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Abstract

Topp-Leone generated family of distributions contains continuous distributions having bathtub
shaped hazard rates. In this paper, we compare two random variables from this family of distributions
using stochastic orderings. We also consider a special case of this family of distributions, namely,
Topp-Leone exponential distribution and investigate few reliability indicators of this distribution such
as hazard rate function, reversed hazard rate function, mean residual life function, and expected
inactivity time. Renyi entropy measure for the Topp-Leone exponential distribution has also been
discussed. Moreover, we define the Topp-Leone generated log-logistic distribution and the Topp-
Leone generated Lomax distribution using the genesis of the Topp-Leone generated family of
distributions. We also present real data applications to discuss the importance of this family of
distributions.

Keywords: Hazard rate function, stochastic orderings, reversed hazard rate function, expected inactivity time,
mean residual life function.

1. Introduction

The Topp-Leone (TL) distribution was first announced by Topp and Leone (1955) which is a
simple bounded J-shaped distribution. Its probability density function (p.d.f.) and cumulative
distribution function (c.d.f.) are given by

fu@=28(1-u)[u(2-u)]", 0<us<l0<9<l,
and
Fy=[u(2-u)]", 0<u<1,0<9<],
respectively. We can see that it is not very versatile due to having only one parameter and its domain
is limited to (0,1) . Also, this distribution had not been given due consideration until Nadarajah and

Kotz (2003) studied different aspects of this distribution. Let the continuous random variable U
follows the TL distribution with two parameters ¢ and x. Then, according to Nadarajah and Kotz
(2003), the p.d.f. of U is written as
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29(u)"" u u)
f(u):—(—j (l——j(Z——j O0<u<rk,0<9<1x>0.
K \ K
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Clearly, the c.d.f. of U is

9 9
F(u):(l) (2—3] 0<u<i,0<9<],x>0.
K K

They identified that the hazard rate function of the TL distribution has a bathtub shape for all
3 € (0,1). Several authors then further studied the TL distribution. For example, Ghitany et al. (2005)
investigated few reliability indicators of this distribution and their stochastic orderings. Dorp and Kotz
(2006) represented income distributions with the help of the TL distribution. Zhou et al. (2006)
examined the case of independent TL random variables X and Y and derived the exact distributions
of X+Y,XY and X/ (X + Y). A summary on kurtosis of the TL distribution was discussed by Kotz
and Seier (2007). Also, Al-Zahrani (2012) and Geng (2012) discussed the goodness of fit tests and
moments of order statistics for the TL distribution, respectively.

To make the TL distribution more applicable, some generalizations of it have also been considered
in the literature. For example, Vicaria et al. (2008) presented two-sided generalized TL distribution.
Authors talked about some properties of this family of distributions and defined a procedure for
estimating the parameters using maximum likelihood estimation. Pourdarvish et al. (2015) proposed
exponentiated TL distribution and studied its hazard rate function, moments, and order statistics.
Recently, Al-Shomrani et al. (2016) introduced a generalization of the TL distribution using Z(u) as
the base-line c.d.f. in the TL distribution and derived the hazard rate function and its moments. Rezaei
et al. (2017) also proposed a generalization of the TL distribution. They acknowledged [Z (u)]g as the

base-line distribution and named it Topp-Leone generated (TL-G) family of distributions. The
distributions of this family also have the hazard rate functions with bathtub shape for all 4 € (0,1),
and maybe utilized for modeling lifetime events. Assume that the p.d.f. of the TL-G family of
distributions having parameters ¢ and & is

[@;8,0,6)=2902(u;)Z ;6" (1-Z(ws )’ )2~ Z(wse) ), weR,0,8>0 (1)
and the corresponding c.d.f. is

Fu:8,0.6)=(ZGu:) (2-Zw:)' ) u e R.0,9> 0, 2)

where Z(u;¢€) and z(u;¢€) represent the c.d.f. and the p.d.f. of the base-line distribution, respectively,
and & contains the parameters which specify the base-line distribution. For ease of notation, we write
U ~TL-G(4,0,¢) for a random variable U having p.d.f. written as (1). If we take the base-line

distribution as U(0,b) along with € =1, then the TL-G family of distributions reduces to the TL

distribution. Recently, some authors introduced and studied new distributions by choosing different
Z(¢), see, for example, Aryal et al. (2017), Brito et al. (2017), Sharma (2018), Korkmaz et al.

