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Abstract 

If the objects have high reliability, then checking the life span of components in regular use 
circumstances takes extra time and expenditure compared to accelerated circumstances. The 
apparatus put on higher stress than the regular level of stresses to find out premature failures in a 
short phase to lessen the costs involved in the assessment of apparatus with no change in the worth. 
This problem is based on constant stress partially accelerated life tests for the generalized inverse 
Lindley distribution using multiple censoring schemes. The maximum likelihood estimates and 
asymptotic variance and covariance matrix are achieved. The confidence intervals for parameters are 
also assembled. Further, a simulation study is used to check and verify the performance of the 
estimators. 

 
Keywords: Constant stress partially accelerated life tests, generalized inverse Lindley distribution, multiple 
censoring, Fisher information matrix, simulation study. 

 
1. Introduction 

Manufacturing designs are evolving on a daily basis in response to the present market condition 
and technological advancements. It can be difficult to obtain information regarding the lifetime of an 
item or product if the item has a high reliability under typical usage conditions at the time of testing. 
In this case, the accelerated life test (ALT) is the ideal technique to learn more about the objects' 
existence. ALT is used to obtain knowledge on an item's or a good's life in a short amount of time 
and at a low cost by testing them under accelerated conditions and then testing them under normal 
use conditions to trigger early failures. These situations are referred to as stresses, and they can take 
the form of temperature, voltage, force, and so on. 

In general, three types of stresses are used in ALT: constant stress, step-stress, and progressive 
stress. We are only dealing with constant stress in this paper. During a constant stress ALT, the 
products or items are subjected to constant levels of stress. From ALT, two types of data are obtained: 
complete data and censored data. The lifetime of each unit is known in the complete data, but it is 
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unknown in the censored data. In ALT, a mathematical model related to the lifetime of an item or 
product and stress can be expected. There are numerous situations in which these relationships are 
either unknown or cannot be summarized. This means that data cannot be hypothesized to use 
conditions that are obtained from ALT. The partially accelerated life test (PALT) is used in situations 
where the test objects are subjected to both ordinary and higher-than-ordinary stress conditions. 
Reliability practitioners use two main methods in PALT: constant stress partially accelerated life test 
(CSPALT) and step-stress partially accelerated life test (SSPALT). The products or items are tested 
in either standard or higher-than-normal conditions until the test is completed in CSPALT. 

The components of a system may fail in a variety of situations for a variety of reasons, and as a 
result, the lifetime experiment may become uncontrollable. The test is aborted after a predetermined 
amount of time in time censoring, also known as type-I censoring. The analysis is terminated after a 
fixed number of items in item censoring, also known as type II censoring. Because type-I and type-
II censorings do not allow the removal of items or components from a test during testing, we move 
on to other censoring schemes such as progressive type censoring and multiple censoring. Both of 
the aforementioned schemes permit the removal of items from the test at any time or in any situation. 
Multiple censoring also occurs when testing of items or components fails for more than one reason. 
Tobias and Trindada (1995) discovered that the type-I and type-II censoring schemes are a subset of 
multiple censoring schemes. The following Table 1 summarizes the literature relevant to our study. 
 

Table 1 Review of the literature related to the proposed work 
Author(s) Name Method Scheme Failure Model Strategy 

Mohamed et al. 
(2018) 

CSALT Progressive type-II 
censoring 

Extension of exponential 
distribution 

- 

Almarashi (2020) CSPALT Progressive type-II 
censoring scheme 

Generalized half-logistic 
distribution 

- 

Zhang and Fang 
(2018) 

CSPALT Type-I censoring Exponential distribution - 

Alam et al. (2021), 
Alam and Ahmed 
(2023) 

CSPALT, 
SSPALT 

Progressive censoring, 
adaptive type-II 
progressive hybrid 
censoring 

Generalized inverted 
exponential distribution, 
Exponentiated Pareto 
distribution 

Maintenance 
service policy 

Ismail and Al 
Tamimi (2017) 

