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Abstract

The Kumaraswamy Marshall-Olkin inverted Topp-Leone (KMOITL) distribution is a new four-
parameter generalized version of the inverted Topp-Leone (ITL) distribution proposed in this research.
The Marshall-Olkin ITL distribution is a novel model, while the Kumaraswamy ITL and ITL
distributions are existing sub-models in the proposed distribution. Different shapes of the density and
hazard rate functions are provided by the KMOITL distribution, which has three shape parameters and
one scale parameter. The KMOITL’s density function can be written as a linear combination of the
inverted Topp-Leone density. We construct several statistical expressions for the proposed KMOITL
model. The KMOITL distribution parameters are estimated using maximum likelihood and Bayesian
estimation techniques. In light of symmetric and asymmetric loss functions, Bayesian estimators are
explored. The performance of the suggested estimating techniques is evaluated using simulation
results. Finally, the suggested model is tested based on physical real data, with the findings
demonstrating the KMOITL distribution’s higher performance over some other models.

Keywords: Inverted Topp-Leone distribution, maximum likelihood, Bayesian method, stress strength model,
entropy measures

1. Introduction

Various researchers have lately focused their efforts on the development of new families of
continuous distributions by extending current continuous distributions. These new families offer a
broader range of applications in modelling data in a variety of fields, including engineering,
economics, biological research, and environmental sciences, to name a few. The following are the key
goals of generalizing this new families of distributions: construct customized models with diverse
forms of hazard rate function; accomplish skewness for symmetrical models; build heavy-tailed
distributions that may be used in a variety of real-world data sets; achieve a more flexible kurtosis
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than the baseline distribution; create skewed, symmetric, J-shaped, or reversed-J-shaped distributions
that match better than other generalized distributions with the same parameters as the underpinning
model.

Marshall and Olkin (1997) presented a transformation of the baseline cumulative distribution
function (cdf) into a family of distributions by introducing a new parameter

Fro(@)=G(z:8)[1-9(G=z0)] . )
where ¢ is the scale parameter and G(z; g“) is the baseline cdf. Cordeiro and de Castro (2011) defined
the Kumaraswamy-G (K-G) class with the cdf given by:

F(2)=1-[1-G(z&) ] @
where ¢ and d are two shape parameters. The K-G distribution provided in (2) (for ¢ and d positive
integers) has the following physical explanation. Consider a system made up of d separate
components, each of which is composed of ¢ independent subcomponents. Assume that if any of the
d components fails, the system fails, and that each component fails if all of the ¢ subcomponents fail.
Let Z,,,....,Z,, indicate the subcomponent lives inside the j™ component, j=1,....d withacommon
cdf G(z). For j=1,....d, let Z, indicate the lifetime of the j‘h component, and Z denote the lifetime
of the entire system. Then cdf of Z is:

P(Z<2)=1-P(Z,>2,Z,>z,..Z,>2)=1-P(Z, >2)' =1-[1-P(Z, < 2)]
=1-(1-P(Z,<z2,Z,<z2,..,Z, <2)] =1-[1-P(Z, < z)]
=1-(1-G“(2))".

Hence, the K-G distribution deduced from (2) is the time to failure distribution of the complete

system. Alizadeh et al. (2015) suggested extending the MO family for a given baseline distribution
cdf by putting (1) in (2) and defining the Kumaraswamy Marshall-Olkin-G (KMO-G) cdf and density

function as follows:
. e 11
Fao(ze.d.p.8) =1 {1 [Hﬁé(z;f)H’ 3)

fKMO(Z; C,d,(p, 5) =

cdpg(z;8)(G(z:8)) {1{ G(z¢) H (4)

(1-9G(z &))" 1-9G(z:¢)

The cdf (3) encompasses a broader range of continuous distributions. According to Alizadeh et
al. (2015), it encompasses the K-G family, proportional and inverted hazard rate models, and the
MO-G and other sub-models. The density function of KMO-G is symmetrical, left-skewed, right-
skewed and reversed-J shaped, and has constant, increasing, decreasing, upside-down bathtub, bathtub
and S-shaped hazard rates.

Many notable inverted distributions have recently been proposed to model varied data in many
areas. Some of the important inverted distributions are the inverse Weibull (Keller and Kamath 1982),
inverse Lindley (Sharma et al. 2015), inverted Kumaraswamy (Abd AL-Fattah et al. 2017), inverse
power Lindley (Barco et al. 2017), inverted Nadarajah-Haghighi (Tahir et al., 2018), inverse power
Lomax (Hassan and Abd-Allah 2019), inverted exponentiated Lomax (Hassan and Mohamed 2019),

inverted modified Lindley (Chesneau et al. 2020), inverted Topp-Leone (Hassan et al. 2020), inverse
xgamma (Yadav et al. 2021), inverse power Maxwell (Al-Kzzaz and Abd El-Monsef 2022), inverse



432 Thailand Statistician, 2024; 22(2): 430-457

power Cauchy (Sapkota and Kumar 2023) and inverse power Ramos-Louzada (Al Mutairi et al. 2023)
distributions.
The inverted Topp-Leone (ITL) distribution with shape parameter y >0, has the following cdf

and probability density function (pdf):

(1422
G(z;y)=1-<———+; z20,y>0, 5
&0 {(l+z)27} e ©
and
g(z;p)=2yz A+2)7 ' (1+2z)" ; z, y > 0. (6)

Different structural properties of the ITL distribution were pioneered by Hassan et al. (2020).
Many researchers consider extensions and generalizations of the ITL distribution to improve flexibility
in modelling a wide range of data. Abushal et al. (2021) proposed a power ITL distribution with an
extra shape parameter. Ibrahim et al. (2021) proposed a new type of ITL distribution with an additional
parameter called “alpha power ITL distribution”. With application to COVID-19, Hassan et al. (2021)
developed a three-parameter ITL distribution based on the K-G family. The two-parameter half-
logistic ITL distribution was introduced by Bantan et al. (2021), and parameter estimators based on
ranked set samples were explored. Almetwally (2021) introduced another two-parameter ITL
distribution using the odd Weibull-G family. Almetwally et al. (2021) introduced the modified Kies
ITL distribution and discussed parameter estimators using different estimation methods. The truncated
Cauchy power-ITL distribution was presented and its estimators were explored by Mohamed et al.
(2023) under the hybrid censoring scheme. The truncated-ITL distribution was established by
Elgarhy et al. (2023) and its parameter was investigated under progressive censoring.