(2019), and Shekhawat and Sharma (2020).

Motivated from the TL-G family of distributions suggested through Rezaei et al. (2017), our aim
is to compare two random variables from this family of distributions in terms of stochastic orders. We
also consider one of its special cases, namely, the TL-exponential distribution and study some well-
known reliability indicators such as hazard rate function, mean residual life function, reversed hazard
rate function, and expected inactivity time for this distribution. For the definitions of the reliability
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measures, we refer to Belzunce et al. (2016) to the reader. Moreover, we define two another special
cases of this family of distributions, namely, the TL generated log-logistic distribution and the TL
generated Lomax distribution.

Now, we first recall stochastic orderings, which are partial orderings between two random
variables to judge their comparative behavior. Over the years several different stochastic orders and
their properties have evolved considerably. For definitions and applications of various stochastic
orders, one can cite Miiller and Stoyan (2002), Shaked and Shanthikumar (2007), and Belzunce et al.
(2016). In this paper, we mainly use the likelihood ratio order, the dispersive order, and the star-shaped
order.

Consider two random variables named U and V' having distributions along with R, =[0,c0).

Let f,(-) and f,(-) be the corresponding probability density functions, and F,(-) and F, (-) be the

cumulative distribution functions of U and V', respectively.

Definition 1 U is considered to be smaller than V in the
1. likelihood ratio order (indicated as U <. V') if f,(u)/ f,(u) is non-decreasing in u € R _;

V) if F/\(b)-F,'(a)<F/'(b)-F, ' (a), for all

Ir

2. dispersive order (indicated as U <,
0<a<b<]l, where, F™' denotes the right continuous inverse of F ;
3. star-shaped order (indicated asU <,V ) if F,'(b)F,'(a) < F,'(a)F, ' (b), for all 0<a<b<]l,

where F~' denotes the right continuous inverse of F.
The upcoming lemma is beneficial in obtaining the consequences of the next section.

Lemma 1. (Saunders and Moran, 1978) Let F,v € R, denote a class of distribution functions such
that F, is supported on some interval (u,,u,) < (0,00) having a density function f,, which does not

disappear on any sub-interval of (u,,u,). Then

F, <4 F.i vV eRyv<y, 3)
. L Flu) . . L . L .
if and only if is non-increasing in u, where F, is the derivative of F, with respect to v.
And
F, < F. vy eRv<y), 4)
) . Flu) . . L . L .
if and only if is non-increasing in u, where F, is the derivative of F, with respect to v.
u

v

Fw o FEW
L) @

Note that the inequalities in (3) and (4) reverse as the quantities , respectively,

non-decrease in u.

This paper is presented in the following scenario. In Section 2, we show that the reversed hazard
rate function of the TL-G family of distributions is non-increasing (and hence, the expected inactivity
time function is non-decreasing) if the reversed hazard rate function of the base-line distribution is
non-increasing. Also, we make stochastic comparisons between two random variables from the TL-G
family of distributions in terms of the dispersive order and the star-shaped order, and with the help of
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an example, we show that the likelihood ratio order may not be taken in some situations. In Section 3,
we discuss a particular case of this family of distributions called the TL-exponential distribution, and
examine few reliability indicators of this distribution, and derive some results. Also, we define the TL
generated log-logistic distribution and the TL generated Lomax distribution using the genesis of the
TL-G family of distributions. Section 4 provides real data applications to compare the fits of two
models of the TL-G family of distributions and also, compare the fits of the TL-exponential
distribution with the Lomax distribution and the Burr-XII distribution using two real data sets.

2. Main Results
In this section, we first discuss the condition under which the reversed hazard rate function (the
expected inactivity time function) of the TL-G(4,0,¢) distribution is non-increasing (non-

decreasing). Then, we provide some comparison results based on the dispersive and the star-shaped
orders.

2.1. The reversed hazard rate function
Let #(u;€),u >0, denotes the reversed hazard rate function of the base-line distribution of the

TL-G($,0,¢) family of distributions, i.c.,
_ z(u;€)
Z(u;e)

The theorem below shows that if #(u;&) is non-increasing in u € (0,00), therefore the reversed

F(u;€) u>0.

hazard rate function of the TL-G($, 8, ¢) distribution is non-increasing in u € (0,0).