CSPALT Type-I Censoring Inverse Weibull 
distribution 

- 

Ling et al. (2009) SSALT Progressive type-I 
hybrid censoring 
scheme 

Exponential distribution - 

Xiaolin et al. 
(2018) 

SSPALT Progressive type-II 
hybrid censoring 

Modified Weibull 
distribution 

- 

Abushal and Al-
Zaydi (2017) 

CSPALT Progressive type-II 
censored 

Mixture of Pareto 
distribution 

- 

Alam et al. (2019)  CSPALT Multiple censoring Exponentiated 
Exponential distribution 

- 

Mahmoud et al. 
(2018) 

CSPALT Progressive type-II Modified Weibull 
distribution 

- 
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Table 1 (Continued) 
Author(s) Name Method Scheme Failure Model Strategy 

Shi and Shi (2016) CSPALT Progressive type-II 
censoring 

Complementary 
exponential distribution 

Masked series 
system 

Ismail (2016) CSPALT Hybrid censoring Weibull distribution Maximum 
likelihood and 
percentile 
bootstrap method 

Ullah et al. (2017) ALT Complete data Generalized exponential 
distribution 

Geometric process 

Escober and 
Meeker (1994) 

CSPALT Type-I censoring Weibull distribution - 

Guan et al. (2014) CSALT Complete data Generalized exponential 
distribution 

- 

Nassr and 
Elharoun (2019) 

CSPALT Multiple censored Exponentiated Weibull 
distribution 

- 

Hassan et al. 
(2015) 

CSPALT Multiple censoring Inverted Weibull 
distribution 

- 

Cheng and Wang 
(2012) 

CSPALT Multiple censoring Burr XII distribution - 

Alam and Ahmed 
(2022) 

SSPALT Progressive censoring Generalized inverted 
exponential distribution 

Maintenance 
service policy 

Proposed Work CSPALT Multiple censoring Generalized inverse 
Lindley distribution 

- 

 
The proposed problem is CSPALT under multiple censoring when the examination unit life span 

follows the generalized inverse Lindley distribution. The novelty of this problem is that CSPALT is 
designed with multiple censoring for the generalized inverse Lindley distribution, and no previous 
research on used distribution under the proposed method for multiple censoring schemes is available. 
The paper is organized as follows. Section 2 contains an explanation of the model as well as the test 
method. Section 2 also contains the necessary assumptions for CSPALT. Section 3 contains the point 
Estimation. In this section, the likelihood function of the model is observed under multiple censoring 
schemes, and the Fisher Information matrix is also investigated. Section 4 develops the simulation 
study. Section 6 contains the conclusions. Section 6 contains the proposed study's real-world 
application.  
 
2. Model Description, Test Method and Assumptions 
2.1. Model description 

In this section, we employ a two-parameter inverse Lindley distribution, also known as the 
generalized inverse Lindley distribution (GIL) proposed by Sharma et al. (2015). A random variable 
X follows the GIL distribution if the probability density function (pdf) and cumulative density 
function (cdf) take the following forms. The pdf of the distribution is given in the following Equation 
(1). 
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The pdf curve of the distribution is presented in the following Figure 1. 
 

 
Figure1 pdf curve of the generalized inverse Lindley distribution 

 
The cdf of the distribution is given in the following Equation (2). 
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 (2) 

The cdf curve of the distribution is presented in the following Figure 2. 
 

 
Figure2 cdf curve of the generalized inverse Lindley distribution 

 
The reliability and hazard function are given in Eqn. (3) and Eqn. (4), respectively. 
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where α and λ  are scale, shape parameters, respectively. The reliability and hazard functions curves 
are shown in the following Figures 3 and 4. 
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Figure3 Reliability curve of the generalized inverse Lindley distribution 

 

 
Figure4 Hazard function curve of the generalized inverse Lindley distribution 

 
Sharma et al. (2016) proposed the extended inverse Lindley distribution, which is a subset of the 

GIL distribution. This distribution is a new statistical inverse model for information about upside-
down bathtub survival. Alkarni (2015) introduced the inverse Lindley distribution, which provides 
more flexibility in modeling upside-down bathtub life span data. 
 
