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Abstract

In this paper, we use an autoregressive model to investigate the behavior of mergers and
acquisitions. It studies a non-linear time trend, which is approximately converted into a linear time
trend using the spline function, which divides the series into piecewise linear segments between the
knots. These knots are the change points where the trend pattern gets changed. The major aim of this
study is to offer a merged autoregressive spline (M-ARS) model that can be used to analyze the
influence of the merger on the parameters as well as model behavior. First, we obtained an estimation
setup based on the well-known classical least square method and posterior distributions under the
Bayesian approach with different loss functions. Then, the effect on the series based on the merger
variable is significantly determined by the Bayes factor. The applicability of the proposed model is
illustrated based on a simulation study and real application in the Indian banking sector.

Keywords: Autoregressive model, posterior distribution, loss function, merger, spline function, linear and non-
linear time trend.

1. Introduction

A time series is a method for analyzing and modelling chronological data. When there is an
association between past observations, then an autoregressive (AR) model is a plausible model to
forecast future behavior based on previous information (Box and Jenkins 1970, Newbold 1983). The
AR time series model has attracted a large number of researchers in both econometrics and statistics
for several decades (Kumar and Kumar 2019). In AR series, sometimes associated series are involved
along with dependent series, which affect the process (Kumar et al. 2017). Though these associated
series do not remain with the series for a long time, they get merged with dependent series after some
time. So, few series under study are terminated after a certain period in the observed series. This
process is known as merger and acquisition (M&A). Recently, such type of modelling had done by
Kumar and Agiwal (2020).

In terms of mergers and acquisitions Hossain (2021) and Alarco (2018), discussed about the
significant changes in the international landscape over the last several years. Deregulation of the
financial sector has resulted in the introduction of new players and goods with advanced technology,
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globalization of the financial markets, changing consumer behavior, broader services at lower prices,
shareholder wealth demands, and so forth (Paul 2017, Aljadani 2019). Thus, M&A is a powerful
technique in the globalization of the economy’s growth and expansion. Khan (2011) discussed about
the major motivation for M&A 1is to create synergy, which means that two plus two is more than four,
and this logic tempts organizations to merge during difficult circumstances.

In recent decades, researchers have taken the inferences to perform research in the area of merger
concepts for the growth of companies and examined the effects and performance after mergers. There
is a lot of literature available on the M&A process like Lubatkin (1983) addressed merger problems
and showed benefits to the acquiring organization. Resende (1999) studied the M&A series using
Markov switching modes and observed that merger presence and endogenous shocks had a significant
effect. Diaz et al. (2004) found bank performance when banking and non-banking organizations
merged and acquired in the European Union and got efficient profit. DeLong and DeYong (2007)
carried out a study on 50 of the biggest US bank mergers between 1979 and 1984 to analyze cash flow
performance and observed that the operational performance of the merged organizations improved
significantly. Agiwal and Kumar (2021) proposed a merged autoregressive (M-AR) model for analysis
of the M&A concept in univariate mobile banking series.

When the time trend comes non-linear it’s difficult to predict. So, to overcome this problem spline
function is a plausible function to M&A (Kumar et. al 2020) and the trend pattern of the structure
shows the data's non-linearity. Hence, the spline function can be used to approximate this non-linear
trend into piece-wise modelling. With advancements on both the theoretical and computational fronts,
spline function has become a well-established technique in statistical analysis. Eubank (1999)
discussed that a spline function is the smoothest possible piecewise polynomial that retains a segment
nature. Hurley et al. (2006) called spline as lines or curves function which is usually required to be
continuous and smooth. In particular, it is frequently used to build explanatory models in time series
and economics. This is used to describe smooth functions of interest, including non-linear effects, in
many new methodological developments in the current time series.

In this paper, we are focused on developing the M-ARS time series model with the help of the
AR model and some associated series. These associated series are merged into the observed series
after a considerable period. In this newly developed model, the spline function is used as a trend
converter. Therefore, an extended time series model is proposed to manage the non-linear time trend
and to understand the effects of mergers and acquisitions. Section 2 describes the expanded form of
the merger autoregressive model through the spline function. The classical and Bayesian
methodologies under different loss functions are discussed in Section 3 for the proposed model and
also defined the testing procedure to show the merged effect. Sections 4 and 5 respectively consider
the simulation and real data analysis to show the methodology’s adequacy and appropriateness in a
real application. The brief conclusion is defined in Section 6.

