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Abstract 

The Kumaraswamy Marshall-Olkin inverted Topp-Leone (KMOITL) distribution is a new four-
parameter generalized version of the inverted Topp-Leone (ITL) distribution proposed in this research. 
The Marshall-Olkin ITL distribution is a novel model, while the Kumaraswamy ITL and ITL 
distributions are existing sub-models in the proposed distribution. Different shapes of the density and 
hazard rate functions are provided by the KMOITL distribution, which has three shape parameters and 
one scale parameter. The KMOITL’s density function can be written as a linear combination of the 
inverted Topp-Leone density. We construct several statistical expressions for the proposed KMOITL 
model. The KMOITL distribution parameters are estimated using maximum likelihood and Bayesian 
estimation techniques. In light of symmetric and asymmetric loss functions, Bayesian estimators are 
explored. The performance of the suggested estimating techniques is evaluated using simulation 
results. Finally, the suggested model is tested based on physical real data, with the findings 
demonstrating the KMOITL distribution’s higher performance over some other models. 
______________________________ 
Keywords:  Inverted Topp-Leone distribution, maximum likelihood, Bayesian method, stress strength model, 
entropy measures 
 
1. Introduction 

Various researchers have lately focused their efforts on the development of new families of 
continuous distributions by extending current continuous distributions. These new families offer a 
broader range of applications in modelling data in a variety of fields, including engineering, 
economics, biological research, and environmental sciences, to name a few. The following are the key 
goals of generalizing this new families of distributions: construct customized models with diverse 
forms of hazard rate function; accomplish skewness for symmetrical models; build heavy-tailed 
distributions that may be used in a variety of real-world data sets; achieve a more flexible kurtosis 
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than the baseline distribution; create skewed, symmetric, J-shaped, or reversed-J-shaped distributions 
that match better than other generalized distributions with the same parameters as the underpinning 
model. 

Marshall and Olkin (1997) presented a transformation of the baseline cumulative distribution 
function (cdf) into a family of distributions by introducing a new parameter 

     1
( ) ; 1 ( ; ) ,MOF z G z G z  


                    (1) 

where   is the scale parameter and  ;G z   is the baseline cdf. Cordeiro and de Castro (2011) defined 

the Kumaraswamy-G (K-G) class with the cdf given by:  

  ( ) 1 1 ( ; ) ,
dc

KF z G z                      (2) 

where c  and d  are two shape parameters. The K-G distribution provided in (2) (for c  and d  positive 
integers) has the following physical explanation. Consider a system made up of d  separate 
components, each of which is composed of c  independent subcomponents. Assume that if any of the 
d  components fails, the system fails, and that each component fails if all of the c subcomponents fail. 
Let 1 c,...,j jZ Z  indicate the subcomponent lives inside the thj  component, 1,...,j d  with a common 

cdf ( ).G z  For 1,..., ,j d  let 1Z  indicate the lifetime of the thj  component, and Z  denote the lifetime 
of the entire system. Then cdf of Z is: 
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Hence, the K-G distribution deduced from (2) is the time to failure distribution of the complete 
system. Alizadeh et al. (2015) suggested extending the MO family for a given baseline distribution 
cdf by putting (1) in (2) and defining the Kumaraswamy Marshall-Olkin-G (KMO-G) cdf and density 
function as follows:  
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 (4) 

The cdf (3) encompasses a broader range of continuous distributions. According to Alizadeh et 
al. (2015), it encompasses the K-G family, proportional and inverted hazard rate models, and the  
MO-G and other sub-models. The density function of KMO-G is symmetrical, left-skewed, right-
skewed and reversed-J shaped, and has constant, increasing, decreasing, upside-down bathtub, bathtub 
and S-shaped hazard rates. 

Many notable inverted distributions have recently been proposed to model varied data in many 
areas. Some of the important inverted distributions are the inverse Weibull (Keller and Kamath 1982), 
inverse Lindley (Sharma et al. 2015), inverted Kumaraswamy (Abd AL-Fattah et al. 2017), inverse 
power Lindley (Barco et al. 2017), inverted Nadarajah-Haghighi (Tahir et al., 2018), inverse power 
Lomax (Hassan and Abd-Allah 2019), inverted exponentiated Lomax (Hassan and Mohamed 2019), 
inverted modified Lindley (Chesneau et al. 2020), inverted Topp-Leone (Hassan et al. 2020), inverse 
xgamma (Yadav et al. 2021), inverse power Maxwell (Al-Kzzaz  and Abd El-Monsef  2022), inverse 
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power Cauchy (Sapkota and Kumar 2023) and inverse power Ramos-Louzada (Al Mutairi et al. 2023) 
distributions. 

The inverted Topp-Leone (ITL) distribution with shape parameter 0,   has the following cdf 
and probability density function (pdf): 

 2

(1 2 )( ; ) 1 ; 0, 0,
(1 )

zG z z
z



 
 

     
                (5) 

and 
 2 1 1( ; ) 2  (1 ) (1 2 )  ;  ,  0.g z z z z z                        (6) 

Different structural properties of the ITL distribution were pioneered by Hassan et al. (2020). 
Many researchers consider extensions and generalizations of the ITL distribution to improve flexibility 
in modelling a wide range of data. Abushal et al. (2021) proposed a power ITL distribution with an 
extra shape parameter. Ibrahim et al. (2021) proposed a new type of ITL distribution with an additional 
parameter called “alpha power ITL distribution”. With application to COVID-19, Hassan et al. (2021) 
developed a three-parameter ITL distribution based on the K-G family. The two-parameter half-
logistic ITL distribution was introduced by Bantan et al. (2021), and parameter estimators based on 
ranked set samples were explored. Almetwally (2021) introduced another two-parameter ITL 
distribution using the odd Weibull-G family. Almetwally et al. (2021) introduced the modified Kies 
ITL distribution and discussed parameter estimators using different estimation methods. The truncated 
Cauchy power-ITL distribution was presented and its estimators were explored by Mohamed et al. 
(2023) under the hybrid censoring scheme. The truncated-ITL distribution was established by  
Elgarhy et al. (2023) and its parameter was investigated under progressive censoring. 

