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Abstract 

Deming regression is a type of regression method that fits a regression line when the 
measurements of both the explanatory variable and the response variable are assumed to be subject to 
normally distributed errors.  Recall that in ordinary least squares regression, the explanatory variable 
is assumed to be measured without error. Bootstrapping is a type of resampling where large numbers 
of smaller samples of the same size are repeatedly drawn, with replacement, from a single original 
sample. In this study, two different bootstrap methods are introduced as intra and outer bootstrap. It is 
proposed to use the introduced bootstrap methods together with Deming regression.  This study 
provides an investigation of outer bootstrap Deming methods in cases where outliers are high, and 
intra bootstrap Deming methods in cases where the central spread is high.  In the application part, the 
proposed methods on 7 different data sets previously used in the literature were used. It was seen that 
the intra bootstrap method results had less mean square error value than the classical Deming 
regression results in all datasets except one.  According to the results obtained from the study, it was 
seen that the estimation values made with the intra bootstrap method gave more successful results than 
the classical bootstrap and outer bootstrap. Intra bootstrapping method will be a guide for researchers 
who will work with Deming regression and data with few observations. 
______________________________ 
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1. Introduction 

Regression analysis is the most used estimation method among statistical methods. Regression 
analysis can be summarized as the study of analyzing the value of the response variable with the help 
of one or more explanatory variables. The two main functions of the method that are used are 
parameter estimation and prediction. For these functions to be performed successfully, some 
assumptions must be provided. 

One of these assumptions is that the explanatory variable is measured with no error. For the 
standard regression model with a single explanatory variable measured with error, it is well known 
that the estimated regression coefficient, on average, is attenuated toward the origin, and measurement 
error in the independent variable leads to bias in the estimation of a regressor coefficient. The 
following examples can be given for these situations: The variables may not be measurable (e.g. 
mental conditions, feelings, color, ability etc.) ,  the variables are clearly defined, but it is hard to take 
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correct observations (for example, income status is often reported as full value or $1,000 and its 
multiples), the variable is well understood, but it is qualitative in nature (the likes of a movie are 
evaluated by IMDB scores) or the variable is conceptually well defined, but it is not possible to take 
a correct observation on it (job experience is measured by the number of years of working). Regression 
techniques applied in situations where explanatory variables are assumed to contain no measurement 
error are called the Type-I regression technique. They are the most powerful estimation methods, as 
assumptions are provided. The ordinary least squares method can be cited as the best example of this. 

In some studies, it is not known whether the measurement error is caused by the response variable 
or the explanatory variable, or both. Type-II regression techniques are regression techniques that 
calculate the measurement errors in the response and explanatory variables at the same time. In 
general, these techniques are based on the logic of taking into account the errors in both variables as 
a result of taking the distances of the observation values calculated perpendicular to the regression 
equation obtained or depending on the amount of error. Orthogonal regression, Deming regression, 
York regression, Bland-Altman regression techniques can be considered as examples for Type-II 
regression. 

The number of studies conducted with Deming regression and bootstrap technique is very few in 
the literature. Francq (2014) compared six different bootstrap procedures to improve the coverage 
probabilities of the approximate confidence intervals for the parameters of the Deming and bivariate 
least square regressions. The bootstrapping in both methods provide very similar results. Benni et al. 
(2018) tested the single and double bootstrap methods on Deming regression and random coefficient 
model in their study. As for the results, single bootstrap results were found more efficient than double 
bootstrap in all methods. Fitrianto et al. (2020) compared jackknife and bootstrap resampling methods 
in orthogonal regression analysis similar to Deming regression. They showed that jackknife performed 
better in constructing confidence interval than the bootstrap in their study. 
 
2. Method 
2.1. Deming regression analysis  
 Deming regression is a technique for fitting a straight line to two- dimensional data where both 
variables, response, and explanatory, are measured with error.  This is different from simple linear 
regression where only the response variable, ,Y  is measured with error.  Deming regression is often 
used for method comparison studies in clinical chemistry or biostatistics to look for systematic 
differences between two measurement methods. 
 Deming proposed minimizing the function that will give the correct equation that best fits the 
observation values in case both variables have measurements with the error (Deming 1943). The error 
sum of squares value to be minimized in the Deming regression technique can be calculated as given 
in (1). 

