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Abstract 

Calibration sampling is a general tool to adjust the sampling weights and enhance the 
precision of the estimates. This technique is also helpful to reduce the non-response errors. In 
order to remove or minimize the biases produced by non-response errors and variances, the 
calibration technique is utilized.  In this paper, Calibration technique is used to reduce the 
distance between the calibrated weights and the given distance measure. We propose new 
calibration estimators for estimating the population of a sensitive variable based on scrambled 
responses collected using some improved random response device and auxiliary information. 
This study is to propose some improved calibrated generalized estimators for estimation of 
population mean of a quantitative sensitive variable. The results show that the proposed estimator 
having an extra calibration constraint is more efficient. 

______________________________ 
Keywords: Auxiliary information, calibration, scrambled randomized response technique, stratified RR 
technique. 

 
1. Introduction  

In stratified random sampling, the problem of estimating the mean using the additional 
information has been well documented in the survey sampling. The scheme of stratified random 
sampling involves the division of a population into homogeneous subgroups called strata, and 
then from each stratum through simple random sampling we select the sample.  

The randomized response technique is used in complex survey related to the sensitive issues 
such as use of drug, criminal record of the people or tax evocation to get the response from the 
respondents. Hansen and Hurwitz (1946) developed classical ratio and regression estimators for 
stratified sampling. Further, Kadilar and Cingi (2003) presented some estimators for stratified 
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random sampling and Shabbir and Gupta (2005) adapted some estimators and improved them 
under stratified sampling. Proportion allocation is widely used for the selection of sample size 
for each stratum made, if costs and variances are about equal for each stratum. If the costs and 
variances differ across strata, then disproportionate stratification is preferred.  

Calibration is a procedure to incorporating auxiliary information to adjust the sampling 
weights known as calibration weights that make the estimates agree with known totals. These 
weight resulted design consistent estimator and are more efficient than Horvitz-Thompson 
estimator. When too many auxiliary variables are involved in estimation, then calibration 
approach can produce extreme and negative weights. As calibration technique produces only a 
single weight for corresponding study variable value and this weight satisfy calibration to all 
benchmark constrains. 

An alternative technique was introduced by Eichhorn and Hayre (1983) suggested that 
required to ask a sensitive question, the respondent reply quantitative form, this scheme called 
Scrambled Randomized Response (SRR) and the respondent themselves following some 
provided mechanism. SRR method is a special case of Pollock and Bek (1976). Mangat (1994) 
modified, Mangat and Singh (1990) under conditions that are obtained under which the suggested 
strategy is improved than those of Warner (1965) or Mangat and Singh (1990). Zaman (2019) 
suggested new ratio estimators in stratified random sampling using the information of an 
auxiliary attribute. Zaman and Bulut (2020) gave a new idea to propose new regression-type 
estimators utilizing Tukey-M, Hampel M, Huber MM, LTS, LMS and LAD robust methods and 
MCD and MVE robust covariance matrices in stratified sampling. Zaman and Kadilar (2020) 
proposed exponential estimator taking auxiliary attribute and compared it with some existing 
estimators. Zaman and Kadilar (2021) proposed exponential ratio estimators in the stratified two-
phase sampling using an auxiliary attribute. Afterwards Zaman (2021) suggested estimator under 
stratified random sampling to estimate the population mean.  Jabeen et al. (2021) provide 
calibration estimators using different calibration constraints and distance measures and proved 
that selection of calibration constraints effects the efficiency of the estimators. 

Calibration estimators proposed by different survey statisticians for estimating population 
mean has been discussed and a brief discussion on some existing estimators to estimate 
population mean for sensitive study variable has been delivered along with the bias and the mean 
squared error. To deal with the situation of sensitive study variables some randomized response 
techniques, the work on the estimation of sensitive variable of interest using different response 
models are given with the bias and the mean square error. 

We have proposed calibration estimators when the study variable is of sensitive nature. The 
modifications on Tracy (2003) and Eichhorn and Hayre (1983) is done using different calibration 
constraints and we see that the calibration constraints play a vital role in the efficiency of the 
estimators.   