The current article’s contribution can be summarized as follows:  
(i) We introduce a new generalization of the ITL distribution based on KMO-G family, called 

Kumaraswamy Marshall-Olkin inverted Topp-Leone (KMOITL) distribution. 
(ii) We provide some new models as well as some existing models as seen in Section 2. 
(iii) We discuss several statistical properties as provided in Section 3.  
(iv) We investigate the Bayesian and non-Bayesian estimation of the KMOITL model parameters 

using symmetric (squared error loss function (SELF)) as well as asymmetric loss function (linear 
exponential (LINEX) and entropy loss (ELS). 

(v) We apply this model to actual engineering datasets according to the physical explanation of 
one sub-model (Kumaraswamy ITL) of the proposed distribution.  

The following is the article's content: The description of the KMOITL distribution is found in 
Section 2. The major statistical features of this model are discussed in Section 3. The study of 
maximum likelihood (ML) and Bayesian estimation techniques is explored in Section 4. Section 5 
contains simulation studies that are used to ensure the consistency of estimates. In Section 6, we use 
two real data sets to demonstrate the potential of the new distribution. Finally, in Section 7, some 
closing results were observed. 

 
2. Description of the Model 

The cdf of the KMOITL distribution with set of parameters ( , , , )c d     is obtained by setting 
(5) in (3) as follows: 

 
 

( ; ) 1 1 , , , , , 0,
1

1 ( , )
( , )

dc

F z z c dz
z

 





             




               (7) 



Amal Soliman Hassan and Ehab Mohamed Almetwally 433 

where 2 , , ,(1 2 )( , )
(1 )

c dzz
z



   
 
 

 


 are shape parameters and   is the scale parameter. Based on (7), 

some special distributions can be summarized as follows:  
1) For  = 0, then (7) reduces to Kumaraswamy ITL (KITL) distribution (see Hassen et al. 2021). 

2) For c  = d  = 1, then (7) yields the Marshall- Olkin ITL (MOITL) distribution (new). 
3) For c  = d  = 1 and   = 0, then (7) reduces to ITL distribution (Hassen et al. 2020). 

4) For c  = 1 and   = 0, we have an ITL distribution with parameter , .d   

5) For d  = 1 and   = 0, yields exponentiated ITL distribution with parameters d and ,  (new). 
The pdf of KMOITL distribution is obtained by inserting (5) and (6) in (4) as follows 
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 (8) 

where , , , 0,c d     and ( , , , )c d   is the set of parameters. A random variable with pdf (8) is 

represented as  ( , , , ).Z c d    The hazard rate function (hrf) of the KMOITL distribution is given 
by 
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The graphs of the KMOITL density for various parameter values are shown in Figure 1. The 
versatility and modality of the new distribution are seen in these graphs. We see in Figure 1 that the 
KMOITL density is uni-modal or less-bell shaped. It is right-skewed for set of parameters
(0.85,2,0.5,3).  Note that the red and purple curves have a reversed J-shaped form, corresponding to 
the pdf defined with same values of c and d. The hrf of Z  can be in the shape of a decreasing, up-side 
down, unimodal, J-shaped or reversed J-shaped, as seen in Figure 2. 

 
Figure 1 Plots of the KMOITL density function with various values of parameters 
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Figure 2 Plots of the KMOITL hazard function with various values of parameters 
 

3. Statistical Properties 
In this section, several features of the KMOITL distribution are investigated. To be more specific, 

we investigate the linear representation of the density function, quantile function, moments, 
incomplete moments, some entropy measures, stochastic ordering, and stress-strength reliability. 

 
3.1. Linear representation 

For the KMOITL density, we give an appropriate linear representation. Using the following 
binomial expansion  
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in pdf (8), as follows: 
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Using the following binomial expansion:  
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in (10) and again using the binomial expansion yields; 
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Hence, the pdf of the KMOITL distribution can be written as: 
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and ( ; ( 1))g z m    is the pdf of the ITL distribution. 
Furthermore, the linear representation of the KMOITL cdf is obtained using the same expansions 

in (9) and (11) as follows:  
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Again, we use binomial expansion in the previous equation gives: 
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3.2. Quantile function   

The quantile function (qf) of a continuous distribution is used in a variety of applications, 
including Bowley’s skewness and Moor’s kurtosis. The qf of the KMOITL distribution is obtained by 
inverting the cdf (7) as follows: 
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In particular, the KMOITL median of Z  is Q(0.5). Based on quantile measures, the effects of 
shape parameters on skewness (SK) and kurtosis (KR) may be examined. The Bowley skewness and 
Moors kurtosis are calculated using the following formula: 
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3.3. Moments measures  

The thk  non-central moment of the KMOITL distribution is covered. These moments may be 
used to derive information about the model's other features, such as spread,