 ( ) ( ){ }2 2 .i i i iSSE x X y Yλ= − + −∑                 (1) 

To predict the regression line with the Deming technique, it is necessary to know the value ,λ  
which is the ratio of the square analytical standard deviations of the X  and Y  methods: 
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This calculated λ  value allows us to determine the angle by minimizing the squared deviation 
sums on the line. The formulas and expressions used in the parameter estimates are as given in (3) and 
(4) (Linnet 1993): 
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Many studies have been conducted on Deming regression analysis, especially in the field of 
clinical chemistry and biostatistics. The general purpose of these studies is to produce algorithms to 
find the coefficient calculations that give the optimal λ  value and the minimum error value (Linnet 
1998; Martin 2000; Schall et al. 1980; Payne 1984; Smith et al. 1980). 
 
2.2. Bootstrap method 

The bootstrap method was first proposed by ( Efron 1979) .  This method aims to obtain smaller 
standard errors, more reliable parameter estimators, and create narrower confidence intervals by 
replacing and resampling randomly from the existing data set to generate very large data sets.  The 
Bootstrap method is far from dense mathematical formulas, limited assumptions, and easy to 
understand and use.  This method creates a strong potential in situations where it is difficult or 
impossible to obtain the sampling distribution of the estimator by asymptotic methods ( Simon and 
Bruce 1991). 

The Bootstrap method is a data- based simulation method for statistical inference which can be 
used to study the variability of estimated characteristics of the probability distribution of a set of 
observations and provide confidence intervals for parameters in situations where these are difficult or 
impossible to derive in the usual way (Everitt 1995). 

The basic idea of the bootstrap involves repeated random sampling with replacement from the 
original data 1 2, ,..., nx x x x=  to produce random samples of the same size n of the original sample. 
Here the aim is to mimic in an appropriate manner the way the sample is collected from the population 
in the bootstrap samples from the observed data. The “with replacement” means that any observation 
can be sampled more than once in each bootstrap sample.  It is important because sampling without 
replacement would simply give a random permutation of the original data, with many statistics such 
as the mean being exactly the same (Campbell 2001). The point about the bootstrap is that it produces 
a variety of values, whose variability reflects the standard error that would be obtained if samples were 
repeatedly taken from the whole population ( Walters and Campbell 2005) .  The confidence interval 
derived from the bootstrap agrees very closely with the one derived from statistical theory. Bootstrap 
methods are intended to simplify the calculation of inferences, producing them in an automatic way 
even in situations much more complicated (Efron and Tibshirani 1991). 

Using the Monte Carlo approximation, bootstrapping can be applied to many practical problems 
such as parameter estimation in time series, regression, and analysis of variance problems, and even 
to problems involving small samples. There is also a strong temptation to apply the bootstrap to several 
complex statistical problems where we cannot resort to classical theory to resort to. At least for some 
of these problems, it is recommended that the practitioner try the bootstrap. Only for cases where there 
is theoretical evidence that the bootstrap leads us astray would advise against its use (Chernick 2008). 

The bootstrap method does not require any assumptions regarding the underlying population 
distribution like other methods. Unlike the normal theory method, the bootstrap method can be applied 
for any sample size. The only assumption underlying the bootstrap method is that the sample selected 
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is representative of the population that it is sampled from. However, this underlying assumption is 
inherent in any statistical procedure including the normal theory method and the specific confidence 
interval methods. Thus, the bootstrap method provides an alternative means for estimating the audit 
value from skewed populations and small sample sizes (Muralidhar et al. 1991). A main concern in 
small samples is that with only a few values to select from, the bootstrap sample will underrepresent 
the true variability since observations are frequently repeated and bootstrap samples, themselves, can 
repeat (Chernick 2008). 
 
