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Abstract

This paper introduces a new family of continuous distributions called the generalized Marshall-
Olkin transmuted-G family to extend the transmuted family that is proposed by Shaw and Buckley
(2009). Some of its mathematical properties including hazard rate function, quantile, asymptotes,
stochastic orderings, moment generating function, and entropy are derived. A special sub-model of
the proposed family is discussed. The maximum likelihood, least squares and weighted least squares
estimation methods are adopted to estimate the model parameters. We present a simulation study to
explore the biases and mean square errors of these estimators. The superiority of the proposed family
over other existing distributions is proved by modelling a veterinary medical data.

Keywords: Statistical model, generalized-Marshall-Olkin family, transmuted-G family, stochastic orderings,
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1. Introduction

Recently, several generalized families of continuous distributions have been proposed to model
various phenomena. There has been an increased interest in defining new generated families of
univariate continuous distributions by adding extra shape parameters to the baseline model, where
statistical models can be utilized to extract all the information from the data to make them more useful.
One of the most notable families is the Marshall-Olkin (MO) family (Marshall and Olkin 1997) which
has been utilized by many authors to propose new generalized models as well as newly generated
families. For example, the generalized Marshall-Olkin-G (GMO-G) (Jayakumar and Mathew 2008),
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unified beta Marshall-Olkin-G and Marshall-Olkin-Kumaraswamy-G (Chakraborty et al. 2018),
exponentiated generalized Marshall-Olkin (Handique et al. 2019), families, among others. The
generalized Marshall-Olkin-H (GMO-G) family (Jayakumar and Mathew 2008) is specified by the
survival function (sf) and probability density function (pdf)

a H(x)
1-& H(x)

Oa’ h(x)H(x)""
[1-a& H(x)]""

FGMO(x;H,a)z{ } and fM°(x;0,a)= (1)

where —o0<x<ow, >0 (@=1-a) and 6 >0 is an additional shape parameter. For 8 =1, the
GMO-H family reduces to the MO family, and the baseline model follows for o =6 =1.

Shaw and Buckley (2009) proposed the quadratic rank transmutation map that is also known as
transmuted-G (T-G) class. This class of distributions has been received considerable attention over
the last two decades.

The cumulative distribution function (cdf) and pdf of the T-G family are given by

H(x; ) =Gx) [1+A-AG(x)] 2
and

K (x;A) = g(x) [1+1-21G(x)], 3
where g(x) and G(x) denote to the respective pdf and cdf of a baseline model whereas the parameter

lambda between —1 and 1 and its boundaries. In this paper, we introduce and study a new extension
of the T-G family by adding an extra shape parameter in (1) to provide more flexibility to the generated
family. In fact, based on the GMO-H family, we construct a new generator called the generalized
Marshall-Olkin transmuted-G (GMOT-G) family of distribution and give a comprehensive description
of some of its mathematical properties. We hope that the new model will attract wider applications in
reliability, engineering, and other areas of research. The resulting expression for the sf of proposed
GMOT-G family is given by

4
FOMOT0 (16, 1. ﬂ){ @ [1-G(x) {1 +A=AG()}] } . @
l-a[1-G(x) {1+ A-1G(x)}]
The corresponding pdf and hrf of the GMOT-G family
NG (32,0, 1y 2 8O 1+ A-22G@] 1= G() 11+ A~ 4G} )

[N-a[l-G(x) {1+ 1-A1G(x)} 11"

and

0 g(x) [1+1-21G(x)][1-G(x) {1+ A-AG(x)}]™
[-a[1-G(x) 1+ 1-21G(x)}]] '
The distribution defined by (5) is referred to as GMOT -G (6, a, A) . In particular, the GMOT-G

family includes the following special cases:
(1) For @ =1, we obtain the MOT -G (e, 1) family,

(ii) For @ = @ =1, we obtain the T—-G (A1) family,
(iii) For 4 =0, we obtain the GMO (0, «) family,
(iv) For 8 =1, 1 =0, we obtain the MO () family,

(v) For a« =0 =1, 1 =0, we obtain the baseline model.

hGMOTG (X; 0, a, l) —

The important motivations behind the GMOT-G family are to improve the overall adaptability of
the T-G family using the GMO-G class at the same time an extension of GMO family. In addition, the
new family ensures a high level of flexibility for important distributional characteristics, such as mean,
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variance, skewness, and kurtosis. We illustrate this aspect by discussing a special four-parameter
distribution of the family called, GMOT-exponential (GOMT-E) model defined with the exponential
distribution as baseline model as an example. A further physical motivation of the GMOT-G family
is illustrated by the following proposition.

