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Abstract 

This paper introduces a new family of continuous distributions called the generalized Marshall-
Olkin transmuted-G family to extend the transmuted family that is proposed by Shaw and Buckley 
(2009). Some of its mathematical properties including hazard rate function, quantile, asymptotes, 
stochastic orderings, moment generating function, and entropy are derived. A special sub-model of 
the proposed family is discussed. The maximum likelihood, least squares and weighted least squares 
estimation methods are adopted to estimate the model parameters. We present a simulation study to 
explore the biases and mean square errors of these estimators. The superiority of the proposed family 
over other existing distributions is proved by modelling a veterinary medical data. 
______________________________ 
Keywords: Statistical model, generalized-Marshall-Olkin family, transmuted-G family, stochastic orderings, 
simulation, statistics and numerical data. 
 
1. Introduction 

Recently, several generalized families of continuous distributions have been proposed to model 
various phenomena. There has been an increased interest in defining new generated families of 
univariate continuous distributions by adding extra shape parameters to the baseline model, where 
statistical models can be utilized to extract all the information from the data to make them more useful. 
One of the most notable families is the Marshall-Olkin (MO) family (Marshall and Olkin 1997) which 
has been utilized by many authors to propose new generalized models as well as newly generated 
families. For example, the generalized Marshall-Olkin-G (GMO-G) (Jayakumar and Mathew 2008), 
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unified beta Marshall-Olkin-G and Marshall-Olkin-Kumaraswamy-G (Chakraborty et al. 2018), 
exponentiated generalized Marshall-Olkin (Handique et al. 2019), families, among others. The 
generalized Marshall-Olkin-H (GMO-G) family (Jayakumar and Mathew 2008) is specified by the 
survival function (sf) and probability density function (pdf)  
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1 ( )
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where , 0x α−∞ < < ∞ >  ( 1 )α α= −  and 0θ >  is an additional shape parameter. For 1,θ =  the 
GMO-H family reduces to the MO family, and the baseline model follows for 1.α θ= =  

Shaw and Buckley (2009) proposed the quadratic rank transmutation map that is also known as 
transmuted-G (T-G) class. This class of distributions has been received considerable attention over 
the last two decades.  

The cumulative distribution function (cdf) and pdf of the T-G family are given by 
 TG ( ; ) ( ) [1 ( ) ]H x G x G xλ λ λ= + −                 (2) 
and 
 TG ( ; ) ( ) [1 2 ( ) ],h x g x G xλ λ λ= + −                 (3) 

where ( )g x  and ( )G x  denote to the respective pdf and cdf of a baseline model whereas the parameter 

lambda between −1 and 1 and its boundaries. In this paper, we introduce and study a new extension 
of the T-G family by adding an extra shape parameter in (1) to provide more flexibility to the generated 
family. In fact, based on the GMO-H family, we construct a new generator called the generalized 
Marshall-Olkin transmuted-G (GMOT-G) family of distribution and give a comprehensive description 
of some of its mathematical properties. We hope that the new model will attract wider applications in 
reliability, engineering, and other areas of research. The resulting expression for the sf of proposed 
GMOT-G family is given by 
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The corresponding pdf and hrf of the GMOT-G family 
1
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The distribution defined by (5) is referred to as GMOT G ( , , )θ α λ− . In particular, the GMOT-G 
family includes the following special cases: 

(i) For 1,θ =  we obtain the MOT - G ( , )α λ family, 

(ii) For 1,θ α= =  we obtain the T G ( )λ−  family, 

(iii) For 0,λ =  we obtain the GMO( , )θ α  family, 

(iv) For 1, 0,θ λ= =  we obtain the MO( )α  family, 
(v) For 1, 0,α θ λ= = =  we obtain the baseline model. 
The important motivations behind the GMOT-G family are to improve the overall adaptability of 

the T-G family using the GMO-G class at the same time an extension of GMO family. In addition, the 
new family ensures a high level of flexibility for important distributional characteristics, such as mean, 
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variance, skewness, and kurtosis. We illustrate this aspect by discussing a special four-parameter 
distribution of the family called, GMOT-exponential (GOMT-E) model defined with the exponential 
distribution as baseline model as an example. A further physical motivation of the GMOT-G family 
is illustrated by the following proposition. 
 
