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Abstract

Deming regression is a type of regression method that fits a regression line when the
measurements of both the explanatory variable and the response variable are assumed to be subject to
normally distributed errors. Recall that in ordinary least squares regression, the explanatory variable
is assumed to be measured without error. Bootstrapping is a type of resampling where large numbers
of smaller samples of the same size are repeatedly drawn, with replacement, from a single original
sample. In this study, two different bootstrap methods are introduced as intra and outer bootstrap. It is
proposed to use the introduced bootstrap methods together with Deming regression. This study
provides an investigation of outer bootstrap Deming methods in cases where outliers are high, and
intra bootstrap Deming methods in cases where the central spread is high. In the application part, the
proposed methods on 7 different data sets previously used in the literature were used. It was seen that
the intra bootstrap method results had less mean square error value than the classical Deming
regression results in all datasets except one. According to the results obtained from the study, it was
seen that the estimation values made with the intra bootstrap method gave more successful results than
the classical bootstrap and outer bootstrap. Intra bootstrapping method will be a guide for researchers
who will work with Deming regression and data with few observations.
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1. Introduction

Regression analysis is the most used estimation method among statistical methods. Regression
analysis can be summarized as the study of analyzing the value of the response variable with the help
of one or more explanatory variables. The two main functions of the method that are used are
parameter estimation and prediction. For these functions to be performed successfully, some
assumptions must be provided.

One of these assumptions is that the explanatory variable is measured with no error. For the
standard regression model with a single explanatory variable measured with error, it is well known
that the estimated regression coefficient, on average, is attenuated toward the origin, and measurement
error in the independent variable leads to bias in the estimation of a regressor coefficient. The
following examples can be given for these situations: The variables may not be measurable (e.g.
mental conditions, feelings, color, ability etc.) , the variables are clearly defined, but it is hard to take
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correct observations (for example, income status is often reported as full value or $1,000 and its
multiples), the variable is well understood, but it is qualitative in nature (the likes of a movie are
evaluated by IMDB scores) or the variable is conceptually well defined, but it is not possible to take
a correct observation on it (job experience is measured by the number of years of working). Regression
techniques applied in situations where explanatory variables are assumed to contain no measurement
error are called the Type-I regression technique. They are the most powerful estimation methods, as
assumptions are provided. The ordinary least squares method can be cited as the best example of this.

In some studies, it is not known whether the measurement error is caused by the response variable
or the explanatory variable, or both. Type-II regression techniques are regression techniques that
calculate the measurement errors in the response and explanatory variables at the same time. In
general, these techniques are based on the logic of taking into account the errors in both variables as
a result of taking the distances of the observation values calculated perpendicular to the regression
equation obtained or depending on the amount of error. Orthogonal regression, Deming regression,
York regression, Bland-Altman regression techniques can be considered as examples for Type-II
regression.

The number of studies conducted with Deming regression and bootstrap technique is very few in
the literature. Francq (2014) compared six different bootstrap procedures to improve the coverage
probabilities of the approximate confidence intervals for the parameters of the Deming and bivariate
least square regressions. The bootstrapping in both methods provide very similar results. Benni et al.
(2018) tested the single and double bootstrap methods on Deming regression and random coefficient
model in their study. As for the results, single bootstrap results were found more efficient than double
bootstrap in all methods. Fitrianto et al. (2020) compared jackknife and bootstrap resampling methods
in orthogonal regression analysis similar to Deming regression. They showed that jackknife performed
better in constructing confidence interval than the bootstrap in their study.

2. Method
2.1. Deming regression analysis

Deming regression is a technique for fitting a straight line to two- dimensional data where both
variables, response, and explanatory, are measured with error. This is different from simple linear
regression where only the response variable, Y, is measured with error. Deming regression is often

used for method comparison studies in clinical chemistry or biostatistics to look for systematic
differences between two measurement methods.