Theorem 2 Let U ~ TL-G(%,0,¢) and let 7(u;&) be the reversed hazard rate function of the base-
line distribution. Then, for fixed 0,9 >0 and for each fixed &, the reversed hazard rate function of

U is non-increasing in u € (0,0) if 7(u;€) is non-increasing in u € (0,0).

Proof Let U ~ TL-G(4,8,¢) with p.d.fand c.d.f given by Equations (1) and (2), respectively. Further,
let 7,(u;3,0,&) denotes the reversed hazard rate function of U. Then,

i, (u;8,0,¢) = Ju(4:9,0,6) _ i10g(F(u; 3,0,¢)).
F,(u;8,0,6) du

Using Equation (2), we obtain that

(u;9,0,¢) = %(Sﬁlog(Z(u;g)) + .910g(2 —Z(u;e)’ ))

g 2(u;8)  90z(u;8)Z(us6)"
Z(u;€) 2-Z(u;¢)’

| 290z(u;6)(1- Z(u;2)’)

Z(u;e)(2- Z(u;6)’)

=2967(u; €) 1—;9 ,u>0.
2—-Z(us¢)

Now, it is straightforward to look that 7, (#;3,0,¢) is non-increasing in u € (0,00) whenever

7(u; &) is non-increasing in u € (0,0).
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Remark 1 This is popularly recognized that the non-increasing reversed hazard rate implies non-
decreasing expected inactivity time (see Chandra and Roy 2001). Then, using Theorem 2, it follows
that the expected inactivity time of the TL-G(4,0, &) random variable is non-decreasing in u € (0,0)

if 7#(u;&) is non-increasing in u € (0,0).

2.2. Stochastic comparisons of the TL-G family of distributions

In this subsection, we compare two random variables from the TL-G family of distributions in
terms of the dispersive order. Moreover, the star-shaped order. The following theorem provides the
stochastic comparisons of the TL-G family of distributions when the parameter & varies.

Theorem 3 Let U ~ TL-G(8,6,,¢) and V ~TL-G(9,0,,&) be two random variables having base-
line distribution Z(u;e) with support (0,00). Then, for fixed 9>0 and for each fixed
log(Z(u;g))[log(Z(u;g))

g, V< p
F(u;€)

UV <.U) whenever 6, <0, and

disp J is non-decreasing in

ur(u; &)

u € (0,00), where F(u;&) is the reversed hazard rate function of base-line distribution.

Proof For a fixed 9 >0 and for any fixed &, let the p.d.f. of U is written as

9-1

o @) =290, 2(u; ) Z(u; )" (1- Z(us )" )3’1 (2-z@e)") . u>0.6,>0.
Clearly, the c.d.f. of U is F), (u) = (Z(u;g)”‘ (2—Z(u;5)0‘ ))g, u>0,6>0.
Then,
F) () =~ F, (u)
0 - 691 0

9

=—9Z(u; )" (2 —Z(u; )™ )'9_1 log(Z(u;))+ .910g(Z(u;g))Z(u;g)H“9 (2 —Z(u; )™ )

I o[ 2w’
= 9Z(u;€) (2 Z(u;¢€) ) log(Z(u,e))[l 2—Z(u;€)g‘J

=28Z(u; &)’ (2 —Z(u;e)™ )9 log(Z(u;g))(%j.

F) log(Z(u; log(Z(u;
@) =l ogN( (u’g)), which is non-decreasing in # € (0,0) as Og~(—(ug))
o) 6 Fe) F(u;€)

decreasing in u € (0,00). Hence, on adopting Lemma 1, we achieved that ¥ <, U whenever 6, <46,.

Therefore, 1S non-

disp
Further, we have

F, (u) _Llog(Z(u;g))

ufy, ) ub  F(use)
log(Z(u;¢))

which is also non-decreasing in u € (0,) as ~
ur(u; &)

is non-decreasing in u € (0,%0). Hence,

on adopting Lemma 1, we have that V' <, U whenever 6, <6,. The following example supports the

existence of the assumptions made in Theorem 3.
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Example 1 Let U ~ TL-G(4,6,,¢) and V ~ TL-G(4,6,,¢) be two random variables with base- line

T’

,u>0,7>0,p>1. Here £ =(z,p). Then, g(u;7,p)=10u""'e ™ ,

—Tu”

distribution G(u;7,p)=1-¢
ou”!

