ € = laz / .
v/

ies

6. Proposed variance estimators

The formulas of the variance estimators of the ratio and GREG estimators in Section 5 require
joint inclusion probability because the first component of total variance is in the form of Horvitz and
Thompson’s (1952) formula. In this section, we propose variance estimators under two approaches by
estimating the joint inclusion probability or free joint inclusion probability as follows.

6.1. The proposed variance estimators of a ratio estimator
6.1.1 The proposed variance estimators of a ratio estimator with estimated joint inclusion
probability

From (14) the formula of [)m x 1s defined by

N o — T,
ij(k) it

Dy =———5k=12,..7. (36)
i i 7%

Let us consider the variance estimator of the ratio estimator from (22),

A oa - A A 1-p' 1 A aa
V(YR)~ Zr|: Ztyt D[(2yz_RWz)RM}t+( p{?)ylz:|+(py)2z Z ';erzj i)
ies ies i\{j}es

Substitute D!.,. by Dl./.( «, then the proposed variance estimators of ratio estimator are defined by

PO F) Zr{ ,v:—D.(2y, - RW)RW+( {)) l} ()errDy<k)zp(37)
P p

ies ies i\{j}es

where k=1,2,...,7
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6.1.2 The proposed variance estimators of the ratio estimator with free joint inclusion
(3%)

probability

ies

L

In this subsection we investigate the free joint inclusion probability of the variance estimator by

using Lawson’s (2018) method as follows. From (20) the linear form of the ratio estimator is

—x,R . From (38), we may write

l

l

where z, = =Lk
p
SR E-FE-S,
where o, = By using Lawson’s (2020) method.
72-[
-1
Vl :VL(YII)zz" [(3[.-[26‘/2/%} (2516[2[0)] s
ies jes ies
1 -1
zr—‘(Z—j if p is unknown otherwise p’' = p . From
i ies T,

z
_, Z’.
Z, p
Py
(39)

i

where 0,
(21), Vz is given by
2 (p ) ies
Then, the free joint inclusion probability of the variance estimator of the ratio estimator is defined as
j z v y i
(P =

jes

|14 (YA):I}I-H}2 =ZEL {0 —(ZCIZ,OJ [z~, 0.2,

6.2 The proposed variance estimators of the GREG estimator
6.2.1 The proposed variance estimators of the GREG estimator with estimated joint inclusion

In Subsection 5.2, we used two methods to transform the GREG estimator to a linear estimator

probability
estimators of the GREG estimator by estimating the joint inclusion probability in (34) and (35) as
(40)

Z

From (34), the variance estimator under Method 1 is defined by
[ZDre + Z . r,é[r[é/}
i€s ies jl{ites ies
Zré /7,
=xp) e = and
Zr |z,

I/l(jl(y'REG.LP)
ies 7[[
-, )(72'1/72'172'/) =

and discussed variance estimators in (34) and (35). In this subsection, we propose new variance

follows.

=(m7x,

where ﬁi =(l-7z)7;
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p'=p if p is known otherwise p'= p Z

-1
L 2:_1_
ies 7[,’ ies 7T; '
substituting D in (37) by D,

i

The proposed variance estimators of the GREG estimator with Method 1 can be obtained by
i) Therefore
Vl’(k) (YGREG,LP)

ies 7T;

[ZDW +Z Z y(k)rzé”zé
1€8

ies jl/{i}es :|
From (35), the variance estimator under Method 2 is defined by,

_( 2

. (41)
v, (YGREG,LP) ~

[Z (él.—ér)2 +Z z D. r(e,

ijhi
ies jl{i}es

ies 72-,‘

E,)Zr,.(é,-—af}

ies ,'

(42)

” ZDr(e e.) +Z /{Z: D[/(k)r(é e )Vr(é —¢)
_t ies jl{ies

ies 7

(1 )

where k=1,2,...,7.