Proposition 1 Let X, ,X,,..X
distribution and W, =min(X,,, X, ,....X ) and V, =max(X,, X, ,...X ) for i=12,...,6. Then

(1) min W, follows GMOT -G (8,a,1) if N ~ Geometric(ct) and

~ be a sequence of N iid. random variables from T-G

(i1) max V; follows GMOT -G (8,a,A) if N ~ Geometric(l/ @).

Case (i) For 0 < a <1, considering N has a geometric distribution with parameter o, we get
Plmin{W,W,, ..., Wy} >x] =P[W,>x]P[W,>x]...P[W, > x]

0
=[IPw. > x1=[F*"°(x;a, 1)1’
i=1

a[1-Gox) 1+ A-2Gx)] |
- L—&[I—G(x) {1+/1—AG(x)}J '

Case (ii) For a > 1, considering N has a geometric distribution with parameter 1/ a, we get
Pmin{l,, V,,...,Ve}>x] =P[V,>x]P[V,>x]..P[V,>x]

ﬁ P[V, > x] =[FM" (x;a,1)]°
[ ap-6() g+a-2G6(x)3] |7
| 1-a[l-G(x) 1+ A-AG(x)}] |

The T-G family has been extended by many authors to improve its flexibility. For example, Afify
etal. (2017) introduced the beta transmuted-H, Yousof et al. (2018) studied the generalized transmuted
Poisson-G, Alizadeh et al. (2018, 2020) studied the complementary generalized transmuted Poisson-
G family and odd log-logistic Lindley-G family, respectively, Mansour et al. (2019) introduced the
transmuted transmuted-G family, El-Morshedy and Eliwa (2019) proposed the odd flexible Weibull-
H family, Eliwa et al. (2020a, 2020b) proposed the exponentiated odd Chen-G families and discrete
Gompertz generator, respectively, Tahir et al. (2020) proposed new Kumaraswamy generalized
family, El-Morshedy et al. (2020, 2021a, 2021b) proposed the odd Chen generator, Poisson
generalized exponential-G family and type I half-logistic odd Weibull generator, respectively, Altun
et al. (2021) reported the additive odd-G family, Almazah et al. (2021) proposed an application based
on the Topp-Leone exponentiated-G, among others. Our motivations to introduce the new generator
are:

1. To provide special distributions which are capable of modelling various types of hrfs.

2. The special distributions are a proper to model asymmetric data and can also be used in a variety
of applied problems in many areas.

3. To construct heavy-tailed models that are not longer-tailed for modelling real data.

4. To provide consistently better fits than other generated distributions under the same baseline
model.

The rest of the paper is outlined as follows. In Section 2, we introduce the GMOT-E distribution.
We obtain some general mathematical properties of the GMOT-G family in Section 3. In Section 4,
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the maximum likelihood, lest squares and weighted lest squares estimators are obtained. Further, a
simulation study is carried out to explore the performance of these estimators in the same section. The
analysis of a failure time data is presented in Section 5. Finally, we give some conclusions in Section

6.

2. The GMOT-E distribution
In this section, we derive the GMOT-E model as a special sub- model of the proposed family by

taking G(x) =1—e”* to be exponential (E) distribution. Hence, we can write pdf and hrf of the
GMOT-E distribution as

S 0,a,2, ) =

and

WM (50,0, 2, B) =

0a’ B’ [1+A-2A(1-e ") [1-(1-e ") {1+ A-A(1—e"*)}]""
M-a[l-(1-e?) {1+ 1-A(1-e? )"

Oa’ Be” [1+A-2A(1-e")[I-(1-e") I+ A-A(1-e")}]"
N-a[l-(1-e?) {1+ A-A0-e")}]] '

Figures 1 and 2 depicted some possible shapes for the GMOT-E pdf and hrf, respectively.
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Figure 1. The pdf plots of the GMOT-E distribution.
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Figure 2. The hrf plots of the GMOT-E distribution.
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3. General Properties
3.1. Quantile function

The quantile function (qf) of X, say Q(u)=F"'(u), can be obtained by inverting ( 4)

numerically and it is given by

14 A= J(A+ 1) —4AT —uy
Ou)=G" i d+4) where T:I—(l—u)y. (6)
24 a+a(l-u)?
For example, the p" quantile, t,, of the GMOT-E distribution reduces to
1+ A—J(1+ A —4AT —u)
t, =—l10g 1- ( ) where T=l—(1—u)y.
24 a+a(l-uy?