The current article’s contribution can be summarized as follows:

(i) We introduce a new generalization of the ITL distribution based on KMO-G family, called
Kumaraswamy Marshall-Olkin inverted Topp-Leone (KMOITL) distribution.

(i1)) We provide some new models as well as some existing models as seen in Section 2.

(iii)) We discuss several statistical properties as provided in Section 3.

(iv) We investigate the Bayesian and non-Bayesian estimation of the KMOITL model parameters
using symmetric (squared error loss function (SELF)) as well as asymmetric loss function (linear
exponential (LINEX) and entropy loss (ELS).

(v) We apply this model to actual engineering datasets according to the physical explanation of
one sub-model (Kumaraswamy ITL) of the proposed distribution.

The following is the article's content: The description of the KMOITL distribution is found in
Section 2. The major statistical features of this model are discussed in Section 3. The study of
maximum likelihood (ML) and Bayesian estimation techniques is explored in Section 4. Section 5
contains simulation studies that are used to ensure the consistency of estimates. In Section 6, we use
two real data sets to demonstrate the potential of the new distribution. Finally, in Section 7, some
closing results were observed.

2. Description of the Model
The cdf of the KMOITL distribution with set of parameters ¥ = (c,d, ¢, ) is obtained by setting
(5) in (3) as follows:
d
1- E‘(Za 7/)

F(z;¥)=1-41- — ., z6d,y,9>0, 7
(z:¥) L_(p[z(z,y)]} z,¢,d, 7, ™
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(1+2z)
(1+2)*
some special distributions can be summarized as follows:

1) For ¢ =0, then (7) reduces to Kumaraswamy ITL (KITL) distribution (see Hassen et al. 2021).

2) For ¢ = d =1, then (7) yields the Marshall- Olkin ITL (MOITL) distribution (new).

3)For ¢ = d =1and ¢ =0, then (7) reduces to ITL distribution (Hassen et al. 2020).

4) For ¢ =1 and ¢ =0, we have an ITL distribution with parameter d,y.

where E(z,y) = { }, ¢,d,y are shape parameters and ¢ is the scale parameter. Based on (7),

5)For d =1and ¢ =0, yields exponentiated ITL distribution with parameters d and y, (new).
The pdf of KMOITL distribution is obtained by inserting (5) and (6) in (4) as follows

N d-l
2ed@yz (1+2) 7 (1+22) " (1-2(z, 7)) _= ‘
F¥) = cdpyz (1+2)7 (1+2z2) c+(1 (z,7)) 1_[ 1 H(z,;/) } 2s0. (@)
(1-9ZE(z,7)) 1-¢[E(z,7)]
where ¢,d,y,® >0, and ¥ =(@,c,d,y)is the set of parameters. A random variable with pdf (8) is

represented as Z ~ (¢,d, @, 7). The hazard rate function (hrf) of the KMOITL distribution is given
by
-1

h(z;¥) =

2ed@yz 1+2) 7 (1+2z) 7 (1-E(z, 7))071 1 1-E(z,y) }c
(1-gE(z,7))" 1-9p[E(z,7)]

The graphs of the KMOITL density for various parameter values are shown in Figure 1. The
versatility and modality of the new distribution are seen in these graphs. We see in Figure 1 that the
KMOITL density is uni-modal or less-bell shaped. It is right-skewed for set of parameters
(0.85,2,0.5,3). Note that the red and purple curves have a reversed J-shaped form, corresponding to

the pdf defined with same values of ¢ and d. The hrf of Z can be in the shape of a decreasing, up-side
down, unimodal, J-shaped or reversed J-shaped, as seen in Figure 2.

20
!
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f(x)
1.0
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Figure 1 Plots of the KMOITL density function with various values of parameters
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Figure 2 Plots of the KMOITL hazard function with various values of parameters

3. Statistical Properties

In this section, several features of the KMOITL distribution are investigated. To be more specific,
we investigate the linear representation of the density function, quantile function, moments,
incomplete moments, some entropy measures, stochastic ordering, and stress-strength reliability.

3.1. Linear representation
For the KMOITL density, we give an appropriate linear representation. Using the following
binomial expansion

[ 1-BEp | H: o fd-N -2y |
{1 L—w[E(w)]” % 1)( J ]L—w[E(z’V)J ’ v

in pdf (8), as follows:

= (d=1)2cdPyz 1+2) 7 1+22) " (1-E(z,p)) """
f(z;‘P)=Z(—1)’( .]C R (10)
J=0 (1_(PE(Z’7))
Using the following binomial expansion:
_ e+ = (@) T(c(j+D)+1+0) _ ,
(1-p2Gp) " =3 Sz, (1)

= T(c(+D+1)0!
in (10) and again using the binomial expansion yields;

ot m C(c(j+1)+1)¢! (14 z)?7Frmel
Hence, the pdf of the KMOITL distribution can be written as:
J[(z¥)= 3 A, gzy(+m+]), (12)
Jj,l,m=0

here A = (—1)/*" d=1\(c(j+D) -1\ cd(@)p'T(c(j+1)+1+1)
whnere Julom T . m F(C(j+1)+1)f'(f+m+l)’
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and g(z;y(£+m+1)) is the pdf of the ITL distribution.

Furthermore, the linear representation of the KMOITL cdf is obtained using the same expansions
in (9) and (11) as follows:

oA @) )T (ci+u) [1=E( )] [1+22]"
F(Z,T)—l Z[ ] F(ci+l)u! [1+Z]2}/u .

i,u=0 l
Again, we use binomial expansion in the previous equation gives:

F(z;¥P)=1- i N, . G(zy(u+v), (13)

iu,v=0

d\(ci\(p)' (1) T (ci+u) . o
where N, =| . and G(z;y(u+v)) is the cdf of the ITL distribution.
” i)\ v I(ci+1)u!