Proposition 1 Let i1 i2 iN, ,...,X X X  be a sequence of Nθ  i.i.d. random variables from T-G 

distribution and i i1 i2 iNmin( , ,..., )W X X X=  and i i1 i2 iNmax( , ,..., )V X X X=  for 1,2,..., .i θ=  Then 

(i) imin 
i

W  follows GMOT G ( , , )θ α λ−  if ~ ( )N Geometric α  and 

(ii) imax 
i

V  follows GMOT G ( , , )θ α λ−  if ~ (1/ ).N Geometric α  

Case (i) For 0 1α< ≤ , considering N has a geometric distribution with parameter ,α  we get 
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Case (ii) For 1α > , considering N has a geometric distribution with parameter 1/ ,α  we get 

1 2 θP[min{ , , ..., } ]V V V x>  1 2 θP[ ] P[ ] ...P[ ]V x V x V x= > > >  
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The T-G family has been extended by many authors to improve its flexibility. For example, Afify 

et al. (2017) introduced the beta transmuted-H, Yousof et al. (2018) studied the generalized transmuted 
Poisson-G, Alizadeh et al. (2018, 2020) studied the complementary generalized transmuted Poisson-
G family and odd log-logistic Lindley-G family, respectively, Mansour et al. (2019) introduced the 
transmuted transmuted-G family, El-Morshedy and Eliwa (2019) proposed the odd flexible Weibull-
H family, Eliwa et al. (2020a, 2020b) proposed the exponentiated odd Chen-G families and discrete 
Gompertz generator, respectively, Tahir et al. (2020) proposed new Kumaraswamy generalized 
family, El-Morshedy et al. (2020, 2021a, 2021b) proposed the odd Chen generator, Poisson 
generalized exponential-G family and type I half-logistic odd Weibull generator, respectively, Altun 
et al. (2021) reported the additive odd-G family, Almazah et al. (2021) proposed an application based 
on the Topp-Leone exponentiated-G, among others. Our motivations to introduce the new generator 
are: 

1. To provide special distributions which are capable of modelling various types of hrfs. 
2. The special distributions are a proper to model asymmetric data and can also be used in a variety 

of applied problems in many areas. 
3. To construct heavy-tailed models that are not longer-tailed for modelling real data. 
4. To provide consistently better fits than other generated distributions under the same baseline 

model. 
The rest of the paper is outlined as follows. In Section 2, we introduce the GMOT-E distribution. 

We obtain some general mathematical properties of the GMOT-G family in Section 3. In Section 4, 
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the maximum likelihood, lest squares and weighted lest squares estimators are obtained. Further, a 
simulation study is carried out to explore the performance of these estimators in the same section. The 
analysis of a failure time data is presented in Section 5. Finally, we give some conclusions in Section 
6. 
 
2. The GMOT-E distribution 

In this section, we derive the GMOT- E model as a special sub- model of the proposed family by 
taking ( ) 1 xG x e β−= −  to be exponential ( E)  distribution.  Hence, we can write pdf and hrf of the 
GMOT-E distribution as 

GMOTE ( ; , , , )f x θ α λ β
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and  
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Figures 1 and 2 depicted some possible shapes for the GMOT-E pdf and hrf, respectively. 

 
Figure 1. The pdf plots of the GMOT-E distribution. 

 
Figure 2. The hrf plots of the GMOT-E distribution. 
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3. General Properties 
3.1. Quantile function 

The quantile function ( qf)  of ,X  say 1( ) ( ),Q u F u−=  can be obtained by inverting ( 4) 
numerically and it is given by  
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For example, the thp quantile, ,pt  of the GMOT-E distribution reduces to 
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It may be noted that for given uniform random number ‘ u’  corresponding random numbers ‘x’ 
from GMOT G ( , , )θ α λ−  can be easily obtained using (6). 

The flexibility of skewness and kurtosis of the GMOT G ( , , )θ α λ−  is checked by plotting Galton 
skewness (S) that measures the degree of the long tail and Moors (1988) kurtosis (K) that measures 
the degree of tail heaviness. The S and K measures are defined by 

(6 / 8) 2 (4 / 8) (2 / 8)
(6 / 8) (2 / 8)

Q Q QS
Q Q
− +

=
−

 and (7 / 8) (5 / 8) (3 / 8) (1/ 8) .
(6 / 8) (2 / 8)

Q Q Q QK
Q Q

− + −
=

−
 

Figure 3 shows the Galton skewness, and the Moor kurtosis plots for different parametric values of 
α  and θ  with 0.5β =  and 0.9λ =  for GMOT-E model. One can note that the GMOT-E model can 
be used to model positive skewness and platykurtic data sets. 