Substitute D in (42) with D i)» the proposed variance estimator by Method 2 is given by,
I/Z,(k) (YGREO LP)

(43)
6.2.2 The proposed variance estimators of the GREG estimator with free joint inclusion
probability
method. From (29), we may write

We investigate the estimator of variance of the GREG estimator by using Lawson’s (2020)

N
Vi R Eg |V,

ies
Zmi

YR =ER[VS(Zom,- Rﬂ
ieU ! !
where m=12, o, Z]:v z z,;
v

=re, zp =1/
1
ieU

e), e¢=(y,—x/p) and e —Zre
By using Lawson’s (2020) method, the estimator of V,

ieU /lEU
., 18 defined by

1

Vlm zzéi [ (chzjo] (Zgiamip’zioj:l > (44)
ies Jjes ies

z

where m=12, o,,, =l - Z,=Teé
ip N, T

r
s 2, =T(€,

é.—é), e =(y xﬁ’) ande

N

Recall from (33) I;'z is defined by

‘A

N
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Z—(

Then, the free joint inclusion probablhty of the variance estimator of the GREG estimator can be
obtained by

/\

~ c6, 2, 45

where m =1,2 . The proposed variance estimator with free joint inclusion probability under Method 1
is defined by
I/IN(YGREGALP) =V, +7

zZé{. lélw,—(Z(?jzfj ((Zcoup ‘OD} —( (46)

Moreover, the proposed variance estimator with free joint inclusion probability under Method 2 is
given by

( GREGLP)= V12 +V2

-1
<Yallo, | Xea | [[Zes
~ €| O €;Z50 €0y Zig
ies Jjes ies ies ,'

V"( GREG. LP)

—( ey (47)

7. Simulation studies

To compare the efficiency of the proposed variance estimators, we apply Sichera’s (2020) model
to generate a population consisting of y , a study variable, x and w are auxiliary variables and £ is
a size variable which is from the model from package “jipApprox” in R program (R Core Team 2021).
The Sichera model is used to investigate the estimate values of the joint inclusion probabilities under
unequal probability sampling which we also considered in this study. The model is

1
¥, =02x, +0.0lw, +2k +3.7k% + &, where k, ~ gamma(10,5),w, ~ gamma(5,10), x, ~ gamma(5,5),
g ~N(,1), i=12,,..,N and the population size is N =1,000. We consider four levels of sample
sizes that is n =150, n=100, n=150 and n =300. The sample sizes were selected using unequal
probability sampling without replacement. Two levels of response probabilities; 70% and 85% were
considered in the simulation studies and repeated in the study 10,000 times ( M =10,000). The relative
root mean square error (RRMSE), the relative bias (RB), and the coverage rate (CR) are used to

compare the efficiencies of the proposed variance estimators in this study and the formulas are as
follows.

\/Ml_lg(r?m (7)-ray

= , where
V()

(1) The relative root mean square error, RRMSE (I}(I} )) =

I}()A’ ) is the proposed variance estimator and V(f) is the true value of variance.
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E(V(?))—V(?)

(if) The relative bias, RB(V (7)) = 7

, Where E(I}();)) = %’ﬁll}m ()}),

M
(iii) The coverage rate for a nominal 95% level, CR[V(Y )J:LZI(M), where [, =1if

m=1

=0 and [, =Y —1.960y/V(¥), and I, =¥ +1.960\V (V).

In this study, we consider only the case where the response probability is unknown because it is
more practical in real life. The proposed variance estimators can be classified into two cases; estimated
joint inclusion probability variance estimators and free joint inclusion probability variance estimators.

Table 1 shows the relative root mean square error of the variance estimator of the ratio estimator.
The result showed that the free joint inclusion probability variance estimators from (39) gave a smaller
relative root mean square error than the estimated joint inclusion probability for all situations. Table
2 and Table 3 shows the relative root mean square error of the variance estimator of the GREG
estimator under Methods 1 and 2, respectively. The results from Tables 2 and 3 are similar to Table 1,
that is the free joint inclusion probability variance estimators from (46) and (47) respectively gave a
smaller relative root mean square error than the estimated joint inclusion probability variance
estimators.

Y el[l,,u,]otherwise I

m?> (m)

Table 1 The relative root mean square error of the variance estimators of the ratio estimator

Sample size (7))
n=>50 n=100 n=150 n =300

0.82372  0.81767  0.81115 0.78965

Response rate (%) RRMSE

0.7 RRMSE V'V (Yy)

RRMSE V’(z)(Y ) 0.82372  0.81767 0.81115 0.78965

RRMSE ‘”(Y ) 0.82395  0.81777  0.81121 0.78961

RRMSE

RRMSE(V'® (Y ) 0.82376  0.81768 0.81110  0.78890

0.82370  0.81761 0.81100 0.78873

)
)
)
() 0.82373  0.81765  0.81105  0.78882
)
RRMSE (V" (¥; ))
)

RRMSE ‘”(Y ) 0.82370  0.81761 0.81100  0.78873

‘)