3.2. Quantile function
The quantile function (qf) of a continuous distribution is used in a variety of applications,
including Bowley’s skewness and Moor’s kurtosis. The qf of the KMOITL distribution is obtained by
inverting the cdf (7) as follows:
. -y
1=y} -1

p{l-(1-u)}" -1

In particular, the KMOITL median of Z is Q(0.5). Based on quantile measures, the effects of
shape parameters on skewness (SK) and kurtosis (KR) may be examined. The Bowley skewness and
Moors kurtosis are calculated using the following formula:

5 Q(3/4)-20(12)+0(14) ~ 0(7/8)-0(5/8)+0(3/8)-0(18)
o(3/4)-0(14) 0(6/8)-0(2/8)

z=Qu)=-L-LJL-1, L=1-

3.3. Moments measures

The k™ non-central moment of the KMOITL distribution is covered. These moments may be
used to derive information about the model's other features, such as spread, skewness, and kurtosis.
The desired moments are determined by

w= > A Mmjzy(f +m+ 1)z (L 22) D (L ) D gy

J.t,m=0 0
= > D, Blktqg+2y(l+m+1)~k), (14)
J.t,m,qg=0
y(l+m+1)-1 . .
where D, =2A,, y({+m+]) , and B(--) is the beta function. Based on (14),
Jm, 7 q

some moments values for KMOITL distribution, such as mean (z4), variance (67), SK and KR for

some selected parameter values are listed in Table 1. It can be noticed from Table 1 that the distribution
is skewed to the right, as shown by the skewnees values. According to kurtosis values, the distribution
is also Leptokurtic.
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Tablel Some moments values of the KMOITL distribution

(¢,]/,C,d) ,U{ 0'2 SK KR
(0.6,3,0.5,2) 0.197 0.058 4.418 56.138
(0.85,1.2,10,10) 1.199 0.196 1.311 6.605
(0.85,2,2,5) 0.277 0.021 1.724 9.875
(0.5,2.5,3,2) 1.179 0.729 3.666 49.335
(0.6, 0.7,5,8) 2.815 3.040 2.879 27.024
(0.3,3.5,2,3) 0.612 0.122 1.713 9.058

The k™ incomplete moment of Z can be obtained from (12) as

=3 A, j 2p(C +m+ D (L4 22y 70 (L4 2) 2l g
J.t,m=0

= 3 DBk ge 2y ma - ki),

Jtm,q=0

where D, =2A,,,7(l+m+1) , and B(,-t) is the incomplete beta

J.l.m,q

(}/(€+m+1)—1]
q

function. The Bonferroni and Lorenz curves, as well as the mean residual life and mean waiting time,
are all notable uses of the first incomplete moment.

3.4. Entropy measures

The entropy of a random variable with a probability density (8) is a measure of the uncertainty's
fluctuation. A high entropy number suggests that the data is more unpredictable. The Rényi (RE) entropy,
presented by Rényi (1960), is defined by

AP =(1-9)" log[j(f(z))gdz], 9#1, 9>0.
0
. . . . . 9 .
To obtain A(:¥) of the KMOITL distribution, we must first obtain ( f (z;‘I—’)) by using the same

expansions as given in (9) and (11), then
i 1y (B(d - 1)] (ed@y)’ o'T(c+ D+ +0)z* (1+2) 7D y
= j 0T ($(c+D)+¢)
(1+22)"" D (1-E(z,7))“ """ (E(z.p))".
Using the binomial expansion in the previous equation leads to
(f(z¥))" =H,,,2°(1+22) 900 (L4 z) 2 m=9@reD),
Z (1) (S(d l)][f)(c -+ cj] (2cd@y)’ @'T(H(c+)+¢j+1) .
Lo 0T (He+D+¢)
The Rényi entropy of the KMOITL distribution is obtained as follows:
AP =(01-9)log[ <, B(n+I+Ly(l+m+I)+9-1)],

< (y(lL+m)+3(y—1)
I/mn Z( n j]{j,/{,m'

n=0

(f@¥) =

m

The Arimoto entropy (AO) measure (see Arimoto 1971) is defined by



Amal Soliman Hassan and Ehab Mohamed Almetwally 437

1-8

o(9) :i[(j:(f(z)f dz); —1}, %1, 9>0.

Hence, the AO of the KMOITL distribution is given by
9 1
60(9) = m|:(;m’an(n + 9+ 1,]/(/ +m+ vg) + 3—1))‘9 — 1:|
The Tsallis (TS) entropy measure (see Tsallis, 1988) is defined by
1 o 9
,7(19):_19_1[1{0 (f(2) dz}, 9#1, 9>0.
Hence, the TS entropy of MOKITL distribution is obtained as follows:

n(9) :ﬁ[l—gj,[,m,nB(n+l9+1,y(£+m+9)+9—1)].

Table 2 illustrates the numerical entropy measures for some of the recommended parameter values.
We conclude from Table 2 that the values of all entropy measures decrease with the increasing value
of 4.

3.5. Stochastic ordering

Stochastic ordering is an extensively researched notion in probability distributions and is an
essential tool in reliability theory and other domains to examine comparative behaviour across random
variables. Assume that Z, has the KMOITL distribution with a set of the parameters V', i =1, and 2.

Let’s F(z,¥,) indicate Z s cdf and f,(z,¥,) signify Z s pdf. If f(z,¥))/f,(z,'¥,) is a

decreasing function for all values of z, then Z, is said to be stochastically smaller than Z> (denoted by
Z, <, Z,), interms of likelihood ratio order.

Table 2 Entropy values for the KMOITL model

9 (¢,7,c,d) TS RE AO
0.5 (0.6,3,0.5,2) 11.525 3.823 44.733
(0.85,1.2,10,10) 0.948 0.776 1.173

(0.85,2,5,2) 1.777 1.271 2.566

(0.5,2.5,3,2) 0.243 0.229 0.257

(0.6,0.7,5,8) 3.714 2.099 7.161

(0.5,0.5,3,3) 19.418 4.742 113.679

1.5 (0.6,3,2,0.5) 1.096 1.589 1.234
(0.85,1.2,10,10) 0.341 0.374 0.352

(0.85,2,5,2) 0.435 0.49 0.452

(0.5,2.5,3,2) 0.602 0.716 0.637

(0.6,0.7,5,8) 1.067 1.525 1.195

(0.5,0.5,3,3) 1.463 2.632 1.752

Let Zi~KMOITL (¥,), ¥, =(¢.d,,7,,¢,) and Zo~ KMOITL(¥,), ¥, =(c,.d,,7,,9,), then

the likelihood ratio ordering is as follows:
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Sz adye (427 (1422 (1-E(2,0))" (1= 0,E(z, ) 2,4
L) edyy,e, (12 1+ 227 (1-E(2,7,)) (1-9E(z,7,))" " 21,5

