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Abstract

If the objects have high reliability, then checking the life span of components in regular use
circumstances takes extra time and expenditure compared to accelerated circumstances. The
apparatus put on higher stress than the regular level of stresses to find out premature failures in a
short phase to lessen the costs involved in the assessment of apparatus with no change in the worth.
This problem is based on constant stress partially accelerated life tests for the generalized inverse
Lindley distribution using multiple censoring schemes. The maximum likelihood estimates and
asymptotic variance and covariance matrix are achieved. The confidence intervals for parameters are
also assembled. Further, a simulation study is used to check and verify the performance of the
estimators.

Keywords: Constant stress partially accelerated life tests, generalized inverse Lindley distribution, multiple
censoring, Fisher information matrix, simulation study.

1. Introduction

Manufacturing designs are evolving on a daily basis in response to the present market condition
and technological advancements. It can be difficult to obtain information regarding the lifetime of an
item or product if the item has a high reliability under typical usage conditions at the time of testing.
In this case, the accelerated life test (ALT) is the ideal technique to learn more about the objects'
existence. ALT is used to obtain knowledge on an item's or a good's life in a short amount of time
and at a low cost by testing them under accelerated conditions and then testing them under normal
use conditions to trigger early failures. These situations are referred to as stresses, and they can take
the form of temperature, voltage, force, and so on.

In general, three types of stresses are used in ALT: constant stress, step-stress, and progressive
stress. We are only dealing with constant stress in this paper. During a constant stress ALT, the
products or items are subjected to constant levels of stress. From ALT, two types of data are obtained:
complete data and censored data. The lifetime of each unit is known in the complete data, but it is
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unknown in the censored data. In ALT, a mathematical model related to the lifetime of an item or
product and stress can be expected. There are numerous situations in which these relationships are
either unknown or cannot be summarized. This means that data cannot be hypothesized to use
conditions that are obtained from ALT. The partially accelerated life test (PALT) is used in situations
where the test objects are subjected to both ordinary and higher-than-ordinary stress conditions.
Reliability practitioners use two main methods in PALT: constant stress partially accelerated life test
(CSPALT) and step-stress partially accelerated life test (SSPALT). The products or items are tested
in either standard or higher-than-normal conditions until the test is completed in CSPALT.

The components of a system may fail in a variety of situations for a variety of reasons, and as a
result, the lifetime experiment may become uncontrollable. The test is aborted after a predetermined
amount of time in time censoring, also known as type-I censoring. The analysis is terminated after a
fixed number of items in item censoring, also known as type II censoring. Because type-I and type-
II censorings do not allow the removal of items or components from a test during testing, we move
on to other censoring schemes such as progressive type censoring and multiple censoring. Both of
the aforementioned schemes permit the removal of items from the test at any time or in any situation.
Multiple censoring also occurs when testing of items or components fails for more than one reason.
Tobias and Trindada (1995) discovered that the type-I and type-II censoring schemes are a subset of
multiple censoring schemes. The following Table 1 summarizes the literature relevant to our study.

Table 1 Review of the literature related to the proposed work

Author(s) Name  Method Scheme Failure Model Strategy
Mohamed et al. ~ CSALT Progressive type-II Extension of exponential -
(2018) censoring distribution
Almarashi (2020) CSPALT  Progressive type-II Generalized half-logistic -

censoring scheme distribution
Zhang and Fang CSPALT  Type-I censoring Exponential distribution -
(2018)
Alam et al. (2021), CSPALT, Progressive censoring, Generalized inverted Maintenance
Alam and Ahmed SSPALT  adaptive type-II exponential distribution, service policy
(2023) progressive hybrid Exponentiated Pareto

censoring distribution
Ismail and Al CSPALT  Type-I Censoring Inverse Weibull -
Tamimi (2017) distribution

Ling et al. (2009) SSALT Progressive type-I Exponential distribution -
hybrid censoring

scheme
Xiaolin et al. SSPALT  Progressive type-11 Modified Weibull -
(2018) hybrid censoring distribution
Abushal and Al- CSPALT  Progressive type-II Mixture of Pareto -
Zaydi (2017) censored distribution

Alam et al. (2019) CSPALT  Multiple censoring Exponentiated -
Exponential distribution

Mahmoud et al. CSPALT  Progressive type-II Modified Weibull -
(2018) distribution
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Table 1 (Continued)