Figure 3. The Galton skewness, S, and the 
Moor kurtosis, K, for the GMOT-E distribution. 

 
3.2. Asymptotes and shapes 

Two propositions regarding asymptotes of the proposed family are discussed here. 
 
Proposition 2 The asymptotes of pdf, sf and hrf of GMOT G ( , , )θ α λ−  as 0x →  are given by 

GMOTG ( ; , , ) ~ (1 ) ( ) ,f x g xθ α λ θ λ α+  GMOTG ( ; , , ) ~ 1,F x θ α λ  
GMOTG ( ; , , ) ~ (1 ) ( ) .h x g xθ α λ θ λ α+  
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Proposition 3 The asymptotes of pdf, sf and hrf of GMOT G ( , , )θ α λ− as x →∞  are given by 
GMOTG 1 ( 1)( ; , , ) ~ (1 ) ( ) ( ) (1 ( )) ,f x g x G x G xθ θ θθ α λ θ α λ α− − +− −    

GMOTG ( )( ; , , ) ~ ,
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G xF x
G x

θ
αθ α λ
α

 
 − 

 GMOTG 1 1( ; , , ) ~ (1 ) ( ) ( ) (1 ( )) .f x g x G x G xθ α λ θ λ α− −− −  

 
The shapes of the density and hazard functions can be described analytically. The critical points 

of the pdf of the GMOT G ( , , )θ α λ−  family are the roots of the following equation, 

( ) 2 ( ) ( 1) ( ) [1 2 ( ) ] ( 1) ( ) [1 2 ( ) ] 0.
( ) 1 2 ( ) 1 ( )[1 2 ( )] 1 [1 ( ) {1 ( )}]

g x g x g x G x g x G x
g x G x G x G x G x G x

λ θ λ λ θ α λ λ
λ λ λ λ α λ λ

′ − + − + + −
− + + =

+ − − + − − − + −
  (7) 

The critical point of GMOT G ( , , )θ α λ− family hazard rate are the roots of the equation, 

( ) 2 ( ) ( ) [1 2 ( ) ] ( ) [1 2 ( ) ] 0.
( ) 1 2 ( ) 1 ( )[1 2 ( )] 1 [1 ( ) {1 ( )}]
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         (8) 

There may be more than one roots of (7) and (8). If 0x x=  is a root then it is a local maximum, a 

local minimum or a point of inflexion if 0 0 0( ) 0, ( ) 0 ( ) 0x x or xψ ψ ψ< > =  and for (8) if 0( ) 0,xω <  

0( ) 0,xω >  or 0( ) 0xω =  where 2 2( ) ( ) log[ ( )]x d dx f xψ =  and 2 2( ) ( ) log[ ( )].x d dx h xω =

     
 
3.3. Stochastic orderings 

Let X  and Y  be two random variables with respective cdfs F  and ,G  and corresponding pdf’s 
f  and .g  Then X is said to be smaller than Y in the likelihood ratio order ( ) if ( ) ( )f x g x  is 

decreasing in 0.x ≥  
 
Theorem 1 Let 1~ GMOT G ( , , )X θ α λ−  and 2~ GMOT G ( , , ).Y θ α λ−  If 1 2 ,α α<  then .lrX Y≤  
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where 21 [1 ( ) {1 ( )}]U G x G xα λ λ= − − + −  and 11 [1 ( ) {1 ( )}].V G x G xα λ λ= − − + −

 Now this is always less than 0 since 1 2.α α<  Hence, ( ) / ( )f x g x  is decreasing in .x  That is, 

.lrX Y≤   
 
3.4. Linear mixture representation 

Here, we express the sf and pdf of the GMOT G ( , , )θ α λ−  as an infinite linear mixture of the 

corresponding functions of exponentiated−T G ( )λ−  distribution. Consider the series representation  
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This is valid for 1z <  and 0,k >  where (.)Γ  is the gamma function. Applying the expansion in (9) 

on (4), for (0,1),α ∈  we obtain  

YX lr≤
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Differentiating (10), with respect to x, we get 
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3.5. Moment generating function  

The moment generating function (mgf) of the GMOT-G family can be easily expressed in terms 
of the exponentiated T-G family using (11) as follows  
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where TG ( )XM s  is the mgf of the exponentiated-T-G family with parameter .λ    
Tables 1-4 report some numerical results of mean, variance, skewness, and kurtosis of the GMOT-

E distribution using the R software. 
 