2.2. Test method 

If the component’s life span follows the GIL distribution, then the CSPALT test procedure under 
multiple censoring schemes can be defined as follows. The pdf of GIL distribution under normal 
condition is given in the following Equation (5). 
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The cdf of GIL distribution under normal condition is given in the following Equation (6). 
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Under the accelerated condition, the pdf and cdf of lifetime 1X Tβ −= take the following forms, 
presented in Equations (7) and (8). 
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(8) 

where ( 1)β >  is the acceleration factor and jx  is thj  observed lifetime under the case of the 

accelerated situation. 
 
2.3. Assumptions 

The necessary postulations for CSPALT are given as 
(i) The lifetimes of objects ,iT 11,2,...,i n=  are independent and identically distributed random 

variable with probability pdf presented in (5), which is allocated to normal situation. 
(ii) The lifetimes of objects ,jX 21,2,...,j n=  are also independent and identically distributed 

random variable with pdf presented in (7), which is allocated to accelerated condition. 
(iii) iT  and jX  are mutually independent also. 

(iv) 1n  and 2n  are the total number of objects at regular and accelerated situations, respectively. 
 
3. Estimation Procedure 
3.1. Maximum likelihood estimation 

In this section, we estimate parameters using the maximum likelihood estimation (MLE) 
technique. MLE is the most important and widely used method in statistics. In addition, for large 
samples, MLEs have the appealing properties of being consistent and asymptotically normal.

(1) (2) ( )... nt t t< < <  are supposed observed values of the total life span T  at the usual situation and 

(1) (2) ( )... nt t t< < <  are the supposed observed values of the life span X  at the accelerated situation. 

Then the likelihood for GIL distribution for multiple censored data under CSPALT is given in the 
following Equation (9). 
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(9) 

Then, the log likelihood function takes the following (Equation (10)). 

 

2

2 ,1, ,1,2 1
1 1

,1,
1

,2, ,2,2 1
1 1

1
ln ln( ) ln

1

ln 1 1
(1 )

1 ( )
ln

( ) ( )

i

n n
i

f f i f i f
i ii i

n
t

i c
ii

n n
i

i f i f
i ii i

t
L n n

t t

e
t

x
x x

λ

λ

λ λ

α

λ

λ

λ λ

λα αβ δ δ
α

αδ
α

β αδ δ
β β

+
= =

−

=

+
= =

     +
= + + −         +     

  
+ − +   +   

   +
+ −      

   

∑ ∑

∑

∑

( )
,2,

1

ln 1 1 ,
(1 )( )

i

n
x

i c
ii

e
x

λ
α

β
λ

αδ
α β

−

=

  
+ − +   +   

∑

∑  

(10) 

,1,i fδ , ,1,i cδ , ,2,i fδ , ,2,i cδ  are indicator functions with 
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The MLEs of ,α λ  and β  are obtained by differentiating log-likelihood function concerning 
parameters and equating to zero. Then the expressions are given in the following equations 
(Equations (11), (12) and (13)). 
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The Fisher Information matrix is given in the following Equation (14). 
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The elements of the matrix are given in the following equations.  
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The asymptotic variance-covariance of matrix I  is given in the following Equation (15).
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(15) 

where AVar  and ACov  stand for asymptotic variance, asymptotic covariance, respectively. The 
two-sided confidence limits can be billed as in Equation (16) 

 
ˆ

1 .ˆ( )
p z zφ φ κ

σ φ

 −
− ≤ ≤ = − 
    

(16) 

This construction of two-sided confidence limits is for the maximum likelihood estimate φ̂  of a 

population parameter ( , , ).ψ α λ β=  In the above (16), z stands for 100(1 / 2)κ−  the standard normal 
percentile and κ  stands for the significance point. So, for a population parameter ,φ an appropriate 
confidence limits can be achieved, such that 

ˆ ˆ ˆ ˆ( ) ( ) 1 ,p z zφ σ φ φ φ σ φ κ − ≤ ≤ + = −   

where lower confidence limit ˆ ˆ( )L zφ φ σ φ= − and upper confidence limit ˆ ˆ( ).U zφ φ σ φ= +  

 
4. Simulation Study 

In this section, we conduct a simulation study to ensure that the estimators with GIL distribution 
are presented correctly under multiple censoring schemes. The study is completed by Monte Carlo 
Simulation procedure using R-Software. To ensure estimator performance, means square errors 
(MSEs) and biases are estimated. This task necessitates the following steps. 