Author(s) Name  Method Scheme Failure Model Strategy
Shi and Shi (2016) CSPALT  Progressive type-II Complementary Masked series
censoring exponential distribution system
Ismail (2016) CSPALT  Hybrid censoring Weibull distribution Maximum
likelihood and
percentile
bootstrap method
Ullah et al. (2017) ALT Complete data Generalized exponential Geometric process
distribution
Escober and CSPALT  Type-I censoring Weibull distribution -
Meeker (1994)
Guan et al. (2014) CSALT Complete data Generalized exponential -
distribution
Nassr and CSPALT  Multiple censored Exponentiated Weibull -
Elharoun (2019) distribution
Hassan et al. CSPALT  Multiple censoring Inverted Weibull -
(2015) distribution

Cheng and Wang CSPALT  Multiple censoring Burr XII distribution -
(2012)

Alam and Ahmed SSPALT  Progressive censoring Generalized inverted Maintenance
(2022) exponential distribution service policy

Proposed Work  CSPALT  Multiple censoring Generalized inverse -
Lindley distribution

The proposed problem is CSPALT under multiple censoring when the examination unit life span
follows the generalized inverse Lindley distribution. The novelty of this problem is that CSPALT is
designed with multiple censoring for the generalized inverse Lindley distribution, and no previous
research on used distribution under the proposed method for multiple censoring schemes is available.
The paper is organized as follows. Section 2 contains an explanation of the model as well as the test
method. Section 2 also contains the necessary assumptions for CSPALT. Section 3 contains the point
Estimation. In this section, the likelihood function of the model is observed under multiple censoring
schemes, and the Fisher Information matrix is also investigated. Section 4 develops the simulation
study. Section 6 contains the conclusions. Section 6 contains the proposed study's real-world
application.

2. Model Description, Test Method and Assumptions
2.1. Model description

In this section, we employ a two-parameter inverse Lindley distribution, also known as the
generalized inverse Lindley distribution (GIL) proposed by Sharma et al. (2015). A random variable
X follows the GIL distribution if the probability density function (pdf) and cumulative density
function (cdf) take the following forms. The pdf of the distribution is given in the following Equation

(0.

Aat [ 1+x%
f(x,a,/l)=m(w

je_xl; x,a,A>0 (D)
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The pdf curve of the distribution is presented in the following Figure 1.
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Figurel pdf curve of the generalized inverse Lindley distribution

The cdf of the distribution is given in the following Equation (2).

o e
F(x,a,A)=|1+———|e * 2
( ) (1+a)x* @

The cdf curve of the distribution is presented in the following Figure 2.
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Figure2 cdf curve of the generalized inverse Lindley distribution

The reliability and hazard function are given in Eqn. (3) and Eqn. (4), respectively.

a

S ) =1-| 1+—% e ¥ 3
. +(1+a)x/1 ¢ ®

2 A
h(x,a,2) = Ao (1+x7) )

a

A+t e ¥ —1 |-«

where « and A are scale, shape parameters, respectively. The reliability and hazard functions curves
are shown in the following Figures 3 and 4.
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Figure4 Hazard function curve of the generalized inverse Lindley distribution

Sharma et al. (2016) proposed the extended inverse Lindley distribution, which is a subset of the
GIL distribution. This distribution is a new statistical inverse model for information about upside-
down bathtub survival. Alkarni (2015) introduced the inverse Lindley distribution, which provides
more flexibility in modeling upside-down bathtub life span data.

2.2. Test method
If the component’s life span follows the GIL distribution, then the CSPALT test procedure under

multiple censoring schemes can be defined as follows. The pdf of GIL distribution under normal
condition is given in the following Equation (5).

l+ti)“

22+1

a
Je C o, A>0,i=12,.n (5)
tl

ra’
fl(a’ya,l): [
l+a

The cdf of GIL distribution under normal condition is given in the following Equation (6).

a

a s
Fl(t[,a,/l)z[l+mje f ;t,-,a,l>0 (6)

Under the accelerated condition, the pdf and cdf of lifetime X = ~'T take the following forms,

presented in Equations (7) and (8).
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APa 1+(ﬂx ) X, .
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BGrad)=| 14— o 8
2pend) {+(l+a)(,3x‘,)/l} ®

where S(>1) is the acceleration factor and x, is ;™ observed lifetime under the case of the

accelerated situation.

2.3. Assumptions
The necessary postulations for CSPALT are given as

(1) The lifetimes of objects T;, i =1,2,...,n; are independent and identically distributed random

i
variable with probability pdf presented in (5), which is allocated to normal situation.