 

skewness, and kurtosis. 
The desired moments are determined by 
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  and ( , )B    is the beta function.  Based on (14), 

some moments values for KMOITL distribution, such as mean 1( ),  variance 2( ),  SK and KR for 
some selected parameter values are listed in Table 1. It can be noticed from Table 1 that the distribution 
is skewed to the right, as shown by the skewnees values. According to kurtosis values, the distribution 
is also Leptokurtic. 
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Table1 Some moments values of the KMOITL distribution  
( , , , )c d   1   2  SK KR 

(0.6,3,0.5,2) 0.197 0.058 4.418 56.138 
(0.85,1.2,10,10) 1.199 0.196 1.311 6.605 

(0.85,2,2,5) 0.277 0.021 1.724 9.875 
(0.5,2.5,3,2) 1.179 0.729 3.666 49.335 

(0.6, 0.7,5,8) 2.815 3.040 2.879 27.024 
(0.3,3.5,2,3) 0.612 0.122 1.713 9.058 

 

The thk  incomplete moment of Z  can be obtained from (12) as 
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  and ( , , )B t   is the incomplete beta 

function. The Bonferroni and Lorenz curves, as well as the mean residual life and mean waiting time, 
are all notable uses of the first incomplete moment. 

 
3.4. Entropy measures  

The entropy of a random variable with a probability density (8) is a measure of the uncertainty's 
fluctuation. A high entropy number suggests that the data is more unpredictable. The Rényi (RE) entropy, 
presented by Rényi (1960), is defined by 
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expansions as given in (9) and (11), then  
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Using the binomial expansion in the previous equation leads to  
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The Rényi entropy of the KMOITL distribution is obtained as follows: 

 1
, , ,

, , , , ,
0

( ) (1 ) log 1, ( ) 1 ,

( ) ( 1)
.

j m n

j m n j m
n

n m

m
n

      

  








           
   

  
 





 



  

The Arimoto entropy (AO) measure (see Arimoto 1971) is defined by 
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   
1

0
( , 1, 0.1

1
) f dzz

 
   


 
 

  
   

         

 
Hence, the AO of the KMOITL distribution is given by 
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, , .) 1,(
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The Tsallis (TS) entropy measure (see Tsallis, 1988) is defined by 

    
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1 1 , 1, 0.
1

f dzz
 




                   

Hence, the TS entropy of MOKITL distribution is obtained as follows: 

   , , , 1, ( .) 11 1
1 j m n n m    


        

 
 

Table 2 illustrates the numerical entropy measures for some of the recommended parameter values. 
We conclude from Table 2 that the values of all entropy measures decrease with the increasing value 
of .  
 
3.5. Stochastic ordering 

Stochastic ordering is an extensively researched notion in probability distributions and is an 
essential tool in reliability theory and other domains to examine comparative behaviour across random 
variables. Assume that iZ  has the KMOITL distribution with a set of the parameters i  i =1, and 2.  

Let’s ( , )i iF z   indicate iZ ’s cdf and ( , )i if z   signify iZ ’s pdf. If 1 1 2 2( , ) ( , )f z f z   is a 
decreasing function for all values of z, then Z1 is said to be stochastically smaller than Z2 (denoted by 

1 2 ),lrZ Z  in terms of likelihood ratio order. 

 
Table 2 Entropy values for the KMOITL model  

  ( , , , )c d   TS RE AO 

0.5 (0.6,3,0.5,2) 11.525 3.823 44.733 
(0.85,1.2,10,10) 0.948 0.776 1.173 

(0.85,2,5,2) 1.777 1.271 2.566 
(0.5,2.5,3,2) 0.243 0.229 0.257 
(0.6,0.7,5,8) 3.714 2.099 7.161 
(0.5,0.5,3,3) 19.418 4.742 113.679 

1.5 
 
 

(0.6,3,2,0.5) 1.096 1.589 1.234 
(0.85,1.2,10,10) 0.341 0.374 0.352 

(0.85,2,5,2) 0.435 0.49 0.452 
(0.5,2.5,3,2) 0.602 0.716 0.637 
(0.6,0.7,5,8) 1.067 1.525 1.195 
(0.5,0.5,3,3) 1.463 2.632 1.752 

 
Let Z1 ~ KMOITL 1( ),  1 1 1 1 1( , , , )c d     and Z2 ~ KMOITL 2( ),  2 2 2 2 2( , , , ),c d     then 

the likelihood ratio ordering is as follows: 
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which leads to  
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For 1 2 1 2 1 2 1 2, , ,c c d d          we get 1 1

2 2

( ; )log 0,
( ; )

f zd
dz f z

 
  

 for all 0,z   hence 

1 1

2 2

( ; )log
( ; )

f zd
dz f z

 
  

 is decreasing in z and hence 1 2.lrZ Z  Moreover, 1Z  is said to be smaller than 

2Z  in other different orderings as stochastic order (denoted by 1 2stZ Z ), hazard rate order (denoted 
by 1 2hrZ Z ), and reversed hazard rate order (denoted by 1 2rhrZ Z ). 

 
3.6. Stress Strength Reliability 

In reliability studies, the stress-strength (S-S) model is frequently employed. Strength failure, 
structures, degradation of rocket motors, and static fatigue of ceramic components are just some of the 
applications of the S-S model in physics and engineering. In the S-S model, reliability  1 2P Z Z  

refers to the component's capacity to withstand random stress Z2 when it possesses strength Z1. If the 
applied stress exceeds the component's strength, it will fail. Let Z1 and Z2, be two independent random 
variables with distributions of KMOITL 1 1 1( , , , )c d    and KMOITL 2 2 2( , , , )c d   ). The KMOITL 
distribution’s S-S reliability is then calculated using the same expansions in (12) and (13) as follows: 
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4. Parameter Estimation of the KMOITL Model 

The parameters estimators of the KMOITL distribution based on ML and Bayesian methods are 
discussed in this section. The approximate confidence intervals (CIs) and Bayesian credible intervals 
are given. 
 