2. Merger Autoregressive Spline (M-ARS) Model

This section considers the merged autoregressive (M-AR) model with the inclusion of spline
function for controlling the non-linear trend pattern through piecewise models. Up to merger time T,
the observed series follows AR(pl) process with k£ time-dependent associated variables and a linear
spline function. These associate series also follow the AR model with different orders (r,; h=1, 2,
..., k). After the merger time point, associate series are merged into the observed AR series with a

different order p,. This shows that observations of the associate series are not recorded due to being

merged into the acquired series. But this may change the structure of the series which is controlled by
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linear spline function only. The proposed model is called a merged autoregressive spline( M- ARS)
model. Finally, the structure of the M-ARS model will be in this form.

A

P1 k
6, +Z<Duy,,, +;Z]5h,-zh,,,, +Z}qﬂnsn(r)+e, ; 1<T,
1= = /: n=
' (1)

Vi =
P2 A

92"'2(1)21')’:-1"’2\}’2”‘9”(0"'5; ;t>T,,
i=1 =1

where {y,,t=1,2,...,T} is an observed series, 8, and @, are the intercept terms, A, is the number of

knots before merger time that contain locations of knots (#,,.t,,,....1,, ) and A4, is the number of knots
after merger time that contains locations of knots (,,,t,,,...,¢,, ). ‘¥, is the coefficient of n™ knot,

where i =1 and 2, and by Equation (2), we define S, (#) which is a spline function, described as a
linear polynomial form which is as follows.
S (1) = (t—z.)+={t_t" >0 2)
! ' 0; t<t,
&, 1s assumed to be i.i.d. (independently identically distributed) normal random variable with mean

zero and unknown variance o’ and the merger coefficient of the 4" series is denoted by &,. Model

(1) can be defined in matrix notation as shown below.
Y, =60l +®X, +6Z, +¥,S, +¢& 3)

YTme = HleTm +(D2Xr7rm +‘P2ST7,"’ +é&r g - 4)

Moreover, the final model in matrix form has been written by combining Equations (3) and (4),

Y, I, 0 6, X, 0 @, Z, (& Sy 0 ¥, &r
"= + " + + " + Q)
Yrq 0 L, \6)\0 X, )(®, 0 0 0 S, Y, &g,

We can also write the Equation (5) in this form,

Y=LO0+Xp+Z5+SY +¢, (6)
where
Zpo Zn-1t Zpiey,
Z,, Z, . Z Z
Z;.n =| h,l h,0 h,2-n, , ZTm — (Z;.n Zz Z;(m )’ Z — (0 T, ],

Zh,Tfl Zh,T*Z o Zh,Tfr,l

' ' (O]
o, :((1)“ chz”'CDIp,) , @, 2((1)21 D, (D2p2) > B:[ 1]7

ch
S(T,+1) S, (T, +1)---S, (T, +1) S (1) S,(1) - 8,(1)
ST, +2) S,(T, +2)--S, (T, +2) o _ S(2) S,(2) - 8,(2)
Tn, | ’ Lo ’

S(T) S,(T) - 8,(T) S(1,) $,(T,) -8, (T,)
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Yo Vo o Vi, Yo, Voo Vraep,
X, = ‘yl Yo § Yop, ’ X, = :yrmu Y, ) Yr, +2-p, ’
Yo, Yo, 2 Vi, Yrao Ve o Vo,
L, 0 X, 0 S, 0
L= " R X = " R S = " R 51=(51 52 51()"
0 I, (U, ¢ 0 S,

s ér, 6, ) '
o= , &= , 6= , O=(P, D,), ¥Y=(¥ Y,
0 Erg 0,

8, = (0 Oy, "'5/.,71 ),

The proposed AR model is used to analyze the non- linear trend components when the merger is
taking place. This merger has several impacts to change the structure of the observed series which
only be analyzed by putting the spline function that makes the model as a piecewise linear AR model
with merging observations. Thus, the spline function can be used as a very important tool to convert
the non-linear trend pattern into a linear trend pattern in the presence of the M&A process. The
inference of the proposed model is described under both classical and Bayesian points of view in the
next section.