T’

1 . wf _
o) = 0g(Gu;z,p)) _ (e ~1Dlogli-e ), Vs,

ru;t, p) ou””!

u>0,7>0,p>1, and #(u;7,p) = , u>0,7>0,p>1. Now, let

and

0,) = log(G(u;7, p)) _ (e —Dlog(1—e") uso.

ur(u;7, p) ou”’

Now, for 7 =2 and p =2.5, with the help of R-software, we plot o, (1) and w,(u) as given in

Figures 1 and 2, respectively . Clearly, o,(u) and @,(u) are non-decreasing in u € (0,o0) and hence,

on adopting Theorem 3, we achieved that V' <, UV <, U).
g | 8 4
o o
8 S |
Q@ <
S o S e
g g — & gl _
- =
S ] e ]
T T I T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
u u
Figure 1 @, (u) shows V <, U Figure 2 @, (1) shows V<, U

The following theorem directly follows from Theorem 5.1 of Sharma (2018).

Theorem 4 Let U ~ TL-G(8,,6,,¢) and V ~TL-G($,,0,,5) be two random variables. Then, for
6 =0, (> 0) and for any fixed ¢, U <.V whenever 8 <39,.

One may be interested in comparing the random variables U and V' in terms of the likelihood
ratio order when 6, # 6,. The upcoming counterexample demonstrates that the likelihood ratio order

may not hold when 6, # 6,.

Counterexample 1 Let U ~ TL-G(9,,6,,(h,k,)) and V ~ TL-G(9,,6,,(h,,k,)) with base-line c.d.f.

Z(u;h,k) = l—e’("”’)k ,u>0,h>0,k>0, i.e, U and V follows Topp-Leone Generated Weibull
(TLGW) distributions proposed by Aryal et al. (2017). Then, this can be easily get that
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G -1

Sy (u) _ 4,0, k, {hlkl jukzk' ef((“/hz)m(u/hx)kl) (1—67(”’2)‘2 )62'9271 (1—(1—670’/}#2 )62 ) (2—(1—67(”,1#2 )92 )
L2222 L 5T

ky 4 \Od -1 o \é K
7ot 90,k K (e T (e ) (o (1))
u>0,0,9,h.,k >0,i=12.
On taking 4 =0.1, 4, =0.2, i =1, h, =2, k, =2, and k, =3 in the above equation, we get

6,

x0.2)— 3\0 3 \& 08
f,0) 36, {wrye) (1_6—(14/2)3 )(19'2 02)-1 (1_(1_67(,,/2) )5 )(2_(1_67(14/2) ) ) o
f (I/l) :g;ue i (6,x0.1)-1 ( 2 HI) 2\ 09 _(p(u’el,QZ)'
U 1 (l—e ) 1—(1—67" ) (2—(1—6’” ) )

(%)
Now, we plot ¢(u;1,2) and ¢(u;2,1) (see Figures 3 and 4). Clearly, in both the cases, ¢(u) is

not monotone, which means that neither U £, ¥ nor V £_U. This shows that the likelihood ratio

order may no longer exists between U and V if 6, #6,.

. 5 |
& &
- =
© B ? =
Lo
T % 2
ER g 8
5 .
+ | ~
S 2 |
S | &
o
o
% S
=] T T T T T T 8 T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
u u
Figure 3 The ratios of the density functions Figure 4 The ratios of the density functions
when 6 =1, 6, =2 when 6, =2, 6, =1

3. Some Special Cases of the TL-G Family of Distributions

This section of the article is devoted to some particular cases of the TL-G family of distributions.
First, we consider the TL-exponential distribution by using the exponential distribution as the base-
line distribution. In addition, we study some reliability indicators and the Renyi entropy measure for
the TL-exponential distribution. Second, we define the Topp-Leone generated log-logistic distribution
(TL-log logistic), and the Topp-Leone generated Lomax (TLGLo) distribution using the log-logistic
distribution and the Lomax distribution as the base-line distributions, respectively. Also, we show
some graphical representations of the hazard rate functions for both the distributions.