Deming proposed minimizing the function that will give the correct equation that best fits the
observation values in case both variables have measurements with the error (Deming 1943). The error
sum of squares value to be minimized in the Deming regression technique can be calculated as given

in (1).
SSE={(x, - X, +4(», - 1)’} (1)
To predict the regression line with the Deming technique, it is necessary to know the value A,

which is the ratio of the square analytical standard deviations of the X and Y methods:
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This calculated 4 value allows us to determine the angle by minimizing the squared deviation

sums on the line. The formulas and expressions used in the parameter estimates are as given in (3) and
(4) (Linnet 1993):
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Many studies have been conducted on Deming regression analysis, especially in the field of

clinical chemistry and biostatistics. The general purpose of these studies is to produce algorithms to
find the coefficient calculations that give the optimal A value and the minimum error value (Linnet
1998; Martin 2000; Schall et al. 1980; Payne 1984; Smith et al. 1980).

2.2. Bootstrap method

The bootstrap method was first proposed by (Efron 1979). This method aims to obtain smaller
standard errors, more reliable parameter estimators, and create narrower confidence intervals by
replacing and resampling randomly from the existing data set to generate very large data sets. The
Bootstrap method is far from dense mathematical formulas, limited assumptions, and easy to
understand and use. This method creates a strong potential in situations where it is difficult or
impossible to obtain the sampling distribution of the estimator by asymptotic methods ( Simon and
Bruce 1991).

The Bootstrap method is a data-based simulation method for statistical inference which can be
used to study the variability of estimated characteristics of the probability distribution of a set of
observations and provide confidence intervals for parameters in situations where these are difficult or
impossible to derive in the usual way (Everitt 1995).

The basic idea of the bootstrap involves repeated random sampling with replacement from the
original data x = x,,Xx,,...,x, to produce random samples of the same size n of the original sample.

Here the aim is to mimic in an appropriate manner the way the sample is collected from the population
in the bootstrap samples from the observed data. The “with replacement” means that any observation
can be sampled more than once in each bootstrap sample. It is important because sampling without
replacement would simply give a random permutation of the original data, with many statistics such
as the mean being exactly the same (Campbell 2001). The point about the bootstrap is that it produces
a variety of values, whose variability reflects the standard error that would be obtained if samples were
repeatedly taken from the whole population (Walters and Campbell 2005). The confidence interval
derived from the bootstrap agrees very closely with the one derived from statistical theory. Bootstrap
methods are intended to simplify the calculation of inferences, producing them in an automatic way
even in situations much more complicated (Efron and Tibshirani 1991).

Using the Monte Carlo approximation, bootstrapping can be applied to many practical problems
such as parameter estimation in time series, regression, and analysis of variance problems, and even
to problems involving small samples. There is also a strong temptation to apply the bootstrap to several
complex statistical problems where we cannot resort to classical theory to resort to. At least for some
of these problems, it is recommended that the practitioner try the bootstrap. Only for cases where there
is theoretical evidence that the bootstrap leads us astray would advise against its use (Chernick 2008).

The bootstrap method does not require any assumptions regarding the underlying population
distribution like other methods. Unlike the normal theory method, the bootstrap method can be applied
for any sample size. The only assumption underlying the bootstrap method is that the sample selected
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is representative of the population that it is sampled from. However, this underlying assumption is
inherent in any statistical procedure including the normal theory method and the specific confidence
interval methods. Thus, the bootstrap method provides an alternative means for estimating the audit
value from skewed populations and small sample sizes (Muralidhar et al. 1991). A main concern in
small samples is that with only a few values to select from, the bootstrap sample will underrepresent
the true variability since observations are frequently repeated and bootstrap samples, themselves, can
repeat (Chernick 2008).

2.3. Intra bootstrap-Outer bootstrap

While resampling in the bootstrap method, sampling is done from all the data within the
framework of certain rules. In some data structures, observations are spread around the mean, while
in some data there may be more spread in the extreme regions. Particularly in data with small samples,
spreading to certain parts may cause deviations in the data. The effect of these spreads on the
regression can sometimes cause the calculated estimates to be biased. In this study, instead of classical
bootstrap results for data with such observations, new bootstrap approaches are proposed for
observations that spread to certain regions. Thus, it is aimed to minimize the deviations arising from
the general bootstrap calculations by making bootstrap according to the regions separated by quartiles
for both the observations spreading around the mean and the data concentrated in the extreme regions.
For this, the regions separated by 4 quartiles were determined as the calculation area. The reason for
making bootstrap to regions separated by quartiles is that the algorithm proposed in this study will be
studied especially for data with small observation volumes. For data with larger observation volumes,
deciles can be tried instead of quartile. The region from the first observation to the first quartile and
the region from the third quartile to the last observation were determined as the external region, and
between the first quartile and the third quartile as the inner region, and the calculations were made
separately for these regions.