2.3. Intra bootstrap-Outer bootstrap  

While resampling in the bootstrap method, sampling is done from all the data within the 
framework of certain rules. In some data structures, observations are spread around the mean, while 
in some data there may be more spread in the extreme regions. Particularly in data with small samples, 
spreading to certain parts may cause deviations in the data. The effect of these spreads on the 
regression can sometimes cause the calculated estimates to be biased. In this study, instead of classical 
bootstrap results for data with such observations, new bootstrap approaches are proposed for 
observations that spread to certain regions. Thus, it is aimed to minimize the deviations arising from 
the general bootstrap calculations by making bootstrap according to the regions separated by quartiles 
for both the observations spreading around the mean and the data concentrated in the extreme regions. 
For this, the regions separated by 4 quartiles were determined as the calculation area. The reason for 
making bootstrap to regions separated by quartiles is that the algorithm proposed in this study will be 
studied especially for data with small observation volumes. For data with larger observation volumes, 
deciles can be tried instead of quartile. The region from the first observation to the first quartile and 
the region from the third quartile to the last observation were determined as the external region, and 
between the first quartile and the third quartile as the inner region, and the calculations were made 
separately for these regions. 

Let’s divide a data set into 4 equal parts with 3 quartiles. Let the data between the 1Q  and 3Q  
quartiles be defined as intra and the data outside as outer. When we do the classic bootstrap process 
from intra data, let’s name it intra bootstrap. Similarly, when we do from outer data, let's call it outer 
bootstrap. In this way, instead of choosing a random sample from all of the data, it will be possible to 
derive bootstrap data suitable for the distribution of the data by selecting data from regions separated 
by quartiles. Outer bootstrap is likely to be more suitable for data with high outliers and intra bootstrap 
sampling for data close to normal distribution. Bootstrap selections defined in Figure 1 are shown. 
 

 
Figure 1 Structure of intra-outer bootstrap 

 
In this way, the effect of the general distribution of observations in the data on the data is also 

revealed.  For the data concentrated around the arithmetic mean, intra, and for the data concentrated 
around the initial or trailing outliers, the effect of outer bootstrap methods will be greater. 
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3. Application 
In the application part, seven different data sets were used, and bootstrap Deming regression 

methods were compared according to the classical method. For each data set, the average square error 
values of the models obtained by the classical Deming regression method, classical bootstrap, intra 
bootstrap, and outer bootstrap methods obtained from all data were compared.  Classical Deming 
regression analysis was performed with the “ Deming”  package of the R package program.  Deming 
regression with Intra and outer bootstrap methods performed with Microsoft Excel codes which 
authors prepared.  Each data set is also given in the Appendix.  The mean square error (MSE)  model 
selection criterion was used to compare the predicted values obtained from all data. MSE uses squared 
units rather than the natural data units, the interpretation is less intuitive ( Frost 2019) .  MSE is an 
estimator measures the average of the squares of the errors and its formula is given in (5). 
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Bootstrap data generation ( classical, intra and outer bootstraps)  is done by writing code in the R 
package program.  For each data set, samples were drawn up to 50% of the data using the Bootstrap 
technique. The predictions of the expanded data with Bootstrap were realized by simulating 500 trials. 
The arithmetic means of the Deming regression parameter and lambda results obtained with 500 trials 
were taken as the final bootstrapped Deming regression results. Parameter estimation values obtained 
from each model and MSE values calculated for each model are given in Table 1. 
 

Table 1 Predicted parameter and MSE values for all data sets 
 0β  1β  MSE 
 Data 1 

Deming 0,1052 0,9687 0,1544 
Deming Bootstrap 0,1692 0,9659 0,1564 

Deming Intra Bootstrap 0,6167 0,8853 0,1491 
Deming Outer Bootstrap 0,0708 0,9706 0,1553 

 Data 2 
Deming 0,0179 0,9183 0,00668 

Deming Bootstrap 0,014 0,919 0,00663 
Deming Intra Bootstrap 0,0123 0,9179 0,00661 

Deming Outer Bootstrap 0,0142 0,9395 0,00688 
 Data 3 

Deming −0,0589 1,0545 0,0249 
Deming Bootstrap −0,056 1,0495 0,0248 

Deming Intra Bootstrap −0,0248 1,0301 0,0245 
Deming Outer Bootstrap −0,0632 1,0538 0,0249 

 Data 4 
Deming 0,412 0,8806 1,0345 

Deming Bootstrap 0,4099 0,8689 1,0250 
Deming Intra Bootstrap 0,4645 0,8693 1,0234 

Deming Outer Bootstrap 0,3711 0,8921 1,0501 
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Table 1 (Continued) 
 0β  1β  MSE 
 Data 5 

