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Abstract 

Fine particulate matter exacerbates the environmental problem of air pollution in Thailand and 
contributes to premature deaths. Monitoring of levels of fine particulate matter data is imperative, 
however, values are seldom complete. One of the most important issues for variance estimation of 
population total estimators using ratio and generalized regression estimators under unequal probability 
sampling without replacement is that it requires joint inclusion probability which can be difficult to 
find. In this paper we solve this problem by proposing new variance estimators for population total in 
the presence of nonresponse under unequal probability sampling without replacement under the 
uniform nonresponse mechanism. Two approaches are used to construct the new variance estimators; 
estimating the joint inclusion probability and free joint inclusion probability. Simulation studies and 
an application to fine particulate matter in the north of Thailand are considered in the study. The results 
show that the variance estimators from the latter method give a smaller relative root mean square error 
and relative bias than the variance estimator from the former one. Nevertheless, the proposed variance 
estimator with the free joint inclusion probability provides a narrower confidence interval compared 
to others. 
______________________________ 
Keywords:  Generalized regression estimator, joint inclusion probability, ratio estimator, response probability, 
variance estimator. 
 
1. Introduction 

The levels of fine particulate matter (PM2.5) in cities all over Thailand are perpetually higher 
than the World Health Organization’s (WHO) guidelines. Thailand was ranked as the 45th most 
polluted country according to the 2021 IQAir World Air Quality Report. However, some data on the 
amount of PM2.5 may not be completely recorded due to technical difficulties. Missing data can 
hinder national assessments of health risks and proper management, leading to estimation being crucial 
to mitigate the prevailing issue of pollution. Horvitz and Thompson’s (1952) estimator is a well-known 
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population total estimator under unequal probability sampling without replacement. However, the 
calculation of the variance of Horvitz and Thompson’s estimator requires joint inclusion probabilities 
or second order inclusion probabilities, which are the probability of two different units in the 
population to be selected in the sample and sometimes are difficult to be calculated. Under unequal 
probability sampling with replacement, the formulas of the variance estimators are in their simple 
forms because they do not require joint inclusion probability, which is different from the variance 
formula under unequal probability sampling without replacement which requires joint inclusion 
probabilities. Berger (2003) stated that the size of the joint inclusion probabilities set is equal to 

( 1) / 2n n−  where n  denotes sample size, therefore it might be inconvenient to calculate the  variance 
when n  is large. 

Furthermore, a computational procedure for determining the value of the joint inclusion 
probability of units i  and j  in sample s  require first order inclusion probability for all units i  in 
population ,U  whereas in practice they are  often unknown. Hansen and Hurwitz (1943) proposed a 
new unbiased estimator for estimating population total under unequal probability sampling with 
replacement in the case of full response. They also discussed variance and its estimator which is in a 
simple form because it does not require joint inclusion probability. Horvitz and Thompson (1952) 
suggested an unbiased estimator for estimating population total under unequal probability sampling 
without replacement. Horvitz and Thompson’s (1952) estimator’s formula is a function of the ratio of 
the study variable and first order inclusion probability where the variance estimator requires both first 
order inclusion and joint inclusion probabilities. When the units in the sample have high inclusion 
probabilities, the variance estimator proposed by Horvitz and Thompson (1952) may lead to negative 
values. The alternative formulas of the variance estimators when the sample size is fixed were 
proposed by Sen (1953) and was implemented by Yates and Grudy (1953). Nevertheless, these 
alternative variance estimators require the joint inclusion probability similarly to Horvitz and 
Thompson’s (1952) estimator, which is sometimes unknown or complicated in calculation. To address 
this issue, Hartley and Rao (1962) suggested to approximate the joint inclusion probability under 
randomized systematic sampling. Hájek (1964) also approximated joint inclusion probability and 
modified the variance of Horvitz and Thompson’s (1952) estimator for large-entropy sampling designs 
such as rejective sampling. Under stratified sampling, Hájek (1981) used the first inclusion probability 
to approximate the joint inclusion probability in each stratum and showed that this procedure for the 
estimation of joint inclusion probability is valid when rejective sampling is used in each stratum. 
Brewer (2002) proposed two methods to approximate joint inclusion probability based on Hartley and 
Rao (1962) and Hájek (1964). Brewer and Donadio (2003) also proposed four methods to estimate 
joint inclusion probability. Sichera (2020) constructed the “jipApprox” package in R to estimate joint 
inclusion probability based on Hartley and Rao (1962), Hájek (1964), and Brewer and Donadio (2003). 
 When auxiliary information is available, the generalized regression estimator (GREG) is popular 
for estimating the population total.  The formula of the GREG estimator is in the form of the Horvitz 
and Thompson (1952) estimator with additional adjustments calculated from an auxiliary variable. 
There are some papers concerning the optimal GREG estimator. Montanari (1987) proposed an 
optimal GREG estimator when the true value of the population regression coefficient is available. 
However, this value is usually unknown in practice because its formula depends on the population’s 
elements therefore an estimated value of regression coefficient from the sample elements is required. 
Under single stratified sampling, Berger et al. (2003) used an estimated value of the regression 
coefficient to construct an optimal GREG estimator based on the estimator of Montanari (1987). 
Nangsue and Berger (2014) also proposed an optimal GREG estimator under stratified two-stage 
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cluster sampling following Berger et al. (2003) and Estevao and Särndal (2006). The variance and 
associated estimator of the GREG estimator can be obtained by the Taylor linearization approach 
because the GREG estimator has a form of a nonlinear estimator. Under the Taylor linearization 
approach, the approximate linear estimator of the GREG estimator is obtained by using the first-order 
Taylor series approximation then the variance of the GREG estimator is calculated by deriving the 
variance of the approximate linear estimator. The formula for variance of the GREG estimator under 
unequal probability sampling without replacement requires joint inclusion probabilities similar to the 
variance from Horvitz and Thompson (1952). Therefore, the value of the variance estimator of the 
GREG estimator requires complicated computation because the joint inclusion probabilities in the 
formula are large. Furthermore, the exact value of joint inclusion probabilities cannot be determined 
for many sampling designs such as the rejective sampling, Rao-Sampord sampling, and successive 
sampling, so the true value of the variance estimator is impossible to find (Berger 1998).  

In the presence of nonresponse, Särndal and Lundström (2005) have proposed an almost unbiased 
GREG estimator for estimating population total and also an associated variance estimator under two-
phase framework which requires nonresponse propensities. Later, a new almost unbiased GREG 
estimator for estimating population total was proposed by Lawson and Ponkaew (2019) along with its 
variance estimators. The GREG estimator and its variance estimators are considered under the uniform 
nonresponse mechanism where the sampling fraction is negligible which does not require response 
probabilities. Ponkaew and Lawson (2018) proposed a new ratio estimator for estimating population 
total under the reverse framework where the sampling fraction is negligible. Their variance estimators 
require the true value of joint inclusion probabilities. Then, Midzuno’s (1952) scheme was used to 
determine the true value of the joint inclusion probability for computing variance estimators. In 2020, 
Lawson (2020) proposed a new method for estimating the variance of the population total estimator 
with free joint inclusion probabilities based on Hájek’s (1964) method. In the full response, Berger 
(2003) used Hájek’s (1981) method and weighted least squares regression to investigate the free joint 
inclusion probability of the variance of the population total estimator under stratified sampling. 
Berger’s (2003) variance estimators are also discussed with three different methods in each stratum, 
the first one used Hájek’s (1981) variance estimator, the second considered simple random sampling, 
and finally Berwer’s (2002) variance estimators were discussed. 

This paper aims to propose a new variance estimator using the ratio and GREG estimators under 
unequal probability sampling without replacement with uniform nonresponse. The new variance 
estimators do not require the true value of the joint inclusion probability. Two estimation methods 
have been suggested; free joint inclusion probability following Lawson (2020) and estimated joint 
inclusion probability. The basic setup is shown in Section 2 .In section 3, the estimators of the joint 
inclusion probabilities are reviewed. In Section 4, we discuss variance estimation with free joint 
inclusion probability. In Section 5, the existing estimators under uniform nonresponse are discussed. 
Then, the proposed variance estimators are given in section 6. In Sections 7 and 8, we lay down the 
results of the simulation studies and application to Thai maize data in 2018 and 2019. Finally, some 
conclusions are given in Section 9. 
 