(i) The total sample n is divided into two parts, 1n  and 2.n 1n nπ=  and 2 (1 ).n n π= −  

(ii) Generate 
11,1 2,2 ,1... nt t t< < < and 

22,1 2,2 ,2... nt t t< < <  random samples of size 1n  and 2n in 

regular and accelerated circumstances, respectively from power Lindley distribution. 
(iii) 1000 random of size 30, 60, 90 and 120 are generated and also specified the values of the 

parameters as 
Case (I) ( 0.75, 0.75, 1.9)α λ β= = = , Case (II) ( 0.75, 0.75, 2.2)α λ β= = =  
Case (III) ( 0.56, 0.95, 1.9)α λ β= = = , Case (IV) ( 0.56, 0.75, 2.2).α λ β= = =  
(iv) The acceleration factor and distribution parameters are calculated for each sample and set of 

parameters. For each parameter combination, the asymptotic variance and covariance matrix are also 
obtained. 

(v) Finally, for confidence levels 95%,99%γ =  of acceleration factor, the two sides confidence 
limits and two parameters are constructed by (Equation (16)) for parameters ,α λ and .β  
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Table 2 The input information of bias and MSE for multiple censored data with  
different sample sizes 

 
Table 3 The input information of bias and MSE under the different size of samples  

for multiple censored data 

 
 
 
 
 
 

n  
 

Parameters 
Case I 

( 0.75, 0.75, 1.9)α λ β= = =  
Case II 

( 0.75, 0.75, 2.2)α λ β= = =  

Estimates Bias MSE Estimates Bias MSE 
 

30 
α  0.863 0.723 0.630 1.532 0.676 0.502 
λ  1.154 0.270 0.221 1.317 0.223 0.198 
β  1.006 0.487 0.392 0.651 0.432 0.328 

 
60 

α  0.836 0.610 0.592 1.443 0.539 0.371 
λ  1.154 0.178 0.119 1.832 0.176 0.126 
β  1.625 0.376 0.246 1.254 0.370 0.324 

 
90 

α  1.160 0.497 0.376 0.765 0.487 0.287 
λ  0.901 0.115 0.104 0.921 0.184 0.095 
β  1.304 0.221 0.134 1.432 0.287 0.226 

 
120 

α  0.602 0.388 0.271 1.754 0.341 0.307 
λ  0.792 0.085 0.021 1.033 0.154 0.088 
β  1.297 0.143 0.098 1.914 0.165 0.158 

n  
 

Parameters 
Case III 

( 0.56, 0.95, 1.9)α λ β= = =  
Case IV 

( 0.56, 0.75, 2.2)α λ β= = =  

Estimates Bias MSE Estimates Bias MSE 
 

30 
α  1.876 0.478 0.290 2.112 0.548 0.478 
λ  1.254 0.629 0.498 2.023 0.336 0.267 
β  0.978 0.566 0.419 1.976 0.389 0.276 

 
60 

α  1.776 0.365 0.248 0.945 0.566 0.465 
λ  1.218 0.530 0.446 1.246 0.289 0.265 
β  1.890 0.486 0.398 1.849 0.281 0.198 

 
90 

α  1.486 0.286 0.196 1.196 0.500 0.454 
λ  1.802 0.402 0.335 1.097 0.238 0.158 
β  1.987 0.365 0.289 1.046 0.176 0.111 

 
120 

α  1.598 0.254 0.166 0.966 0.456 0.366 
λ  1.843 0.298 0.191 2.086 0.218 0.138 
β  2.543 0.276 0.236 1.725 0.137 0.096 
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Table 4 The input information of asymptotic variance and covariance matrix of estimators for 
different size of samples under multiple censored data 