4.1. ML estimators 

Asume 1,..., nz z  be the obsrved values from the KMOITL distribution with parameters 

( , , , ).c d    The likelihood function, say  |L z   of the KMOITL distribution, is expressed as 
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 Then the log likelihood function, say   ,  of the KMOITL distribution 

is given as 
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Solving the non-linear equations      0, 0, 0,c d               and

  0     numerically using optimization algorisms, we determine the ML estimators of 

( , , , ).c d    
Furthermore, it is known that under regularity conditions, the asymptotic distribution of ML 

estimators of a set of parameters  ( , , , )c d    is given by: 
1ˆˆ ˆˆ( ), ( ), ( ), ( ) (0, ( , , , )),c c d d N I c d           

where 1( , , , )I c d   is the variance covariance matrix of set of parameters ( , , , ).c d    Therefore, 
the two-sided approximate  100 percent CIs for ML estimates of   can be obtained as follows: 

2 2
ˆ ˆ ˆ ˆvar( ) , var( ),L z U z               ( , , , ),c d    

where 2z  is the 100(1 )% th  standard normal percentile and var(.) denotes the diagonal elements 

of the variance covariance matrix corresponding to the model parameters. 
 

4.2. Bayesian estimators 
Here, we get the Bayesian estimator of the KMOITL parameters. The Bayesian estimator is 

regarded under SELF, LINEX, and ELF, which are defined, respectively, by: 
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where   is reflects the direction and degree of asymmetry.  Assuming that the prior distribution of 
 denoted by ( ), ( ), ( ), ( )c d       has an independent gamma distribution. The gamma prior was 
elected because the inverted Topp-Leone, Marshall-Olkin-G, and Kumaraswamy-G distributions all 
employ a gamma distribution as a prior, and indeed we can recognize the normalized posterior 
distribution as the kernel of the gamma distribution. The gamma distribution can be a standard choice 
for non-negative continuous data i.e. 0→∞ because that is the domain of the gamma distribution. It 
may thus often be used as a prior for the precision of a KMOITL distribution. 

The joint gamma prior density of , ,c d  and    can be written as: 

    3 31 1 2 2 4 411 1 1 ; , 0, 1, 2,3, 4.a b da b a b c a b
j je c e d e e a b j              (16) 

To elicit the hyper-parameters of the informative priors, the ML estimator for , ,c d  and   is 
obtained by equating the estimates and their variances by the inverse of the Fisher information matrix 
of ˆˆ ˆ, ,c d  and ˆ.  For more information, see Dey et al. (2016). 

From (15) and the joint prior density (16), the joint posterior of the KMOITL distribution with 
parameters , ,c d  and   is 

    ( | ).z L z      

Then the joint posterior can be written as 
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To obtain the Bayesian estimators, we can use the Markov Chain Monte Carlo (MCMC) approach. 
A useful sub-class of the MCMC techniques is Gibbs sampling and the more general Metropolis within 
Gibbs samplers. The Metropolis-Hastings (MH) algorithm and Gibbs sampling are two of the most 
common MCMC methods. We use the MH within Gibbs sampling steps to generate random samples 
from conditional posterior densities of    as follows: 
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The Bayesian estimators are obtained via SELF, LINEX, and ELF. The 95% two-sided highest 
posterior density (HPD) credible interval for the unknown parameters  0.025 : 0.975 :,N N N N   or any 

function of them is given by using the method proposed by Chen and Shao (1999), where N is a length 
of MCMC result. 

 
5. Performance Analysis by Monte-Carlo Simulation  

A Monte-Carlo simulation experiment is carried out to analyze the performance of point estimates 
in terms of mean squared errors (MSE), as well as the performance of interval estimates in terms of 
accuracy and confidence interval length (L.CI). With various parameter values and sample sizes in 
mind, the simulation study is carried out. This section is broken into two sub-sections, the first of 
which is a simulation study, and the second in which the findings of the simulation are outlined as 
follows. 

 
5.1. Simulation study 

First, we select the true values of parameters for a KMOITL distribution as:  
0.5, 0.7, 0.8c d     and   is changed from 1.2 to 3 in Table 3. 

0.5, 2, 3d     and c  is changed from 0.7 to 2 in Table 4. 

0.85, 2, 3c     and d  is changed from 0.8 to 2 in Table 5. 
Altogether, nine sets of simulations of the KMOITL data with different sample sizes as n  = 30, 

75, and 150 are generated. To avoid the starting bias, 5,000 points are generated for each sample 
simulation. The generated data of KMOITL distribution are obtained by using quantile function in 
Subsection 3.2. The simulated data are fitted into the KMOITL model. The estimates of ML and 
Bayesian methods based on the different loss functions are obtained by using the Newton-Raphson 
algorithm of numerical analysis and the Metropolis-Hastings algorithm, respectively. The iterative 
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algorithms have been used to obtain N = 5,000 estimates for each parameter when the first initial is 
the actual parameter. In the confidence interval, we used the 5% level of significant. This simulation 
study was implemented via R packages. 

 
5.2. Simulation results 

For each estimated item parameter, the MSE and L.CI were calculated. Two summary measures 
of item parameter recovery are considered. MSE values near to zero indicate situations with best-
unbiased estimator item parameter estimates. Tables 3-5 show the results of different strategies for 
estimating point and interval parameters. The results are shown in Tables 3-5, which include some 
intriguing data.  