It may be noted that for given uniform random number ‘#’ corresponding random numbers ‘x’
from GMOT -G (6,a,4) can be easily obtained using (6).

The flexibility of skewness and kurtosis of the GMOT -G (8, a, 1) is checked by plotting Galton
skewness (S) that measures the degree of the long tail and Moors (1988) kurtosis (K) that measures
the degree of tail heaviness. The S and K measures are defined by

5= 0(6/8)-20(4/8)+0Q(2/8) and K — Q(7/8)—Q(5/8)+Q(3/8)—Q(1/8).
0(6/8)-0(2/8) 0(6/8)—0(2/8)

Figure 3 shows the Galton skewness, and the Moor kurtosis plots for different parametric values of
a and @ with f=0.5 and 1 =0.9 for GMOT-E model. One can note that the GMOT-E model can

be used to model positive skewness and platykurtic data sets.
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Figure 3. The Galton skewness, S, and the
Moor kurtosis, K, for the GMOT-E distribution.

3.2. Asymptotes and shapes
Two propositions regarding asymptotes of the proposed family are discussed here.

Proposition 2 The asymptotes of pdf, sf and hrf of GMOT -G (0,a,4) as x - 0 are given by
FM(x50,a,4) ~ 0 1+ Dg(x)]a, FM(x;0,a,2)~1,
WM (x;0,a,2) ~ 0 (1+ M) g(x) /.
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Proposition 3 The asymptotes of pdf, sf and hrf of GMOT -G (6,a,1) as x — « are given by
S (x0,a,2) ~ 0’ (1= Dg(0) G 1-aG )y ™,

a G(x)

FM (0,0, 4) ~ | ————
1-a G(x)

0
:| ’ fGMOTG (x;0,0,2) ~ 01— A)g(x) (_;(x)’1 (1- (7(_;(36))’1.

The shapes of the density and hazard functions can be described analytically. The critical points
of the pdf of the GMOT -G (6,a,4) family are the roots of the following equation,

g'x)  24gk N @-Dg(x) [1+1-24G(x)] N @+D)agx) [1+1-24G(x)]

=0. (7

gx) 1+A-2AG(x) 1-G@)[+A-2AG(x)] 1-a[1-G(x){I+1-1G(x)}] 2
The critical point of GMOT -G (6, ¢, A1) family hazard rate are the roots of the equation,

g'(x)_ 22g(x) g [1+4-24G(x)] N agx)[1+A-241G(x)] 0 )

g(x) 1+1-2AG(x) 1-GX)[1+A-21G(x)] 1-a[l1-G(x) {1+ 1-A1G(x)}]
There may be more than one roots of (7) and (8). If x = x, is a root then it is a local maximum, a
local minimum or a point of inflexion if ¥ (x,) <0, w(x,) >0 or y(x,)=0 and for (8) if w(x,) <0,

@(x,)>0, or @(x,) =0 where y(x)=(d*/dx*)log[f(x)] and w(x)=(d’/dx*)log[h(x)].

3.3. Stochastic orderings
Let X and Y be two random variables with respective cdfs F and G, and corresponding pdf’s

/ and g. Then X is said to be smaller than Y in the likelihood ratio order (X <, V) if f(x)/g(x) is

decreasing in x > 0.

Theorem 1 Let X ~GMOT -G (8,a,,4) and Y ~GMOT -G (0,,,4). If a, <a,, then X <, Y.

—Ir

proo L) [ﬂﬂl—o} [1-G@) {1+/1—1G<x)}]r
gx) \a, -, [1-G(x) {1+ A-AG(x)}]
i{f(x) U’ g(x)(1+A— 21G(x))
t| g(x) y 0+2
where U =1-a,[1-G(x) {1+ A1-AG(x)}] and V =1-¢,[1-G(x) {1+ A1-A1G(x)}].
Now this is always less than 0 since o, <a,. Hence, f(x)/g(x) is decreasing in x. That is,

X<, Y.