 
Table 5 The input information of asymptotic variance and covariance matrix of estimators for 

different size of samples under multiple censored data 

 
 
 
 
 

n  Parameters 

Case I 
( 0.75, 0.75, 1.9)α λ β= = =  

Case II 
( 0.75, 0.75, 2.2)α λ β= = =  

α  λ  β  α  λ  β  

 
30 

α  0.00684 0.00887 0.00456 0.00776 0.00211 0.00509 
λ  0.00498 −0.00884 0.00387 0.00224 0.00449 0.00277 
β  0.00543 0.00498 0.04541 0.00443 0.00109 0.00118 

 
60 

α  0.00576 0.00276 0.00432 0.00654 0.00210 0.00498 
λ  0.00227 −0.00876 0.00267 0.00221 0.00265 0.00176 
β  0.00338 0.00234 0.00453 0.00343 0.00025 0.00101 

 
90 

α  0.00465 0.00199 0.00365 0.00554 0.00189 0.00334 
λ  0.00176 −0.00998 0.00223 0.00176 0.00228 0.00116 
β  0.00225 0.00178 0.00116 0.00225 −0.00987 −0.00554 

 
120 

α  0.00356 0.00113 0.00294 0.00445 0.00156 0.00223 
λ  0.00114 −0.00887 0.00132 0.00114 0.00189 0.00115 
β  0.00115 0.00117 0.00101 0.00112 −0.00998 −0.00776 

n  Parameters 

Case III 
( 0.56, 0.95, 1.9)α λ β= = =  

Case IV 
( 0.56, 0.75, 2.2)α λ β= = =  

α  λ  β  α  λ  β  

 
30 

α  0.00332 0.00098 0.00543 0.00376 0.00076 0.00432 
λ  0.00254 0.00221 0.00065 0.00577 0.00981 0.00087 
β  0.00443 0.00545 0.00334 −0.00654 0.00443 −0.00043 

 
60 

α  0.00224 0.00065 0.00332 0.00331 0.00054 0.00224 
λ  0.00223 0.00188 0.00045 0.00443 0.00076 0.00066 
β  0.00376 0.00332 0.00224 −0.00765 0.00411 −0.00066 

 
90 

α  0.00202 0.00043 0.00223 0.00269 0.00044 0.00187 
λ  0.00123 0.00117 0.00032 0.00332 0.00387 0.00054 
β  0.00321 0.00212 −0.00987 −0.00799 0.00332 −0.00098 

 
120 

α  0.00187 0.00011 0.00165 0.00211 0.00012 0.00112 
λ  0.00115 0.00076 0.00011 0.00287 0.00225 0.00043 
β  0.00234 0.00133 −0.00999 −0.00998 0.00225 −0.00076 
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Table 6 At confidence level 95%,99%,κ =  the confidence bounds of estimates for different size 
of samples 

 
Table 7 At confidence level 95%,99%,κ =  the confidence bounds of estimates for  

different size of samples 

 

n  Parameters 

Case I 
( 0.75, 0.75, 1.9)α λ β= = =  

σ  

Case II 
( 0.56, 0.75, 2.2)α λ β= = =  

σ  95% Confidence 
Interval 

99% Confidence 
Interval 

95% Confidence 
Interval 

99% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

 
30 

α  0.57 0.73 0.53 0.89 0.08 0.51 0.78 0.61 0.93 0.07 
λ  0.68 0.89 0.57 0.76 0.04 0.55 0.86 0.67 0.83 0.10 
β  0.88 1.32 0.66 0.91 0.38 0.79 1.89 0.87 1.90 0.32 

 
60 

α  0.59 0.67 0.55 0.84 0.09 0.57 0.84 0.73 0.99 0.09 
λ  0.61 0.75 0.66 0.80 0.06 0.61 0.82 0.62 0.79 0.06 
β  0.77 1.34 0.73 0.88 0.43 0.98 1.56 0.97 2.11 0.35 