Deming 0,3908 0,9422 0,5458 
Deming Bootstrap 0,0847 0,9743 0,5370 

Deming Intra Bootstrap 1,1487 0,8584 0,5001 
Deming Outer Bootstrap 0,4722 0,9291 0,5097 

 Data 6 
Deming −14,722 1,0279 1443,9098 

Deming Bootstrap −29,6802 1,0538 1282,0427 
Deming Intra Bootstrap 1,1289 0,9989 1197,2528 

Deming Outer Bootstrap −29,5376 1,0541 1278,2799 
 Data 7 

Deming −10,5641 0,3544 8,4793 
Deming Bootstrap −11,9587 0,3702 8,7194 

Deming Intra Bootstrap −10,7558 0,3585 8,5320 
Deming Outer Bootstrap −12,1572 0,3694 8,7369 

 
As for the results in Table 1, we can see that the best MSE value in the first 6 datasets was 

obtained by the Deming intra bootstrap method. In the last data set, the best MSE value is obtained 
from the classical Deming regression model, while the Deming intra bootstrap MSE value has the 
second-best result. According to these results, it can be said that the effect of the Deming Intra 
Bootstrap method, namely the bootstrap samples taken between 1Q  and 3Q , on the model prediction 
results seems quite successful. 
 
4. Discussion 

The OLS method is still the most used in prediction studies. One of the basic assumptions of this 
method is that the explanatory variable has no measurement error. In many studies, it is not known 
whether the measurement error is caused by the response or explanatory variable. Type II regression 
techniques that do not require assumptions should be used when the measurements of response or 
explanatory variables contain errors. Deming regression technique is one of the most used Type II 
regression techniques. 

In this study, new bootstrap techniques-intra and outer bootstrap methods are proposed to be used 
in Deming regression estimates.  The results obtained from these bootstrap methods, which can also 
be named as inside and outside quartiles, were compared with the classical Deming regression results. 
It can be said that the intra bootstrap method was quite successful in studies conducted with 7 different 
data used in previous studies. In this study, it was seen that the prediction values obtained by the Intra 
method gave lower error values, especially in data structures with a small number of observations. 
This method is thought to be a guide for researchers who will work with Deming regression.  The 
investigation of similar bootstrap structures in other Type-II regression analyzes such as York, Bland-
Altman, orthogonal regression structures is left for future studies. 
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Appendices 
Data 1 ( 10)n =  (Zaiontz 2020) 

x 4,5 5,2 4 5,6 5,1 5,6 5,9 6,8 6,6 6,7 

y 4,1 4,6 4,7 5,1 5,4 5,6 6,1 6,3 6,6 6,8 

 
Data 2 ( 12)n =  (Konings 1982) 

x 0,15 0,5 0,4 1,39 0,75 0,79 0,35 0,45 0,12 0,62 0,6 0,81 

y 0,17 0,45 0,3 1,24 0,78 0,88 0,42 0,35 0,16 0,69 0,5 0,64 

 
Data 3 ( 108)n =  (Manuilova et al. 2015) 

Serum (x) Plasma (y) Serum (x) Plasma (y) Serum (x) Plasma (y) Serum (x) Plasma (y) 

0,82 0,79 1,2 1,29 0,9 0,87 1,09 1,24 

1,83 1,62 1,01 0,87 1,34 1,3 1,27 1,29 

1,39 1,36 1,33 1,13 1,32 1,04 2,06 2,08 

0,81 1,3 0,87 0,82 1,02 0,92 1,21 1,31 

1,72 1,88 1,66 1,33 1,04 1,01 0,77 0,82 

3,23 3,35 1,41 1,14 1,27 1,21 1,06 1,28 

1,23 1,06 1,08 0,93 1,08 1,11 1,02 1,15 

1,37 1,34 1,17 1,09 1,1 1,21 1 1,04 

1,72 1,56 1,77 1,89 1,39 1,54 1,47 1,51 

0,96 0,94 1,33 1,57 1,07 0,99 0,97 1,13 

0,76 0,69 1,23 1,29 0,79 0,79 1,7 1,84 

1,15 1,16 1,21 1,13 1,02 1,06 1,78 1,94 

0,95 0,71 1,2 1,11 0,94 1,02 0,93 1,32 

1 0,83 1,49 1,61 1,99 2,15 0,92 1,36 

1,52 1,44 0,89 0,79 0,7 0,56 1,59 1,88 

1,56 1,26 1,09 1,19 0,84 1,01 0,68 0,73 

2,45 2,36 1,03 0,96 0,66 0,59 0,7 0,78 

1,85 1,9 1,07 1,25 1,1 1,17 1,08 1,01 
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Serum (x) Plasma (y) Serum (x) Plasma (y) Serum (x) Plasma (y) Serum (x) Plasma (y) 