Let’s divide a data set into 4 equal parts with 3 quartiles. Let the data between the O, and O,

quartiles be defined as intra and the data outside as outer. When we do the classic bootstrap process
from intra data, let’s name it intra bootstrap. Similarly, when we do from outer data, let's call it outer
bootstrap. In this way, instead of choosing a random sample from all of the data, it will be possible to
derive bootstrap data suitable for the distribution of the data by selecting data from regions separated
by quartiles. Outer bootstrap is likely to be more suitable for data with high outliers and intra bootstrap
sampling for data close to normal distribution. Bootstrap selections defined in Figure 1 are shown.

Intra Bootstrap
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Figure 1 Structure of intra-outer bootstrap

In this way, the effect of the general distribution of observations in the data on the data is also
revealed. For the data concentrated around the arithmetic mean, intra, and for the data concentrated
around the initial or trailing outliers, the effect of outer bootstrap methods will be greater.
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3. Application

In the application part, seven different data sets were used, and bootstrap Deming regression
methods were compared according to the classical method. For each data set, the average square error
values of the models obtained by the classical Deming regression method, classical bootstrap, intra
bootstrap, and outer bootstrap methods obtained from all data were compared. Classical Deming
regression analysis was performed with the “Deming” package of the R package program. Deming
regression with Intra and outer bootstrap methods performed with Microsoft Excel codes which
authors prepared. Each data set is also given in the Appendix. The mean square error (MSE) model
selection criterion was used to compare the predicted values obtained from all data. MSE uses squared
units rather than the natural data units, the interpretation is less intuitive (Frost 2019). MSE is an
estimator measures the average of the squares of the errors and its formula is given in (5).

A \2
MSE:Z(M—_)"'),
n

6))

Bootstrap data generation ( classical, intra and outer bootstraps) is done by writing code in the R
package program. For each data set, samples were drawn up to 50% of the data using the Bootstrap
technique. The predictions of the expanded data with Bootstrap were realized by simulating 500 trials.
The arithmetic means of the Deming regression parameter and lambda results obtained with 500 trials
were taken as the final bootstrapped Deming regression results. Parameter estimation values obtained
from each model and MSE values calculated for each model are given in Table 1.

Table 1 Predicted parameter and MSE values for all data sets

By b MSE
Data 1

Deming 0,1052 0,9687 0,1544

Deming Bootstrap 0,1692 0,9659 0,1564

Deming Intra Bootstrap 0,6167 0,8853 0,1491

Deming Outer Bootstrap 0,0708 0,9706 0,1553
Data 2

Deming 0,0179 0,9183 0,00668

Deming Bootstrap 0,014 0,919 0,00663

Deming Intra Bootstrap 0,0123 09179 0,00661

Deming Outer Bootstrap 0,0142 0,9395 0,00688
Data 3

Deming —-0,0589 1,0545 0,0249

Deming Bootstrap —-0,056 1,0495 0,0248

Deming Intra Bootstrap —-0,0248 1,0301 0,0245

Deming Outer Bootstrap —-0,0632 1,0538 0,0249
Data 4

Deming 0,412 0,8806 1,0345

Deming Bootstrap 0,4099 0,8689 1,0250

Deming Intra Bootstrap 0,4645 0,8693 1,0234

Deming Outer Bootstrap 0,3711 0,8921 1,0501
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Table 1 (Continued)