= 1{ 1=2.7) } - 1{ 1-2(.7,) }
1_(P1[‘:‘(Z;71)] 1_(ﬂ2[':‘(2,7/2)]

which leads to

d JA@EY)]_20m-1) 20n=r) | (=D (G +Dg |dE(z7)
—log = + - =
dz f,(z;¥,) 1+z 1+2z ( ._4(2 7 ) (1—(01.:,(2,7/1)) dz
_{ (,-) (g +Dg, }d._,(z ), (d =) d%, (1) d,
( —E(Z,}fz)) ( —,E(z, 7/2 A dz A, dz ’
dE(zy) _2pp0+22y ™ L a2 | a[I-EEn)] T (1-p) |dEGEy) |,
dz A+2) 7 7T dz [1-pZEz )] dz ’

Y,
For ¢ <c,,d <d, <y, <y,,¢,<@,, we get lg{f(z )}<0, for all z>0, hence
dz fH(z3Y,)

p 1 L{E 1)} is decreasing in z and hence Z, <, Z,. Moreover, Z, is said to be smaller than
'z Sz

Z, in other different orderings as stochastic order (denoted by Z, <, Z, ), hazard rate order (denoted

by Z, <, Z,),and reversed hazard rate order (denoted by Z, <, = Z,).

3.6. Stress Strength Reliability
In reliability studies, the stress-strength (S-S) model is frequently employed. Strength failure,
structures, degradation of rocket motors, and static fatigue of ceramic components are just some of the

applications of the S-S model in physics and engineering. In the S-S model, reliability R = P (Z1 < Zz)

refers to the component's capacity to withstand random stress Z, when it possesses strength Z,. If the
applied stress exceeds the component's strength, it will fail. Let Z; and Z», be two independent random

variables with distributions of KMOITL (¢,,d,,7,,9) and KMOITL (c,,d,,7,,¢) ). The KMOITL
distribution’s S-S reliability is then calculated using the same expansions in (12) and (13) as follows:

— (142z)ntmn [1 + 22]y2
R=1-4N ,[22 27, (CtmtD) 1 27, (v
0 (1 + Z) [1 + Z]

0 7 (L+m+1)+y, (u+v)-1
:1—A*N*IZZ{ (1+22) }dZ

: (1 +Z)2y1(€+m+l)+2;/2(u+v)+l

(u+v)

B AN
n(C+m+)+y,(u+v)

where

- 3 |

Jsl,m=0

a(j+1)—-1)\2¢d @y, I’ (cl(j+l)+1+€)((p)f and
I(q(j+D)+1)0!

m
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.G (A ((p)"(—l)”vl"(czi+u)
N _»Z[i](v] F(c2i+l)u! ’

iu,v=0

4. Parameter Estimation of the KMOITL Model

The parameters estimators of the KMOITL distribution based on ML and Bayesian methods are
discussed in this section. The approximate confidence intervals (Cls) and Bayesian credible intervals
are given.

4.1. ML estimators
Asume z,...,z, be the obsrved values from the KMOITL distribution with parameters

>“n

Y = (@,c,d,y). The likelihood function, say L(g | ‘P) of the KMOITL distribution, is expressed as

n 1+2zy" (1-E(z, -
L(z|¥)=(2edpr) T ]z, ((112)2)7“ (( ¢£((Zz. yy))))”l

@(z,,7)= %(Z”y))] Then the log likelihood function, say /(¥'), of the KMOITL distribution
—@|=z,)

is given as

0(¥)=n[In(2cd)+In(1-p)+In(y ]+Zln )+ (- l)Zln(l+22) (27/+1)Zln(l+z)

(i-[eG.n]] (1)

+(c—l)iln(l—E(zi,y))—(c+I)ZIH( pE(z,7))+(d - lZln{ [0z 1) }.

where ¢(z,,7)= {%((ZZ’?)J Therefore, the ML equations are given by
ag(\P):_—n+(c+l)i E(Zi’}/) _ N (d—I)C(E(Zi,}/))(l—E(Zl.,j/))(go(zi,}/))kl
8¢ 1_(0 i=l 1—(05(21.,}/) i=1 [1_[80(21"7)]6][1_WE(Zf’y)]z
af(‘lj):LZ":ln(l—E(zi,y))—z ( (D._(Z,,}/) d 1 Z[SO(Z,’}/) ln[go(zl,y)]’

oc [C—— i= i=l 1- [50(2,57)]

a—:—JrZIn{ go(z,,)/)]}
and
oY) _n & (c-1) 0E(z,7) 2, (c+l)p E(z,7)
5 =, 2 Z "Gy o +Zln(1+2z) 221n(1+z)+z C2G.) o
&e(d-D[pE.N]" op(z,.7)
i=1 _[KO(ZW}/)] oy
where

0p(z,,7) _ 0=(z,,7) p-1 GE(zi,y) (1+2z,) [In(1+2z,) - In(1+z )]
oy oy ( —(pE(Z,.,}/))Z T oy (1+2z,)*
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Solving the non-linear equations 6[(‘1—’)/6¢) = 0,(%(‘1-’)/86 =0, (%(‘P)/@d =0, and
tel4 (‘P)/@;/:O numerically using optimization algorisms, we determine the ML estimators of

Y =(p.c.d,y).
Furthermore, it is known that under regularity conditions, the asymptotic distribution of ML
estimators of a set of parameters ¥ =(¢,c,d,y) is given by:

(@=)(E=0),(d=d),(7~7) ~ NO.I(p,c.d.7)),
where 7' (p,c,d,y) isthe variance covariance matrix of set of parameters ¥ = (¢,c,d, 7). Therefore,

the two-sided approximate & 100 percent CIs for ML estimates of ¥ can be obtained as follows:

L, =‘i—’—z§/2wlvar(‘i—’) , Uy =‘i’+zg/2wlvar(‘i—’), Y =(p,c,d,y),

where z_, is the 100(1 —g)%‘h standard normal percentile and var(.) denotes the diagonal elements

of the variance covariance matrix corresponding to the model parameters.