2. Basic Setup 

In this paper, we aim to estimate the population total of a study variable y  which is defined by 
1

i
i U

N y−

∈
∑  where {1,2,..., }.U N=  Suppose the population information of auxiliary variables 

1 2, ,..., ,qx x x  w  and k are known.  The auxiliary variables 1 2, ,..., qx x x  were used as calibration 



Chugiat Ponkaew and Nuanpan Lawson 79 

variables, we defined 1(1 )i i iqx x ′= x  and  1 2( )′= X x x xN N  be the ( 1)N q× + matrix values 

of xi  The vector  1 2( )Nw w w ′
   was defined as the value of the auxiliary variables w  for 

constructing the ratio estimator. The vector of values of auxiliary variables k  are 1 2( )Nk k k ′
  

and was used to determine values of first and joint inclusion probabilities under unequal probability 
sampling without replacement.  

Under unequal probability sampling without replacement (UPWOR), a sample s of size n  was 
selected. Let, F  be the set of all possible subsets of U  and the sampling design (.)P is the probability 

measure on the possible ,s  i.e., ( ) 0P s ≥  for all s∈F . Let ( ) ( )i
s i

P i s P sπ
∋

= ∈ =∑  be the first order 

inclusion probability and 
{ , }

( ) ( )ij
s i j

P i j s P sπ
⊃

= ∧ ∈ = ∑  be the second order inclusion probability. 

With a sample s  of size n  assume that the information of ( 1)n q× + matrix of values x  or 

1 2( )′= X x x xn n  is known for all xi when .i s∈  We also define ( )•SE  and ( )•SV  as the 
expectation and variance operators with respect to the UPWOR sampling design. 

In the presence of nonresponse, let subscript R  and ir  be the nonresponse mechanism and 

nonresponse indicator variable of iy  which 1ir =  if unit i  responds to item y  otherwise 0ir = .  Let,  

1 2( )′= R Nr r r  be the vector of the response indicator and ( 1)i ip p P r= = =  be the response 

probability under uniform nonresponse.  Let ( )RE •  and ( )RV •  be the expectation and variance 
operators with respect to the nonresponse mechanism.  The linear assisting model ξ  of Särndal, 
Swensson and Wretman (1992) and Särndal (2007) is considered in this study which defines

( )ξ ′= β xi iE y  and 2( ) ,ξ σ=i iV y  where β  is the population regression coefficient, 
1

ˆ
π π

−

∈ ∈

′   =    
   
∑ ∑

x x x
β i i i i i i i i

r
i s i si i

r q rq y  is the estimator of β  and iq  is determined  by the linear assisting 

model .ξ  In the presence of nonresponse,  the sample set s  of size n  is classified into the response 

sample set rs  and nonresponse set .ms  The size of rs  and ms  are  rn  and ,mn  respectively.  Three 

assumptions are defined; 1( )A   the response mechanism is uniform response 
1
2

2
ˆ( ) ( )

−
− = β βr p rA O n  

and 1
3( ) 0i i

i s
A V bπ −

∈

  → 
 
∑  as n →∞  where i ib w=  or .ir  

 
3. The Estimators of Joint Inclusion Probabilities 

Recall from Section 2, the first and joint inclusion probabilities are given by ( )i
s i

P sπ
∋

= ∑  and 

{ , }
( ),ij

s i j
P sπ

⊃

= ∑  let ijD  be the function of  iπ
 
and ijπ  and be defined by 

 .ij i j
ij

i j

D
π π π
π π
−

=  (1) 

The estimator of ijD  is given by 

 ˆ .ij i j
ij

ij i j

D
π π π
π π π
−

=  (2) 
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Let iz  be a function of iy such as ( ) , ( )i i i i i iz f y y z f y y Y= = = = −  or ( ) β,i i i iz f y y ′= = − x  the 

estimator for estimating i
i U

Z z
∈

= ∑  by using Horvitz and Thompson’s (1952) procedure is 

 
ˆˆ ,i

HT
i s i

z
Z

π∈

= ∑  (3) 

where ˆiz  is the estimator of iz  if iz  is unknown otherwise ˆi iz z= .   The variance of  ˆ
HTZ

 
is given 

by 

 ( ) 2

\{ }

ˆ ,HT i i ij i j
i U i U j i U

V Z D z D z z
∈ ∈ ∈

= +∑ ∑ ∑  (4) 

where 1(1 ) .i i iD π π −= −  The estimator of ( )ˆ
HTV Z  is defined as follows  

 ( ) 2

\{ }

ˆ ˆ ˆ ˆˆ ˆ ˆ ,HT i i ij i j
i s i s j i s

V Z D z D z z
∈ ∈ ∈

= +∑ ∑ ∑  (5) 

where 2ˆ (1 ) .i i iD π π −= −  The joint inclusion probabilities ijπ  are difficult to calculate under unequal 

probability sampling without replacement. Then, we consider two approximations of ijπ
 
which were 

proposed by Hájek (1981) and Brewer and Danadio (2003). The details are below. 
 
3.1.  Hájek’s (1981) approximation 
 Hájek (1981) proposed an approximation of  ijπ  based on rejective sampling which is defined by 

 (1)
1

(1 )(1 )
ˆ 1 ,i j

ij i j c
π π

π π π
− − 

= − 
 

 (6) 

where 1 i
i U

c c
∈

= ∑  and (1 ).i i ic π π= −  

 The formula of 1c  in (6) requires all values of the first order inclusion probabilities 1 2, ,..., Nπ π π  
in population .U  Hence, (1)ˆijπ  cannot be computed when the first order inclusion probabilities are 

only known in the sample. Therefore, the estimator of 1c  is, 

 2
(1 )ˆ .i i i

i
i s i s i si i

c
c n

π π
π

π π∈ ∈ ∈

−
= = = −∑ ∑ ∑  (7) 

Then, an alternative approximation of ijπ  is given by   

 (2)
2

(1 )(1 )
ˆ 1 .

ˆ
i j

ij i j c
π π

π π π
− − 

= − 
 

 (8) 

Alternatively, Hájek (1981) also estimated 1c  by, 

 1
3ˆ .i

i s
c Nn c−

∈

≈ ∑  (9) 

Then, the estimator of joint inclusion probabilities is given by 

 (3)
3

(1 )(1 )
ˆ 1 .

ˆ
i j

ij i j c
π π

π π π
− − 

= − 
 

 (10) 

Therefore, the general form of ˆijπ
 
approximation of Hájek (1981) is defined by 

 ( )

(1 )(1 )
ˆ 1 .

ˆ
i j

ij l i j
lc

π π
π π π

− − 
= − 

 
 (11) 
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where 1,2,3l =  and 1 1ˆ .c c=  
 
3.2. Brewer and Danadio’s (2003) approximation 

Brewer and Danadio ( 2003)  also proposed formulas to estimate the joint inclusion probabilities 
based on the first order inclusion probabilities in population U as follows.  Let  

2,i
i U

d π
∈

= ∑   4
1ˆ ,i

i

nc
n π
−

=
−

  5 1

1ˆ ,i
nc

n n d−

−
=

−
  6 1

1ˆ ,
2i

i

nc
n n dπ −

−
=

− +
 

 
7 1 1

1ˆ .
(2 1)( 1) ( 1)i

i

nc
n n n n dπ− −

−
=

− − − + −
 (12) 

The general formula of joint inclusion probabilities approximation of Brewer and Danadio (2003) is, 

 ( )

ˆ ˆ( )
ˆ , 4,5,6,7.