 The estimates get more accurate as the sample size grows larger, suggesting that they are 
asymptotically unbiased.  

 In all cases, the MSE reduces as the sample size grows, suggesting that the various estimates 
are consistent.  

 When comparing the various estimates, we can observe that in the majority of cases, the Bayes 
estimates have the lowest MSE.  

 ELF, LINEX, SELF are good alternative losses in Bayesian estimation compared to the ML 
estimate (MLE).  

 The Bayesian estimates via LINEX possess the best performance measures compared to other 
losses.  

 As n grows larger, the L-CI for estimates decreases, suggesting that the CI is the shortest. 
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Table 3 ML and Bayesian estimation methods based on different loss function with different values 
of   

0.5, 0.7, 0.8c d     

  n 
  
  

MLE SELF LINEX ( 1.5)    
MSE L.CI MSE L.CI MSE L.CI 

1.2 

30 

  1.2586 4.1337 0.0271 0.5939 0.0253 0.5856 
c  0.2990 1.9238 0.0240 0.6018 0.0258 0.6114 
d  0.2127 1.7823 0.0309 0.6543 0.0335 0.6638 
  0.7085 2.9585 0.0564 0.9295 0.0580 0.9578 

75 

  0.3276 2.1915 0.0175 0.5000 0.0166 0.4864 
c  0.0838 1.0502 0.0112 0.3917 0.0115 0.3949 
d  0.1357 1.4256 0.0153 0.4597 0.0157 0.4728 
  0.4788 2.5774 0.0261 0.6068 0.0270 0.6125 

150 

  0.0855 1.1442 0.0080 0.3412 0.0079 0.3356 
c  0.0246 0.5839 0.0047 0.2606 0.0048 0.2613 
d  0.0797 1.1008 0.0061 0.2984 0.0062 0.2999 
  0.2528 1.9257 0.0102 0.3918 0.0101 0.3894 

3 

30 

  1.5428 4.5247 0.0308 0.6160 0.0286 0.6090 
c  0.2792 1.8737 0.0266 0.6107 0.0300 0.6159 
d  0.3000 2.0012 0.0296 0.6551 0.0319 0.6764 
  0.5794 2.8945 0.0658 0.9568 0.0657 0.9504 

75 

  0.3341 2.1983 0.0173 0.4931 0.0165 0.4852 
c  0.0611 0.9058 0.0114 0.4001 0.0119 0.4073 
d  0.0864 1.1220 0.0140 0.4593 0.0148 0.4605 
  0.3472 2.2896 0.0328 0.7052 0.0331 0.7124 

150 

  0.1187 1.3171 0.0088 0.3542 0.0085 0.3500 
c  0.0187 0.5225 0.0042 0.2530 0.0043 0.2548 
d  0.0374 0.7420 0.0061 0.2888 0.0061 0.2891 
  0.2457 1.9359 0.0115 0.4151 0.0116 0.4172 
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Table 3 (Continued) 
0.5, 0.7, 0.8c d     

   n 
  LINEX ( 1.5)   ELF ( 1.5)    ELF ( 1.5)   
  MSE L.CI MSE L.CI MSE L.CI 

1.2 

30 

  0.0292 0.5977 0.0238 0.5644 0.0694 0.6820 
c  0.0227 0.5909 0.0241 0.5973 0.0252 0.6150 
d  0.0291 0.6351 0.0312 0.6520 0.0312 0.6567 
  0.0560 0.9142 0.0556 0.9268 0.0625 0.9719 

75 

  0.0186 0.5096 0.0159 0.4723 0.0340 0.6559 
c  0.0109 0.3853 0.0111 0.3895 0.0122 0.3935 
d  0.0149 0.4514 0.0153 0.4652 0.0155 0.4575 
  0.0256 0.6087 0.0261 0.6029 0.0266 0.6260 

150 

  0.0082 0.3443 0.0078 0.3333 0.0103 0.3665 
c  0.0047 0.2588 0.0047 0.2601 0.0052 0.2592 
d  0.0061 0.2969 0.0061 0.2983 0.0062 0.3009 
  0.0103 0.3904 0.0101 0.3902 0.0105 0.3950 

3 

30 

  0.0334 0.6186 0.0267 0.5810 0.0758 0.6786 
c  0.0240 0.5979 0.0270 0.5999 0.0262 0.6152 
d  0.0279 0.6320 0.0299 0.6598 0.0298 0.6644 
  0.0675 0.9731 0.0655 0.9596 0.0677 0.9721 

75 

  0.0183 0.5044 0.0158 0.4747 0.0319 0.6584 
c  0.0110 0.3894 0.0114 0.4016 0.0121 0.3904 
d  0.0134 0.4542 0.0141 0.4555 0.0138 0.4665 
  0.0328 0.7038 0.0327 0.7058 0.0330 0.7093 

150 

  0.0092 0.3571 0.0083 0.3475 0.0124 0.4095 
c  0.0041 0.2512 0.0042 0.2528 0.0042 0.2521 
d  0.0060 0.2851 0.0061 0.2883 0.0061 0.2862 
  0.0115 0.4142 0.0115 0.4156 0.0115 0.4157 
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Table 4 ML and Bayesian estimation methods based on different loss function with different values 
of c  

0.5, 2, 3d     

c  n 
  MLE SELF LINEX ( 1.5)    
  MSE L.CI MSE L.CI MSE L.CI 

1.2 

30 

  1.1156 3.7705 0.0299 0.5749 0.0273 0.5702 
c  0.0821 1.0393 0.0163 0.4340 0.0180 0.4443 
d  1.2634 4.1623 0.0652 0.9914 0.0652 0.9861 
  0.9649 3.3794 0.0674 1.0223 0.0686 1.0077 