4.2. Bayesian estimators
Here, we get the Bayesian estimator of the KMOITL parameters. The Bayesian estimator is
regarded under SELF, LINEX, and ELF, which are defined, respectively, by:
L9, ¥)=(¥-¥),

LOP, W)= 5P -W)-1, 520, ¥, = _Elm E, (e*” )

L(‘i’,‘{l) = (%j —0ln (gj—l, o+ 0, ‘PE = |:Eq‘ (\P,(g ):|*1/¢5 ’

where O is reflects the direction and degree of asymmetry. Assuming that the prior distribution of
¥ denoted by 7 (@), 7(y), 7(c), #(d) has an independent gamma distribution. The gamma prior was
elected because the inverted Topp-Leone, Marshall-Olkin-G, and Kumaraswamy-G distributions all
employ a gamma distribution as a prior, and indeed we can recognize the normalized posterior
distribution as the kernel of the gamma distribution. The gamma distribution can be a standard choice
for non-negative continuous data i.e. 0—oo because that is the domain of the gamma distribution. It
may thus often be used as a prior for the precision of a KMOITL distribution.

The joint gamma prior density of @,c,d and y can be written as:

ﬂ(‘lf) oc o _le"wc"z'le"’z"d"“le*b‘d}/%_le"’”;a‘l.,b‘,. >0, j=12,3,4. (16)

To elicit the hyper-parameters of the informative priors, the ML estimator for ¢,c,d and y is
obtained by equating the estimates and their variances by the inverse of the Fisher information matrix
of ¢, ¢, d and 7. For more information, see Dey et al. (2016).

From (15) and the joint prior density (16), the joint posterior of the KMOITL distribution with
parameters @,c,d and y is

7(¥|z) e 7 (W) L(z|P).

Then the joint posterior can be written as
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ﬂ'(\l"| )OC ¢n¢al ~bo n+az7leszcdn+a37lefb3dyn+a47167/74;/

a+2zy" (1-E(z,7)"" 1_ Ly
H(1+z)2y+1 1-p=(z, ))c+1{ [80(21’77)]}

To obtain the Bayesian estimators, we can use the Markov Chain Monte Carlo (MCMC) approach.
A useful sub-class of the MCMC techniques is Gibbs sampling and the more general Metropolis within
Gibbs samplers. The Metropolis-Hastings (MH) algorithm and Gibbs sampling are two of the most
common MCMC methods. We use the MH within Gibbs sampling steps to generate random samples

from conditional posterior densities of (‘I’) as follows:

_E(Ziay))ﬁl
( _CDE(ZI"]/))CH

 1-EG7) (-[eG.nT]

7[((0|c,d,}/, )oc(ﬂn(ﬂa‘ - 71WH {1—[50(2,.,7)]6}%1,

7(clpd..z)oe e (1-02(z,,7))"

—d| b, +iln 17[ 0(2;,7 )](‘
ﬂ(d|¢7aca775)0€d"+a3_le [ = { f ' }J:
ot o (1422 ) (1=2(z, 7)) !
s 9d5 s b47 1_ i
w(rlpedz)or eV T Eme e U LB
The Bayesian estimators are obtained via SELF, LINEX, and ELF. The 95% two-sided highest

posterior density (HPD) credible interval for the unknown parameters [Wg,sy.v» Woorsyay | OF any

function of them is given by using the method proposed by Chen and Shao (1999), where N is a length
of MCMC result.

5. Performance Analysis by Monte-Carlo Simulation

A Monte-Carlo simulation experiment is carried out to analyze the performance of point estimates
in terms of mean squared errors (MSE), as well as the performance of interval estimates in terms of
accuracy and confidence interval length (L.CI). With various parameter values and sample sizes in
mind, the simulation study is carried out. This section is broken into two sub-sections, the first of
which is a simulation study, and the second in which the findings of the simulation are outlined as
follows.

5.1. Simulation study

First, we select the true values of parameters for a KMOITL distribution as:

9=0.5¢=0.7,d =0.8 and y is changed from 1.2 to 3 in Table 3.

@=0.5,d=2,y=3 and c is changed from 0.7 to 2 in Table 4.

9»=0.85c=2,y=3 and d is changed from 0.8 to 2 in Table 5.

Altogether, nine sets of simulations of the KMOITL data with different sample sizes as n = 30,
75, and 150 are generated. To avoid the starting bias, 5,000 points are generated for each sample
simulation. The generated data of KMOITL distribution are obtained by using quantile function in
Subsection 3.2. The simulated data are fitted into the KMOITL model. The estimates of ML and

Bayesian methods based on the different loss functions are obtained by using the Newton-Raphson
algorithm of numerical analysis and the Metropolis-Hastings algorithm, respectively. The iterative
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algorithms have been used to obtain N = 5,000 estimates for each parameter when the first initial is
the actual parameter. In the confidence interval, we used the 5% level of significant. This simulation
study was implemented via R packages.

5.2. Simulation results

For each estimated item parameter, the MSE and L.CI were calculated. Two summary measures
of item parameter recovery are considered. MSE values near to zero indicate situations with best-
unbiased estimator item parameter estimates. Tables 3-5 show the results of different strategies for
estimating point and interval parameters. The results are shown in Tables 3-5, which include some
intriguing data.

[ The estimates get more accurate as the sample size grows larger, suggesting that they are
asymptotically unbiased.

[J In all cases, the MSE reduces as the sample size grows, suggesting that the various estimates
are consistent.

[J When comparing the various estimates, we can observe that in the majority of cases, the Bayes
estimates have the lowest MSE.

[1 ELF, LINEX, SELF are good alternative losses in Bayesian estimation compared to the ML
estimate (MLE).

[ The Bayesian estimates via LINEX possess the best performance measures compared to other
losses.

0 As n grows larger, the L-CI for estimates decreases, suggesting that the CI is the shortest.
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Table 3 ML and Bayesian estimation methods based on different loss function with different values

of ¥
9=05,¢=0.7,d=0.8

y ; MLE SELF LINEX (6 =-1.5)