3. Inference for the Study

The primary conclusion of any research problem is to understand the data generating process
based on the available information. The time series models are used to develop a future forecasting
mechanism based on current and previous situations. In time series, one may be interested in drawing
inferences about the structure of the model through estimation as well as concluding the model through
hypothesis testing. Hence, the purpose of this section is to discuss the estimation and testing techniques
to determine the M-ARS model’s performance.

3.1. Classical estimators

Maximum likelihood (ML) and least squared (LS) techniques are commonly used for parameter
estimation in regression-based models because it gains a closed functional form or simply transfer in
matrix form (Ghosh. et al. 2007). For the M-ARS model, parameters of interest are 8, 5,0, and ¥

by using LS and its associated sum of square residuals (SSR)define in the Equations (7) and (8) for a
given time series model in Equation (6) is given below,

0
6= ﬂ =(E'E)'E'Y, (7)
o
¥
where E=(L X Z S) and
SSR = (Y —E(E'E)'E'Y)'(Y ~E(E'E)'E'Y). 8)

3.2. Bayesian estimation
In the Bayesian framework, prior information is about the unknown parameters which are equally
important as the likelihood function of the model. To determine the posterior probability, the prior
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function is needed. For all parameters of the M-ARS model, we consider the informative conjugate
priors function and adopt a multivariate normal (MVN) distribution with a different means and
common variance for intercept, autoregressive, merging coefficients, and spline coefficients. Assume
an inverted gamma prior where “a ” and “b ” are the hyper parameters of gamma prior. These priors
are chosen the same as the priors taken in the paper Kumar and Agiwal (2020). Which are as follows,

0~ N(u,1,6°), ueR?*,c° >0, )
IB~N(7/’[}’|+}’202)’ 76RPI+PZ,Uz >05 (10)
8~ N(a,1,6%), acR*, 6> >0, (11)
k
where R:Zrh 12,
h=1
‘P~N(c,IAl+A202), ceR"*% o >0, (12)
o’ ~ IG(a,b), a,b>0. (13)

By using the priors, which are defined in Equations (9) to (13), we obtain the joint prior
distribution defined in Equation (14).

() = f(O) f(B)f () fW)f(c?)
1 rr—-1 _
- (272.)(P1+P2+R+A|+Az+2)/2 : 202 {(0—-n) 12 (0—p) (14)
+(B=1)1,., (B-N+@-a) I (S-a)+(¥ =)', , (¥ ~c)+2b}],
The proposed model’s likelihood function is written as in Equation (15),
B (0_2 )—T/2
L(®b}) - (272')T/2

The posterior distribution is determined by combining the information from the observed series
with the joint prior distribution. The posterior distribution for the proposed model is of the form in the
Equation (16).

R+R+P+A4+A4
RREBA ) e 1

(o) 2 Ta .exp[—

exp[— 2;2 (Y-LO-XB-Z5-S¥)(Y-LO-XB—-Z5— S‘I’)}}. (15)

T1(Bly) « I1(®).L(Bly)
) ,(MJraJrz) 1 A A
x (o) ? expl=o O - L O =)+ (B=7), ), (B=1)+

(S-a) ;' (—a)+(¥ —c)’I/;1+A2 Y-+ Y-LO-XL-Z5-S¥) (16)
Y-LO-X[—-Z6-SY)}].

For parameter estimation under the Bayesian approach, a loss function must be specified based
on decision theory. Several symmetric and asymmetric loss functions can be used to select the most
favorable explanation of the generated samples, which are decreasing the associated risk in the
simulated samples. However, there is no method for deciding on the loss function. Hence, we have

optimized the presented model's inferences by using the following loss functions: (1) squared error
loss function (SELF), (2) absolute loss function (ALF), and (3) entropy loss function (ELF).

bser (@1 Y) =E (§(®)[Y) = KI 6(O)n(® ] Y)do,

9 (@1 Y) =[E (¢ (®)| V)] = (KJ¢1(®)R(® | Y)d®J ;
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¢ALF ©®|7)= E/r

@—@‘zKH@—@)‘ﬂ(@W)d@.
(€]

It should be noted that evaluating the ratio of multiple integrals, a closed expression is difficult to
derive analytically. This is a big challenge in implementing the Bayes technique. To obtain posterior
samples from the posterior distribution, we use the MCMC algorithm. The conditional posterior
distribution of respective parameters is obtained and given below in the equations from (17) to (21).