3.1. The TL-exponential distribution
In this subsection, we use the exponential distribution as the base-line distribution with

Z(uyp)=1-e*" and @ =1, then the p.d.f. of TL-exponential distribution with parameters ¢ and u
is written as
£ ) =28ue™ (1= )" 1> 0,1>0,9>0, (6)

and the corresponding c.d.f. is

7214'9
Fyu)y=0=e?)", u>0,u>0,9>0.
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For a random variable U with p.d.f. written as (6), we write U ~ TL - Exp(%, ). Figure 5

indicates the shapes of p.d.f. of TL-exponential distribution for ¢ >1 and for distinct values of .

v=2 v=3
w0 — :' _ “=2 v - g - “=2
S n=4 - i n=4
S o — :". “““ n=§ S ™ - . ...... n=§
2 =
™~ :IA,\ o — -‘.’Z\
- 1% S A
BN AN
O === o ! Ciooms
) J T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
v=4 v=5
= 5 - “=2 v — u=2
- — n=4 - - & n=4
B Y n=4 S e dit | e n="§
2 : = i
A N o~ '}\
- Jin -
o - ;;' "..>::7 _— . \'-‘k'.-—
I | T | T | I : : | ; |
0 1 2 3 4 5 0 1 2 3 4 5

Figure 5 Shapes of the p.d.f. of TL-exponential distribution for & >1 and for distinct values of

Few authors have studied the shapes of the hazard rate functions and the p.d.f. of TL-exponential
distribution for distinct points of ¢ and u (see, Al-Shomrani et al. (2016) and Sebastian et al. (2019)).

Now, we discuss some reliability indicators of TL-exponential distribution.

3.1.1 Hazard rate and mean residual life functions of TL-exponential distribution

These two reliability indicators are essential vital features in survival analysis and reliability
theory. Moreover, they defined earlier in terms of the time to failure of a device. But, the mean residual
life function becomes more appropriate reliability measure than the hazard rate function because it
compiles the whole remaining life, whereas the hazard rate function gives instantaneous failure at time
u > 0. For the definitions and other details on the hazard rate and the mean residual life functions, we
refer the readers to Ramos-Romero and Sordo-Diaz (2001), Belzunce et al. (2002), and Lai and Xie
(2006). The hazard rate function for the TL-exponential distribution is written as

" (u) _ fu (u) :§672”“ (1—672/1“ )9—1
l—FU(u) 7 1_(1_672#14 )‘9

Al-Shomrani et al. (2016) and Sebastian et al. (2019) discussed the shape of the hazard rate

function for various points of 9, and for ¢ =3 and x = 0.3, respectively. They graphically showed

, u>0,9>0,u>0.

that the TL-exponential distribution has strictly non-decreasing hazard rate function for ¢ >1 and has
strictly non-increasing hazard rate function for 4 < 1. Now, the following theorem provides the proof
of the above-mentioned graphical observations for any x>0, i.e.; we show that different form of the

hazard rate function of the TL-Exp($, x) distribution is strictly non-decreasing for ¢ >1, strictly

non-increasing for 4 <1, and constant for $=1 for any x>0.
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Theorem 5 Let U ~ TL-Exp(4, 1) and let 1,,(-) be the hazard rate function of U. Then, 1, (u) is
strictly non-decreasing (strictly non-increasing, constant) in u € (0,0) for 9>1 (9 <1,9=1) for any

1>0.

Proof The p.d.f,, f;, (1), of the random variable U is written as (6). Define

d
™ — Ju ()
n(u)=- AR u>0.
U
2u(1- e
Obviously, n(u) = %, u>0,
—e
2 3_1 —2 pu
as well as i77(u) :%, u>0.
du (1_672;114)

Clearly, for any fixed x>0, we have d£77(u)>0(< 0,=0), for every u>0, if
u

9> 1(3 <l,9= 1), which means that 7(u) is strictly non-decreasing (strictly non-increasing,
constant) in u € (0,0) for 9> 1(9 <lL,9= 1). Now, on adopting Theorem 2.1 of Lai and Xie (2006),
we achieved that the hazard rate function, 7;, (1) , is strictly non-decreasing (strictly non-increasing,
constant) in u € (0,00) for $>1(9<1,9=1) forany u>0.

Now, the mean residual life function for the TL-exponential distribution is written as

[o-r@a [(1-0-e))ar

my, (u) == =4 , u>0,9>0,u>0.
v 1-F, (u) 1—(1—e2m)’

On using binomial expansion (any index), we obtain the expression for the mean residual life
function of TL—exponential distribution as follows.

my (1) = QT ( j ) () ar, Where(19]:‘9(‘9_1)"'(3—’%4-1)
(1) uim

m m!