MSE L.CI MSE L.CI MSE L.CI
» 1.2586 4.1337  0.0271 0.5939 0.0253 0.5856
c 0.2990 1.9238  0.0240  0.6018 0.0258 0.6114
30 d 0.2127 1.7823  0.0309  0.6543 0.0335 0.6638
I 0.7085 2.9585  0.0564  0.9295 0.0580 0.9578
» 0.3276 2.1915  0.0175  0.5000 0.0166 0.4864
c 0.0838 1.0502  0.0112  0.3917 0.0115 0.3949
1.2 75 d 0.1357 1.4256  0.0153  0.4597 0.0157 0.4728
4 0.4788 2.5774  0.0261 0.6068 0.0270 0.6125
» 0.0855 1.1442  0.0080  0.3412 0.0079 0.3356
c 0.0246 0.5839  0.0047  0.2606 0.0048 0.2613
150 d 0.0797 1.1008  0.0061 0.2984 0.0062 0.2999
v 0.2528 1.9257  0.0102  0.3918 0.0101 0.3894
» 1.5428 4.5247  0.0308  0.6160 0.0286 0.6090
c 0.2792 1.8737  0.0266  0.6107 0.0300 0.6159
30 d 0.3000 2.0012  0.0296  0.6551 0.0319 0.6764
I 0.5794 2.8945  0.0658  0.9568 0.0657 0.9504
» 0.3341 2.1983  0.0173  0.4931 0.0165 0.4852
c 0.0611 0.9058  0.0114  0.4001 0.0119 0.4073
3 75 d 0.0864 1.1220  0.0140  0.4593 0.0148 0.4605
4 0.3472 2.2896  0.0328  0.7052 0.0331 0.7124
? 0.1187 1.3171 0.0088  0.3542 0.0085 0.3500
c 0.0187 0.5225  0.0042  0.2530 0.0043 0.2548

150 d 0.0374 0.7420  0.0061 0.2888 0.0061 0.2891
I 0.2457 1.9359  0.0115  0.4151 0.0116 0.4172
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Table 3 (Continued)

0=05,=07,d=08

) ] LINEX (5 =1.5) ELF (5=-1.5) ELF (§=1.5)
MSE L.CI MSE L.CI MSE L.CI
0 0.0292 0.5977 0.0238  0.5644  0.0694  0.6820
c 0.0227 0.5909 0.0241 05973  0.0252  0.6150
30 d 0.0291 0.6351 0.0312  0.6520  0.0312  0.6567
y 0.0560 0.9142 0.0556  0.9268  0.0625  0.9719
0 0.0186 0.5096 0.0159 04723 0.0340  0.6559
c 0.0109 0.3853 0.0111 03895  0.0122  0.3935
1.2 75 d 0.0149 0.4514 0.0153  0.4652  0.0155  0.4575
y 0.0256 0.6087 0.0261  0.6029  0.0266  0.6260
0 0.0082 0.3443 0.0078 03333 0.0103  0.3665
¢ 0.0047 0.2588 0.0047 02601  0.0052  0.2592
150 d 0.0061 0.2969 0.0061 02983  0.0062  0.3009
y 0.0103 0.3904 0.0101 03902  0.0105  0.3950
0 0.0334 0.6186 0.0267  0.5810  0.0758  0.6786
¢ 0.0240 0.5979 0.0270  0.5999  0.0262  0.6152
30 d 0.0279 0.6320 0.0299  0.6598  0.0298  0.6644
y 0.0675 0.9731 0.0655  0.9596  0.0677  0.9721
0 0.0183 0.5044 0.0158  0.4747  0.0319  0.6584
¢ 0.0110 0.3894 0.0114  0.4016  0.0121  0.3904
3 75 d 0.0134 0.4542 0.0141  0.4555  0.0138  0.4665
y 0.0328 0.7038 0.0327  0.7058  0.0330  0.7093
0 0.0092 0.3571 0.0083 03475  0.0124  0.4095
¢ 0.0041 0.2512 0.0042 02528  0.0042  0.2521
150 d 0.0060 0.2851 0.0061 02883  0.0061  0.2862
y 0.0115 0.4142 00115 04156 00115 04157
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Table 4 ML and Bayesian estimation methods based on different loss function with different values

of ¢

9=05d=2, y=3
. , MLE SELF LINEX (6 =-1.5)
MSE L.CI MSE L.CI MSE L.CI
» 1.1156 3.7705  0.0299  0.5749 0.0273 0.5702
c 0.0821 1.0393  0.0163  0.4340 0.0180 0.4443
30 d 1.2634 4.1623  0.0652  0.9914 0.0652 0.9861
4 0.9649 3.3794  0.0674 1.0223 0.0686 1.0077
» 0.4097 23125  0.0161 0.4681 0.0152 0.4615
c 0.0219 0.5565  0.0061 0.2579 0.0064 0.2623
1.2 75 d 0.6496 3.0060 0.0267  0.6483 0.0271 0.6482
4 0.3074 1.9233  0.0321 0.7057 0.0323 0.7089
» 0.2236 1.7285  0.0064  0.3045 0.0062 0.2997
c 0.0090 0.3657  0.0024  0.1910 0.0024 0.1931
150 d 0.3476 22165  0.0100  0.3824 0.0100 0.3825
I 0.1623 1.4370  0.0105  0.4034 0.0106 0.4046
» 1.5509 4.5062  0.0230  0.5153 0.0206 0.5058
c 1.1329 39114  0.0595  0.9100 0.0582 0.9044
30 d 0.9995 3.5797  0.0650  0.9950 0.0668 1.0018
I 0.5480 2.6594  0.0658 1.0093 0.0671 0.9896
» 0.5374 2.7378  0.0107  0.3736 0.0100 0.3652
c 0.5286 2.7434  0.0241 0.5819 0.0243 0.5944
3 75 d 0.4392 24704  0.0273  0.6267 0.0273 0.6251
4 0.2066 1.7057  0.0306  0.6633 0.0311 0.6577
? 0.1414 1.4324  0.0039  0.2406 0.0037 0.2357
c 0.2605 1.9403  0.0102  0.3933 0.0101 0.3873
150 d 0.1772 1.6213  0.0104  0.3892 0.0104 0.3923
4 0.1291 1.3610  0.0115  0.4150 0.0115 0.4146
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Table 4 (Continued)

9=05d=2, y=3

LINEX (5 =1.5) ELF (5 =-1.5) ELF (5=1.5)

‘ " MSE L.CI MSE L.CI MSE L.CI
0 0.0327 0.5750  0.0257  0.5484  0.0826  0.6630

c 0.0146 04276  0.0166 04367  0.0152  0.4271

30 d 0.0667 0.9862  0.0646  0.9906  0.0689  1.0101

y 0.0680  0.9948  0.0673  1.0185  0.0686  1.0130

o 0.0172 04769  0.0147 04509  0.0325  0.6373

¢ 0.0059 0.2543  0.0060 02588  0.0068  0.2537

b2 7 d 0.0268 0.6524  0.0267  0.6466  0.0272  0.6591
y 0.0323 0.7102  0.0320  0.7059  0.0324  0.7117