By b MSE
Data 5
Deming 0,3908 0,9422 0,5458
Deming Bootstrap 0,0847 0,9743 0,5370
Deming Intra Bootstrap 1,1487 0,8584 0,5001
Deming Outer Bootstrap 0,4722 0,9291 0,5097
Data 6
Deming —14,722 1,0279 1443,9098
Deming Bootstrap —29,6802 1,0538 1282,0427
Deming Intra Bootstrap 1,1289 0,9989 1197,2528
Deming Outer Bootstrap —-29,5376 1,0541 1278,2799
Data 7
Deming —-10,5641 0,3544 8,4793
Deming Bootstrap —11,9587 0,3702 8,7194
Deming Intra Bootstrap —-10,7558 0,3585 8,5320
Deming Outer Bootstrap -12,1572 0,3694 8,7369

As for the results in Table 1, we can see that the best MSE value in the first 6 datasets was
obtained by the Deming intra bootstrap method. In the last data set, the best MSE value is obtained
from the classical Deming regression model, while the Deming intra bootstrap MSE value has the
second-best result. According to these results, it can be said that the effect of the Deming Intra
Bootstrap method, namely the bootstrap samples taken between O, and Q,, on the model prediction

results seems quite successful.

4. Discussion

The OLS method is still the most used in prediction studies. One of the basic assumptions of this
method is that the explanatory variable has no measurement error. In many studies, it is not known
whether the measurement error is caused by the response or explanatory variable. Type II regression
techniques that do not require assumptions should be used when the measurements of response or
explanatory variables contain errors. Deming regression technique is one of the most used Type II
regression techniques.

In this study, new bootstrap techniques-intra and outer bootstrap methods are proposed to be used
in Deming regression estimates. The results obtained from these bootstrap methods, which can also
be named as inside and outside quartiles, were compared with the classical Deming regression results.
It can be said that the intra bootstrap method was quite successful in studies conducted with 7 different
data used in previous studies. In this study, it was seen that the prediction values obtained by the Intra
method gave lower error values, especially in data structures with a small number of observations.
This method is thought to be a guide for researchers who will work with Deming regression. The
investigation of similar bootstrap structures in other Type-II regression analyzes such as York, Bland-
Altman, orthogonal regression structures is left for future studies.



198 Thailand Statistician, 2024; 22(1): 192-201

Acknowledgements
The author would like to thank the referees for their great scientific comments and suggestions
that yielded great contributions to this study.

References

Benni PB, MacLeod D, Ikeda K, Lin HM. A validation method for near-infrared spectroscopy-based
tissue oximeters for cerebral and somatic tissue oxygen saturation measurements. J Clin Mon
Comp. 2018; 32(2): 269-284.

Campbell MJ. Statistics at square two: understanding modem statistical applications in medicine,
London: Blackwell Publishing; 2006.

Chernick MR. Bootstrap methods: a guide for practitioners and researchers, New Jersey: John Wiley
& Sons; 2008.

Cleophas TJ, Zwinderman AH. Regression analysis in medical research, for starters and 2nd levelers.
Switzerland: Springer; 2018.

Deming EW. Statistical adjustment of data. New York: Dover Publishing; 1943.

Efron B, Tibshirani RJ. An introduction to the bootstrap. Washington DC: Chapman & Hall; 1993.

Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979; 7(1): 1-26.

Everitt BS. The Cambridge dictionary of statistics in the medical sciences. Cambridge: Cambridge
University Press; 1995.

Fitrianto A, Yun TS, Wan Ahmad WZ. Application of resampling techniques in orthogonal regression.
Int J Eng Res Tech. 2020; 13(12): 4118-4124.

Francq BG. Bootstrap in errors in variables regressions applied to methods comparison studies. Inf
Med Slov. 2014; 19(1-2): 1-11.

Frost J. Regression analysis: an intuitive guide. Philadelphia: Statistics by Jim Publishing; 2019.

Hathaway NR. Some comments on linear regression analysis by the method of W.E. Deming. Clin
Chem. 1980; 26(10): 1511.

Konings H. Use of Deming regression in method- comparison studies. Surv Immu Res. 1982; 1(4):
371-374.

Linnet K. Evaluation of regression procedures for methods comparison studies. Clin Chem. 1993;
39(3): 424-432.