RRMSE (Y )) 0.47344  0.42117 0.31730 0.29570

0.85 RRMSE ’“)(Y ) 0.73648  0.72061 0.71201 0.67729

RRMSE (2)(Y ) 0.73648  0.72061 0.71201 0.67729

RRMSE ’(3)(Y ) 0.73669  0.72071 0.71205 0.67724

RRMSE

RRMSE (V' (¥7) 0.73653  0.72058  0.71188  0.67641

RRMSE ’(6)(Y ) 0.73647  0.72056 0.71187 0.67644

RRMSE 0.73647  0.72056  0.71187 0.67644

)
)
)
’(4)(Y )) 0.73650  0.72057 0.71188 0.67643
)
)
)

RRMSE

7
(
7
v
7
(
7
(
7
(7
y
7
(
v
v
(7

Y)) ) 0.38682  0.31888  0.30396  0.28637
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Table 2 The relative root mean square error of the variance estimators of the GREG estimator
under Method 1

Sample size (7 )

Response rate (%) RRMSE _— ——TT) ——150 — 300
0.7 RRMSE (V" (Fezzr))  0.79349 073205 0.65174  0.59526
RRMSE(V,® (Torsoir)) 079349 0.73204  0.65172  0.59523

RRMSE(V’” (YGREGLP)) 0.79056  0.73077  0.65131  0.59547

RRMSE (V) (Tons 1)) 0.79272 0.73238  0.65388  0.60068

RRMSE(V/® (Joarr))  0.79164  0.73125  0.65259  0.59967

RRMSE (P (Tous1r)) 079381 0.73350  0.65518  0.60170

RRMSE( (?GREG,LP)) 0.79383  0.73351  0.65518  0.60171

RRMSE (V, (Tour1r)) 048835 033498 0.26434  0.18547

0.85 RRMSE (V" (Yorzour)) 060449 051598 0.51045  0.46472
RRMSE(V/® (Toeoir))  0.60451  0.51596  0.51044  0.46465

RRMSE(V (YGREGLP)> 0.60227 051562  0.50955  0.46609

RRMSE(VI( (YGREGLP)) 0.60347 051794  0.51090  0.48353

RRMSE (V,® (Toaa 1)) 0.60219  0.51639  0.50994  0.48208

RRMSE (V' (Youzg)) 060475 051950  0.51186  0.48500

RRMSE(VI( (YGREG_LP)) 0.60478 051951  0.51187  0.48500
RRMSE(I%"(?GREG_L,,)) 0.43639  0.26975  0.25404  0.16953
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Table 3 The relative root mean square error of the variance estimators of the GREG estimator
under Method 2

Sample size (7 )
n=>50 n=100 n=150 n =300

0.52824 036853 031136  0.26758

Response rate (%) RRMSE

0.7 RRMSE (V" ) (Yoreo..r)

RRMSE V’( ) (Vereo.Lr) 0.52823 036869 031157  0.26772
0.61558  0.43684 0.36607 0.31053
RRMSE

0.51625 034694  0.28027  0.22712

7
(

RRMSE (V) (Yeneo.1r)
(7

RRMSE (V,' (Yorse 1r)
(

RRMSE (V}© (Vomsor))  0.52749 036812 031142 0.26833

)
)
)
(YGREG.LP)) 0.52184 035741  0.29557  0.24719
)
)
) 0.52761 036823 031152  0.26844

RRMSE (V" (Yoso.1r)
RRMSE(V;(YGREGLP)) 0.48835  0.33498  0.26434  0.18547

0.85 RRMSE(I}'“)(?GREG_LP) 0.51392  0.40042 037936  0.33858

V)® (Yors.r) 0.51398  0.40041 0.37943  0.33862

RRMSE
RRMSE(V® (Vomsorr))  0.53580  0.42345 039738  0.34569
RRMSE(V!® (Torsor))  0.50639 038216  0.35148  0.27913

RRMSE 0.51376  0.40070  0.38056  0.34693

(YGREG LP)

)
(7 )
(7 )
RRMSE (V¥ (Yorec 1)) 051005 039136 0.36585 031241
(7 )
(7 )
RRMSE (V,” (Yorz 1r))

0.51384  0.40080  0.38066  0.34704
RRMSE(I}Z"(?GREG_LP)) 0.43639 026975  0.25404  0.16953

Table 4 shows the relative bias of the variance estimators of the ratio estimator while Tables 5
and 6 show the relative bias of the variance estimators of the GREG estimator with methods 1 and 2
respectively. We can see similar results for Tables 4-6 where the free joint inclusion probability
variance estimators gave the best results compared to others for all scenarios with smaller biases when
the sample size and response rate are increased.
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Sample size (7))