(i) The lifetimes of objects X ;, j=12,...,n, are also independent and identically distributed

random variable with pdf presented in (7), which is allocated to accelerated condition.
(iif) 7; and X; are mutually independent also.

iv) n, and n, are the total number of objects at regular and accelerated situations, respectively.
1 2 ) g p y

3. Estimation Procedure
3.1. Maximum likelihood estimation

In this section, we estimate parameters using the maximum likelihood estimation (MLE)
technique. MLE is the most important and widely used method in statistics. In addition, for large
samples, MLEs have the appealing properties of being consistent and asymptotically normal.
Lay <oy <..<1, are supposed observed values of the total life span 7' at the usual situation and

Lay <o) <...<I, are the supposed observed values of the life span X at the accelerated situation.

Then the likelihood for GIL distribution for multiple censored data under CSPALT is given in the
following Equation (9).

L. 2. =LA T =R T e T - BT ©)
i=1

Then, the log likelihood function takes the following (Equation (10)).
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1,2,

1, theitem failed at stress condition
51‘,1,1"5‘ 2,1~

0, otherwise

0,

i,l,c»

s {1, theitem censored at normal condition
i,2,¢ =

0, otherwise

z 6;1,r =m; = Number of failed items at nomal condition

Z 0; 2,y =My = Number of failed items at accelerated condition
i=1

Z 0; 1. =, = Number of censored item at normal condition

Z 0. =M, = Number of censored item at accelerated condition
i=1
ne=m;+n,, InL=InL(a,41,p).
The MLEs ofo,4 and § are obtained by differentiating log-likelihood function concerning

parameters and equating to zero. Then the expressions are given in the following equations
(Equations (11), (12) and (13)).

{a(l_lje‘“ﬁ}
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=1+ —% e /"
(1+a)t]
a (1_ 1), iy
n [ 1 J n l+ala 1+«

- 51 + 51', .
Z ! B ) S ’ I P 7By
(1+a)(Bx;)*

i=l1
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The Fisher Information matrix is given in the following Equation (14).

L WL Il |
" 8a®  0adh  0adB
_’ImL  &InL 8L (14)

dAoa oA* YN

o*’InL  &*InL  &*InlL
Copoa opor  op” |

The elements of the matrix are given in the following equations.
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The asymptotic variance-covariance of matrix / is given in the following Equation (15).

- 1-1
WL ’InL  &’InL

. . .
da oaoA oadp AVar(a) ACov(ad) ACov(af)
&Il &Il &L

s=7"= =| ACov(Ad) AVar(A) ACov(ip)| (15)

040 oA’ 0A0p - "~ /
ACov(f@) ACow(BA) AV
PmL Pl &L ov(pé) ACov(fih)  AVar(f)

| Opoa OpoA lin
where AVar and ACov stand for asymptotic variance, asymptotic covariance, respectively. The
two-sided confidence limits can be billed as in Equation (16)

p{—zﬁ i(_;;ﬁz}=l—lc. (16)

This construction of two-sided confidence limits is for the maximum likelihood estimate ¢3 of a

population parameter i = (&, 4, ). In the above (16), z stands for 100(1—x/2) the standard normal
percentile and & stands for the significance point. So, for a population parameter ¢, an appropriate

confidence limits can be achieved, such that
p|-zo@)<p<g+zo()|=1-x,

where lower confidence limit L; = ¢3— za(¢f) and upper confidence limit U, = ¢?+ za(¢?).

4. Simulation Study

In this section, we conduct a simulation study to ensure that the estimators with GIL distribution
are presented correctly under multiple censoring schemes. The study is completed by Monte Carlo
Simulation procedure using R-Software. To ensure estimator performance, means square errors
(MSESs) and biases are estimated. This task necessitates the following steps.

(i) The total sample # is divided into two parts, »n; and n,. n, =nz and n, =n(1-7).

(ii) Generate #; <t,, <..<t, jand t,, <t,, <...<t, , random samples of size n, and n,in
regular and accelerated circumstances, respectively from power Lindley distribution.

(iii) 1000 random of size 30, 60, 90 and 120 are generated and also specified the values of the
parameters as

Case (I) (¢ =0.75,4=0.75,=1.9), Case (II) (¢ =0.75,1=0.75,5=2.2)

Case (II) (¢ =0.56,4=0.95,5=1.9), Case (IV) (a =0.56,4=0.75, 5 =2.2).

(iv) The acceleration factor and distribution parameters are calculated for each sample and set of
parameters. For each parameter combination, the asymptotic variance and covariance matrix are also
obtained.