Linnet K. Performance of Deming regression analysis in case of misspecified analytical error ratio in
method comparison studies. Clin Chem. 1998; 44(5): 1024-1031.

Manuilova E, Schuetzenmeister A, Model F. Mcr: method comparison regression. R package, version
1.2.1 [Internet]. 2015 [cited 2021 August 15]. Available from: https://cran.r-project. org/
web/packages/mcr/mer.pdf.

Martin RF. General Deming regression for estimating systematic bias and its confidence interval in
method-comparison studies. Clin Chem. 2000; 46(1):100-104.

Muralidhar K, Ames GA, Sarathy R. Bootstrap confidence intervals for estimating audit value from
skewed populations and small samples. Sim. 1991; 56(2):119-127.

Payne RB. Calculation of slope by Deming’ s method from least- squares regression coefficients and
imprecision. Clin Chem. 1984; 30(5): 807.

Schall Jr RF, Kern CW, Tenoso HJ. Test data matrix and results for linear regression analysis by
method of W. E. Deming. Clin Chem. 1980; 26(2): 352.

Simon JL, Bruce P. Resampling: a tool for everyday statistical work. Chne N Dir Stat Comp. 1991;
4(1): 22-32.



Necati Alp Erilli 199

Smith DS, Pourfarzaneh M, Kamel RS. Linear regression analysis by Deming’s method. Clin Chem.
1980; 26(7): 1105-1106.

Therneau T. Deming: Deming, Theil- Sen, Passing- Bablock and total least squares regression. R
package, version 1.4 [ Internet]. 2018 [cited 2021 August 20]. Available from: https://cran.r-
project.org/web/packages/deming/vignettes/deming.pdf.

Walters SJ, Campbell MJ. The use of bootstrap methods for estimating sample size and analysing
health-related quality of life outcomes. Stat Med. 2005; 24(7): 1075-1102.

Wicklin R. Deming regression for comparing different measurement methods [Internet]. 2019 [cited
2021 August 20]. Available from: https://blogs.sas.com/content/iml/2019/01/07/deming-
regression-sas.html.

Zaiontz C. Deming Regression, real statistics using excel [Internet]. 2020 [cited 2021 August 15].
Available from: http://www.real-statistics.com/regression/deming-regression.

Appendices

Data 1 (n=10) (Zaiontz 2020)
X 4.5 5,2 4 5,6 5,1 5,6 5,9 6,8 6,6 6,7
y 4,1 4,6 4.7 5,1 5,4 5,6 6,1 6,3 6,6 6,8

Data 2 (n=12) (Konings 1982)
X 0,15 0,5 0,4 1,39 0,75 0,79 035 045 0,12 0,62 0,6 0,81
y 0,17 0,45 0,3 1,24 0,78 088 042 035 0,16 0,69 0,5 0,64

Data 3 (n=108) (Manuilova et al. 2015)

Serum (x) Plasma(y) Serum (x) Plasma(y) Serum (x) Plasma(y) Serum(x) Plasma (y)

0,82 0,79 1,2 1,29 0,9 0,87 1,09 1,24
1,83 1,62 1,01 0,87 1,34 1,3 1,27 1,29
1,39 1,36 1,33 1,13 1,32 1,04 2,06 2,08
0,81 1,3 0,87 0,82 1,02 0,92 1,21 1,31
1,72 1,88 1,66 1,33 1,04 1,01 0,77 0,82
3,23 3,35 1,41 1,14 1,27 1,21 1,06 1,28
1,23 1,06 1,08 0,93 1,08 1,11 1,02 1,15
1,37 1,34 1,17 1,09 1,1 1,21 1 1,04
1,72 1,56 1,77 1,89 1,39 1,54 1,47 1,51
0,96 0,94 1,33 1,57 1,07 0,99 0,97 1,13
0,76 0,69 1,23 1,29 0,79 0,79 1,7 1,84
1,15 1,16 1,21 1,13 1,02 1,06 1,78 1,94
0,95 0,71 1,2 1,11 0,94 1,02 0,93 1,32