01 8.6,¥,0°,Y ~ MW(((Y—Xﬁ—Z&—S\P)' L+,u12’1)(L'L+12’1 ) (rLrt) azj, (17)

B16,5,¥,0%,Y ~ MVN(((Y—L@—Z&—S\V)' X+yI' )(X'X+[’1 )'1 ,(X’X+I’1 )'1 azj,

Ptps Ptps
(18)
500,8,¥,0%,Y ~ MVN(((Y—LH—X,B—S‘P)’ Z+a1,;‘)(z'2+1,;‘ )’l (zz+1} )’l O'ZJ, (19)

IPIe’ﬂ’(S’UZ’YNMVN(((Y_Le_Xﬂ—ZcY)'S+cI;II+AZ)(LS’LS’+I;“+AZ )71’(S’S+];|1+A2 )*1 O-zj’

(20)
(R+p1+p2+Al+A2+T)+
2

H(o-Z/Y,é',ﬂ,6,‘I’,‘I’)~IG( a+1,Kj, @21

where K =%[(Y—LH—Xﬂ—25—S‘F)’(Y—LH—Xﬂ—Z5—S‘}’)+(6’—y)’12’1(6’—/1)+

B-N'L).,, (B-+(S-a) [ (G-a)+(¥ =), (¥~c)+ 2b].
Here, we use the Gibbs sampling algorithm to obtain posterior samples from the specified

conditional posterior distribution because all conditional posterior distributions are coming in a closed
and standard form.

3.3. Significance test for merger coefficient

From a Bayesian perspective, we are presented a procedure using Bayes factors for testing the
impact of merger/acquire series on models, intended to analyze the impact on the model as associate
series may affect the model (Van de et al. 2021). The merger may have favorable or unfavorable
consequences. This testing procedure is completed with the help of 4 different hypothetical
procedures. Here, we test some possible hypothesis against the H, hypothesis.

Hi : both structural break and merger coefficient are effective,
6,+#6,, © # O,,¥, ¥, and 5 =0.
Here, we consider that, break occurred in all parameters of the model, then the model reduces to
H:Y=LO0+XB+Zo+SY¥Y +e¢.
H: : structural break is present but merger coefficients are not effective,
60, ©#0,,¥Y #¥, and 5=0.
Here, “Structural Break” means, break occurred in the parameters rather than merger parameter
9, and merger parameter & =0, means that merger is not effective model reduces to

H,:Y=LO+XB+SY+¢.
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Hs : No structural break but merger coefficients are effective,
6 =0, =0,¥ =¥, and 0 #0.
Here, “No Structural Break” means, no break occurred in the parameters rather than merger parameter
o, and merger parameter & # (0, means that, merger is effective. Model reduces to
Hy Y=L 6+ X, ®+Z,6+S ¥ +¢ .

Ha : Both structural break and merger coefficients are not effective,

=0, & =0,, ¥ =¥, and 0=0.
Here, we consider that, no break occurred in all parameters of the model, then model reduces to

H Y=L 6+X ®+S ¥ +¢& .

Posterior probability under the hypothesis () is defined in the Equation (22),

ba

I P N s
D | . |p.f T ] +a]

T
T —+a
(27)Ta (]lez

Similarly, posterior probabilities under the alternative hypothesis H,,H, and H, are defined as

P(Y|H1) =

(22)

ba

-1 -1 -1 T
oo D T +a) b
7 5 P(Y|H3) = T
T —+a T ~ta
(27)*Ta (1\;0)2 (27)Ta (szjz

ba

S (T
B I 5 | o+

P(Y|H,) =

>

EARAR r@wj

; % §+a
(27) Fa( > j

Under the H, hypothesis, we find out the Bayes factors (BF,,,BF,;, BF,,) by using posterior
probability, BF|, means that the ratio of the probabilities of P(Y|H,) and P(Y|H,), and same did
for BF,, and BF

132

P(Y|H,) =

_PUH) . PUHY) - P(YIH)
12 s 13 s 4 NE
P(Y|H,) P(Y|H,) “ P(YH,)