Response rate (%) RE 7=50  n=100  n=150 =300
0.7 RB(I?'“) (?*)) 0.6977 0.6953 0.6800 0.6566
RB(V'™(¥)) 06977  0.6953 0.6800 0.6566

RB(V"® (?;)) 0.6983 0.6956 0.6801 0.6565

RB(V'“)(Y;)) 0.6978 0.6953 0.6798 0.6547

RB(V'<5>(Y;)) 0.6979 0.6955 0.6799 0.6550

RB(V"® (7)) 06977  0.6952 0.6796 0.6543

RB(I?'”’(Y*)) 0.6977  0.6952 0.6796 0.6543

RB(V"(Y)) 03964  0.3885 0.3800 0.3646

0.85 RB(V'™(¥,)) 0.7476 0.747 0.7326 0.7132
RB(V'® (1)) 07476  0.7475 0.7326 0.7132

RB(I?'“) (Y;)) 0.7482  0.7478 0.7328 0.7130

RB(V'“ (7)) 07476 0.7474 0.7323 0.7107

RB(V'O (7)) 07477  0.7476 0.7325 0.7110

RB(V" (1)) 07475  0.7473 0.7322 0.7105

RB(V'7 (1)) 07475  0.7473 0.7322 0.7105

RB(V"(F;)) 01773  0.1732 0.1638 0.1629
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Table 5 The relative bias of the variance estimators of the GREG estimator under Method 1

Sample size (7))

Response rate (%) RE n=50 =100 n=150  n=300
0.7 RB(I? D (Prso. Lp)) 0.4841 0.3525 0.3503 0.1917
RB(VI"Z)(YGREGLP)) 04841  0.3525 0.3503 0.1917

RB(V? (owerr)) 04853 03517 03484 0.1878
RB(V“(owsrp)) 05031 03551 03510 0.1915

RB(V/® (Torso1r))  0.5023 03545 03504 0.1911

RB(V" (Tourrr)) ~ 0.5039 03557 03516 0.1920
RB(V"(owsrp)) 05039 03557 01262 0.1920

RB(V Forso. LP)) 0.1308  0.1262  0.0932  0.0903

0.85 RB(V" (fereour)) 03551 0296 02438  0.1542
RB(V" ) (Yorso. LP)) 03551 02960 02438  0.1542

RB(VI’( )(YGREGLP)) 0.3568 0.2953 0.2421 0.1504

RB(V'“ (Yomsour)) 03793 02995 02449 0.1541

RB(V® (Vo)) 03786 02989 02443 0.1537
RB(V"(ouzrr)) ~ 0.3800 03000 02454 0.1545

RB(I? (YGREGLP)) 0.3800  0.3000 0.2454 0.1545

RB( 7 AGREG_L,,)) 0.0382  0.0207  0.0078  0.0013
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Table 6 The relative bias of the variance estimators of the GREG estimator under Method 2
Sample size (7))
n=>50 n =100 n=150 n =300

0.4841 0.3525 0.3503 0.1917

Response rate (%) RB

0.7 RB(V, ()(YGREGLP)

RB V2’<2)(YGREG p) 0.4841 0.3525 0.3503 0.1917

RB 0.4853 0.3517 0.3484 0.1878

2 YGREG p)

. )

( )

(2% Bonscar)
RB( VI (Yoree. LP)) 0.5031 0.3551 0.3510 0.1915

( )

(7 )

)

RB V( Yorzo.1r) 0.5023 0.3545 0.3504 0.1911

RB 0.5039 0.3557 0.3516 0.1920

2 (YGREGLP)
RB( V1D Fosorr) 0.5039 03557  0.1262  0.1920

RB(V Ferso. LP)) 0.1308  0.1262 0.0932 0.0903

0.85 RB(V”(YGREGLP) 03551  0.296 02438  0.1542
03551 02960 02438  0.1542

0.3568 0.2953 0.2421 0.1504

0.3786 0.2989 0.2443 0.1537
VIO Ygpee.ir) 0.3800  0.3000 0.2454 0.1545
V7D Yoree.r)