75 

  0.4097 2.3125 0.0161 0.4681 0.0152 0.4615 
c  0.0219 0.5565 0.0061 0.2579 0.0064 0.2623 
d  0.6496 3.0060 0.0267 0.6483 0.0271 0.6482 
  0.3074 1.9233 0.0321 0.7057 0.0323 0.7089 

150 

  0.2236 1.7285 0.0064 0.3045 0.0062 0.2997 
c  0.0090 0.3657 0.0024 0.1910 0.0024 0.1931 
d  0.3476 2.2165 0.0100 0.3824 0.0100 0.3825 
  0.1623 1.4370 0.0105 0.4034 0.0106 0.4046 

3 

30 

  1.5509 4.5062 0.0230 0.5153 0.0206 0.5058 
c  1.1329 3.9114 0.0595 0.9100 0.0582 0.9044 
d  0.9995 3.5797 0.0650 0.9950 0.0668 1.0018 
  0.5480 2.6594 0.0658 1.0093 0.0671 0.9896 

75 

  0.5374 2.7378 0.0107 0.3736 0.0100 0.3652 
c  0.5286 2.7434 0.0241 0.5819 0.0243 0.5944 
d  0.4392 2.4704 0.0273 0.6267 0.0273 0.6251 
  0.2066 1.7057 0.0306 0.6633 0.0311 0.6577 

150 

  0.1414 1.4324 0.0039 0.2406 0.0037 0.2357 
c  0.2605 1.9403 0.0102 0.3933 0.0101 0.3873 
d  0.1772 1.6213 0.0104 0.3892 0.0104 0.3923 
  0.1291 1.3610 0.0115 0.4150 0.0115 0.4146 
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Table 4 (Continued) 
0.5, 2, 3d     

c  n 
  LINEX ( 1.5)   ELF ( 1.5)    ELF ( 1.5)   
  MSE L.CI MSE L.CI MSE L.CI 

1.2 

30 

  0.0327 0.5750 0.0257 0.5484 0.0826 0.6630 
c  0.0146 0.4276 0.0166 0.4367 0.0152 0.4271 
d  0.0667 0.9862 0.0646 0.9906 0.0689 1.0101 
  0.0680 0.9948 0.0673 1.0185 0.0686 1.0130 

75 

  0.0172 0.4769 0.0147 0.4509 0.0325 0.6373 
c  0.0059 0.2543 0.0060 0.2588 0.0068 0.2537 
d  0.0268 0.6524 0.0267 0.6466 0.0272 0.6591 
  0.0323 0.7102 0.0320 0.7059 0.0324 0.7117 

150 

  0.0066 0.3061 0.0062 0.2984 0.0086 0.3230 
c  0.0024 0.1894 0.0024 0.1904 0.0025 0.1879 
d  0.0100 0.3829 0.0100 0.3828 0.0101 0.3836 
  0.0105 0.4026 0.0105 0.4037 0.0105 0.4027 

3 

30 

  0.0258 0.5218 0.0196 0.4884 0.0689 0.6249 
c  0.0621 0.9200 0.0588 0.9033 0.0641 0.9368 
d  0.0645 0.9825 0.0648 0.9954 0.0667 0.9974 
  0.0659 0.9808 0.0657 1.0077 0.0667 1.0054 

75 

  0.0115 0.3831 0.0097 0.3600 0.0213 0.4857 
c  0.0242 0.5800 0.0240 0.5833 0.0245 0.5861 
d  0.0276 0.6343 0.0272 0.6219 0.0280 0.6419 
  0.0304 0.6592 0.0306 0.6638 0.0307 0.6604 

150 

  0.0040 0.2427 0.0037 0.2350 0.0051 0.2548 
c  0.0103 0.3986 0.0101 0.3926 0.0104 0.3999 
d  0.0105 0.3900 0.0104 0.3890 0.0106 0.3932 
  0.0115 0.4165 0.0115 0.4144 0.0115 0.4137 
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Table 5 ML and Bayesian estimation methods based on different loss functions with different 
values of d  

0.85, 2, 3c     

d   n 
  MLE SELF LINEX ( 1.5)    
  MSE L.CI MSE L.CI MSE L.CI 

1.2 

30 

  0.2628 1.9016 0.0054 0.2210 0.0047 0.2129 
c  0.4089 2.4675 0.0600 0.9251 0.0571 0.9210 
d  1.2339 3.9194 0.0670 0.9885 0.0694 0.9923 
  0.4697 2.4488 0.0641 0.9649 0.0678 0.9832 

75 

  0.0404 0.7545 0.0017 0.1333 0.0016 0.1299 
c  0.1933 1.7136 0.0277 0.6643 0.0271 0.6466 
d  0.4214 2.4054 0.0281 0.6640 0.0283 0.6665 
  0.1016 1.1720 0.0293 0.6483 0.0297 0.6514 

150 

  0.0089 0.3590 0.0005 0.0799 0.0005 0.0796 
c  0.1048 1.2657 0.0104 0.3912 0.0103 0.3895 
d  0.1442 1.4324 0.0100 0.3861 0.0101 0.3840 
  0.0305 0.6608 0.0106 0.3888 0.0108 0.3851 

3 

30 

  0.3314 2.1509 0.0107 0.2843 0.0092 0.2719 
c  0.7210 3.2486 0.0612 0.9665 0.0574 0.9257 
d  0.2314 1.7733 0.0307 0.6500 0.0345 0.6838 
  0.3978 2.4312 0.0672 0.9674 0.0700 0.9831 