 
2. Methodology 
2.1. Notations in calibration estimator 

Consider a finite population consists of “ N ” units  1 2, , , .NU U U U   Let y  be the 

sensitive variable under study with population mean and variance respectively as 
1

1 N

i
i

Y Y
N 

   
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and  22
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y i
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S Y Y
N 




   Let iX  be the thi  ( 1,2,..., )i q  sensitive auxiliary variable having 

population mean and variance as 
1

1 N

i
i

X X
N 

   and  22
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.
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The size of population, ,N  is stratified into thK  strata with thJ  stratum containing j“N ”

units, where ( 1,2,..., ).j K  Such that 
1

.
k

j
j

N

  Let a sample of size 1n  is selected from the 

population through simple random sampling without replacement (SRSWOR) and consider 
1

11

1 n

i
i

y y
n 

   and
1

11

1 n

i
i

x x
n 

   be the sample means for “ y ” and “ x ”, respectively. The classical 

unbiased estimator of the population mean is given by 
1

1
,

N

st j j
J

y W y
N 

   where j
j

N
W

N
  is the 

stratum weight and jy  is stratum mean for thj  strata. 

The conventional estimator under stratified random sampling is given as 

1

.
K

st j j
j

y w y


   

In calibration approach, the aim is to reduce the weights ( )jw  to increase the efficiency of 

the estimators used under stratified random sampling. The calibration weights are produced by 
minimizing the commonly used chi-square distance measure using different constraints. The chi-
square distance measure is given here as 

 2

1

,
k

j j

j j j

W

Q W


  

where jQ are the weights which determine about the form of the estimator and  j  are the 

weights minimize distance measure. The auxiliary information is efficiently used to increase the 
precision of the estimators. 

 
2.2. Existing estimators in literature 

Tracy et al. (2003) proposed the calibration estimator for estimating population mean as 

1

.
K

S
st j j

j

y w y


   

Here, S
jw  are the calibrated weights which are chosen by minimizing the chi-square distance      

measure and using the following constraints 

1

,
k

s
j j

j

w x X


   
1

1.
k

s
j

j

w


  

The optimum weights are given below 
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The calibrated estimator by Tracy et al. (2003) may be written as 

1 1

ˆ .
k k

st j j j j
j j

y w X xy w
 

 
   

 
   

Tracy et al. (2003) also proposed the calibration estimator for estimating the population mean 
under stratified sampling scheme as 

1 1

ˆ ,
k k

st j j j j
j j

y w X xy w
 

 
   
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   

by using the following constraints 

1

,
k

TSA
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j

w x X

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k k
TSA

j j
j j

jw Sws
 

   

and the minimization of chi-square distance measure subject to the constraints will provide us 
with the following calibration weights 
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Tracy et al. (2003) calibration estimator is given as  

     2 2
1 2

1 1 1

   2  ˆ  2   .ˆ
k k k

st j j j j j j jx jxj
j j j
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Koyuncu and Kadilar (2013) proposed the calibration estimator for estimation of population 
mean as 

1

  ,
k

KK
st j j

j

y w y


  

by using following constraints 
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2.3. Proposed estimator-I 

Consider new estimator is following Tracy et al. (2003) and Eichhorn and Hayre (1983) 
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  1
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   (1) 

,j jZ S Y   where jY  is the real value of the sensitive quantitative variable and S  is the 

scrambling variables whose distribution is assumed to be known. Where j  are the weights 

minimize distance measure, 
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and satisfying the calibration constraints: 
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The sensitive variable under auxiliary variable with population mean and variance of the thj  

stratum respective as 
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Minimizing chi-square distance measure, given in (2) to used (3) and (4), the Lagrange 
function is given by 

     
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where 1  and 2  are Lagrange multipliers. Setting 0,
J

D



 we have 

  2
1 2 ,j j j j j jxW Q W x s      (5) 

value of j  putting in (3) and (4), we get 
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Solving (6) and (7), 
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2.4. Proposed estimator-II 

By following Eichhorn and Hayre (1983), Koyuncu and Kadilar (2013) and Jabeen et al. 
(2021), we may write as 
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scrambling variables whose distribution is assumed to be known. Where j  are the weights 

minimize distance measure, 
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Putting the value of j  in (15), (16) and (17), we get 

 

 

2 2

1 1 1 1

1
2 4 2 2 2

2
1 1 1 1

3

2

1 1 1

  

  .