0 0.0066 03061  0.0062 02984  0.0086  0.3230

¢ 0.0024  0.1894  0.0024  0.1904  0.0025  0.1879

150 d 0.0100  0.3829  0.0100 03828  0.0101  0.3836

y 0.0105 0.4026  0.0105  0.4037  0.0105  0.4027

0 0.0258 05218  0.0196  0.4884  0.0689  0.6249

¢ 0.0621 0.9200  0.0588  0.9033  0.0641  0.9368

30 d 0.0645 0.9825  0.0648  0.9954  0.0667  0.9974

y 0.0659 0.9808  0.0657  1.0077  0.0667  1.0054

0 0.0115 03831  0.0097 03600  0.0213  0.4857

¢ 0.0242 0.5800  0.0240  0.5833  0.0245  0.5861

3 7 d 0.0276 0.6343  0.0272  0.6219  0.0280  0.6419
y 0.0304  0.6592  0.0306  0.6638  0.0307  0.6604

0 0.0040 02427  0.0037 02350  0.0051  0.2548

c 0.0103 0398  0.0101 03926  0.0104  0.3999

150 d 0.0105 0.3900  0.0104 03890  0.0106  0.3932

y 0.0115 04165  0.0115  0.4144 00115 04137
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Table 5 ML and Bayesian estimation methods based on different loss functions with different

values of d

9=085c=2, y=3

J . MLE SELF LINEX (5 =-1.5)
MSE L.CI MSE L.CI MSE L.CI

9 02628 19016  0.0054 02210  0.0047 0.2129

c 04089 24675  0.0600  0.9251 0.0571 0.9210

30 d 12339 39194 00670 09885  0.0694 0.9923

y 04697 24488  0.0641 09649  0.0678 0.9832

0 0.0404  0.7545  0.0017  0.1333 0.0016 0.1299

c 0.1933 17136  0.0277  0.6643 0.0271 0.6466

b2 7 d 04214 24054  0.0281  0.6640  0.0283 0.6665
y 0.1016  1.1720  0.0293  0.6483 0.0297 0.6514

0 0.0089 03590  0.0005  0.0799 _ 0.0005 0.0796

c 0.1048 12657  0.0104 03912  0.0103 0.3895

150 d 0.1442 14324  0.0100  0.3861 0.0101 0.3840

y 0.0305  0.6608  0.0106  0.3888  0.0108 0.3851

0 03314  2.1509  0.0107  0.2843 0.0092 0.2719

c 07210 3248  0.0612 09665  0.0574 0.9257

30 d 02314 17733 0.0307  0.6500  0.0345 0.6838

y 03978 24312 0.0672 09674  0.0700 0.9831

0 0.0385  0.7436  0.0025  0.1654  0.0023 0.1634

c 03203 22017  0.0292  0.6722  0.0283 0.6648

3 75 d 0.0448  0.7918  0.0155 04705  0.0164 0.4810
y 02370 19019  0.0306  0.6945 0.0307 0.6839

¢ 0.0093 03661  0.0009  0.1040  0.0008 0.1031

c 01772  1.6416  0.0104  0.3886  0.0103 0.3866

150 d 0.0190 05304  0.0064 03027  0.0065 0.3052

y 0.1549 15307 00112 04028  0.0114 0.4042
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Table 5 (Continued)

9=085c=2, y=3
4 ; LINEX (6 =1.5) ELF (6 =-1.5) ELF (6 =1.5)
MSE L.CI MSE L.CI MSE L.CI
» 0.0061 0.2260 0.0050 0.2167  0.0077 0.2392
c 0.0642 0.9300 0.0590 0.9202  0.0657 0.9486
30 d 0.0658 0.9824 0.0668 0.9859  0.0683 1.0064
e 0.0621 0.9492 0.0642 0.9635  0.0638 0.9613
» 0.0018 0.1358 0.0016 0.1321  0.0020 0.1377
c 0.0286 0.6777 0.0275 0.6619  0.0289 0.6845
1.2 75 d 0.0281 0.6595 0.0281 0.6646  0.0286 0.6628
e 0.0292 0.6382 0.0293 0.6493  0.0294 0.6463
» 0.0005 0.0802 0.0005 0.0797  0.0005 0.0807
c 0.0106 0.3918 0.0104 0.3903  0.0106 0.3926
150 d 0.0099 0.3852 0.0100 0.3857  0.0100 0.3853
e 0.0106 0.3883 0.0106 0.3892  0.0106 0.3872
» 0.0123 0.3000 0.0097 0.2769  0.0184 0.3264
c 0.0668 1.0017 0.0596 0.9526  0.0722 1.0302
30 d 0.0278 0.6264 0.0314 0.6564  0.0289 0.6383
Y 0.0662 0.9469 0.0672 0.9721  0.0675 0.9642
P 0.0026 0.1690 0.0024 0.1640  0.0029 0.1741
c 0.0303 0.6768 0.0289 0.6708  0.0306 0.6842
3 75 d 0.0147 0.4639 0.0157 0.4724  0.0149 0.4722
e 0.0309 0.6979 0.0306 0.6921  0.0310 0.7000
P 0.0009 0.1052 0.0008 0.1035  0.0009 0.1060
c 0.0105 0.3929 0.0104 0.3879  0.0106 0.3931
150 d 0.0063 0.3017 0.0064 0.3038  0.0063 0.3050
e 0.0112 0.4022 0.0112 0.4031  0.0112 0.4027

6. Applications to Physical Data

In this section, we fit the KMOITL distribution into two distinct real data sets and we compare
the performance with that of Topp Leone inverted Kumaraswamy (TLIK) (Behariy et al. 2020),
Weibull-Lomax (WL) (Tahir et al. 2015), new exponential ITL (NEITL) (Metwally et al. 2021),
modified Kies ITL (MKITL) (Almetwally et al., 2021), Kumaraswamy Weibull (KW) (Cordeiro et
al., 2010), Marshall-Olkin alpha power inverse Weibull (MOAPIW) (Basheer et al. 2021), and odds
exponential-Pareto IV (OEPIV) (Baharith et al., 2020) distributions. We focus on the physical data set
because of its many applications and has been used in many fields such as engineering, agriculture,
medicine, and other different sciences. So, the first data collected by Birnbaum and Saunders (1969)
describes the fatigue 101 times of 6061-T6 aluminum coupons with a maximum stress per cycle of
26,000 psi. The second data sat was discussed in Risti¢ and Kundu (2015), which represents the
strength data measured in GPA, the single carbon fibers, and impregnated 1000-carbon fiber tows.
Single fibers were tested under tension at a gauge length 1 mm.