2
i j li lj

ij l

c c
l

π π
π

+
= =  (13) 

In Subsection 3.1 and 3.2, two general forms of joint inclusion probability approximation were 
discussed. One is the general form of Hájek (1981) approximation, and the other is the general form 
of Brewer and Danadio (2003) approximation. From (11) and (13), the value of ˆ

ijD  in (2) can be 

estimated by 

 ( )
( )

( )

ˆˆ , 1, 2,...,7.
ˆ
ij l i j

ij l
ij l i j

D l
π π π
π π π

−
= =               (14) 

The formula of  ( )ˆ ˆ
HTV Z  in (5) can be written as 

 ( ) 2
( )

\{ }

ˆ ˆ ˆ ˆˆ ˆ ˆ , 1, 2,...,7.l HT i i ij l i j
i s i s i j s

V Z D z D z z l
∈ ∈ ∈

= + =∑ ∑ ∑   (15) 

 
4. Variance estimation with free joint inclusion probability 

Variance and associated variance estimators under unequal probability sampling without 
replacement such as the Horvitz and Thompson (1952) estimator require joint inclusion probabilities 
in the calculation process. Then, Hájek (1964) proposed an alternative variance of the Horvitz and 
Thompson (1952) estimator in the case of high entropy sampling as follows. Let (1 ),i i ic π π= −  

1ioz =  for all ,i U∈ iz  and ˆiz  are defined in (3). From (3), we may write 

 
ˆˆ ˆ ,i

HT i
i s i si

z
Z o

π∈ ∈

= =∑ ∑  

where 
ˆˆ .i

i
i

z
o

π
=  The variance of ˆ

HTZ  by using the method proposed by Hájek (1964) is given by 

( )
1

2
0 0

ˆ ˆ ˆ ˆ .HT i i i j j i i i
i s i U j U i U

V Z V o c o c z c o z
−

∈ ∈ ∈ ∈

        = = −              
∑ ∑ ∑ ∑  

Let i
i

i

c
c

π
=  then the estimator of  ( )ˆ

HTV Z  is defined by 

( )
1

2
0 0

ˆ ˆ ˆ ˆ .HT i i j j i i i
i s j s i s

V Z c o c z c o z
−

∈ ∈ ∈

       = −          
∑ ∑ ∑    
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In the presence of nonresponse, Ponkaew and Lawson (2019) proposed a population total estimator 
under the reverse framework with uniform nonresponse which is defined by 

 (1) ˆˆ ˆ ,i i i
r i

i s i s i si i

r y z
Y o

pπ π∈ ∈ ∈

= = =∑ ∑ ∑  (16) 

where ˆ i i
i

r y
z

p
=  and 

ˆˆ .i
i

i

z
o

π
=  

However, the variance estimator of (1)
r̂Y  in (16) requires the joint inclusion probability. Then, 

Lawson (2020) investigated the variance proposed by Ponkaew and Lawson (2019). Lawson (2020) 
suggested to apply Hájek’s (1964) method under the reverse framework and when the sampling 
fraction is negligible which is defined by 

( ) { } { }(1) (1)ˆ ˆ ˆ
∈

  ≈ =      
∑R RL r R S r R S i
i s

V Y E V Y E V o  

 ( )
1

2
0 0ˆ ˆ( ) ( )

−

∈ ∈ ∈

    = −   
    

∑ ∑ ∑i R i j j i R i i
i U j U i U

c E o c z c E o z   ( )
1

2
0 0 ,

−

∈ ∈ ∈

    = −   
    

∑ ∑ ∑ i i j j i i i
i U j U i U

c y c z c y z  

where .i
i

i

y
y

π
=  The estimator of ( )(1)

r̂V Y  is defined by 

 ( )
1

(1) 2
0 0

ˆ ˆ ˆ ˆ ,L r i i j j i i i
i s j s i s

V Y c o c z c o z
−

∈ ∈ ∈

       = −          
∑ ∑ ∑    (17) 

where 
ˆˆ ˆ, .i i i

i i
i

z r y
o z

pπ
= =  

 
5. The existing estimators under uniform nonresponse 

In this section, we discuss the existing ratio estimators proposed by Ponkaew and Lawson (2018) 
and also the GREG estimators proposed by Lawson and Ponkaew (2019) along with their variance 
estimators. The details are as follows. 

 
5.1. The ratio estimator of Ponkaew and Lawson (2018)  

The ratio estimator is a popular method for estimating population total when the information on 
an auxiliary variable is known for all units in a population .U  For full response, Bacanli and Kadilar 
(2008) and Särndal and Lundström (2005) introduced a ratio estimator under equal probability 
sampling without replacement. Later, Ponkaew and Lawson (2018) extended their estimator for 
estimating population total with the uniform nonresponse mechanism and is defined by, 

 

*
*

ˆˆ ,
ˆ

i i

i s i r
R i

i i U HT

i s i

r y
p YY w W

w w
π

π

∈

∈

∈

= =
∑

∑
∑

 (18) 

where *ˆ ˆ, , .i i i
r HT i

i s i s i Ui i

r y w
Y w W w

pπ π∈ ∈ ∈

= = =∑ ∑ ∑   Under the reverse framework the variance of *
R̂Y  is 

defined by 
 * * *

1 2
ˆ ˆ ˆ( ) ( | ) ( | ) ,= + = +R RR R S R R S RV Y E V Y V E Y V V  (19) 
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where *
1

ˆ( | )= RR S RV E V Y  and *
2

ˆ( | ).= RR S RV V E Y  We note that the second term in (19) can be omitted 

when the sampling fraction ( 1nN − ) is  negligible then the variance of *
R̂Y  is approximately by 

*
1

ˆ( ) .
π

π

∈

∈

∈

 
 
 ≈ =
 
 
 

∑
∑

∑
R

i i

i s i
R R S i

i Ui

i s i

r y
p

V Y V E V w
w

 

However, *
R̂Y  is in the form of a nonlinear estimator so Ponkaew and Lawson (2018) proposed to use 

the Taylor linearization approach to transform *
R̂Y  to a linear estimator and  is defined by 

 *ˆ ,i
R

i s i

z
Y

π∈

≈ ∑  (20) 

where i i
i i r

r y
z x R

p
= −  and .

i i

i U
r

i
i U

r y
pR

w
∈

∈

=
∑
∑

 Then, 

*
1

ˆ( )
π∈

 
≈ ≈  

 
∑ Ri

R R S
i s i

z
V Y V E V 2

2
\{ }

(2 ) ,
∈ ∈ ∈ ∈

= + − −∑ ∑ ∑ ∑i i ij i j i i i i
i U i U j i U i U

D y D e e D y Rw Rw  

where 2
1

, ,i
i i i i

i

D e y Rw
p
π

π
−

= = −  and .YR
X

=  

The variance of the ratio estimator of Ponkaew and Lawson (2018) is discussed under a situation 
where the sampling fraction is large and the second component cannot be omitted. Let us consider the 
second term in (19),  

 
2

*
2

(1 )ˆ( | ) .
π

π

∈

∈ ∈

∈

 
  − = = ≈
 
 
 

∑
∑ ∑

∑
R R

i i

i s i i
R S R R S i

i U i Ui

i s i

r y
p p y

V V E Y V E w
w p

 

The estimator of 2V  is given by 

 2
2 2

(1 )ˆ ,
( ) i i

i s

pV r y
p ∈

′−
≈

′ ∑  (21) 

where p p′ =  if p  is known otherwise 
1

1ˆ .i

i s i si i

r
p p

π π

−

∈ ∈

 
′ = =  

 
∑ ∑  

Then, a new variance estimator is shown as follows. 
2

* 2
2

\{ }

(1 )ˆ( ) (2 ) .i
R i i ij i j i i i i

i U i U j i U i U i U

p y
V Y D y D e e D y Rw Rw

p∈ ∈ ∈ ∈ ∈

−
≈ + − − +∑ ∑ ∑ ∑ ∑  

The estimator of variance of Ponkaew and Lawson (2018) under a large sampling fraction is given by 
* 2 2

2 2 2
\{ }

1 1 1 (1 )ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (2 ) ,
( ) ( )R i i i i j ij i j i i i r i r i i i

i s i s j i s i s i s

pV Y r D y r r D e e r D y R w R w r y
p pp p∈ ∈ ∈ ∈ ∈

′−
≈ + − − +

′ ′′ ′∑ ∑ ∑ ∑ ∑  

    2 2
2 2

\{ }

1 (1 ) 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ(2 ) ,
( )i i i i i i i i i j ij i j

i s i s j i s

pr D y D y Rw Rw y r r D e e
p p p∈ ∈ ∈

′ −
= − − + + ′ ′ ′ 

∑ ∑ ∑  (22) 
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where p p′ =  if p  is known otherwise 
1