(v) Finally, for confidence levels y =95%,99% of acceleration factor, the two sides confidence

limits and two parameters are constructed by (Equation (16)) for parameters «, A and S.
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Table 2 The input information of bias and MSE for multiple censored data with
different sample sizes
Case I Case II
n Parameters (a=0.75,2=0.75, 8 =1.9) (@ =0.75,4=0.75,8=2.2)

Estimates Bias MSE Estimates Bias MSE

a 0863  0.723  0.630 1532 0.676  0.502

30 p) 1.154 0270  0.221 1317 0223  0.198
s 1.006 0487 0392 0.651 0432 0328

a 0836 0610  0.592 1443 0539 0371

60 p) 1.154  0.178  0.119 1832 0.176  0.126
s 1.625 0376  0.246 1254 0370  0.324

a 1.160 0497 0376 0.765  0.487  0.287

90 y) 0.901 0.115  0.104 0921  0.184  0.095
s 1304  0.221 0.134 1432 0287 0226

a 0.602 0388  0.271 1.754 0341 0307

120 y) 0.792  0.085  0.021 1.033  0.154  0.088
s 1297  0.143  0.098 1914  0.165  0.158

Table 3 The input information of bias and MSE under the different size of samples
for multiple censored data
Case 111 Case IV
n Parameters (@¢=0.56,4=0.95,=1.9) (¢=0.56,4=0.75,=2.2)

Estimates Bias MSE Estimates Bias MSE

a 1876 0478  0.290 2112 0.548  0.478

30 y) 1.254 0.629 0.498 2023 0336 0267
B 0978 0566  0.419 1976 0389  0.276

a 1.776 0365  0.248 0945  0.566  0.465

60 p) 1218 0530  0.446 1246 0289  0.265
B 1.890  0.486  0.398 1.849 0281  0.198

a 1.48 0286  0.196 1.196  0.500  0.454

90 p) 1.802 0402 0335 1.097 0238  0.158
B 1.987 0365  0.289 1.046  0.176  0.111

a 1598 0254  0.166 0.966 0456  0.366

120 p) 1.843 0.298 0.191 2086 0218  0.138
s 2543 0276  0.236 1725 0.137  0.096
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Table 4 The input information of asymptotic variance and covariance matrix of estimators for
different size of samples under multiple censored data

Case I Case II
n Parameters (¢=0.75,1=0.75,=1.9) (@=0.75,1=0.75,4=2.2)

a A B a A B

a 0.00684 0.00887  0.00456  0.00776 0.00211 0.00509

30 A 0.00498  —0.00884  0.00387  0.00224 0.00449 0.00277
B 0.00543 0.00498  0.04541  0.00443 0.00109 0.00118

a 0.00576 0.00276 ~ 0.00432  0.00654 0.00210 0.00498

60 A 0.00227  -0.00876  0.00267  0.00221 0.00265 0.00176
B 0.00338 0.00234  0.00453  0.00343 0.00025 0.00101

a 0.00465 0.00199  0.00365 0.00554 0.00189 0.00334

9 A 0.00176 ~ —0.00998  0.00223  0.00176 0.00228 0.00116
B 0.00225 0.00178  0.00116  0.00225  —0.00987  —0.00554

a 0.00356 0.00113  0.00294  0.00445 0.00156 0.00223

120 y) 0.00114  -0.00887  0.00132  0.00114 0.00189 0.00115
B 0.00115 0.00117  0.00101  0.00112  —0.00998  -0.00776

Table 5 The input information of asymptotic variance and covariance matrix of estimators for
different size of samples under multiple censored data

Case 111 Case IV
2 Parameters (@ =0.56,1=0.95,8=19) (@ =0.56,1=0.75,8=22)

a A B o A B

a 0.00332  0.00098  0.00543 0.00376  0.00076  0.00432

30 A 0.00254  0.00221 0.00065 0.00577  0.00981 0.00087
B 0.00443  0.00545 0.00334  —0.00654  0.00443  —0.00043

a 0.00224  0.00065 0.00332  0.00331  0.00054  0.00224

60 A 0.00223  0.00188 0.00045 0.00443  0.00076 0.00066
B 0.00376  0.00332  0.00224  —0.00765  0.00411  —0.00066

a 0.00202  0.00043 0.00223 0.00269  0.00044  0.00187

90 A 0.00123  0.00117  0.00032  0.00332  0.00387  0.00054
B 0.00321  0.00212  —0.00987  —0.00799  0.00332  —0.00098

a 0.00187  0.00011 0.00165 0.00211  0.00012  0.00112

120 A 0.00115  0.00076 0.00011 0.00287  0.00225 0.00043
B 0.00234  0.00133  —0.00999  —0.00998  0.00225  —0.00076
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Table 6 At confidence level x =95%,99%, the confidence bounds of estimates for different size

of samples

Case |
(@=0.75,1=0.75,=1.9)

Case 11
(@=0.56,4=0.75,=2.2)