 
90 

α  0.64 0.71 0.67 0.81 0.06 0.44 0.60 0.65 0.76 0.05 
λ  0.64 0.76 0.58 0.72 0.09 0.87 0.93 0.56 0.69 0.08 
β  0.79 1.22 0.69 0.81 0.48 0.78 1.23 0.67 1.36 0.42 

 
120 

α  0.59 0.67 0.71 0.79 0.08 0.56 0.65 0.54 0.67 0.06 
λ  0.55 0.63 0.69 0.82 0.03 0.74 0.82 0.65 0.76 0.09 
β  0.88 1.01 0.61 0.73 0.35 0.77 1.02 0.68 1.11 0.36 

n  Parameters 

Case III 
( 0.56, 0.95, 1.9)α λ β= = =  

σ  

Case IV 
( 0.5, 0.8, 1.9)θ λ β= = =  

σ  95% Confidence 
Interval 

99% Confidence 
Interval 

95% Confidence 
Interval 

99% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

 
30 

α  0.67 0.89 0.64 1.07 0.09 0.62 0.81 0.45 0.79 0.38 
λ  0.80 0.96 0.70 0.90 0.43 0.59 0.73 0.72 0.99 0.16 
β  0.81 1.32 0.69 0.88 0.64 0.79 1.36 0.81 1.40 0.33 

 
60 

α  0.55 0.69 0.61 0.79 0.08 0.68 0.94 0.64 0.79 0.08 
λ  0.56 0.71 0.77 0.89 0.07 0.68 0.87 0.62 0.79 0.10 
β  0.66 1.23 0.63 0.78 0.37 0.78 1.36 0.97 2.11 0.42 

 
90 

α  0.61 0.72 0.63 0.71 0.05 0.55 0.68 0.69 0.81 0.03 
λ  0.54 0.65 0.61 0.69 0.08 0.78 0.85 0.56 0.69 0.13 
β  0.68 1.10 0.79 0.85 0.42 0.67 1.11 0.67 1.36 0.47 

 
120 

α  0.55 0.62 0.65 0.72 0.02 0.64 0.71 0.65 0.69 0.07 
λ  0.59 0.66 0.65 0.76 0.05 0.64 0.69 0.68 0.79 0.02 
β  0.72 0.81 0.69 0.76 0.37 0.86 1.02 0.79 1.19 0.39 
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5. Conclusions 
This paper's study presents a CSPALT inference for the GIL distribution with multiple censoring 

schemes. Based on the simulation study, the following declaration has been made: In the Tables 2 
and 3, the MSE and bias of estimators are obtained in four cases. We can observe that the sample size 
increases as the biases and MSEs decrease. The maximum likelihood estimates have good statistical 
properties for set of parameters ( 0.75, 0.75, 1.9)α λ β= = =  because this set have the smallest biases 
all sample sizes in comparison of all sets of parameters.In the Tables 4and 5, the asymptotic variance 
and covariance matrix are obtained. We can observe that the asymptotic variance-covariance of 
estimators decreases as sample size increases for the all sets of parameters. In the Tables 6 and 7, the 
confidence limits of the intervals for the parameters and the acceleration factor at 95% and 99% are 
obtained. The standard deviation ( )σ of estimators is also obtained. We can observe that the width of 
the interval decreases as sample size increases for all sets of parameters. 
 
6.  Industrial Applications 

The industrial applications of this work are as follows: the product has a longer life and is more 
reliable as a result of the rapid development of high technology in the industrial area. It may take 
several years for an object to fail, making it difficult, if not impossible, to obtain the stoppage 
information in a traditional situation for such high-reliability items. CSPALT is used in industrialized 
industries to assess or demonstrate the trustworthiness of parts and subsystems, to verify parts, to spot 
failure approaches so they can be accurate, to evaluate different manufacturers, and so on. In general, 
every manufacturer wants to test and improve the reliability of their products before releasing them 
to the market. As a result, the proposed work becomes extremely useful in this situation. 
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