2 2

11 ˆˆ ,i i
i

i s i si i i

r
p p D

p
π

π π π

−

∈ ∈

  −′ = = = 
 

∑ ∑  and 

1

ˆ .i i i
r

i s i si i

r y w
R

pπ π

−

∈ ∈

 
=  ′  
∑ ∑  

 
5.2. The GREG estimator of Lawson and Ponkaew (2019)  

Under the reverse framework with uniform nonresponse Lawson and Ponkaew (2019) proposed 
the GREG estimator for estimating population mean given by 

 
1

.
ˆ π π

π π
π π

−
∈ ∈

∈ ∈

∈ ∈

′ 
  ′    = + −         
 
 

∑ ∑
∑ ∑

∑ ∑

x
x x x

X

i i i i

i s i si i i i i i i i i i
GREG LP

i s i si i i i

i s i si i

r y r
rq rq y

Y
r r

 ( )ˆ ˆ ˆ .
′

= + −X X βr r rY  (23) 

The estimator of population total can be obtained by 

 ( ). .
ˆ ˆ ˆ ˆˆ ,

 ′
= = + − 

  
X X βGREG LP GREG LP r r rY NY N Y  (24) 

where 
1

ˆ ˆ ˆ, , ,
π π π π π π

−

∈ ∈ ∈ ∈ ∈ ∈

′   = = =    
   

∑ ∑ ∑ ∑ ∑ ∑
x x xx X  β i i i i i i i ii i i i i i

r r r
i s i s i s i s i s i si i i i i i

r q rq yr y r r rY  and 1 .
∈

= ∑X xi
i UN

 

The GREG estimator for estimating population mean of Lawson and Ponkaew (2019) is in the 
form of a nonlinear estimator so the modified automated linearization approach used to transform 

.
ˆ .GREG LPY .

ˆ
GREG LPY  is given by 

 .

1ˆ ,
π

π
∈

∈

′≈ + ∑
∑

X β i i
GREG LP

i si i

i s i

re
Y

r
 (25) 

where .′= − x βi i ie y  However, the GREG estimator .
ˆ
GREG LPY  is still in a nonlinear form so Lawson and 

Ponkaew (2019) suggested to use two methods to adjust .
ˆ
GREG LPY  as follows: 

Method 1: Replace i

i s i

r
π∈

∑  by i
i U

r
∈
∑  

Let . (1)

1ˆ .
π∈

∈

′≈ + ∑∑
X β i i

GREG LP
i si i

i U

re
Y

r
  From the assumption 3( ) 0i

i s i

r
A V

π∈

 
→ 

 
∑  as n →∞  then 

i

i s i

r
π∈

∑  converges to i
i U

r
∈
∑  in probability. Therefore, the linear estimator of .

ˆ
GREG LPY  can be 

approximated by  . (1)
ˆ
GREG LPY  because .

ˆ
GREG LPY  converges to . (1)

ˆ
GREG LPY  in probability.   

 
Method 2: The Taylor linearization approach 

.
ˆ
GREG LPY  from (25) can be rewritten as,  

 1
.

2

ˆˆ ˆ( ) ,ˆ
′≈ = +st X βGREG LP

tY g
t

 (26) 
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where ( )g .  is a smooth function of  1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ, , , [ ] .

π∈ ∈

′= = =∑ ∑s st t   i i
i

i s i Ui

re
t t r t t  Let 1 2, ,

∈ ∈
= =∑ ∑i i i

i U i U
t re t r

1 2[ ] , ( ) .∈

∈

′ ′= = +
∑

∑
t   t X β

i i
i U

i
i U

re
t t g

r
 Then, the linear estimator of .

ˆ
GREG LPY  can be obtained by using the 

Taylor linearization approach and is defined by 

 
2

. (2)
1

ˆ

ˆ( )ˆ ˆ( ) ( ),ˆ=
=

∂
≈ + −

∂
∑ s

s

t t

t
tGREG LP j j

j j

g
Y g t t

t
 (27) 

Therefore, the variance of .
ˆ
GREG LPY  under the reverse framework and a negligible sampling fraction 

can be approximated by 

 . 1

1ˆ( ) ,
π∈

∈

  
  = ≈
  

  
∑∑

Rmi
m GREG LP R S

i si i
i U

z
V Y V E V

r
 (28) 

where  1 21, 2, , ( ), ( )′= = = − = − x βi i i i i i r i i im z re z r e e e y  and  .r i i i
i U i U

e re r
∈ ∈

= ∑ ∑  The variance of  

.ĜREG LPY  can be approximated from 

 . 1
ˆ( ) ,

π∈
∈

  
  = ≈
  

  
∑∑

Rmi
m GREG LP R S

i si i
i U

zNV Y V E V
r

 (29) 

where .
ˆ( ),m GREG LPV Y  1, 2m =  are the first components of variance under the reverse framework and 

using method m  to transform the GREG estimator to a linear estimator. 
Then, the variances of the GREG estimator for estimating population total are given by, 

2
1 .

\{ }

1ˆ( ) ,
∈ ∈ ∈

≈ +∑ ∑ ∑GREG LP i i ij i j
i U i U j i U

V Y D e D e e
p

 

2
2 .

\{ }

1ˆ( ) ( ) ( )( ),GREG LP i i ij i j
i U i U j i U

V Y D e e D e e e e
p ∈ ∈ ∈

≈ − + − −∑ ∑ ∑  

where 1
1(1 ) ,i iD π π −= −  1( )( ) ,ij i j ij i jD π π π π π −= −  1( ), .

∈

′= − = ∑x βi i i i
i U

e y e e
N

 

Next, we extended the variances of .ĜREG LPY  to a situation where the sampling fraction was not 
negligible and are defined by 

 2 2
1 .

\{ }

1 (1 )ˆ( ) ( ) ,GREG LP i i ij i j i
i U i U j i U i U

pV Y D e D e e e e
p p∈ ∈ ∈ ∈

−
≈ + + −∑ ∑ ∑ ∑  (30) 

 2
2 .

(1 )1ˆ( ) ( )i
GREG LP i

i U i

V Y e e
p

π
π∈

−
≈ −∑ 2

\{ }

(1 )( )( ) ( ) ,ij i j i
i U j i U i U

pD e e e e e e
p∈ ∈ ∈

−
+ − − + −∑ ∑ ∑      (31) 

where 1 .i
i U

e N e−

∈

= ∑  We note that, the third component in (30) and (31) is the second term of variance 

of .ĜREG LPY  under the reverse framework that is, 

 2
2

(1 ) ( ) .
π∈ ∈

∈

   −  = ≈ −
  

  
∑ ∑∑

Rmi
R S i

i s i Ui i
i U

zN pV V E e e
r p

 (32) 
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The estimator of 2V  is given by 

 2
2 2

(1 )ˆ ˆˆ( ) .
( )

i
i

i s i

rpV e e
p π∈

′−
≈ −

′ ∑  (33) 

where p p′ =  if p  is known otherwise  
1

1ˆ ,i

i s i si i

r
p p

π π

−

∈ ∈

 
′ = =  

 
∑ ∑ ˆˆ ( )= − x βi i i re y  and  

ˆ
ˆ .

i i i
i s

r e
e

N

π
∈=
∑

  

Therefore, the estimators of 1 .
ˆ( )GREG LPV Y  and  2 .