And all Bayes factors will be in this form,

-1 -1 -1 -1 T,
_|D[2|Dy[= D[ |D.[2 (0,)°

>

T
(N 5+a
BE, :|D4| : (FOJ ., BE;

1

-1 -1 -1 -1 Tia
(B[ |E|* E:[7 |E[> (V)2

-1 -1 -1 -1 T,
s, <[PPI IDE D]z @)

-1 -1 -1 T
B[ |E* |E[ v)?

where
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D, =(L'L+1"),
D,=(XX+1I,' -XL'D'LX),
D,=Z7Z+1;'-Z'LD]'L'Z—(Z'X -Z'LD;'L'X)'D;"(ZX - Z'LD;'L'X),
D,=S'S+1I,., —SLD'L'S—(ZS'-S'LD]'L'Z) +(S'X = S'LD;'L'X)' D} (S'X = S'LD'L'X)D;’
((SZ-S'LD'L'Z)+(S'X —S'LD't(L'X)D;*(S'X = S'LD;'L'X) -
(S'X -S'LLD'L'X)' D, (S'X —S'LD;'L'X)),
B, =(YS+CI,,, —(V'L+u'I,')D['L'S-B,) D;'(SZ—-S'L'D]'LZ) +
(SX -S'LD'LYD;' (S'X —S'LD;'L)B;, D;" (S'’X = S'L'D;'L'X)),
B, =(ZY'+ I'a—(LY'+ ul' Y D'L'Z = (XY + 1, , —(Ly'+ ul;')' LD X) (X — LD L'X)D;'Z),
B, =((XY'+yl,., —(Ly'+ul;") LA X),
Ny =YY+ u'L' u+y' L py+a'l'a+2b— (LY + ul}' )Y A7 (L'Y + ul;') - B, D;B,, — B,D;'B,,,
N,=N,+C'T}' , C+B,D;'B,,
E =(L; L, +1,7),
E,=(X; X, +1,'=X, L} E['L, X, ),
E =2, Z, +1'=Z, L, E''L; Z, —(Z; X, —=Z; L, A7'L; X, VE,'(ZX, —Z; L, E['L; X, ),
E, =S, S, +1,=SL, E'L; S, —(Z; S; =Sy Ly E['L; Z, )+
(S;. X; =S; Ly E'Ly X, )'E)' (7 Xy =S; Ly E'Ly Xp VES' (S7. Zy =S; Ly E'Ly Z,)
+(S; X, =) L, E'Ly X, VE,*(S; X, =S, L, E'Ly X, )
—(S; X, =8, L, E'Ly X, VE,' (S, X, =S; 8; Ly E'Ly X, ),

F,=(YS, +CI,' =(YL, +u'I;)E 'Ly S, — By, E;' (S Z; —S; Ly E['Ly Z; )+

(S; X, =S, Ly E['L, VE;'(S; X, =S; Ly E;'L, )BLE;'(S; X, =S; Ly ET'L, X, ),
Ey=(Z, Y+ a, —(L Y'+pu, I7YVE'L; Z, —

(X, Y4y, I =L Y+, 1YL BN X, )(X, — L, E'Ly X, )E,'Z, ),

Ptpa

Fy=((X, Y +y, L, (L Y+ YL ENX ),

pitp

0= Y'Y+y}ml’lyrm +}/;ml;llyrm +a;mI;1aTm +2brm —(L}I"Y+,urmI’l)'E,’l(L}mY+,uTmI’1)
~FLEJF, —FLE 'R,

122
0,=0,+C I'C, +F[E/'F,

The Bayes factor makes it simple to decide whether a hypothesis should be accepted or rejected
(Williams et al. 2017). When the value of BF,,,BF,; and BF,, is too much high, then we reject the

hypothesis H,,H, and H,, and vice-versa.

4. Simulation Study

The main aim of statistics is to use appropriate statistical theories to make significant inferences
for a given model. Simulation is a flexible technique for analyzing the behavior of a proposed study
and comparing the best estimate. In the simulation, a sample of random data is generated in such a
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manner that it properly analyses the problem and presents the results. Based on simulated samples
with various sample sizes, we observe the behavior of the AR model in the presence of merger and
spline function. We do this by simulating a series of sizes 7 = (100, 200) with merger locations (T/4,
T/2, 3T/4) and consider different knot locations including before and after merger under the condition
that the number of knots is known in advance. The response series Y ’s initial value is assumed 10.
With the help of the initial value of ¥, we easily generate complete series of the autoregressive model.
We also assume that the merger series follows the AR model with different orders (7,). Before and
after the merger, the process follows AR(1) and AR(2) model, respectively.