Table 1 Some descriptive statistics using GMOT-E distribution as θ  grows 
θ  α  λ  β  Mean Variance Skewness Kurtosis 

1.0 0.9 0.1 0.8 1.31944 1.47087 2.10904 9.59080 
1.5 0.77462 0.59650 2.14974 10.03396 
2.0 0.54382 0.32277 2.18777 10.33269 
3.5 0.26886 0.09609 2.28403 10.98801 
5.0 0.16600 0.04309 2.39771 11.74260 

10.0 0.05643 0.00780 2.90103 15.61318 
30.0 0.00497 0.00019 5.83444 57.72020 

 
Table 2 Some descriptive statistics using GMOT-E distribution as α  grows 

α  θ  λ  β  Mean Variance Skewness Kurtosis 
0.01 1.5 0.1 0.8 0.06520 0.01008 10.39448 215.2991 

0.1 0.34735 0.10024 4.81696 37.85083 
1.5 0.80174 0.83932 1.94573 8.40369 
3.5 0.74260 1.25012 2.07130 8.20236 
5.0 0.68522 1.37579 2.26648 8.97715 

10.0 0.54351 1.46747 2.86067 12.26209 
30.0 0.31507 1.21417 4.46215 25.74435 
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Table 3 Some descriptive statistics using GMOT-E distribution as β  grows 
β  θ  λ  α  Mean Variance Skewness Kurtosis 

0.01 1.5 0.1 0.8 60.95107 3499.791 2.23055 10.60618 
0.1 6.095107 34.99791 2.23055 10.60618 
1.5 0.406340 0.15554 2.23055 10.60618 
3.5 0.174140 0.02856 2.23055 10.60618 
5.0 0.121902 0.01399 2.23055 10.60618 

10.0 0.060950 0.00349 2.23055 10.60618 
30.0 0.020317 0.0003888 2.23052 10.60636 

 
Table 4 Some descriptive statistics using GMOT-E distribution as λ  grows 

λ  θ  α  β  Mean Variance Skewness Kurtosis 
−0.9 1.5 0.1 0.8 0.860774 0.054419 32.24346 153.5608 
−0.5 0.578402 0.142456 5.015745 30.43173 

0.0 0.375905 0.110500 4.694646 35.27879 
0.5 0.258777 0.061466 5.321890 49.34551 
0.9 0.199477 0.032793 5.024815 43.86325 

 
From Tables 1-4, it is observed that the GMOT-E distribution can be utilized to model positively 

skewed and leptokurtic data. Moreover, it can be used as a flexible model for analysing over dispersion 
and under dispersion data where in some arbitrary choice of the parameters, the variance becomes 
greater than the mean or smaller than it. 

 
3.6. Rényi entropy 

The entropy of a random variable is a measure of uncertainty variation, and it has been used in 
various situations in science and engineering. The Rényi entropy (see Song 2001) is defined by 

1( ) (1 ) log ( ) ,RI f x dxδδ δ
∞

−

−∞

 
= −  

 
∫  where 0δ >  and 1δ ≠ . 

Thus, the Rényi entropy of the GMOT-G family can be obtained as 
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j

j
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− Γ + +
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4. Estimation 
4.1. Maximum likelihood method 

Let 1 2( , ,..., )nX x x x=  be a random sample of size n  from GMOT G ( , , )θ α λ−  with parameter 

vector ( , , , ),θ α λ=ρ ξ  where 1 2( , ,..., )qξ ξ ξ=ξ  is the parameter vector of any baseline model.  Then 

the log-likelihood function for ρ  is given by 
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[ ]{ }
1 1