ˆ( )GREG LPV Y  are obtained respectively by, 

 
2

2 2
1 . 2

/{ }

(1 )ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ).
( )

i
GREG LP i i i ij i i i j i

i i s i s j i s i s i

i s i

rN pV Y D re D re re e e
r p π
π
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∈
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 

∑ ∑ ∑ ∑
∑

 (34) 
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2 2 2
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NV Y D r e e D r e e r e e
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π
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∈
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∑ ∑ ∑
∑

 

                               2
2

(1 ) ˆˆ( ) ,
( )

i
i

i s i

rp e e
p π∈

′−
+ −

′ ∑   (35) 

where 2
1

ˆ (1 ) ,i iD π π −= − 1ˆ ( )( ) ,ij i j ij ij i jD π π π π π π −= −  ˆˆ ( ),= − x βi i i re y  
ˆ

ˆ .
i i i

i s
r

i i
i s

r e
e

r

π

π
∈

∈

=
∑
∑

 

 
6. Proposed variance estimators 

The formulas of the variance estimators of the ratio and GREG estimators in Section 5 require 
joint inclusion probability because the first component of total variance is in the form of Horvitz and 
Thompson’s (1952) formula. In this section, we propose variance estimators under two approaches by 
estimating the joint inclusion probability or free joint inclusion probability as follows.  
 
6.1. The proposed variance estimators of a ratio estimator 
6.1.1 The proposed variance estimators of a ratio estimator with estimated joint inclusion 

probability 
From (14) the formula of ( )

ˆ
ij kD  is defined by 

 ( )
( )

( )

ˆˆ , 1, 2,...,7.
ˆ
ij k i j

ij k
ij k i j

D k
π π π
π π π

−
= =   (36) 

Let us consider the variance estimator of the ratio estimator from (22), 

 

* 2 2
2 2
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1 (1 ) 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (2 ) ,
( )R i i i i i i i i i j ij i j
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p p p∈ ∈ ∈

′ −
≈ − − + + ′ ′ ′ 

∑ ∑ ∑   

Substitute ˆ
ijD  by ( )

ˆ
ij kD  then the proposed variance estimators of ratio estimator are defined by 

 ( ) * 2 2
2

1 (1 )ˆ ˆ ˆ ˆ ˆ ˆ( ) (2 )k
R i i i i i i i i

i s

pV Y r D y D y Rw Rw y
p p∈
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1 ˆ ˆ ˆ ,
( ) i j ij k i j

i s i j s
r r D e e

p ∈ ∈

+
′ ∑ ∑  (37) 

where 1,2,...,7.=k  
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6.1.2 The proposed variance estimators of the ratio estimator with free joint inclusion 
probability 

In this subsection we investigate the free joint inclusion probability of the variance estimator by 
using Lawson’s (2018) method as follows. From (20), the linear form of the ratio estimator is    

 *ˆ ,i
R

i s i

z
Y

π∈

≈ ∑  (38) 

where .i i
i i r

r y
z x R

p
= −  From (38), we may write  

 *ˆ ,i i
R i

i s i s i si i

z z
Y o

π π∈ ∈ ∈

≈ = =∑ ∑ ∑   
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z
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π
=  By using Lawson’s (2020) method,  
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z
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∑ ∑  if p  is unknown otherwise p p′ = . From 

(21), 2̂V  is given by 
2

2 2
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r ypV
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′ ∑  

Then, the free joint inclusion probability of the variance estimator of the ratio estimator is defined as 

 *
1 2

ˆ ˆ ˆ ˆ( )RV Y V V′′ = +
1 2

2
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∑ ∑ ∑ ∑    (39) 

 
6.2  The proposed variance estimators of the GREG estimator    
6.2.1 The proposed variance estimators of the GREG estimator with estimated joint inclusion 

probability 
In Subsection 5.2, we used two methods to transform the GREG estimator to a linear estimator 

and discussed variance estimators in (34) and (35). In this subsection, we propose new variance 
estimators of the GREG estimator by estimating the joint inclusion probability in (34) and (35) as 
follows. 

From (34), the variance estimator under Method 1 is defined by   
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where 2
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 and 
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p p′ =  if p  is known otherwise 
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1ˆ .i

i s i si i
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p p

π π
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 
′ = =  

 
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The proposed variance estimators of the GREG estimator with Method 1 can be obtained by 
substituting ˆ

ijD  in (37) by ( )
ˆ .ij kD  Therefore,  
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From (35), the variance estimator under Method 2 is defined by,    
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Substitute ˆ
ijD  in (42) with ( )

ˆ ,ij kD  the proposed variance estimator by Method 2 is given by,  
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where 1,2,...,7.k =   
 

6.2.2 The proposed variance estimators of the GREG estimator with free joint inclusion 
probability 

We investigate the estimator of variance of the GREG estimator by using Lawson’s (2020) 
method. From (29), we may write 

1 ,
π∈ ∈

∈
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where 1,2,m =  ,mi
mi

i i
i U

zNo
r π

∈

=
∑

 1 ,i i iz r e=  2 ( ),i i i rz r e e= −  ( )′= − x βi i ie y  and  .r i i i
i U i U

e re r
∈ ∈

= ∑ ∑   

By using Lawson’s (2020) method, the estimator of 1mV  is defined by 
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Recall from (33) 2̂V  is defined by 
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Then, the free joint inclusion probability of the variance estimator of the GREG estimator can be 
obtained by 
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where 1,2m = . The proposed variance estimator with free joint inclusion probability under Method 1 
is defined by 
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rpc o c z c o z e e
p π

−

′ ′
∈ ∈ ∈ ∈

    ′  −   ≈ − + −      ′       
∑ ∑ ∑ ∑  

 

 (46) 

Moreover, the proposed variance estimator with free joint inclusion probability under Method 2 is 
given by 

''
2 . 12 2
ˆ ˆ ˆ ˆ( )GREG LPV Y V V= +  

1
2 2

2 0 2 0 2

(1 ) ˆˆ ˆ ˆ( ) .
( )

i
i ip j j i ip i i

i s j s i s i s i

rpc o c z c o z e e
p π

−

′ ′
∈ ∈ ∈ ∈

    ′  −   ≈ − + −      ′       
∑ ∑ ∑ ∑    (47) 

 
7. Simulation studies 

To compare the efficiency of the proposed variance estimators, we apply Sichera’s (2020) model 
to generate a  population consisting of y , a study variable, x  and w are auxiliary variables and k is 
a size variable which is from the model from package “jipApprox” in R program (R Core Team 2021). 
The Sichera model is used to investigate the estimate values of the joint inclusion probabilities under 
unequal probability sampling which we also considered in this study. The model is 

1
20.2 0.01 2 3.7 ,i i i iy x w k k ε= + + + + where ~ (10,5), ~ (5,10), ~ (5,5),i i ik gamma w gamma x gamma  

~ (0,1),i Nε  1, 2, ,...,i N=  and the population size is 1,000N = . We consider four levels of sample 
sizes that is  50,n =  100,n =  150n =  and 300.n =  The sample sizes were selected using unequal 
probability sampling without replacement. Two levels of response probabilities; 70% and 85% were 
considered in the simulation studies and repeated in the study 10,000 times ( M =10,000).  The relative 
root mean square error (RRMSE), the relative bias (RB), and the coverage rate (CR) are used to 
compare the efficiencies of the proposed variance estimators in this study and the formulas are as 
follows. 

(i) The relative root mean square error, ( )
( ) 2

1

1 ˆ ˆ ˆ( ( )
1ˆ ˆ( ) ,ˆ( )

M

m
m

V Y V Y
MRRMSE V Y

V Y
=

−
−

=
∑

 where 

ˆ ˆ( )V Y  is the proposed variance estimator and ˆ( )V Y  is the true value of variance. 
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(ii) The relative bias, ( ) ( )( )ˆ ˆ ˆ( )
ˆ ˆ( ) ,ˆ( )

E V Y V Y
RB V Y

V Y

−
=  where ( )( ) ( )

1

1ˆ ˆ ˆ ˆ ,
M

m
m

E V Y V Y
M =

= ∑  

(iii) The coverage rate for a nominal 95% level, ( )
1

1ˆ ˆ( ) ,
M

m
m

CR V Y I
M =

  =  ∑  where ( ) 1mI = if 

[ , ]m mY l u∈ otherwise ( ) 0mI =  and  ˆ ˆ ˆ1.960 ( ),ml Y V Y= −  and ˆ ˆ ˆ1.960 ( ).ml Y V Y= +   

In this study, we consider only the case where the response probability is unknown because it is 
more practical in real life. The proposed variance estimators can be classified into two cases; estimated 
joint inclusion probability variance estimators and free joint inclusion probability variance estimators.  