7 ( AGREG_L,,)) 0.0382  0.0207 0.0078 0.0013

)
w))
)
I/Z"‘”(YGREGLP)) 03793 02995 02449  0.1541
)
)
) 0.3800 03000 02454  0.1545

(72
(72°
(
RB(V} (Toneo 1r)
(
(

Table 7 shows the simulation coverage rate for a nominal 95% of the ratio estimator while Tables
8 and 9 show the simulation coverage rate for a nominal 95% of the GREG estimator with Methods 1
and 2, respectively. Similarly, to the results found for RRMSE and RB, in terms of the coverage rate
the proposed estimator with the free joint inclusion probability performed the best with the coverage
rate close to 0.95 which outperformed other estimators.
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Table 7 The simulation coverage rate for a nominal 95% of the ratio estimator

The simulation coverage rate for a nominal 95%

0 .
Response rate (%)  The estimator formula 350 =100 150 2300

0.7 220078 09025  0.9068 0.9216 0.9378
V') 0.8988  0.9047 0.9180 0.9383

2810 0.8997  0.9044 0.9169 0.9387

V') 0.8994 09021 0.9200 0.9355

V'O (¥n) 0.9003  0.9033 0.9183 0.9383

2800 0.8987  0.9052 0.9197 0.9336

V'O 0.9020  0.9022 0.9212 0.9378

V'(¥y) 0.9120 0.9225 0.9400 0.9475

0.85 281079 09104 92516 0.9308 0.9354
V') 0.9090  9.2534 0.9314 0.9357

2810 09102  9.2494 0.9328 0.9370

21079 0.9127 9.2492 0.9311 0.9371

V'O (1) 0.9112 9.2492 0.9280 0.9365

2300/ 0.9112 9.2536 0.9331 0.9357

V'D(¥y) 0.9131 9.2523 0.9280 0.9356

V'(Yy) 0.9291 0.9298 0.9398 0.9410
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Table 8 The simulation coverage rate for a nominal 95% of the GREG estimator under Method 1

Response rate (%)

The estimator formula

The simulation coverage rate for a nominal 95%

n=>50 n=100 n=150 n=300

0.7 VO Forec.r) 0.9109 9.2530 0.9340 0.9405
D Torpe.ir) 0.9135 9.2546 0.9340 0.9409

V' Tgreo.ir) 0.9121 9.2537 0.9336 0.9408

W Fonse.1e) 0.9112 9.2523 0.9340 0.9402

V' O Wopagir) 0.9124 9.2538 0.9337 0.9409

VO Voree.ir) 0.9112 9.2522 0.9339 0.9404

VP Foree.ir) 0.9128 9.2521 0.9330 0.9402

V; Vo) 0.9203  9.3538 0.9436 0.9470

0.85 PO Gori.r) 0.9220 0.9357 0.9389 0.9479
W Toree.ir) 0.9211 0.9357 0.9389 0.9477

V' oreeir) 0.9212 0.9363 0.9385 0.9479

P peore) 0.9212 0.9360 0.9385 0.9475

7 O Gorsor) 0.9220 0.9360 0.9389 0.9477

VO Gorsor) 0.9209 0.9359 0.9390 0.9477

VP Forso.r) 0.9232 0.9356 0.9386 0.9480

V! Yorro.ir) 0.9358 0.9390 0.9488 0.9495
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Table 9 The simulation coverage rate for a nominal 95% of the GREG estimator under Method 2

The simulation coverage rate for a nominal 95%
n=>50 n=100 n=150 n =300

Response rate (%) The estimator formula

0.7 V3 Uog.ir) 0.9109 9.2530 0.9340 0.9405
V3D Woreo.ir) 0.9135 9.2546 0.9340 0.9409
V3 9 Gorec.or) 0.9121 9.2537 0.9336 0.9408
V3 Gorgo.r) 0.9112 9.2523 0.9340 0.9402
V3 O orec.r) 0.9124 9.2538 0.9337 0.9409
V3 OWerpeir) 0.9112 9.2522 0.9339 0.9404
V3 P orpeir) 0.9128 9.2521 0.9330 0.9402
Va Gorre.er) 0.9203 9.3538 0.9436 0.9470
0.85 Vi O Ui 0.9220 0.9357 0.9389 0.9479
V3 ® reeir) 0.9211 0.9357 0.9389 0.9477
V3 O Woreo.r) 0.9212 0.9363 0.9385 0.9479
V3 O orseir) 0.9212 0.9360 0.9385 0.9475
V3 O Uore.r) 0.9220 0.9360 0.9389 0.9477
V3 © Vorge.r) 0.9209 0.9359 0.9390 0.9477
V3 P Gorec.or) 0.9232 0.9356 0.9386 0.9480
V) Vorrg.r) 0.9358 0.9390 0.9488 0.9495