—Ir

}z(6’+1)(0¢1/012)9(011 -a,)

3.4. Linear mixture representation
Here, we express the sf and pdf of the GMOT -G (0,a,4) as an infinite linear mixture of the

corresponding functions of exponentiated— T -G (A1) distribution. Consider the series representation

_ (j+k- l)'
—ot = ©)

This is valid for |z| <1 and k>0, where I'(.) is the gamma function. Applying the expansion in (9)
on (4), for a €(0,1), we obtain
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(J+6-1!

FMS (x:0,0,4) =a’ {F(x;A)}° Z 6-D!

(I=a) {F™ (x; )}’

SIIF" (). (10

MS

H
o

Differentiating (10), w1th respect to x, we get
SN0 =T EFT ()]
j=0

0

R Ty ) I (1)
dx

=0

’ ’ j+6—1 j 0 . ’
where §,=§j<a>=( ; )(l—a)fa L &= (@) =(j+O)E

3.5. Moment generating function
The moment generating function (mgf) of the GMOT-G family can be easily expressed in terms
of the exponentiated T-G family using (11) as follows

GMOTG sX X st < ' d TG +H
MEYTS (5) = Fle™]= [ e f () dx = - Je Zf, —AF @A)

0

+ d =16 - > TG
=2 ¢ j e IF () de =3 & MIE (o),

where M % (s) is the mgf of the exponentiated-T-G family with parameter A.

Tables 1-4 report some numerical results of mean, variance, skewness, and kurtosis of the GMOT-
E distribution using the R software.

Table 1 Some descriptive statistics using GMOT-E distribution as € grows

o a A B Mean Variance  Skewness Kurtosis
1.0 0.9 0.1 0.8 1.31944 1.47087 2.10904 9.59080
1.5 0.77462 0.59650 2.14974 10.03396
2.0 0.54382 0.32277 2.18777 10.33269
3.5 0.26886 0.09609 2.28403 10.98801
5.0 0.16600 0.04309 2.39771 11.74260

10.0 0.05643 0.00780 2.90103 15.61318
30.0 0.00497 0.00019 5.83444 57.72020

Table 2 Some descriptive statistics using GMOT-E distribution as & grows

a 6 2 i) Mean  Variance  Skewness Kurtosis
0.01 1.5 0.1 0.8 0.06520 0.01008 10.39448 215.2991
0.1 0.34735 0.10024 4.81696 37.85083
1.5 0.80174 0.83932 1.94573 8.40369
35 0.74260 1.25012 2.07130 8.20236
5.0 0.68522 1.37579 2.26648 8.97715
10.0 0.54351 1.46747 2.86067 12.26209

30.0 0.31507 1.21417 446215  25.74435
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p 0 A a Mean Variance  Skewness Kurtosis
0.01 1.5 0.1 0.8 6095107 3499.791 2.23055 10.60618
0.1 6.095107 34.99791 2.23055 10.60618
1.5 0.406340 0.15554 2.23055 10.60618
3.5 0.174140 0.02856 2.23055 10.60618
5.0 0.121902 0.01399 2.23055 10.60618
10.0 0.060950 0.00349 2.23055 10.60618
30.0 0.020317  0.0003888 2.23052 10.60636
Table 4 Some descriptive statistics using GMOT-E distribution as 4 grows

A o a B Mean Variance  Skewness Kurtosis
-0.9 1.5 0.1 0.8  0.860774 0.054419  32.24346  153.5608
-0.5 0.578402 0.142456  5.015745  30.43173
0.0 0.375905 0.110500  4.694646  35.27879
0.5 0.258777 0.061466  5.321890  49.34551
0.9 0.199477 0.032793 5.024815  43.86325

From Tables 1-4, it is observed that the GMOT-E distribution can be utilized to model positively
skewed and leptokurtic data. Moreover, it can be used as a flexible model for analysing over dispersion

and under dispersion data where in some arbitrary choice of the parameters, the variance becomes

greater than the mean or smaller than it.