N 19 ”1 K . .
= 3 Z[ j l je #mdt, by Fubini's theorem

1_ 72/414 o m
= (9
m 1 _2
- = 5 Z am sy > 0.
1— a yu m=1\T

3.2.2. Reversed hazard rate function and expected inactivity time of TL- exponential distribution
Despite being similar to the above functions, these two functions are frequently used in life testing
problems. They play a significant role in censored data research. Also, they are relevant in fields like
Forensic Sciences (see, for example, Kalbeisch and Lawless (1989), Chandra and Roy (2001), and
Kayid and Ahmad (2004), and references cited therein).
For the TL-Exp(%, 1) distribution, the reversed hazard rate function and the expected inactivity

time are written as
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fyw) 28 1

FU(u):FU(u):T( Zm«_l)’ u>0,9>0,u>0,
F, (1)dt
i (u)zzl)‘ o0 - T(l—e_zl”)gdt u>0,9>0,u>0
U Fu(u) (l_ _2#")3 5 5 5 s

respectively. The expected inactivity time measures the actual time of a device that has already failed

in the interval [0, u] On adopting binomial expansion (any index), we obtain that

i) =——— [y

non-

[ j (’2”’) dt, where(‘g]:land [‘9]=19('9_1) (- m+1)

m m!

m=0

(=]

3 ) 0 e *™dt, by Fubini's theorem
Ty R

1 (9 m 1
:mzim)(‘“ e A
—e m=

Now, we state the following corollary which comes directly under the observation that 7, (1) is

increasing in u € (0,0) and Remark 1.

Corollary 1 If U ~ TL-Exp(3, 1), then U has non-increasing reversed hazard rate function and

non-

decreasing expected inactivity time.

3.1.3. Renyi entropy

one

The degree of unpredictability of a random variable U is defined in terms of entropy, and the
which is well-suited in this case is the Renyi entropy (Renyi (1961)). For a continuous random

variable U having p.d.f. f,(-), the Renyi entropy is written as

EL(5) =$log(j 1 (u)du),

where 6 >0 and & # 1. For the TL-Exp($, 1), the expression for the Renyi entropy is written as

Eq(@)=+

<log [I (28u)° 200 (12 )Y du].

Now, on using binomial expansion (any index), we obtain that

R = (5(9-1
ER(5)=$1og[j(29y)5eWZ( (m )](—l)”’ez‘””“du],

m21

>

where (

o[ e

= (o(9-1 3 )
:1 15 [ )y Z( ( )j(_l)mj.ezmmm)du], by Fubini's theorem
m=0 0

5(3—1)]= SI-1)(S(F=1)=1)---(5(-1)—m+1)

m m!
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e S (SE-DY 1
1—51°g((2‘9“) ,;)( m ]( D 2,u(5+m)}

3.2. The TL-log logistic distribution and the TLGLo distribution
In this subsection, we take the log-logistic and the Lomax distributions (see, Lomax (1954)) as

()’
+ nu ’

Then, the p.d.f. of the TL-log logistic distribution and the TLGLo distribution are given by
P 0 9-1
s nu s nu s
fU (u) = 290ﬂ77ﬁ93 5 71+09 1- ( ) 5 2- ( ) B P
[1+ ()] L+ () 1+ (1)

u>0,9>0,0>0,8>0,3>0,

the base-line distributions with Z(u; S,7) = and Z (u; B,m)=1-(1+ nu)_ﬂ , respectively.

(7

and

fi ) =296pn (1+ ) [1‘(1“7”)_[3}%1 [1_(1—(l+77u)_ﬁ )9}[2_(1_(”77“)_,; )T_l,
u>0,9>0,6>0,6>0,7>0,
(®)

respectively, and their corresponding c.d.f. are

o T, (my YT
Ry =| — | oo 2L u50,850,0>0,8>0,7>0,
1+ (nu) 1+(nu)

and
g

Fy(u) =[1—(1+77u)ﬂT'Q{z—(l—(lmu)/’)e} L u>0,8>0,0>0,8>0,7>0.