( ) log( ) log[ ( , ) ] ( 1) log 1 ( , ) 1 ( , )
n n

i i i
i i

n g x G x G xθθ α θ λ λ
= =

= = + + − − + −∑ ∑ρ ξ ξ ξ   

 [ ] [ ]{ }( )
1 1

log 1 2 ( , ) ( 1) log 1 1 ( , ) 1 ( , ) .
n n

i i i
i i

G x G x G xλ λ θ α λ λ
= =

+ + − − + − − + −∑ ∑ξ ξ ξ  

This log-likelihood function cannot be solved analytically because of its complex form but it can 
be maximized numerically by employing global optimization methods available with the R software©. 
By taking the partial derivatives of the log- likelihood function with respect to , , and ,θ α λ ξ  we 

obtain the components of the score vector ( ), , , .U U U U Uθ α λ=ρ ξ  

The asymptotic variance-covariance matrix of the MLEs of parameters can obtained by inverting 
the Fisher information matrix I ( )ρ  which can be derived using the second partial derivatives of the 

log-likelihood function with respect to each parameter. The thi j  elements of I ( )n ρ  are given by  
2I [ ( ) ],i j i jE l ρ ρ= − ∂ ∂ ∂ρ , 1, 2,...,3 .i j q= +  

The exact evaluation of the above expectations may be cumbersome. In practice one can estimate 

)(I ρn  by the observed Fisher’s information matrix ˆ ˆˆI ( ) (I )n i j=ρ  defined as 

( )2
ˆ

Î ( ) ,i j i jl ρ ρ
=

≈ −∂ ∂ ∂
η η

ρ , 1, 2,...,3 .i j q= +  

Using the general theory of MLEs under some regularity conditions on the parameters as n →∞  
the asymptotic distribution of ˆ( )n −ρ ρ  is (0, )k nN V  where 1( ) I ( ).n jj nV v −= = ρ  The asymptotic 

behaviour remains valid if nV  is replaced by 1ˆ ˆ ˆI ( ).nV −= ρ  Using this result large sample standard 

errors of thj  parameter jρ  is given by ˆ .jjv  

 
4.2. Least squares method 

Let 1 2( , ,..., )nX x x x=  be a random sample of size n  from GMOT G ( , , ).θ α λ−  Least squares 
estimators (LSE) can be obtained by minimizing the following expression  

2

1

[1 ( , ) {1 ( , )}]
1 .

1 [1 ( , ) {1 ( , )}] 1

n
i i

LS
i i i

G x G x il
G x G x n

θ
α λ λ
α λ λ=

  − + − = − −  − − + − +  
∑ ξ ξ

ξ ξ
 

This LSl  function cannot be minimizing analytically because of its complex form but it can be 
minimizing numerically by employing global optimization methods available with the R software©. 
 
4.3. Weighted least squares method 

Let 1 2( , ,..., )nX x x x=  be a random sample of size n  from GMOT G ( , , ).θ α λ−  The weighted 
least squares estimators (WLSE) can be obtained by minimizing the following expression  

2
2

1

[1 ( , ) {1 ( , )}]( 2) ( 1) 1 .
( 1) 1 [1 ( , ) {1 ( , )}] 1

n
i i

WLS
i i i

G x G xn n il
n i i G x G x n

θ
α λ λ
α λ λ=

  − + −+ +  = − −  − + − − + − +  
∑ ξ ξ

ξ ξ
 

This WLSl  function cannot be minimizing analytically because of its complex form but it can be 
minimizing numerically by employing global optimization methods available with the R software©. 
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4.4. Simulations results 
In order to explore the performance of the MLE, LSE, and WLSE, we conduct a simulation study 

using the statistical R software© through the package (stats 4). We generate 10,000 samples of size 
n =  5, 10, 15, …, 100 from the GMOT E ( , , , )θ α β λ−  distribution for 1.2,θ =  1.6,α =  1.3,β =  

0.36.λ =  The number of Monte Carlo (MC) replications was 1,000. The evaluation of the estimates 
was performed based on some quantities such as the empirical biases, and mean squared errors (MSEs) 
that are calculated for each sample size using the R package from MC replications, where 

1000

1

1 ˆBias( ) ( )
1000 j

j
α α α

=

= −∑  and 
1000

2

1

1 ˆMSE( ) ( ) .
1000 j

j
θ θ θ

=

= −∑  

The empirical results are given in Figures 4-6. From Figures 4-6, the bias and MSE decrease as 
the sample size n  grows. This shows the consistency of the estimates. Thus, MLE, LSE, and WLSE 
can be used effectively to estimate the parameters of the GMOT-E distribution.  
 