The MLE and their accompanying standard error (SE) of the model parameters are calculated for
each physical data set. The effectiveness of the models is evaluated using the Kolmogorov- Smirnov
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statistic (KSS) with P-value (PV), the Akaike information criterion (AIC), the Bayesian information
criterion (BIC), Anderson-Darling (A*) statistic, and the Cramér-von Mises (W*) statistic. The model
with the lowest value of these measures represents the data set better than the others.

Table 6 lists the MLEs and their accompanying SEs for the model parameters for the first data.
Table 7 includes the above-mentioned statistical measures for all models. As seen in Table 7, the
KMOITL distribution fits the first data better than other fitted models. As a result, the KMOITL model
might be the best option. Figure 3 gives the PP-plots of the fitted models. Figure 4 provides the
estimated cdf with empirical for different models, while Figure 5 shows the estimated pdf with a
histogram of probability. Figure 6 confirmed the estimates of KMOITL distribution parameters are
maximum point of likelihood value.

Table 6 MLE with SE for different models of first data

KMOITL KITL MKITL
Estimate SE Estimate SE Estimate SE
@ 0.9733 0.0194
c 4807.4947 15.1594  603.5653  840.6244
d 5253.6846 19.9050 173.9450  320.4342 18.8251 1.4623
4 0.4175 0.0925 0.7193 0.2620 0.1043 0.0004
OEPIV WL MOAPIW
Estimate SE Estimate SE Estimate SE
c 208.1848  681.5192 2.2714 13.7151 873.8797 1.1494
d 0.2307 0.0334 14.6647 1.2930 4.2440 0.0222
o 0.0205 0.0320 0.1305 0.0986 1489357.3062 556.6520
4 2281.0608  977.6489 9.4390 9.8743 1846464.1491 48.6719
Table 7 Different measures for different models of first data
KSS PV AIC BIC W A*
KMOITL 0.0416 0.9948 1499.6943 1507.1548 0.0199 0.1523
WL 0.0498 0.9639 1499.7509 1509.9114 0.0295 0.2050
KITL 0.0499 0.9627 1499.7663 1507.5116 0.0296 0.2184
MKITL 0.0510 0.9551 1500.5630 1507.7932 0.0315 0.2172
MOAPIW 0.1109 0.1663 1520.7786 1531.2391 0.0852 0.5565

OEPIV 0.0495 0.9657 1499.7850 1509.9454 0.0285 0.1959
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Figure 4 Estimated and empirical cdf for different models
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Figure 6 Profile likelihood for parameters for the KMOITL model of the first data

Table 8 shows the MLEs for the model parameters for the second data set, as well as the SEs that
go with them. The above-mentioned statistical indicators are included in Table 9 for all models. As
seen in Table 9, the KMOITL distribution matches the second data better than other fitted models. As
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a result, the KMOITL model may be the most appropriate choice. Figure 7 depicts the fitted models’
PP-plots. Figure 8 displays the estimated cdf with their empirical for various models, on the other hand
Figure 9 depicts the estimated pdf with a probability histogram. Figure 10 confirmed the estimates of

KMOIT distribution parameters are maximum point of likelihood value.

Table 8 MLE with SE for different models of strength data

KMOITL KITL MKITL
Estimate SE Estimate SE Estimate SE
@ 0.9456 0.7564
c 112.5643 13.8934 13.06934 2.545155
d 537.6359 35.1579 200.0008 145.7951 6.2059 0.6391
e 0.6001 0.9641 0.991621 0.201765 0.6186 0.0101
KW WL TLIK
Estimate SE Estimate SE Estimate SE
c 0.0080 0.0044 47.4593 6.5699 0.678367 0.185589
d 4.1936 0.9938 8.1616 1.9922 188.9215 73.99957
0 2.8883 1.0412 0.3652 0.1335 5.82707 0.587424
e 0.2909 0.4782 1.6541 1.5890
MOAPIW OEPIV NEITL
Estimate SE Estimate SE Estimate SE
a 10.5695 19.2738 40.7601 52.7389
Vit 7.9752 0.7340 0.1777 0.0185
o 353.0412 361.6230 54.1619 91.1551 50.7331 31.5002
e 100.1504 99.2120 18.1516 7.9363 0.0186 0.0117
Table 9 Different measures for different models of strength data
KSS PV AIC BIC W A*
KMOITL 0.0595 0.9820 143.9724 152.0738 0.0260 0.1797
KW 0.0636 0.9667 143.9780 152.9714 0.0280 0.1883
MOAPIW 0.0660 0.9543 146.7408 154.8422 0.0308 0.2753
OEPIV 0.0966 0.6381 146.0936 154.1950 0.0721 0.4695
MKITL 0.0848 0.7836 144.0877 152.1384 0.0551 0.3631
WL 0.0824 0.8120 145.1803 153.2817 0.0566 0.3733
TLIK 0.1415 0.1929 165.0296 171.1057 0.2157 0.5361
KITL 0.0993 0.6035 147.2683 154.3444 0.0330 0.4817
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7. Concluding Remarks

We propose the Kumaraswamy Marshall-Olkin inverted Topp-Leone distribution, with a four-
parameter as a particular model from the Kumaraswamy Marshall-Olkin-G family. The KMOITL
includes some sub-models such as the Kumaraswamy ITL, Marshall-Olkin ITL, and ITL distributions.
The KMOITL distribution offers several forms of the density and hazard rate functions. The density
function of the KMOITL model can be represented as a linear combination of the inverted Topp-Leone
densities. Several statistical properties, including moments, incomplete moments, quantile function,
some entropy measures, stochastic ordering, and stress-strength reliability, are derived. Simulation
studies are used to assess maximum likelihood estimators and approximate confidence intervals. The
MCMC method is used to construct Bayesian estimators and Bayesian credible intervals under
different loss functions. The overall results revealed that as the sample size becomes greater; the
estimators become more accurate, implying that they are asymptotically unbiased. Bayesian estimators
via LINEX are preferred over other Bayesian estimators. Finally, two physical real data sets are used
to assess the new model's flexibility. Based on the specified criteria, it is discovered that the KMOITL
model offers closer matches than certain other models.
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