75 

  0.0385 0.7436 0.0025 0.1654 0.0023 0.1634 
c  0.3203 2.2017 0.0292 0.6722 0.0283 0.6648 
d  0.0448 0.7918 0.0155 0.4705 0.0164 0.4810 
  0.2370 1.9019 0.0306 0.6945 0.0307 0.6839 

150 

  0.0093 0.3661 0.0009 0.1040 0.0008 0.1031 
c  0.1772 1.6416 0.0104 0.3886 0.0103 0.3866 
d  0.0190 0.5304 0.0064 0.3027 0.0065 0.3052 
  0.1549 1.5307 0.0112 0.4028 0.0114 0.4042 
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Table 5 (Continued) 
0.85, 2, 3c     

d n 
  LINEX ( 1.5)   ELF ( 1.5)    ELF ( 1.5)   
  MSE L.CI MSE L.CI MSE L.CI 

1.2 

30 

  0.0061 0.2260 0.0050 0.2167 0.0077 0.2392 
c  0.0642 0.9300 0.0590 0.9202 0.0657 0.9486 
d  0.0658 0.9824 0.0668 0.9859 0.0683 1.0064 
  0.0621 0.9492 0.0642 0.9635 0.0638 0.9613 

75 

  0.0018 0.1358 0.0016 0.1321 0.0020 0.1377 
c  0.0286 0.6777 0.0275 0.6619 0.0289 0.6845 
d  0.0281 0.6595 0.0281 0.6646 0.0286 0.6628 
  0.0292 0.6382 0.0293 0.6493 0.0294 0.6463 

150 

  0.0005 0.0802 0.0005 0.0797 0.0005 0.0807 
c  0.0106 0.3918 0.0104 0.3903 0.0106 0.3926 
d  0.0099 0.3852 0.0100 0.3857 0.0100 0.3853 
  0.0106 0.3883 0.0106 0.3892 0.0106 0.3872 

3 

30 

  0.0123 0.3000 0.0097 0.2769 0.0184 0.3264 
c  0.0668 1.0017 0.0596 0.9526 0.0722 1.0302 
d  0.0278 0.6264 0.0314 0.6564 0.0289 0.6383 
  0.0662 0.9469 0.0672 0.9721 0.0675 0.9642 

75 

  0.0026 0.1690 0.0024 0.1640 0.0029 0.1741 
c  0.0303 0.6768 0.0289 0.6708 0.0306 0.6842 
d  0.0147 0.4639 0.0157 0.4724 0.0149 0.4722 
  0.0309 0.6979 0.0306 0.6921 0.0310 0.7000 

150 

  0.0009 0.1052 0.0008 0.1035 0.0009 0.1060 
c  0.0105 0.3929 0.0104 0.3879 0.0106 0.3931 
d  0.0063 0.3017 0.0064 0.3038 0.0063 0.3050 
  0.0112 0.4022 0.0112 0.4031 0.0112 0.4027 

 
6. Applications to Physical Data 

In this section, we fit the KMOITL distribution into two distinct real data sets and we compare 
the performance with that of Topp Leone inverted Kumaraswamy (TLIK) (Behariy et al. 2020), 
Weibull-Lomax (WL) (Tahir et al. 2015), new exponential ITL (NEITL) (Metwally et al. 2021), 
modified Kies ITL (MKITL) (Almetwally et al., 2021), Kumaraswamy Weibull  (KW) (Cordeiro et 
al., 2010), Marshall-Olkin alpha power inverse Weibull (MOAPIW) (Basheer et al. 2021), and odds 
exponential-Pareto IV (OEPIV) (Baharith et al., 2020) distributions. We focus on the physical data set 
because of its many applications and has been used in many fields such as engineering, agriculture, 
medicine, and other different sciences. So, the first data collected by Birnbaum and Saunders (1969) 
describes the fatigue 101 times of 6061-T6 aluminum coupons with a maximum stress per cycle of 
26,000 psi. The second data sat was discussed in Ristić and Kundu (2015), which represents the 
strength data measured in GPA, the single carbon fibers, and impregnated 1000-carbon fiber tows. 
Single fibers were tested under tension at a gauge length 1 mm. 

The MLE and their accompanying standard error (SE) of the model parameters are calculated for 
each physical data set.  The effectiveness of the models is evaluated using the Kolmogorov-Smirnov 
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statistic (KSS) with P-value (PV), the Akaike information criterion (AIC), the Bayesian information 
criterion (BIC), Anderson-Darling (A*) statistic, and the Cramér-von Mises (W*) statistic. The model 
with the lowest value of these measures represents the data set better than the others. 

Table 6 lists the MLEs and their accompanying SEs for the model parameters for the first data. 
Table 7 includes the above-mentioned statistical measures for all models.  As seen in Table 7, the 
KMOITL distribution fits the first data better than other fitted models. As a result, the KMOITL model 
might be the best option.  Figure 3 gives the PP-plots of the fitted models.  Figure 4 provides the 
estimated cdf with empirical for different models, while Figure 5 shows the estimated pdf with a 
histogram of probability.  Figure 6 confirmed the estimates of KMOITL distribution parameters are 
maximum point of likelihood value. 