 
Figure 4 The biases and MSEs of the model parameter versus n based on MLE 
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Figure 5 The biases and MSEs of the model parameter versus n  based on LSE 

 

 
Figure 6 The biases and MSEs of the model parameter versus n  based on WLSE 

 
5. Application 
5.1. Modelling failure time of infected Guinea pig’s data 

In Section 5, we consider modelling of one failure time data set to illustrate the suitability of the 
GMOT E ( , , , )θ α λ β−  distribution in comparison to some existing distributions by estimating the 
parameters by numerical maximization of log-likelihood function. We have considered one failure 
time data set of 72 Guinea pigs infected with virulent tubercle bacilli which observed and reported by 
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Bjerkedal (1960). First we have compared the GMOT-E distribution with some of its sub models such 
as exponential (Exp), moment exponential (ME), transmuted exponential (T-E), Marshall-Olkin 
exponential (MO-E) (Marshall and Olkin 1997), generalized Marshall-Olkin exponential (GMO-E) 
(Jayakumar and Mathew 2008) and Marshall-Olkin transmuted exponential (MOT-E) models and also 
compared the proposed GMOT-E distribution with other competing models such as Kumaraswamy 
exponential (Kw-E) (Cordeiro and de Castro 2011), beta exponential (BE) (Eugene et al. 2002), 
Marshall-Olkin Kumaraswamy exponential (MOKw-E) (Handique et al. 2017) and Kumaraswamy 
Marshall-Olkin exponential (KwMO-E) (Alizadeh et al. 2015), beta Poisson exponential (BP-E) 
(Handique et al. 2020)  and Kumaraswamy Poisson exponential (KwP-E) (Chakraborty et al. 2020) 
distributions. 

The best model is chosen as the one having lowest AIC (Akaike Information Criterion), BIC 
(Bayesian Information Criterion), CAIC (Consistent Akaike Information Criterion), and HQIC 
(Hannan-Quinn Information Criterion). Further, we apply formal goodness-of-fit tests to verify which 
distribution fits better to this data. Particularly, we consider the Anderson-Darling (A), Cramér-von 
Mises (W) and Kolmogorov-Smirnov (K-S) statistics to compare the fitted models. We have also 
provided the asymptotic standard errors of the MLEs of the parameters for each competing model.  
For visual comparisons, the fitted density and fitted cdf are plotted with the corresponding observed 
histograms and ogives in Figure 8. These plots indicate that the proposed distribution provide a good 
fit to this data set. The descriptive statistics for the data are shown in Table 5. It is noted that the data 
set is positively skewed as expected from the nature of lifetime data and the data have a higher kurtosis. 

 
Table 5 Descriptive statistics for the analysed data  

n  Min. Mean Median s.d. Skewness Kurtosis 1st Qu. 3rd Qu. Max. 
72 0.100 1.851 1.56 1.200 1.788 4.157 1.08 2.303 7.000 

 
We extract the shape of the hazard function from the observed data using the total time on test 

(TTT) plot (see, Aarset 1987). The TTT plot is a known technique to extract information about hazard 
function shapes. A straight diagonal line indicates constant hazard for the data set, whereas a convex 
(concave) shape implies decreasing (increasing) hazard shape. The TTT plot for the given data is 
portrayed in Figure. 7 and it indicates that the data set have increasing hazard rate. We also provide 
the box plot of the data to summarise the minimum, first quartile, median, third quartile, and maximum 
where a box is shown from the first quartile to the third quartile with a vertical line going through 
the box at the median. 

              
Figure 7 The TTT and box plot for the analyzed data 



Laba Handiquea et al. 231 

Tables 6 reports the MLEs with standard errors of the parameters for all the fitted models, and 
Table 7 lists the AIC, BIC, CAIC, HQIC, A, W and K-S statistic with its p-value for all models. From 
these findings, the GMOT-E distribution has lowest value of AIC, BIC, CAIC, HQIC, A, W and 
highest p-value of K-S statistics, and hence it can be utilized to model the given data accurately than 
other nested and non-nested distributions. These findings are further validated from the plots of fitted 
density with histogram of the observed data and fitted cdf with ogive of observed data in Figure 8. 
These plots clearly indicate that the proposed distribution provides close fit to the data set considered 
here. Further, we utilize the MLE, LSE and WLSE methods to estimate the GMOT-E parameters from 
real data as reported in Table 8, that also list the values of KS and corresponding p-values. One can 
note, from Table 8, that the two methods can be used to estimate the GMOT-E parameters. The plots 
of estimated cdfs and probability-probability plots are displayed in Figures 9 and 10, respectively, for 
the three estimation methods. 