95% Confidence 99% Confidence

95% Confidence 99% Confidence

n  Parameters o

Interval Interval Interval Interval

Lower Upper Lower Upper Lower Upper Lower Upper

Bound Bound Bound Bound Bound Bound Bound Bound
a 0.57 0.73  0.53 0.89 0.08 0.51 0.78  0.61 0.93 0.07
30 A 0.68 0.89  0.57 0.76 0.04  0.55 0.86 0.67 0.83 0.10
p 0.88 1.32  0.66 091 038 0.79 1.89  0.87 1.90 0.32
a 0.59 0.67 0.55 0.84 0.09 0.57 0.84 0.73 0.99 0.09
60 A 0.61 0.75  0.66 0.80 0.06 0.61 0.82 0.62 0.79 0.06
p 0.77 1.34  0.73 0.88 043  0.98 .56  0.97 2.11 0.35
a 0.64 0.71 0.67 0.81 0.06 0.44 0.60  0.65 0.76 0.05
90 A 0.64 0.76  0.58 0.72 0.09 0.87 093  0.56 0.69 0.08
p 0.79 1.22  0.69 0.81 048 0.78 1.23  0.67 1.36 0.42
a 0.59 0.67 0.71 0.79 0.08 0.56 0.65 0.54 0.67 0.06
120 A 0.55 0.63  0.69 0.82 0.03 0.74 0.82  0.65 0.76 0.09
p 0.88 1.01  0.61 0.73 035 0.77 1.02  0.68 1.11 0.36

Table 7 At confidence level x =95%,99%, the confidence bounds of estimates for
different size of samples
Case III Case IV
(@=0.56,1=0.95,=1.9) (0=051=08,=1.9)

n Parameters 95% Confidence 99% Confidence 95% Confidence 99% Confidence p

Interval Interval Interval Interval

Lower Upper Lower Upper Lower Upper Lower Upper

Bound Bound Bound Bound Bound Bound Bound Bound
a 0.67 0.89 0.64 1.07 0.09 0.62 0.81 045 0.79 0.38
30 A 0.80 096 0.70 0.90 043 0.59 0.73  0.72 0.99 0.16
p 0.81 1.32  0.69 0.88 0.64 0.79 1.36  0.81 1.40 0.33
a 0.55 0.69 0.61 0.79 0.08 0.68 094 0.64 0.79 0.08
60 A 0.56 0.71 0.77 0.89 0.07 0.68 0.87 0.62 0.79 0.10
p 0.66 1.23  0.63 0.78 0.37 0.78 1.36  0.97 2.11 042
a 0.61 0.72  0.63 0.71 0.05 0.55 0.68  0.69 0.81 0.03
90 A 0.54 0.65 0.61 0.69 0.08 0.78 0.85 0.56 0.69 0.13
p 0.68 1.10  0.79 0.85 042 0.67 1.11 0.67 1.36 0.47
a 0.55 0.62  0.65 0.72 0.02 0.64 0.71 0.65 0.69 0.07
120 A 0.59 0.66  0.65 0.76 0.05 0.64 0.69  0.68 0.79 0.02
p 0.72 0.81 0.69 0.76 0.37 0.86 1.02  0.79 1.19 0.39
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5. Conclusions

This paper's study presents a CSPALT inference for the GIL distribution with multiple censoring
schemes. Based on the simulation study, the following declaration has been made: In the Tables 2
and 3, the MSE and bias of estimators are obtained in four cases. We can observe that the sample size
increases as the biases and MSEs decrease. The maximum likelihood estimates have good statistical
properties for set of parameters (a = 0.75,4 =0.75, § =1.9) because this set have the smallest biases

all sample sizes in comparison of all sets of parameters.In the Tables 4and 5, the asymptotic variance
and covariance matrix are obtained. We can observe that the asymptotic variance-covariance of
estimators decreases as sample size increases for the all sets of parameters. In the Tables 6 and 7, the
confidence limits of the intervals for the parameters and the acceleration factor at 95% and 99% are
obtained. The standard deviation (o) of estimators is also obtained. We can observe that the width of

the interval decreases as sample size increases for all sets of parameters.

6. Industrial Applications

The industrial applications of this work are as follows: the product has a longer life and is more
reliable as a result of the rapid development of high technology in the industrial area. It may take
several years for an object to fail, making it difficult, if not impossible, to obtain the stoppage
information in a traditional situation for such high-reliability items. CSPALT is used in industrialized
industries to assess or demonstrate the trustworthiness of parts and subsystems, to verify parts, to spot
failure approaches so they can be accurate, to evaluate different manufacturers, and so on. In general,
every manufacturer wants to test and improve the reliability of their products before releasing them
to the market. As a result, the proposed work becomes extremely useful in this situation.
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