3.6. Rényi entropy

The entropy of a random variable is a measure of uncertainty variation, and it has been used in
various situations in science and engineering. The Rényi entropy (see Song 2001) is defined by

[(6)=(1-5)" 10g(Tf(X)§dx

—0

Thus, the Rényi entropy of the GMOT-G family can be obtained as

é'—-f&

Jj=0

1,(6)=(1-5)" log[ > o,

0° a®(1-a)' T[5@+1)+ /]
5@ +1)] j! '

where @ =

4. Estimation
4.1. Maximum likelihood method

J, where 6 >0 and 6 #1.

[ F (0 1P [F™ (x5 )Y de,

Let X =(x,X,,...,x,) be arandom sample of size n from GMOT -G (6,a,1) with parameter

vector p =(0,a,4,8), where § =(&,S,,....5,) is the parameter vector of any baseline model. Then

the log-likelihood function for p is given by
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0= t(p) = nlog(@a’)+ Y logle (x,,&) ]+ (O~ log {1- G (x,&)[1+ 4 - AG (x,8)]}

i=1 i=1

+Z": 1og[1+,1—2,10(x,,g)]—(0+1)§":10g(1—07{1—G(x,.,g)[l+/1—AG(x,.,a)]}).

i=1
This log-likelihood function cannot be solved analytically because of its complex form but it can
be maximized numerically by employing global optimization methods available with the R software®©.
By taking the partial derivatives of the log-likelihood function with respect to 6, a, A and &, we

obtain the components of the score vector U, = (U 09U, U, U, )

The asymptotic variance-covariance matrix of the MLEs of parameters can obtained by inverting
the Fisher information matrix I(p) which can be derived using the second partial derivatives of the
log-likelihood function with respect to each parameter. The i j* elements of 1, (p) are given by

I, =—E[0°Up)/op,dp;]. i.j=1,2,...3+q.
The exact evaluation of the above expectations may be cumbersome. In practice one can estimate

I, (p) by the observed Fisher’s information matrix i,, p)= (i,.j) defined as

I,,~(-0*lp)/op,op,) =1 234,
Using the general theory of MLEs under some regularity conditions on the parameters as n — o
the asymptotic distribution of \/n_ (Pp-p) is N.(0,V,) where V, =(v;)= ' (p). The asymptotic

behaviour remains valid if V, is replaced by I}n =1 (p). Using this result large sample standard

n

errors of j™ parameter p , is given by [V,

4.2. Least squares method
Let X =(x,x,,...,x,) be arandom sample of size n from GMOT -G (0,a, ). Least squares

estimators (LSE) can be obtained by minimizing the following expression

=312 l=C 8 1+ 246 .0 "
o i=1 1_0_‘[1_G(xi:§){1+A_AG(x[r§)}] l+n .

This /,; function cannot be minimizing analytically because of its complex form but it can be

minimizing numerically by employing global optimization methods available with the R software©.

4.3. Weighted least squares method
Let X =(x,,x,,...,x,) be a random sample of size n from GMOT -G (6,a,A). The weighted

least squares estimators (WLSE) can be obtained by minimizing the following expression

; _i(n+2)(n+l)2 L e-G(.8) 1+4-4G(x.8)}] G_i ’
TS A (it )i 1-a[1-G(x,8) {1+ A-AG(x,E)}]| 1+n|’

This /,,, function cannot be minimizing analytically because of its complex form but it can be

minimizing numerically by employing global optimization methods available with the R software©.
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4.4. Simulations results

In order to explore the performance of the MLE, LSE, and WLSE, we conduct a simulation study
using the statistical R software© through the package (stats 4). We generate 10,000 samples of size
n= 5,10, 15, ..., 100 from the GMOT -E(0,«, ,4) distribution for =12, a=1.6, f=1.3,
A =0.36. The number of Monte Carlo (MC) replications was 1,000. The evaluation of the estimates

was performed based on some quantities such as the empirical biases, and mean squared errors (MSEs)

that are calculated for each sample size using the R package from MC replications, where
1000 1000

Bias(a) = ﬁz (&, -a) and MSE(0) = ﬁ >0, -0).
j=1 j=1

The empirical results are given in Figures 4-6. From Figures 4-6, the bias and MSE decrease as
the sample size n grows. This shows the consistency of the estimates. Thus, MLE, LSE, and WLSE
can be used effectively to estimate the parameters of the GMOT-E distribution.
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Figure 4 The biases and MSEs of the model parameter versus » based on MLE
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Figure 5 The biases and MSEs of the model parameter versus n based on LSE
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Figure 6 The biases and MSEs of the model parameter versus n based on WLSE