Table 1 shows the relative root mean square error of the variance estimator of the ratio estimator. 
The result showed that the free joint inclusion probability variance estimators from (39) gave a smaller 
relative root mean square error than the estimated joint inclusion probability for all situations.  Table 
2 and Table 3 shows the relative root mean square error of the variance estimator of the GREG 
estimator under Methods 1 and 2, respectively. The results from Tables 2 and 3 are similar to Table 1, 
that is the free joint inclusion probability variance estimators from (46) and (47) respectively gave a 
smaller relative root mean square error than the estimated joint inclusion probability variance 
estimators. 
 

Table 1 The relative root mean square error of the variance estimators of the ratio estimator 

Response rate (%) RRMSE  
Sample size ( n ) 

50n =  100n =  150n =  300n =  

0.7 ( )(1) *ˆ ˆ( )RRRMSE V Y′  0.82372 0.81767 0.81115 0.78965 

 ( )(2) *ˆ ˆ( )RRRMSE V Y′  0.82372 0.81767 0.81115 0.78965 

 ( )(3) *ˆ ˆ( )RRRMSE V Y′  0.82395 0.81777 0.81121 0.78961 

 ( )(4) *ˆ ˆ( )RRRMSE V Y′  0.82373 0.81765 0.81105 0.78882 

 ( )(5) *ˆ ˆ( )RRRMSE V Y′  0.82376 0.81768 0.81110 0.78890 

 ( )(6) *ˆ ˆ( )RRRMSE V Y′  0.82370 0.81761 0.81100 0.78873 

 ( )(7) *ˆ ˆ( )RRRMSE V Y′  0.82370 0.81761 0.81100 0.78873 

 ( )*ˆ ˆ( )RRRMSE V Y′′  0.47344 0.42117 0.31730 0.29570 

0.85 ( )(1) *ˆ ˆ( )RRRMSE V Y′  0.73648 0.72061 0.71201 0.67729 

 ( )(2) *ˆ ˆ( )RRRMSE V Y′  0.73648 0.72061 0.71201 0.67729 

 ( )(3) *ˆ ˆ( )RRRMSE V Y′  0.73669 0.72071 0.71205 0.67724 

 ( )(4) *ˆ ˆ( )RRRMSE V Y′  0.73650 0.72057 0.71188 0.67643 

 ( )(5) *ˆ ˆ( )RRRMSE V Y′  0.73653 0.72058 0.71188 0.67641 

 ( )(6) *ˆ ˆ( )RRRMSE V Y′  0.73647 0.72056 0.71187 0.67644 

 ( )(7) *ˆ ˆ( )RRRMSE V Y′  0.73647 0.72056 0.71187 0.67644 

 ( )*ˆ ˆ( )RRRMSE V Y′′  0.38682 0.31888 0.30396 0.28637 
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Table 2 The relative root mean square error of the variance estimators of the GREG estimator  
under Method 1 

Response rate (%) RRMSE  
Sample size ( n ) 

50n =  100n =  150n =  300n =  

0.7 ( )(1)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.79349 0.73205 0.65174 0.59526 

 ( )(2)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.79349 0.73204 0.65172 0.59523 

 ( )(3)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.79056 0.73077 0.65131 0.59547 

 ( )(4)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.79272 0.73238 0.65388 0.60068 

 ( )(5)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.79164 0.73125 0.65259 0.59967 

 ( )(6)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.79381 0.73350 0.65518 0.60170 

 ( )(7)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.79383 0.73351 0.65518 0.60171 

 ( )''
.1̂

ˆ( )GREG LPRRMSE V Y  0.48835 0.33498 0.26434 0.18547 

0.85 ( )(1)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.60449 0.51598 0.51045 0.46472 

 ( )(2)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.60451 0.51596 0.51044 0.46465 

 ( )(3)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.60227 0.51562 0.50955 0.46609 

 ( )(4)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.60347 0.51794 0.51090 0.48353 

 ( )(5)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.60219 0.51639 0.50994 0.48208 

 ( )(6)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.60475 0.51950 0.51186 0.48500 

 ( )(7)
.1̂

ˆ( )′ GREG LPRRMSE V Y  0.60478 0.51951 0.51187 0.48500 

 ( )''
.1̂

ˆ( )GREG LPRRMSE V Y  0.43639 0.26975 0.25404 0.16953 
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Table 3 The relative root mean square error of the variance estimators of the GREG estimator 
under Method 2 

Response rate (%) RRMSE  
Sample size ( n ) 

50n =  100n =  150n =  300n =  

0.7 ( )(1)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.52824 0.36853 0.31136 0.26758 

 ( )(2)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.52823 0.36869 0.31157 0.26772 

 ( )(3)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.61558 0.43684 0.36607 0.31053 

 ( )(4)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.52184 0.35741 0.29557 0.24719 

 ( )(5)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.51625 0.34694 0.28027 0.22712 

 ( )(6)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.52749 0.36812 0.31142 0.26833 

 ( )(7)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.52761 0.36823 0.31152 0.26844 

 ( )''
.2̂

ˆ( )GREG LPRRMSE V Y  0.48835 0.33498 0.26434 0.18547 

0.85 ( )(1)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.51392 0.40042 0.37936 0.33858 

 ( )(2)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.51398 0.40041 0.37943 0.33862 

 ( )(3)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.53580 0.42345 0.39738 0.34569 

 ( )(4)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.51005 0.39136 0.36585 0.31241 

 ( )(5)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.50639 0.38216 0.35148 0.27913 

 ( )(6)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.51376 0.40070 0.38056 0.34693 

 ( )(7)
.2̂

ˆ( )′ GREG LPRRMSE V Y  0.51384 0.40080 0.38066 0.34704 

 ( )''
.2̂

ˆ( )GREG LPRRMSE V Y  0.43639 0.26975 0.25404 0.16953 

 
Table 4 shows the relative bias of the variance estimators of the ratio estimator while Tables 5 

and 6 show the relative bias of the variance estimators of the GREG estimator with methods 1 and 2 
respectively. We can see similar results for Tables 4-6 where the free joint inclusion probability 
variance estimators gave the best results compared to others for all scenarios with smaller biases when 
the sample size and response rate are increased. 
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Table 4 The relative bias of the variance estimators of the ratio estimator 

Response rate (%) RB  
Sample size ( n ) 

50n =  100n =  150n =  300n =  

0.7 ( )(1) *ˆ ˆ( )′ RRB V Y  0.6977 0.6953 0.6800 0.6566 

 ( )(2) *ˆ ˆ( )′ RRB V Y  0.6977 0.6953 0.6800 0.6566 

 ( )(3) *ˆ ˆ( )′ RRB V Y  0.6983 0.6956 0.6801 0.6565 

 ( )(4) *ˆ ˆ( )′ RRB V Y  0.6978 0.6953 0.6798 0.6547 

 ( )(5) *ˆ ˆ( )′ RRB V Y  0.6979 0.6955 0.6799 0.6550 

 ( )(6) *ˆ ˆ( )′ RRB V Y  0.6977 0.6952 0.6796 0.6543 

 ( )(7) *ˆ ˆ( )′ RRB V Y  0.6977 0.6952 0.6796 0.6543 

 ( )*ˆ ˆ( )′′ RRB V Y  0.3964 0.3885 0.3800 0.3646 

0.85 ( )(1) *ˆ ˆ( )′ RRB V Y  0.7476 0.747 0.7326 0.7132 

 ( )(2) *ˆ ˆ( )′ RRB V Y  0.7476 0.7475 0.7326 0.7132 

 ( )(3) *ˆ ˆ( )′ RRB V Y  0.7482 0.7478 0.7328 0.7130 

 ( )(4) *ˆ ˆ( )′ RRB V Y  0.7476 0.7474 0.7323 0.7107 

 ( )(5) *ˆ ˆ( )′ RRB V Y  0.7477 0.7476 0.7325 0.7110 

 ( )(6) *ˆ ˆ( )′ RRB V Y  0.7475 0.7473 0.7322 0.7105 

 ( )(7) *ˆ ˆ( )′ RRB V Y  0.7475 0.7473 0.7322 0.7105 

 ( )*ˆ ˆ( )′′ RRB V Y  0.1773 0.1732 0.1638 0.1629 
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Table 5 The relative bias of the variance estimators of the GREG estimator under Method 1 