Figures 6 and 7 represent the possible shapes of the p.d.f. of the TL-log logistic distribution and
the TLGLo distribution, respectively. Figures 8 and 9 illustrate the possible shapes of the hazard rate
functions of the TL-log logistic distribution and the TLGLo distribution, respectively.
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Figure 9. Shapes of the hazard rate function of the TLGLo distribution

4. Real Data Applications

In this section, first we analyze a real data set to compare the fits of two models of the TL-G
family of distributions, named TLGW distribution and TL-log logistic distribution (defined in
Subsection 3.2), and then we provide the applications of the TL-exponential distribution (defined in
Subsection 3.1) to two real data sets, and compare the fits of this distribution with the Lomax
distribution and the Burr-XII distribution. The criteria used for choosing the best fitted distribution
are: Akaike information criterion (AIC), Akaike information criterion corrected (AICC), Bayesian
information criterion (BIC), Kolmogorov-Smirnov (KS) statistic, and its p -value. All the calculations

were conducted using the R software.

4.1. Comparative study on two models of the TL-G family of distributions

In this subsection, we consider two models of the TL-G family of distributions, named TLGW
distribution and TL-log logistic distribution (defined in Subsection 3.2), respectively, and compare the
performances of both models with the help of a real data set. The density function of the four parameter
TLGW is given by
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Jow) = 2808w e (1 ) [1 S )1{2 (1o’ )QT_] :

u>0,9>0,6>0,5>0,7>0.
respectively. We consider a data set includes 63 observations of the strengths of 1.5 cm of glass fibers
collected by UK National Physical Laboratory and also applied by Smith and Naylor (1987). The data
is given as:

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39,
1.42, 1.48, 1.48, 1.49,1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61,
1.61, 1.61,1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76,
1.77,1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24.

First, we provide some descriptive statistics of the data set in the following Table 1.

Table 1 Descriptive statistics for the strength data of glass fibers

Descriptive statistics Data set
Minimum 0.550

Median 1.590

Mean 1.507

Maximum 2.240

Standard deviation | 0.3241257

Further, we plot the probability-probability plots (PP-plots) in Figure 10 for the TLGW and TL-log
logistic models which provides a suitable fits to the data.

TLGW TL-log logistic

Empirical Cumulative Distribution
Empirical Cumulative Distribution

Theoretical Cumulative Distribution Theoretical Cumulative Distribution

Figure 10 The PP-plots of the strength data of glass fibers fitted with the TLGW and TL-log
logistic models.

Now, we compute the estimates for the unknown parameters of each model using the method of
maximum likelihood (ML) estimation and then we compare the results through statistics: AIC, AICC,
BIC, KS statistic, and its p-value, and —log/ indicates the log-likelihood function evaluated at the

ML estimates for the both data sets (see, Table 2). The best model fits the smallest AIC, AICC, BIC,
KS statistic, and the largest p-value.
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Table 2 ML estimates and log-likelihood functions for the TLGW and TL-log logistic models, and
the statistics AIC, AICC, BIC, and KS statistics with its p-values for the strength data of glass fibers

Models ML estimates -log!/ AIC AICC BIC  KSstatistic  p-value

TL-log 8= 0.1964573 12.6589 333178 34.00746 41.89034 0.12698 0.69
logisti R
OBIHC 5216199747

£ =14.5917323

7 =0.5459271

TLGW  3-04127334 1456609  37.13218 37.82184 45.70472 0.14286  0.5412

0=1.8399951
B =6.4448543
7 =0.5491863

Since, the results from Table 2 show that the TL-log logistic model has the smallest values of
AIC, AICC, BIC, KS statistic, and the largest p-value, so, this could be considered as the best model
as compared to the TLGW model.

4.2. Comparative study on the TL-exponential with the Lomax distribution and the Burr-XII
distribution

In this subsection, we present the applications of the TL-exponential distribution to two real data
sets and compare the fits of this distribution with the two parameter Lomax distribution (see, Lomax
(1954)) and Burr-XII distribution (see, Burr (1942)). The density functions of the two parameter
Lomax and Burr-XII distributions are given by

g)=3u+ )" u>0,9>0,u>0,
and
h(u) = G A+u)y " u>0,9>0,u>0,
respectively.

Consider, the first data set consists of 20 observations which describes the relaxation times (in
minutes) of 20 patients who receiving an analgesic as recorded by Gross and Clark (1975). The data
is given as:

1.1,1.4,13,1.7,19,18,1.6,2.2,1.7,2.7,4.1,1.8,1.5,1.2,1.4,3.0, 1.7, 2.3, 1.6, 2.0.