1 0,83 1,49 1,61 1,99 2,15 0,92 1,36
1,52 1,44 0,89 0,79 0,7 0,56 1,59 1,88
1,56 1,26 1,09 1,19 0,84 1,01 0,68 0,73
2,45 2,36 1,03 0,96 0,66 0,59 0,7 0,78

1,85 1,9 1,07 1,25 1,1 1,17 1,08 1,01
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Serum (x) Plasma (y) Serum (x) Plasma(y) Serum(x) Plasma(y) Serum (x) Plasma (y)
0,89 0,95 0,89 0,87 0,9 0,82 0,83 0,9
0,82 0,77 1,39 1,36 2,06 2,09 1,17 1,3
1,01 0,82 0,96 0,86 1,31 1,44 0,98 0,96
0,96 0,88 1,06 1,03 1,03 1,22 0,77 0,61
3,38 3,42 1,17 0,86 1,61 1,77 0,91 1,27
1,31 1,15 0,9 0,8 1,52 1,6 1,1 1,05

1,1 0,96 1,39 1,22 1,11 1,13 0,8 1,12
1,26 1,12 0,91 0,86 0,85 1,06 0,85 0,72
1,15 1,02 2,28 2,25 1,2 1,38 0,82 0,87
Data 4 (n=30) (Therneau 2018)
x (aas) 0 0 0,82 0 0,73 1,38 0,9 0,4 1,88 1,94
y (aes) 0 0,37 0,44 0,49 0,66 1,17 1,25 1,29 1,37 1,5
x (aas) 1,27 1,55 1,98 1,75 1,81 0,34 3,69 4,39 3,28 3,66
y (aes) 1,88 2,07 2,16 2,29 2,31 2,32 2,72 3,31 3,4 3,43
x (aas) 2,07 4,64 5,66 5,6 9,39 5,66 8,71 7,01 10,2 19,3
y (aes) 3,5 3,9 4,66 5,44 6,58 7,04 7,35 7,92 12,5 15,9
Data 5 (n=10) (Hathaway 1980)
X 7 83 10,5 9 5,1 8,2 10,2 10,3 7,1 5,9
y 7,9 8,2 9,6 9 6,5 7,3 10,2 10,6 6,3 52
Data 6 (n=17) (Cleophas and Zwinderman 2018)
X 512 430 520 428 500 600 364 380 658
494 395 516 434 476 557 413 442 650
445 432 626 260 477 259 350 451
y 433 417 656 267 478 178 423 427
Data 7 (n =65) (Wicklin 2019)
micrograms (x)  kiloOhms (y)  micrograms (x)  kiloOhms (y)  micrograms (x)  kiloOhms (y)
169 45,5 76 18,2 69,6 18,8
130,8 334 77,8 18,3 66,7 7.4
109 23,8 74,2 15,7 64.4 8,2
94,1 19,8 73,1 13,9 63 15,5
86,3 20,4 182,5 55,5 61,7 13,7
78,4 18,7 144 38,7 61,2 9,2
76,1 16,1 123,8 35,1 62,4 12
72,2 16,7 107,6 30,6 58,4 15,2
70 11,9 96,9 25,7 171,3 48,7
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micrograms (x)  kiloOhms (y)  micrograms (x)  kiloOhms (y)  micrograms (x)  kiloOhms (y)

69,8 14,6 92,8 19,2 136,3 36,1
69,5 10,6 87,2 22,4 111,9 28,6
68,7 12,7 86,3 18,4 96,5 21,8
67,3 16,9 84,4 20,7 90,3 25,6
174,7 57,8 83,7 20,6 82,9 16,8
137,9 39 83,3 20 78,1 14,1
114,6 30,4 83,9 18,8 76,5 14,2
99,8 21,1 82,7 21,8 73,5 11,9
90,1 21,7 160,8 49,9 74,4 17,7
85,1 25,2 122,7 32,2 73,9 17,6
80,7 20,6 102,6 19,2 71,9 10,2
78,1 19,3 86,6 14,7 72 15,6

77,8 20,9 76,1 16,6
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