Response rate (%) RB  
Sample size ( n ) 

50n =  100n =  150n =  300n =  

0.7 ( )(1)
.1̂

ˆ( )′ GREG LPRB V Y  0.4841 0.3525 0.3503 0.1917 

 ( )(2)
.1̂

ˆ( )′ GREG LPRB V Y  0.4841 0.3525 0.3503 0.1917 

 ( )(3)
.1̂

ˆ( )′ GREG LPRB V Y  0.4853 0.3517 0.3484 0.1878 

 ( )(4)
.1̂

ˆ( )′ GREG LPRB V Y  0.5031 0.3551 0.3510 0.1915 

 ( )(5)
.1̂

ˆ( )′ GREG LPRB V Y  0.5023 0.3545 0.3504 0.1911 

 ( )(6)
.1̂

ˆ( )′ GREG LPRB V Y  0.5039 0.3557 0.3516 0.1920 

 ( )(7)
.1̂

ˆ( )′ GREG LPRB V Y  0.5039 0.3557 0.1262 0.1920 

 ( )''
.1̂

ˆ( )GREG LPRB V Y  0.1308 0.1262 0.0932 0.0903 

0.85 ( )(1)
.1̂

ˆ( )′ GREG LPRB V Y  0.3551 0.296 0.2438 0.1542 

 ( )(2)
.1̂

ˆ( )′ GREG LPRB V Y  0.3551 0.2960 0.2438 0.1542 

 ( )(3)
.1̂

ˆ( )′ GREG LPRB V Y  0.3568 0.2953 0.2421 0.1504 

 ( )(4)
.1̂

ˆ( )′ GREG LPRB V Y  0.3793 0.2995 0.2449 0.1541 

 ( )(5)
.1̂

ˆ( )′ GREG LPRB V Y  0.3786 0.2989 0.2443 0.1537 

 ( )(6)
.1̂

ˆ( )′ GREG LPRB V Y  0.3800 0.3000 0.2454 0.1545 

 ( )(7)
.1̂

ˆ( )′ GREG LPRB V Y  0.3800 0.3000 0.2454 0.1545 

 ( )''
.1̂

ˆ( )GREG LPRB V Y  0.0382 0.0207 0.0078 0.0013 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chugiat Ponkaew and Nuanpan Lawson 95 

Table 6 The relative bias of the variance estimators of the GREG estimator under Method 2 

Response rate (%) RB  
Sample size ( n ) 

50n =  100n =  150n =  300n =  

0.7 ( )(1)
.2̂

ˆ( )′ GREG LPRB V Y  0.4841 0.3525 0.3503 0.1917 

 ( )(2)
.2̂

ˆ( )′ GREG LPRB V Y  0.4841 0.3525 0.3503 0.1917 

 ( )(3)
.2̂

ˆ( )′ GREG LPRB V Y  0.4853 0.3517 0.3484 0.1878 

 ( )(4)
.2̂

ˆ( )′ GREG LPRB V Y  0.5031 0.3551 0.3510 0.1915 

 ( )(5)
.2̂

ˆ( )′ GREG LPRB V Y  0.5023 0.3545 0.3504 0.1911 

 ( )(6)
.2̂

ˆ( )′ GREG LPRB V Y  0.5039 0.3557 0.3516 0.1920 

 ( )(7)
.2̂

ˆ( )′ GREG LPRB V Y  0.5039 0.3557 0.1262 0.1920 

 ( )''
.2̂

ˆ( )GREG LPRB V Y  0.1308 0.1262 0.0932 0.0903 

0.85 ( )(1)
.2̂

ˆ( )′ GREG LPRB V Y  0.3551 0.296 0.2438 0.1542 

 ( )(2)
.2̂

ˆ( )′ GREG LPRB V Y  0.3551 0.2960 0.2438 0.1542 

 ( )(3)
.2̂

ˆ( )′ GREG LPRB V Y  0.3568 0.2953 0.2421 0.1504 

 ( )(4)
.2̂

ˆ( )′ GREG LPRB V Y  0.3793 0.2995 0.2449 0.1541 

 ( )(5)
.2̂

ˆ( )′ GREG LPRB V Y  0.3786 0.2989 0.2443 0.1537 

 ( )(6)
.2̂

ˆ( )′ GREG LPRB V Y  0.3800 0.3000 0.2454 0.1545 

 ( )(7)
.2̂

ˆ( )′ GREG LPRB V Y  0.3800 0.3000 0.2454 0.1545 

 ( )''
.2̂

ˆ( )GREG LPRB V Y  0.0382 0.0207 0.0078 0.0013 

 
Table 7 shows the simulation coverage rate for a nominal 95% of the ratio estimator while Tables 

8 and 9 show the simulation coverage rate for a nominal 95% of the GREG estimator with Methods 1 
and 2, respectively. Similarly, to the results found for RRMSE and RB, in terms of the coverage rate 
the proposed estimator with the free joint inclusion probability performed the best with the coverage 
rate close to 0.95 which outperformed other estimators. 
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Table 7 The simulation coverage rate for a nominal 95% of the ratio estimator 

Response rate (%) The estimator formula 
The simulation coverage rate for a nominal 95% 

50n =  100n =  150n =  300n =  
0.7 (1) *ˆ ˆ( )RV Y′  0.9025 0.9068 0.9216 0.9378 

 (2) *ˆ ˆ( )RV Y′  0.8988 0.9047 0.9180 0.9383 

 (3) *ˆ ˆ( )RV Y′  0.8997 0.9044 0.9169 0.9387 

 (4) *ˆ ˆ( )RV Y′  0.8994 0.9021 0.9200 0.9355 

 (5) *ˆ ˆ( )RV Y′  0.9003 0.9033 0.9183 0.9383 

 (6) *ˆ ˆ( )RV Y′  0.8987 0.9052 0.9197 0.9336 

 (7) *ˆ ˆ( )RV Y′  0.9020 0.9022 0.9212 0.9378 

 *ˆ ˆ( )RV Y′′  0.9120 0.9225 0.9400 0.9475 

0.85 (1) *ˆ ˆ( )RV Y′  0.9104 9.2516 0.9308 0.9354 

 (2) *ˆ ˆ( )RV Y′  0.9090 9.2534 0.9314 0.9357 

 (3) *ˆ ˆ( )RV Y′  0.9102 9.2494 0.9328 0.9370 

 (4) *ˆ ˆ( )RV Y′  0.9127 9.2492 0.9311 0.9371 

 (5) *ˆ ˆ( )RV Y′  0.9112 9.2492 0.9280 0.9365 

 (6) *ˆ ˆ( )RV Y′  0.9112 9.2536 0.9331 0.9357 

 (7) *ˆ ˆ( )RV Y′  0.9131 9.2523 0.9280 0.9356 

 *ˆ ˆ( )RV Y′′  0.9291 0.9298 0.9398 0.9410 
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Table 8 The simulation coverage rate for a nominal 95% of the GREG estimator under Method 1 

Response rate (%) The estimator formula 
The simulation coverage rate for a nominal 95% 

50n =  100n =  150n =  300n =  
0.7 (1)

1 .
ˆ ˆ( )′ GREG LPV Y   0.9109 9.2530 0.9340 0.9405 

 (2)
1 .
ˆ ˆ( )′ GREG LPV Y   0.9135 9.2546 0.9340 0.9409 

 (3)
1 .
ˆ ˆ( )′ GREG LPV Y   0.9121 9.2537 0.9336 0.9408 

 (4)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9112 9.2523 0.9340 0.9402 

 (5)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9124 9.2538 0.9337 0.9409 

 (6)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9112 9.2522 0.9339 0.9404 

 (7)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9128 9.2521 0.9330 0.9402 