The second data set consists of 31 observations which is the strength data of glass of the aircraft
window recorded by Fuller et al. (1994). The data is given as:

18.83,20.80, 21.657, 23.03,23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05,
27.67, 29.90, 31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58,
44.045, 45.29, 45.381.

We show some overview of the data sets 1 and 2 in the following Table 3.
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Table 3 Descriptive statistics for data sets 1 and 2

Descriptive statistics | Data set 1 | Data set 2
Minimum 1.1 18.83

Median 1.7 29.9

Mean 1.9 30.81

Maximum 4.1 45.38

Standard deviation | 0.704123 | 7.253381

The fitting of these distributions to the both data sets have shown in Figures 11 and 12 by using
PP-plots, which indicate that the TL-exponential distribution can also be a good option to fit the data
as well as other distributions.

TL-exponential Lomax
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Figure 11 The PP-plots of relaxation times of patient’s data fitted with the TL-exponential, Lomax,
and Burr-XII distributions
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Figure 12 The PP-plots of the strength data of glass of the aircraft window fitted with the
TL-exponential, Lomax, and Burr-XII distributions

Now, we compute the ML estimates for the unknown parameters of each distribution and compare
the results based on AIC, AICC, BIC, KS statistics, and its p-values for the both data sets (see, Table
4). The values of —log/ for each distributions are also calculated for the both data sets.
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Table 4 ML-estimates and log-likelihood functions for the TL-exponential, Lomax, and Burr-XII
distributions, and the statistics AIC, AICC, BIC, and KS statistics with its p-values
for data sets 1 and 2

Models ML estimates -log! AIC AICC BIC KS p-value
statistic
Data T.L- 9 =136.682456 16.26061  36.5212 37.2271 38.51268 0.15 0.978
set 1 exponential .
2=1.117614
Lomax g _ 1 3745950+ 03 32.84344  69.6868 70.3927 71.67834 040  0.08152
f=3.821833¢—-04
Bur-XIl 4 _ 01277514 21.84344  46.4143 47.1201 48.40576 0.25 0.5596
f=132.81326644
Data T'L— 9=93.75757060 104.1314  212.2686  212.697 215.1366 0.12903 0.9634
set 2 exponential
£=0.08300174
Lomax 4 _ 4 634453¢40p 1372984 2785968 279.025 2814648 0.45161  0.003178
f=6.918740e—-05
Burr-XIL & _ () 05783577 174.3869 3527738  353.202 355.6418 0.54839  0.000125
i =5.08354219

Since, from Table 4, it can be easily seen that TL-exponential distribution has the lowest AIC,
AICC, BIC, KS statistic, and the largest p -values as compared to the Lomax and Burr-XII

distributions, and thus, TL-exponential distribution considered as the best distribution among the
Lomax and Burr-XII distributions.

5. Discussion

The comparisons of two random variables from the TL-G family of distributions with respect to
the dispersive and the star-shaped orders have been discussed. Also, a special case of this family of
distributions, called TL-exponential distribution has been considered. Some reliability indicators of
this distribution have been studied. We have defined two members of TL-G family of distributions,
named TL-log logistic and the TLGLo distributions using the base-line distributions as the log-logistic
and Lomax distributions, respectively. Also, the real data applications have been provided to compare
the fits of distributions using AIC, AICC, BIC, KS statistic. We have also computed the ML-estimates
for the unknown parameters of each distribution. We have presented the fits of the TLGW and the
TLGLo distributions using a real data set, and provided the applications of the TL-exponential
distribution with two real data sets and compared the fit of this distribution with the Lomax and Burr-
XII distributions.

6. Conclusions

With the help of a real data set, we show that the model TL-log logistic has the smallest values of
AIC, AICC, BIC, KS statistic, and the largest p-value in Table 2, which describe that TL-log logistic
model is the best model as compared to the TLGW model. Also, with the help of two other real data
sets, we show that the TL-exponential distribution has the lowest values of AIC, AICC, BIC, KS
statistic, and the largest p-value as compared to the Lomax and Burr-XII distributions (see, Table 4),
and hence, the TL-exponential distribution considered as the best model among the Lomax and Burr-
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XII distributions. The study presents the importance of the TL-G family of distributions and suggests
for further research on different aspects of the TL-log logistic and the TLGLo models which are not
discussed in this paper.
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