5. Application
5.1. Modelling failure time of infected Guinea pig’s data

In Section 5, we consider modelling of one failure time data set to illustrate the suitability of the
GMOT-E(0,a,4,) distribution in comparison to some existing distributions by estimating the

parameters by numerical maximization of log-likelihood function. We have considered one failure
time data set of 72 Guinea pigs infected with virulent tubercle bacilli which observed and reported by
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Bjerkedal (1960). First we have compared the GMOT-E distribution with some of its sub models such
as exponential (Exp), moment exponential (ME), transmuted exponential (T-E), Marshall-Olkin
exponential (MO-E) (Marshall and Olkin 1997), generalized Marshall-Olkin exponential (GMO-E)
(Jayakumar and Mathew 2008) and Marshall-Olkin transmuted exponential (MOT-E) models and also
compared the proposed GMOT-E distribution with other competing models such as Kumaraswamy
exponential (Kw-E) (Cordeiro and de Castro 2011), beta exponential (BE) (Eugene et al. 2002),
Marshall-Olkin Kumaraswamy exponential (MOKw-E) (Handique et al. 2017) and Kumaraswamy
Marshall-Olkin exponential (KwMO-E) (Alizadeh et al. 2015), beta Poisson exponential (BP-E)
(Handique et al. 2020) and Kumaraswamy Poisson exponential (KwP-E) (Chakraborty et al. 2020)
distributions.

The best model is chosen as the one having lowest AIC (Akaike Information Criterion), BIC
(Bayesian Information Criterion), CAIC (Consistent Akaike Information Criterion), and HQIC
(Hannan-Quinn Information Criterion). Further, we apply formal goodness-of-fit tests to verify which
distribution fits better to this data. Particularly, we consider the Anderson-Darling (A), Cramér-von
Mises (W) and Kolmogorov-Smirnov (K-S) statistics to compare the fitted models. We have also
provided the asymptotic standard errors of the MLEs of the parameters for each competing model.
For visual comparisons, the fitted density and fitted cdf are plotted with the corresponding observed
histograms and ogives in Figure 8. These plots indicate that the proposed distribution provide a good
fit to this data set. The descriptive statistics for the data are shown in Table 5. It is noted that the data
set is positively skewed as expected from the nature of lifetime data and the data have a higher kurtosis.

Table 5 Descriptive statistics for the analysed data
n  Min. Mean Median s.d. Skewness  Kurtosis  1stQu. 3rd Qu. Max.
72 0.100 1.851 1.56 1.200 1.788 4.157 1.08 2.303 7.000

We extract the shape of the hazard function from the observed data using the total time on test
(TTT) plot (see, Aarset 1987). The TTT plot is a known technique to extract information about hazard
function shapes. A straight diagonal line indicates constant hazard for the data set, whereas a convex
(concave) shape implies decreasing (increasing) hazard shape. The TTT plot for the given data is
portrayed in Figure. 7 and it indicates that the data set have increasing hazard rate. We also provide
the box plot of the data to summarise the minimum, first quartile, median, third quartile, and maximum
where a box is shown from the first quartile to the third quartile with a vertical line going through
the box at the median.

Tliin)

00 02 04 06 08 10

im

Figure 7 The TTT and box plot for the analyzed data
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Tables 6 reports the MLEs with standard errors of the parameters for all the fitted models, and
Table 7 lists the AIC, BIC, CAIC, HQIC, A, W and K-S statistic with its p-value for all models. From
these findings, the GMOT-E distribution has lowest value of AIC, BIC, CAIC, HQIC, A, W and
highest p-value of K-S statistics, and hence it can be utilized to model the given data accurately than
other nested and non-nested distributions. These findings are further validated from the plots of fitted
density with histogram of the observed data and fitted cdf with ogive of observed data in Figure 8.
These plots clearly indicate that the proposed distribution provides close fit to the data set considered
here. Further, we utilize the MLE, LSE and WLSE methods to estimate the GMOT-E parameters from
real data as reported in Table 8, that also list the values of KS and corresponding p-values. One can
note, from Table 8, that the two methods can be used to estimate the GMOT-E parameters. The plots
of estimated cdfs and probability-probability plots are displayed in Figures 9 and 10, respectively, for
the three estimation methods.