0,89 0,95 0,89 0,87 0,9 0,82 0,83 0,9 

0,82 0,77 1,39 1,36 2,06 2,09 1,17 1,3 

1,01 0,82 0,96 0,86 1,31 1,44 0,98 0,96 

0,96 0,88 1,06 1,03 1,03 1,22 0,77 0,61 

3,38 3,42 1,17 0,86 1,61 1,77 0,91 1,27 

1,31 1,15 0,9 0,8 1,52 1,6 1,1 1,05 

1,1 0,96 1,39 1,22 1,11 1,13 0,8 1,12 

1,26 1,12 0,91 0,86 0,85 1,06 0,85 0,72 

1,15 1,02 2,28 2,25 1,2 1,38 0,82 0,87 
 
Data 4 ( 30)n =  (Therneau 2018) 

x (aas) 0 0 0,82 0 0,73 1,38 0,9 0,4 1,88 1,94 

y (aes) 0 0,37 0,44 0,49 0,66 1,17 1,25 1,29 1,37 1,5 

x (aas) 1,27 1,55 1,98 1,75 1,81 0,34 3,69 4,39 3,28 3,66 

y (aes) 1,88 2,07 2,16 2,29 2,31 2,32 2,72 3,31 3,4 3,43 

x (aas) 2,07 4,64 5,66 5,6 9,39 5,66 8,71 7,01 10,2 19,3 

y (aes) 3,5 3,9 4,66 5,44 6,58 7,04 7,35 7,92 12,5 15,9 

 
Data 5 ( 10)n =  (Hathaway 1980) 

x 7 8,3 10,5 9 5,1 8,2 10,2 10,3 7,1 5,9 

y 7,9 8,2 9,6 9 6,5 7,3 10,2 10,6 6,3 5,2 

 
Data 6 ( 17)n =  (Cleophas and Zwinderman 2018) 

x 512 430 520 428 500 600 364 380 658 

y 494 395 516 434 476 557 413 442 650 

x 445 432 626 260 477 259 350 451  

y 433 417 656 267 478 178 423 427  

 
Data 7 ( 65)n =  (Wicklin 2019) 

micrograms (x) kiloOhms (y) micrograms (x) kiloOhms (y) micrograms (x) kiloOhms (y) 

169 45,5 76 18,2 69,6 18,8 

130,8 33,4 77,8 18,3 66,7 7,4 

109 23,8 74,2 15,7 64,4 8,2 

94,1 19,8 73,1 13,9 63 15,5 

86,3 20,4 182,5 55,5 61,7 13,7 

78,4 18,7 144 38,7 61,2 9,2 

76,1 16,1 123,8 35,1 62,4 12 

72,2 16,7 107,6 30,6 58,4 15,2 

70 11,9 96,9 25,7 171,3 48,7 
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micrograms (x) kiloOhms (y) micrograms (x) kiloOhms (y) micrograms (x) kiloOhms (y) 

69,8 14,6 92,8 19,2 136,3 36,1 

69,5 10,6 87,2 22,4 111,9 28,6 

68,7 12,7 86,3 18,4 96,5 21,8 

67,3 16,9 84,4 20,7 90,3 25,6 

174,7 57,8 83,7 20,6 82,9 16,8 

137,9 39 83,3 20 78,1 14,1 

114,6 30,4 83,9 18,8 76,5 14,2 

99,8 21,1 82,7 21,8 73,5 11,9 

90,1 21,7 160,8 49,9 74,4 17,7 

85,1 25,2 122,7 32,2 73,9 17,6 

80,7 20,6 102,6 19,2 71,9 10,2 

78,1 19,3 86,6 14,7 72 15,6 

77,8 20,9 76,1 16,6   
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