 
Table 6 MLEs and standard errors (in parentheses) for the analysed data 

Models θ̂  α̂  â  b̂  λ̂  β̂  
Exp 

)(β  - - - - - 
0.540 

(0.063) 
ME 

)(β  - - - - - 0.925 
(0.077) 

T-E 
),( βλ  - - - - −0.812 

(0.038) 
1.041 

(0.105) 
MO-E 

),( βα  - 
8.778 

(3.555) 
- - - 

1.379 
(0.193) 

GMO-E 
),,( βαθ  

0.179 
(0.070) 

47.635 
(44.901) - - - 

4.465 
(1.327) 

MOT-E 
),,( βλα  - 

3.245 
(1.863) 

- - 
-0.696 

(0.137) 
1.354 

(0.125) 
Kw-E 

),,( βba  - - 
3.304 

(1.106) 
1.100 

(0.764) 
- 

1.037 
(0.614) 

B-E 
),,( βba  - - 

0.807 
(0.696) 

3.461 
(1.003) 

- 
1.331 

(0.855) 
MOKw-E 

),,,( βα ba  - 
0.008 

(0.002) 
2.716 

(1.316) 
1.986 

(0.784) 
- 

0.099 
(0.048) 

KwMO-E 
),,,( βα ba  - 

0.373 
(0.136) 

3.478 
(0.861) 

3.306 
(0.779) 

- 
0.299 

(1.112) 
BP-E 

),,,( βλba  - - 
3.595 

(1.031) 
0.724 

(1.590) 
0.014 

(0.010) 
1.482 

(0.516) 
KwP-E 

),,,( βλba  - - 
3.265 

(0.991) 
2.658 

(1.984) 
4.001 

(5.670) 
0.177 

(0.226) 
GMOT-E 

),,,( βλαθ  
0.215 

(0.031) 
21.003 

(57.072) 
- - 

−0.778 
(4.699) 

4.311 
(0.094) 
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Figure 8 Plots of the observed histogram and estimated GMOT-E pdf (left) and the observed ogive 

and estimated cdf of the GMOT-E model (right) for the analysed data 
 

Table 7 Analytical measures for the analysed data set 
Models AIC BIC CAIC HQIC A W K-S (p-value) 

Exp )(β  234.63 236.91 234.68 235.54 6.53 1.25 0.27 (0.06) 
ME )(β  210.40 212.68 210.45 211.3 1.52 0.25 0.14 (0.13) 

T-E ),( βλ  209.94 214.50 210.11 211.74 0.98 0.19 0.10 (0.17) 
MO-E ),( βα  210.36 214.92 210.53 212.16 1.18 0.17 0.10 (0.43) 

GMO-E ),,( βαθ  210.54 217.38 210.89 213.24 1.02 0.16 0.09 (0.51) 
MOT-E ),,( βλα  208.26 215.10 208.61 210.96 0.86 0.15 0.10 (0.47) 

Kw-E ),,( βba  209.42 216.24 209.77 212.12 0.74 0.11 0.08 (0.50) 
B-E ),,( βba  207.38 214.22 207.73 210.08 0.98 0.15 0.11 (0.34) 

MOKw-E ),,,( βα ba  209.44 218.56 210.04 213.04 0.79 0.12 0.10 (0.44) 
KwMO-E ),,,( βα ba  207.82 216.94 208.42 211.42 0.61 0.11 0.08 (0.73) 

BP-E ),,,( βλba  205.42 214.50 206.02 209.02 0.55 0.08 0.09 (0.81) 
KwP-E ),,,( βλba  206.63 215.74 207.23 210.26 0.48 0.07 0.09 (0.79) 

GMOT-E ),,,( βλαθ  202.68 211.78 203.38 206.31 0.28 0.04 0.06 (0.88) 
 