0

x

k k k k

j j j j j j jx j j j j j j
j j j j

k k k k

j j j jx j j j j j jx j jx jx
j j j j

k k k

j j j j j jx j j
j j j

Q W x Q W x s Q W x W X x

Q W x s Q W s Q W s W S s

Q W x Q W s Q W





   

   

  

   
   

                 
    

  
 
 

   

   

  

 

Solving the system of equation, we obtain 

 31 2
1 2 1 ,  ,  .

AA A

B B B
                        (20) 

  4 2 2 2
1

1

2

1 1 1 1

     (   ) ,
k k k k k

j j j j j j j jx j j jx j j j
j j j j j

A W X x Q W Q W s Q W s W S s
    

                  
  



     








      

 

 

2 2 2
2 j j j j j j j j j j j

1 1 1 1

2 2
j j j j j j jx j j j j j j j jx

1 1 1 1

2

1

,

A W S   s   Q W  Q W x Q W x

        W X   x Q W x s  Q W Q W x Q W s

k k k k

j j j j

k k k k k

j j j j j

   

    

  



 
 




           
    

       
          

  

 
 

  


  




   

    
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 

 

2 4 4
3

1 1 1 1 1

2 2 2 2

1 1 1 1

    

         

x x

k k k k k

j j j j j jx j j j j j j j j j
j j j j j

k k k k

j j j j j j j j j jx j j j j j
j j j j

A W X x Q W s Q W s x Q W x Q W s

W S s Q W x Q W x s Q W x Q W

    

   

       
                 

    
      
   

 
 

 

 

 
 



    

    2

1

,
k

jx
j

s


 
  


 






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1 1 1 1 1

2

2 2 2

1 1 1

2

1
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2

  

       

       2

x

k k k k k

j j j j j j j j j j j j j jx
j j j j j

k k k k

j j j j j jx j j jx j j j
j j j j

k

j j j
j

B Q W Q W s Q W x Q W x Q W s

Q W Q W x s Q W s Q W x

Q W x

    

   



  



  
      
     

     
      




    



 
 
 


 

 


    

   

 2 2

1 1

.
k k

j j jx j j j jx
j j

Q W s Q W x s
 

 
 






 



 
 

 

The value of 1,  2  and 3  putting in (20), we get 

            2 2
1 2

1 1 1

2 2   ,ˆ ˆ
k k k

j j j j j j j jx jxst propII propII propII
j j j

y W y s W X x W S s 
  

           (21) 
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   
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

  
  
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

   
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3. Results 

To examine the performance of the suggestion estimator we produce eight distinctive 

simulated population where *
jix  and *

hiy  values are form various distribution, as given in Tables 

1 and 2. To get different level of relationship among investigation and helping variable we apply 
few transformations given Table 3. Mean square errors and relative efficiencies are given in 
Tables 4 and 5.  Each populace comprises of three strata having 5 units. We choose n = 2, 3, 4 



Jabeen et al. 371 

units from every stratum separately along these line, respectively, we get 
5 5 5

500
2 3 4

   
   

   
 

samples. We have used 1 0.5,xy  2 0.7,xy   3 0.9.xy   We computed empirical mean square 

error and relative efficiency using following formulas: 

  
  2

1 ,

N

n

k
st

yst Y
MSE y

N

n




 
 
 





 









prop-I, prop-II,   

  
  

 prop-I
 100.

 prop-II

st

st

MSE y
PRE

MSE y
   

 
Table 1 Parameters and distribution of study, auxiliary and scrambler variables 

No
. 