 
Table 6 MLE with SE for different models of first data  

  
  

KMOITL KITL MKITL 
Estimate SE Estimate SE Estimate SE 

  0.9733 0.0194         
c 4807.4947 15.1594 603.5653 840.6244     
d 5253.6846 19.9050 173.9450 320.4342 18.8251 1.4623 
  0.4175 0.0925 0.7193 0.2620 0.1043 0.0004 
 OEPIV WL MOAPIW 
 Estimate SE Estimate SE Estimate SE 
c 298.1848 681.5192 2.2714 13.7151 873.8797 1.1494 
d 0.2307 0.0334 14.6647 1.2930 4.2440 0.0222 
  0.0205 0.0320 0.1305 0.0986 1489357.3062 556.6520 
  2281.0608 977.6489 9.4390 9.8743 1846464.1491 48.6719 

 
Table 7 Different measures for different models of first data 

  KSS PV AIC BIC W* A* 
KMOITL 0.0416 0.9948 1499.6943 1507.1548 0.0199 0.1523 

WL 0.0498 0.9639 1499.7509 1509.9114 0.0295 0.2050 
KITL 0.0499 0.9627 1499.7663 1507.5116 0.0296 0.2184 

MKITL 0.0510 0.9551 1500.5630 1507.7932 0.0315 0.2172 
MOAPIW 0.1109 0.1663 1520.7786 1531.2391 0.0852 0.5565 

OEPIV 0.0495 0.9657 1499.7850 1509.9454 0.0285 0.1959 
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Figure 3: The PP plots for different models 

 
Figure 4 Estimated and empirical cdf for different models 
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Figure 5 Estimated pdf with histogram of probability for different models 

 

 
Figure 6 Profile likelihood for parameters for the KMOITL model of the first data  

 
Table 8 shows the MLEs for the model parameters for the second data set, as well as the SEs that 

go with them. The above-mentioned statistical indicators are included in Table 9 for all models. As 
seen in Table 9, the KMOITL distribution matches the second data better than other fitted models. As 
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a result, the KMOITL model may be the most appropriate choice. Figure 7 depicts the fitted models’ 
PP-plots. Figure 8 displays the estimated cdf with their empirical for various models, on the other hand 
Figure 9 depicts the estimated pdf with a probability histogram. Figure 10 confirmed the estimates of 
KMOIT distribution parameters are maximum point of likelihood value.  
 

Table 8 MLE with SE for different models of strength data  
  KMOITL KITL MKITL 

  Estimate SE Estimate SE Estimate SE 
  0.9456 0.7564         
c  112.5643 13.8934 13.06934 2.545155     
d  537.6359 35.1579 200.0008 145.7951 6.2059 0.6391 
  0.6001 0.9641 0.991621 0.201765 0.6186 0.0101 
  KW WL TLIK 
 Estimate SE Estimate SE Estimate SE 
c  0.0080 0.0044 47.4593 6.5699 0.678367 0.185589 
d  4.1936 0.9938 8.1616 1.9922 188.9215 73.99957 
  2.8883 1.0412 0.3652 0.1335 5.82707 0.587424 
  0.2909 0.4782 1.6541 1.5890     
  MOAPIW OEPIV NEITL 
 Estimate SE Estimate SE Estimate SE 
  10.5695 19.2738 40.7601 52.7389     
  7.9752 0.7340 0.1777 0.0185     
  353.0412 361.6230 54.1619 91.1551 50.7331 31.5002 
  100.1504 99.2120 18.1516 7.9363 0.0186 0.0117 
 

Table 9 Different measures for different models of strength data  
  KSS PV AIC BIC W* A* 

KMOITL 0.0595 0.9820 143.9724 152.0738 0.0260 0.1797 
KW 0.0636 0.9667 143.9780 152.9714 0.0280 0.1883 

MOAPIW 0.0660 0.9543 146.7408 154.8422 0.0308 0.2753 
OEPIV 0.0966 0.6381 146.0936 154.1950 0.0721 0.4695 
MKITL 0.0848 0.7836 144.0877 152.1384 0.0551 0.3631 

WL 0.0824 0.8120 145.1803 153.2817 0.0566 0.3733 
TLIK 0.1415 0.1929 165.0296 171.1057 0.2157 0.5361 
KITL 0.0993 0.6035 147.2683 154.3444 0.0330 0.4817 
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Figure 7 Estimated and empirical cdf for different models of strength data 

 

 
Figure 8 PP plots for different models for strength data 
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Figure 9 Histogram and estimated pdf for different models of strength data 

 

 
Figure 10 Profile likelihood for parameters for KMOITL model of strength data  
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7. Concluding Remarks 
We propose the Kumaraswamy Marshall-Olkin inverted Topp-Leone distribution, with a four-

parameter as a particular model from the Kumaraswamy Marshall-Olkin-G family. The KMOITL 
includes some sub-models such as the Kumaraswamy ITL, Marshall-Olkin ITL, and ITL distributions. 
The KMOITL distribution offers several forms of the density and hazard rate functions. The density 
function of the KMOITL model can be represented as a linear combination of the inverted Topp-Leone 
densities. Several statistical properties, including moments, incomplete moments, quantile function, 
some entropy measures, stochastic ordering, and stress-strength reliability, are derived. Simulation 
studies are used to assess maximum likelihood estimators and approximate confidence intervals. The 
MCMC method is used to construct Bayesian estimators and Bayesian credible intervals under 
different loss functions. The overall results revealed that as the sample size becomes greater; the 
estimators become more accurate, implying that they are asymptotically unbiased. Bayesian estimators 
via LINEX are preferred over other Bayesian estimators. Finally, two physical real data sets are used 
to assess the new model's flexibility. Based on the specified criteria, it is discovered that the KMOITL 
model offers closer matches than certain other models. 
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