 ''
1 .
ˆ ˆ( )GREG LPV Y  0.9203 9.3538 0.9436 0.9470 

0.85 (1)
1 .
ˆ ˆ( )′ GREG LPV Y   0.9220 0.9357 0.9389 0.9479 

 (2)
1 .
ˆ ˆ( )′ GREG LPV Y   0.9211 0.9357 0.9389 0.9477 

 (3)
1 .
ˆ ˆ( )′ GREG LPV Y   0.9212 0.9363 0.9385 0.9479 

 (4)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9212 0.9360 0.9385 0.9475 

 (5)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9220 0.9360 0.9389 0.9477 

 (6)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9209 0.9359 0.9390 0.9477 

 (7)
1 .
ˆ ˆ( )′ GREG LPV Y  0.9232 0.9356 0.9386 0.9480 

 ''
1 .
ˆ ˆ( )GREG LPV Y  0.9358 0.9390 0.9488 0.9495 
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Table 9 The simulation coverage rate for a nominal 95% of the GREG estimator under Method 2 

Response rate (%) The estimator formula 
The simulation coverage rate for a nominal 95% 

50n =  100n =  150n =  300n =  
0.7 (1)

2 .
ˆ ˆ( )′ GREG LPV Y   0.9109 9.2530 0.9340 0.9405 

 (2)
2 .
ˆ ˆ( )′ GREG LPV Y   0.9135 9.2546 0.9340 0.9409 

 (3)
2 .
ˆ ˆ( )′ GREG LPV Y   0.9121 9.2537 0.9336 0.9408 

 (4)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9112 9.2523 0.9340 0.9402 

 (5)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9124 9.2538 0.9337 0.9409 

 (6)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9112 9.2522 0.9339 0.9404 

 (7)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9128 9.2521 0.9330 0.9402 

 ''
2 .
ˆ ˆ( )GREG LPV Y  0.9203 9.3538 0.9436 0.9470 

0.85 (1)
2 .
ˆ ˆ( )′ GREG LPV Y   0.9220 0.9357 0.9389 0.9479 

 (2)
2 .
ˆ ˆ( )′ GREG LPV Y   0.9211 0.9357 0.9389 0.9477 

 (3)
2 .
ˆ ˆ( )′ GREG LPV Y   0.9212 0.9363 0.9385 0.9479 

 (4)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9212 0.9360 0.9385 0.9475 

 (5)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9220 0.9360 0.9389 0.9477 

 (6)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9209 0.9359 0.9390 0.9477 

 (7)
2 .
ˆ ˆ( )′ GREG LPV Y  0.9232 0.9356 0.9386 0.9480 

 ''
2 .
ˆ ˆ( )GREG LPV Y  0.9358 0.9390 0.9488 0.9495 

 
8. Application to Real Data 

  To apply the proposed estimators to the fine particulate matter data in the north of Thailand where 
the PM2.5 dust level is one of the highest in the world. The data are from the air quality and noise 
management bureau, the Pollution Control Department of Thailand during October and November 
2022.  The Midzuno (1952) scheme is applied to select a sample of size 13 stations out of 23 stations 
(http://air4thai.pcd.go.th/webV2/history). The PM2.5 on 28 Novemeber 2002 is used as a study 
variable y (micrograms per cubic meter)  and the average PM2.5 and the air quality index average on 
October 2002 are considered as the auxiliary variables x  and ,w  respectively. The correlation 
coefficients between y  and w  and y  and x  are equal to 0.91 and 0.66 respectively. The ratio 
estimator is created using w while the GREG estimator is created using x  and only the case where the 
response probability is unknown is considered. The maximum value of PM2.5 on October 2002 is 
considered as the size variable .k  The nonresponse rate is 8.7%  in this study. The results are displayed 
in Table 10. 
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Table 10 The estimated total and variance estimates for the total yield 

Estimator 
Population 

total 
estimates 

The formula 
of variances Variance estimates 95% confidence interval 

The ratio 
estimator 

( *
R̂Y ) 

 585.95 (1) *ˆ ˆ( )′ RV Y  18741.47 (317.63, 854.27) 
(2) *ˆ ˆ( )′ RV Y  19166.98 (314.60, 857.30) 
(3) *ˆ ˆ( )′ RV Y  18409.36 (320.02, 851.88) 
(4) *ˆ ˆ( )′ RV Y  18331.30 (320.58, 851.32) 
(5) *ˆ ˆ( )′ RV Y  18127.38 (322.06, 849.84) 
(6) *ˆ ˆ( )′ RV Y  18558.42 (318.94, 852.96) 
(7) *ˆ ˆ( )′ RV Y  18578.39 (318.80, 853.10) 

*ˆ ˆ( )′′ RV Y  12726.33 (364.84, 807.06) 

Estimator 
Population 

total 
estimates 

The formula of 
variances 

Method 1 Method 2 

Variance 
estimates 

95% 
confidence 

interval 

Variance 
estimates 

95% 
confidence 

interval 
The 

GREG 
estimator 
( .ĜREG LPY ) 

770.75 (1)
.

ˆ ˆ( )′m GREG LPV Y   1210.57 (702.56, 838.94) 1210.57 (702.56, 838.94) 
(2)

.
ˆ ˆ( )′m GREG LPV Y   1210.70 (702.55, 838.95) 1210.70 (702.55, 838.95) 

(3)
.

ˆ ˆ( )′m GREG LPV Y   1210.43 (702.56, 838.94) 1210.43 (702.56, 838.94) 
(4)

.
ˆ ˆ( )′m GREG LPV Y  1236.20 (701.84, 839.66) 1236.20 (701.84, 839.66) 

(5)
.

ˆ ˆ( )′m GREG LPV Y  1242.45 (701.66, 839.84) 1242.45 (701.66, 839.84) 
(6)

.
ˆ ˆ( )′m GREG LPV Y  1229.24 (702.03, 839.47) 1229.24 (702.03, 839.47) 

(7)
.

ˆ ˆ( )′m GREG LPV Y  1228.62 (702.05, 839.45) 1228.62 (702.05, 839.45) 
''

.
ˆ ˆ( )m GREG LPV Y  895.81 (712.09, 829.41) 895.81 (712.09, 829.41) 

 
From Table 10, we can see similar results to the simulation studies where the proposed variance 

estimators using the free joint inclusion probability performed the best with the fine particulate matter 
data in all situations. The proposed free joint inclusion probability variance estimators gave a narrower 
confidence interval compared to others which result in better precision in estimating the population 
total. The estimated variance for the GREG estimators on both Methods 1 and 2 showed the same 
results due to the small value of ˆ

re  which makes similar results for the variance estimators from 
Methods 1 and 2 for the estimated joint inclusion probability variance estimators and free joint 
inclusion probability variance estimators from (40) and (42) and (46) and (47) respectively in this 
situation.  The estimated total PM2.5 from the ratio estimator is 585.95 micrograms per cubic meter 
which is less than the estimated total PM2.5 from the GREG estimator that is equal to 770.75 
micrograms per cubic meter but has a smaller variance. 

 
9. Conclusions    

The ratio and GREG estimators are potent for estimating population total when information on 
the population of an auxiliary variable is known and is highly correlated with the study variable. Many 
works estimate population total when data on the population of an auxiliary variable exists, but the 
study variable includes nonresponse. However, the variance estimator under unequal probability 
sampling without replacement is difficult to compute because it requires joint inclusion probability. 
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Therefore, we proposed new variance estimators of the ratio and GREG estimators proposed by 
Ponkaew and Lawson (2019) and Lawson and Ponkaew (2019), respectively. The proposed variance 
estimators were investigated under two different methods consisting of free joint inclusion probability 
and estimated joint inclusion probability. In the simulation studies the variance estimators with free 
joint inclusion probability performed better than the variance estimators with the estimated joint 
inclusion probability. The application to the fine particulate matter data in the north of Thailand 
presented results alike to the simulation results. The most superior method to estimate variance 
allowing practical convenience is using free joint inclusion probability, as it does not require the value 
of joint inclusion probability. It gave a narrower confidence interval compared to others leading to 
higher precision of the population total. In future works, other techniques to estimate the joint 
inclusion probability can be used to see the performance of the proposed estimators. 
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