8. Application to Real Data

To apply the proposed estimators to the fine particulate matter data in the north of Thailand where
the PM2.5 dust level is one of the highest in the world. The data are from the air quality and noise
management bureau, the Pollution Control Department of Thailand during October and November
2022. The Midzuno (1952) scheme is applied to select a sample of size 13 stations out of 23 stations
(http://airdthai.pcd.go.th/webV2/history). The PM2.5 on 28 Novemeber 2002 is used as a study
variable ) (micrograms per cubic meter) and the average PM2.5 and the air quality index average on

October 2002 are considered as the auxiliary variables x and w, respectively. The correlation
coefficients between y and w and y and x are equal to 0.91 and 0.66 respectively. The ratio
estimator is created using , while the GREG estimator is created using x and only the case where the
response probability is unknown is considered. The maximum value of PM2.5 on October 2002 is

considered as the size variable k. The nonresponse rate is 8.7% in this study. The results are displayed
in Table 10.
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Table 10 The estimated total and variance estimates for the total yield

Population The formula
Estimator tAotal of variances Variance estimates 95% confidence interval
estimates
The ratio 585.95 POF) 18741.47 (317.63, 854.27)
eStin}ft"r PO 19166.98 (314.60, 857.30)
(V) 7SI 18409.36 (320.02, 851.88)
V'O(¥r) 18331.30 (320.58, 851.32)
V'O (¥r) 18127.38 (322.06, 849.84)
V'O (¥y) 18558.42 (318.94, 852.96)
V'D(Fr) 18578.39 (318.80, 853.10)
V"(Yp) 12726.33 (364.84, 807.06)
Population e o Method 1 Method 2
Estimator total ¢ O.rmu a0 Variance 93% Variance 95%
estimates varianees estimates confidence estimates confidence
interval interval
The 710.75 Vr® Vorec.er) 121057 (702.56,838.94)  1210.57  (702.56, 838.94)
es(t}iiii)r V! D Tsreeir) 1210.70 (702.55, 838.95) 1210.70 (702.55, 838.95)
Gorvorn) V! O Voper) 121043 (702.56,838.94)  1210.43 (702.56, 838.94)
V@ T rr) 123620 (701.84,839.66) 123620  (701.84, 839.66)
V! O Vope1r) 124245 (701.66,839.84) 124245 (701.66, 839.84)
V! O Foper) 122924 (702.03, 839.47) 1229.24 (702.03, 839.47)
D Fopec.r) 122862 (702.05,839.45)  1228.62  (702.05, 839.45)
7" Forrorr) 895.81 (712.09, 829.41) 895.81 (712.09, 829.41)

From Table 10, we can see similar results to the simulation studies where the proposed variance
estimators using the free joint inclusion probability performed the best with the fine particulate matter
data in all situations. The proposed free joint inclusion probability variance estimators gave a narrower
confidence interval compared to others which result in better precision in estimating the population
total. The estimated variance for the GREG estimators on both Methods 1 and 2 showed the same

results due to the small value of & which makes similar results for the variance estimators from

Methods 1 and 2 for the estimated joint inclusion probability variance estimators and free joint
inclusion probability variance estimators from (40) and (42) and (46) and (47) respectively in this
situation. The estimated total PM2.5 from the ratio estimator is 585.95 micrograms per cubic meter
which is less than the estimated total PM2.5 from the GREG estimator that is equal to 770.75
micrograms per cubic meter but has a smaller variance.

9. Conclusions

The ratio and GREG estimators are potent for estimating population total when information on
the population of an auxiliary variable is known and is highly correlated with the study variable. Many
works estimate population total when data on the population of an auxiliary variable exists, but the
study variable includes nonresponse. However, the variance estimator under unequal probability
sampling without replacement is difficult to compute because it requires joint inclusion probability.
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Therefore, we proposed new variance estimators of the ratio and GREG estimators proposed by
Ponkaew and Lawson (2019) and Lawson and Ponkaew (2019), respectively. The proposed variance
estimators were investigated under two different methods consisting of free joint inclusion probability
and estimated joint inclusion probability. In the simulation studies the variance estimators with free
joint inclusion probability performed better than the variance estimators with the estimated joint
inclusion probability. The application to the fine particulate matter data in the north of Thailand
presented results alike to the simulation results. The most superior method to estimate variance
allowing practical convenience is using free joint inclusion probability, as it does not require the value
of joint inclusion probability. It gave a narrower confidence interval compared to others leading to
higher precision of the population total. In future works, other techniques to estimate the joint
inclusion probability can be used to see the performance of the proposed estimators.
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