Table 6 MLEs and standard errors (in parentheses) for the analysed data

A A A ~

Models 9 a a b A B
Exp 0.540

V)] ) ) ) ) ) (0.063)

ME 0.925

02)) ) ) ) ) ) (0.077)

T-E ~0.812 1.041

(4, B) ) ) ) ) (0.038) (0.105)
MO-E 8.778 1.379

(a, B) ) (3.555) ) ) ) (0.193)
GMO-E 0.179 47.635 4.465
0,a,B) (0.070)  (44.901) i i ) (1.327)
MOT-E 3.245 -0.696 1.354
(a, 4, ) ) (1.863) ) ) (0.137) (0.125)
Kw-E 3.304 1.100 1.037
(a,b, ) ) ) (1.106) (0.764) ) (0.614)
B-E 0.807 3.461 1.331

(a,b, B) ) ) (0.696) (1.003) ) (0.855)
MOKw-E 0.008 2.716 1.986 0.099
(a,a,b, ) ) (0.002) (1.316) (0.784) ) (0.048)
KwMO-E 0.373 3.478 3.306 0.299
(a,a,b, ) ) (0.136) (0.861) (0.779) ) (1.112)
BP-E 3.595 0.724 0.014 1.482

(a,b, 4, B) ) ) (1.031) (1.590) (0.010) (0.516)
KwP-E 3.265 2.658 4.001 0.177
(a,b, 4, B) ) ) (0.991) (1.984) (5.670) (0.226)
GMOT-E 0.215 21.003 ~0.778 4311

@, 0,1, ) (0.031)  (57.072) (4.699) (0.094)
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Figure 8 Plots of the observed histogram and estimated GMOT-E pdf (left) and the observed ogive
and estimated cdf of the GMOT-E model (right) for the analysed data

Table 7 Analytical measures for the analysed data set

Models AIC BIC CAIC HQIC A W K-S (p-value)

Exp () 234.63 23691 234.68 23554 653 125 0.27 (0.06)

ME (B) 21040 212.68 21045 2113 152 025 0.14 (0.13)

T-E (1,8) 209.94 21450 210.11 211.74 098 0.19 0.10 (0.17)

MO-E (a,8) 21036 21492 21053 212.16 1.18 0.17 0.10 (0.43)
GMO-E (0,a, ) 21054 21738 21089 21324 1.02 0.16 0.09 (0.51)
MOT-E (a, A, 8) 20826 215.10 208.61 21096 0.86 0.15 0.10 (0.47)
Kw-E (a,b,8) 20942 21624 209.77 212.12 074 0.11 0.08 (0.50)

B-E (a,b,f) 20738 21422 207.73 210.08 098 0.15 0.11 (0.34)
MOKW-E (a,a,b, ) 209.44 218.56 210.04 213.04 0.79 0.12 0.10 (0.44)
KwMO-E (a,a,b, ) 207.82 21694 20842 21142 061 0.11 0.08 (0.73)
BP-E (a,h,A, ) 20542 21450 206.02 209.02 0.55 0.08 0.09 (0.81)
KwP-E (a,b,4,8) 20663 21574 207.23 21026 048 0.07 0.09 (0.79)
GMOT-E (0,a,4,8) 202.68 211.78 20338 20631 028 0.04 0.06 (0.88)

Table 8 The estimates, K-S and p-values for the analysed data

Model and Methods o a A s K-S p-value

GMOT-E (LSE) 0.2271 25.1536  —-0.3962 4.2521 0.0561 0.9774
GMOT-E (WLSE) 0.2207 13.2098  -0.8704 4.0792 0.0559 0.9779




Laba Handiquea et al. 233

MLE LSE WLSE

)
)
)

3

¢

0o 02 04 06 08 10

¢

0o 02 04 06 08 10

¢

0o 02 04 06 03 10

F

Figure 9 The empirical cdfs for the analyzed data
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Figure 10 The probability-probability plots for the analyzed data