Table 8 The estimates, K-S and p-values for the analysed data 
Model and Methods θ  α  λ  β  K-S p-value 

GMOT-E (LSE) 0.2271 25.1536 −0.3962 4.2521 0.0561 0.9774 

GMOT-E (WLSE) 0.2207 13.2098 −0.8704 4.0792 0.0559 0.9779 
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Figure 9 The empirical cdfs for the analyzed data 

 

 
Figure 10 The probability-probability plots for the analyzed data 

 
5.2. Likelihood ratio (LR) test  

In this Section, we have carried out the LR test for nested models. The GMOT - E ( , , , )θ α λ β  

distribution reduces to MOT - E ( , , )θ λ β  if 1=θ , to GMO - E ( , , )θ α β  if ,1=λ  to MO - E ( , )α β  if 

,1== λθ  to T - E ( , )λ β  if ,1==θα  to E ( )β  if ,1=== λαθ  so here we have employed the LR 
test where null hypothesis can be reported as: 

(i) 0 : 1,H θ =  that is the sample is from MOT - E ( , , )θ λ β  vs 

1 : 1,H θ ≠  that is the sample is from GMOT - E ( , , , ).θ α λ β  

(ii) 0 : 1,H λ =  that is the sample is from GMO - E ( , , )θ α β  vs 

 1 : 1,H λ ≠  that is the sample is from GMOT - E ( , , , ).θ α λ β  

(iii) ,1:0 == λθH  that is the sample is from MO - E ( , )α β  vs 

 ,1:1 ≠≠ λθH   that is the sample is from GMOT - E ( , , , ).θ α λ β  

(iv) 0 : 1,H α θ= =  that is the sample is from T - E ( , )λ β  vs 

 1 : 1,H α θ≠ ≠  that is the sample is from GMOT - E ( , , , ).θ α λ β  

(v) ,1:0 === λαθH  that is the sample is from E ( )β  vs 

 ,1:1 ≠≠≠ λαθH  that is the sample is from GMOT - E ( , , , ).θ α λ β  

Writing ( , , , )ρ θ α λ β=  the LR test statistic is given by LR = *ˆ ˆ2( ( ; ) ( ; )),x xρ ρ− −   where *ρ̂  is 

the restricted ML estimates under the null hypothesis 0 ,H  and ρ̂  is the unrestricted ML estimates 

under the alternative (alt) hypothesis 1.H  Under the null hypothesis 0H  the LR criterion follows Chi-
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square distribution with degrees of freedom (df) (df df ).alt null−  The null hypothesis is rejected for p-

value less than 0.05. Table 7 lists the analytical measures for real data. 
 

Table 7 Analytical measures for the analysed data set 
Test / Model Exp                              T-E MO-E GMO-E                       MOT-E                        

LR  18.97 5.63 5.84 4.93 3.79 
p-value 0.0002 0.05 0.05 0.02 0.05 

 
6.    Conclusions 

A new extension of the transmuted-G class, called the generalized Marshall-Olkin-transmuted-G 
family, which encompasses some important sub-families, is proposed. We study a new four-parameter 
sub- model called the generalized Marshall- Olkin- transmuted- exponential distribution to serve as an 
alternative to several existing distributions. It yields better fits as compared to existing models, and it 
can serve in many cases as good alternative to them.  Some mathematical properties of the proposed 
family are obtained.  The model parameters are estimated by three estimation methods.  Comparative 
evaluation using failure time data in terms of different model selection, goodness of fit criteria is 
conducted to the proposed distribution and other competing alternatives, proving that the proposed 
model provides better fit those other extensions of the three and four-parameter distributions. 
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Appendix A 
Proof of Proposition 2 

As 0x →  then ( ) 0,G x →  the asymptotes of pdf, sf and hrf of GMOT - G ( , , )θ α λ  are given by  
1
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 
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 as ( ) 0G x →  

                           ~ 1.  
GMOTG ( ; , , ) ~ (1 ) ( ) .h x g xθ α λ θ λ α+  

 
Proof of Proposition 3 

As ( ) 1x G→∞=> ∞ =  then ( ) 1,G x →  the asymptotes of pdf, sf and hrf of GMOT - G ( , , )θ α λ  
are given by  
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