The average estimates (AE) and related mean square errors (MSE) of the Bayes estimators of the
model parameters are reported after obtaining the estimators of the parameters of the proposed model
for each generated sample. We use the Gibbs sampling technique for 10000 iterations and burn-in
1000 replications to get the posterior samples from the conditional posterior. For the different sizes of
the series with varying merger time and knot locations (7;, and 7}, are knots before the merger, T,
knot after the merger), AE of the estimators of the parameters have been summarized in Tables 1-6.
Figure 1 to Figurel2 show the comparison between the estimation methods.

Table 1 Average estimated values at merger time (7,)=7/4
T=100, T,;=15, T1,=20, T2;=30 T=200, T,;=30, T1,=40, T>2;=60
OLS SELF ELF ALF OLS SELF ELF ALF
0:(0.25) 0.2682  0.2679  0.2677 0.2676  0.2499  0.2497  0.0249 0.2495
0,(0.35) 03615 03609 0.3674 0.3614 0.3392 0.3497 0.0349 0.3491
®;;(0.4) 04112 04155 0.4124 0.4112 0.4053 0.4012 0.4015 0.4012
®;(0.7) 0.7184 0.7171  0.7163 0.7159 0.7125 0.7089  0.7115 0.7098
@ (0.2) 0.2154 0.2121 0.2146 0.2118 0.2123  0.2018  0.2031 0.2002
611(0.2) 02143  0.2143 0.2147 0.2143  0.2026  0.2036  0.2065 0.2031
621 (0.3) 03195 0.3187 0.3184 0.3183 0.3145 0.3032 0.3016 0.3025
022 (0.2) 0.2164 0.2194 0.2213 0.2153  0.2123 0.2136  0.2125 0.2112
Wi (1.2) 1.2352 1.2386  1.2334 1.2318  1.2154 1.2178  1.2045 1.2027
Y, (1.7)  1.7248 1.7273  1.7208 1.7204 1.7012  1.7065 1.7032 1.7012
Yy (0.2) 0.2138  0.2139  0.2138 0.2108  0.2101  0.2098  0.2085 0.1998
c?(0.5) 0.5116 05191 05132 0.5128 0.5025 0.5011  0.5036 0.5021