5.2. Likelihood ratio (LR) test

In this Section, we have carried out the LR test for nested models. The GMOT -E (6,a, 4, )
distribution reduces to MOT -E (6,4, ) if 8 =1,to GMO-E(0,a,p) if A=1, to MO-E (e, p) if
O=A=1to T-E(L,B) ifa=0=1, to E(B) if @ =a =1 =1, so here we have employed the LR

test where null hypothesis can be reported as:
(1) H,:0=1, thatis the sample is from MOT-E (0,4, ) vs

H,:0 #1, thatis the sample is from GMOT -E(6,a,4, §).
(i) H,:A =1, thatis the sample is from GMO-E (0,ca, ) vs
H,:1#1, that is the sample is from GMOT -E(60,a, 1, f).
(i) H,:0= A =1, thatis the sample is from MO-E(a, B) vs
H,:0# A#]1, thatisthe sample is from GMOT-E(0,a, 4, ).
(iv) H,:a =0 =1, that is the sample is from T-E (A, 8) vs
H, .o # 6 #1, thatis the sample is from GMOT -E (6, a, 4, ).
(V) H,:0=a=2=1, thatis the sample is from E(f) vs
H,:0#a# A#1, thatis the sample is from GMOT -E (0,a, 4, §).

Writing p =(0,a, 4, 8) the LR test statistic is given by LR =—-2(/(p";x) - ¢(p;x)), where p" is

the restricted ML estimates under the null hypothesis H,, and p is the unrestricted ML estimates

under the alternative (alt) hypothesis H,. Under the null hypothesis H, the LR criterion follows Chi-
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square distribution with degrees of freedom (df) (df , —df, ,). The null hypothesis is rejected for p-

value less than 0.05. Table 7 lists the analytical measures for real data.

Table 7 Analytical measures for the analysed data set

Test / Model Exp T-E MO-E GMO-E MOT-E
LR 18.97 5.63 5.84 493 3.79
p-value 0.0002 0.05 0.05 0.02 0.05

6. Conclusions

A new extension of the transmuted-G class, called the generalized Marshall-Olkin-transmuted-G
family, which encompasses some important sub-families, is proposed. We study a new four-parameter
sub-model called the generalized Marshall- Olkin- transmuted- exponential distribution to serve as an
alternative to several existing distributions. It yields better fits as compared to existing models, and it
can serve in many cases as good alternative to them. Some mathematical properties of the proposed
family are obtained. The model parameters are estimated by three estimation methods. Comparative
evaluation using failure time data in terms of different model selection, goodness of fit criteria is
conducted to the proposed distribution and other competing alternatives, proving that the proposed
model provides better fit those other extensions of the three and four-parameter distributions.
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Appendix A
Proof of Proposition 2
As x = 0 then G(x) > 0, the asymptotes of pdf, sf and hrf of GMOT -G (6,, 1) are given by
Oa’ g(x)[1+A-2AGx)][1-G(x) {1+ 1-A1G(x)}]%"
[-a[l-G(x) {1+ A-1G(x)}]]""
_0a’g(x) (1+2)
[1 _ & ] 0+1

~0 (1+ Dgx)/a, 1-T =a.

a[1-G(x) 1+ 2-2Go) |
1—a[l-G(x) {1+ A-AG(x)}]

SN (x30,a,2) =

,as G(x)—> 0

FGMOTG (x; 0’ a, ﬂ,) — |:

~ {“—_} as G(x) = 0
l-a
~1.

KNS (x: 0,0, 1) ~ 0 (1+ V) g(x)/ .

Proof of Proposition 3
As x > o=>G(0)=1 then G(x)—> 1, the asymptotes of pdf, sf and hrf of GMOT -G (0,a,1)

are given by
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Oa’ g(x) [1+A-2AG(x)][1-G(x) {1+ A1-AG(x)}]""
[1-a[l1-G(x) {1+ A-A1G(x)}]]°"
~0a’(1-1)g(x)Gx)"" (1-aG(x)) .
CGE(x) > 1=>{1+1-1G(x)} > 1.

[N (0,0,2) =

FONTS 0, 4 2) { o [1-G(x) {1+2-2G(x)}] J’

1—a[l-G(x) 1+ 1-1G(x)}

[ T
1-a G(x)
hNMOTS (x:0, 0, 1) ~ O(1— A)g(x) é(x)’1 (1- O_!é(x))’l.
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