Parameters and distribution 
of study variable 

Parameters and distribution 
of auxiliary variable 

Parameters and 
distribution 

of Scrambler variable 
1    

*
jiy* *1.5 1

ji ji

1
y y exp

Γ 1.5
f      

*
jix* *0.3 1

ji ji

1
x y exp

Γ 0.3
f    

*
jis

* 2
ji

1
s exp

2Π
f



  

2    
*
jiy* *0.3 1

ji ji

1
y y exp

Γ 0.3
f    

*2
jix

* 2
ji

1
x exp

2Π
f



   
*
jis

* 2
ji

1
s exp

2Π
f



  

3 
 

*
jiy

* 2
ji

1
y exp

2Π
f



     
*
jix* *0.3 1

ji ji

1
x y exp

Γ 0.3
f    

*2
jis

* 2
ji

1
s exp

2Π
f



  

4 
 

*2
jiy

* 2
ji

1
y exp

2Π
f



   
*
jix

* 2
ji

1
x exp

2Π
f



   
*2
jis

* 2
ji

1
s exp

2Π
f



  

 
Table 2 Parameters and distribution of study, auxiliary and scrambler variables 

No. 
Parameters and 

distribution 
of study variable 

Parameters and distribution 
of auxiliary variable 

Parameters and 
distribution 

of Scrambler variable 
1    

*
jy* *1.5 1

ji ji

1
y exp

Γ 1.5
f y     

*
jix* *0.3 1

ji ji

1
x y exp

Γ 0.3
f     

*
jis* *0.5 1

ji ji

1
s s exp

Γ 0.5
f 

2    
*
jy* *0.3 1

ji ji

1
y exp

Γ 0.3
f y   

*2
jix

* 2
ji

1
x exp

2Π
f



     
*
jis* *0.5 1

ji ji

1
s s exp

Γ 0.5
f 

3 
 

*
jiy

* 2
ji

1
exp

2Π
f y



     
*
jix* *0.3 1

ji ji

1
x y exp

Γ 0.3
f     

*
jis* *1.5 1

ji ji

1
s s exp

Γ 1.5
f 

4 
 

*2
jiy

* 2
ji

1
exp

2Π
f y



   
*
jix

* 2
ji

1
x exp

2Π
f



     
*
jis* *1.5 1

ji ji

1
s s exp

Γ 1.5
f 
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Table 3 Properties of thj  stratum 

Strata Study 
variable 

Scrambler variable Auxiliary variable 

1. Stratum *
1i 1i50y y   *

1i 1i50s s    2 * *1x
1i xy1 1i xy1 1i

1y

s
x 1 ρ x ρ y

s
50    

2. Stratum *
2i 2i150y y   *

2i 2i150 s s    2 * *2x
2i xy2 2i xy2 2i

2y

s
x 1 ρ x ρ

s
100 y     

3. Stratum *
3i 3i100y y   *

3i 3i100s s    2 * *3x
3i xy3 3i xy3 3i

3y

s
x 1 ρ x ρ

s
300 y     

 
Table 4 Mean Square Error for Proposed estimator I and II 

 Population 
No. 

No. Proposed estimator I 
MSE y̅st(propI) 

No. Proposed estimator 
II MSE y̅st(propII) 

Using Normal 
Distribution 

1 253952085 180068134 
2 711627033 675652741 

3 57244142 51072864 

4 630224426 595668390 

Using Gamma 
Distribution 

5 130347682 127762234 
6 4949554 4067087 

7 54572441 48257210 

8 791389114 725066450 

 
Table 5 Relative efficiency for the proposed estimator I and II 

 Population No. PRE 

Normal distribution 1 141.03 
2 105.32 

3 112.05 

4 105.80 

Gamma distribution 5 102.07 
6 121.67 

7 113.00 

8 109.17 

 
4. Discussion 

We produce eight distinctive simulated populations as given in Table 1, Table 2 and Table 3. 
The mean square errors are presented in Table 4 and their percentage relative efficiency is given 
in Table 5. We have compared both proposed estimators under randomized response technique. 
From Table 5, we see that proposed estimator-II is more efficient than proposed estimator-I. 
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5. Conclusion 
We have proposed two calibration estimators using Tracy et al. (2003), Eichhorn and Hayre 

(1983) and Jabeen et al. (2021). We have used different calibration contraints and same distance 
measures in order to compare their efficiency.  We conclude that estimator II performs better than 

estimator I as it utilize an extra calibration constraint  
1 1

k k

j j
j j

W
 

    which helps to increae the  

efficiency of the calibration estimator. 
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