Parameters
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Table 2 Average estimated values at merger time (7,)=7/2
Parameters T=100, T11=25, T12=40, T21=70 T=200,T11=70, T12=90, T21=150
OLS SELF ELF ALF OLS SELF ELF ALF
0:(0.25) 0.2682 0.2672  0.2673 0.2672  0.2418 0.2415 0.2414  0.2411
02(0.35) 03612 03606 03654 03611 0.3472 03481 03415  0.3442
®;(04) 04195 04155 04122 04198 03977 0.3911 0.3925  0.3922
®2(0.7) 0.7182 0.7171  0.7163 0.7158  0.6991  0.6978  0.6978  0.6985
D (0.2) 0.2152 02123 0.2143 0.2113  0.1981  0.1993  0.1965  0.1987
811 (0.2) 0.2141 0.2142 0.2144  0.2141  0.1965 0.192  0.1925  0.1911
%:(0.3) 03175 03185 0.3183 03182  0.2995 0.2931  0.2965  0.2941
822(0.2) 0.2162 0.2192 0.2198  0.2151 0.1998  0.1982  0.1984  0.1991
Wi (1.2)  1.2348 1.2362 1.2312 1.2315  1.1956  1.1952  1.1924 1.1924
Vi (1.7)  1.7224  1.7255  1.7205 17202 1.6971  1.6962  1.6951 1.6932
¥ (0.2) 0.2125 0.2115 0.2125  0.2105 0.1971  0.1981  0.1965  0.1912
6’(0.5) 0.5101 05146 0.5126  0.5116 0.4932  0.4957 0.4953  0.4905
Table 3 Average estimated values at merger time (7,) =37/4
Parameters T=100, T11=45, T12=70, T21=90 T=200, T11=110, T12=140, T21=190
OLS SELF ELF ALF OLS SELF ELF ALF
0:(0.25) 0.2411  0.2412  0.2409  0.2405  0.2411  0.2412  0.2409  0.2405
02(0.35) 0.3462 03451 03414  0.3412 03462  0.3451  0.3414 03412
®1(0.4) 03962 03902 03913 03918 0.3962  0.3902 0.3913  0.3918
®1,(0.7)  0.6975 0.6966  0.6961  0.6948  0.6975  0.6966  0.6961  0.6948
@ (0.2) 0.1919  0.1939  0.1932  0.1925 0.1919  0.1939  0.1932  0.1925
811 (0.2) 01958  0.1917  0.1916  0.1908  0.1958  0.1917 0.1916  0.1908
%21(0.3) 02946  0.2922  0.2952 02935 0.2946  0.2922 02952  0.2935
822(0.2) 0.1981  0.1974  0.1971  0.1981  0.1981  0.1974  0.1971  0.1981
Wi (1.2)  1.1949 1.194  1.1912  1.1913  1.1949 1.194  1.1912  1.1913
Y12 (1.7)  1.6963  1.6953 1.6941 1.6924 1.6963 1.6953 1.6941  1.6924
P21 (0.2) 0.1964 0.1972  0.1961  0.1877  0.1964 0.1972  0.1961  0.1877
6?(0.5) 04915 04931 0.4941 04901 04915 0.4931 04941  0.4901
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Table 4 Testing of the hypothesis with varying time, knot, and merger locations

Location of the knots

T Tm BF12 BFi; BF 4
Ty T2 Ta
T/4=25 15 20 30 1.81E+115 2.40E+208 7.35E+195
100 T/2=50 30 40 60 1.30E+115 3.45E+115 3.58E+195
3T/4=75 45 70 90 3.48E+195 2.86E+166 6.29E+174
T/4=50 30 40 60 1.89E+115 3.86E+208 8.73E+195
200 T/2=100 70 90 150 1.59E+115 3.76E+115 3.87E+195
3T/4=150 110 140 190 5.65E+195 4 46E+166 8.78E+174
ALF ALF
ELF ELF
T=100 oLs T=200 oLs
SELF SELF
0.45
04
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The performance of the Bayes estimator is compared with OLS. The estimated values of the
parameters are obtained by taking the average over all the cycles of the respective parameters and are
recorded in Tables 1-3 for different sizes of the series at different merger times with different knot
locations, values of MSE of the parameters over all the cycles are also calculated and are compared
by Figure 1 to Figure 12. Tables 1-3 and Figurel to Figurel2 observed the following.

(1) The average estimates of the parameters are close to the true values of the parameter. When
the series size increases, the average estimated values move closer to the true values and thus provide
more efficient estimates for all the model parameters.

(i1) All estimators are efficient because we noted that as the size of the series increases, the MSE
of the estimator decreases.

(iii) For all the parameters, the MSE of OLS is higher than Bayes estimators, and also, for most
of the parameters, the MSE of ALF is least compared to the remaining estimators. Therefore, ALF
under the Bayes estimator outperforms the SELF, ELF and OLS in terms of because ALF considered
equal weight to under and over estimation.

(iv) So, we conclude in terms of known prior distribution that the Bayesian procedure provides
better performance in comparison to OLS because it contains additional information about the model
parameters.

(v) In Table 4, we observed that there is strong evidence to support the presence of mergers in the
series. Because of the Bayes factor, as we increased the size of series at different merger times and
different knot locations got the increasing Bayes factor values. So after the analysis, we reject the
alternative hypothesis and conclude that the merger affects the series positively.

5. Real Data Analysis

Over the previous two decades, the entire Indian banking sector has been consolidated to reap the
benefits of mergers and acquisitions. Banks' primary and ultimate responsibility is to accelerate the
country's economic growth and provide capital for investment. The State Bank of India (SBI) is the
country's largest bank. SBI combined with five of its associate bank’s names, State bank of Hyderabad
(SBH), State bank of Bikaner & Jaipur (SBBJ), State bank of Mysore (SBM), State bank of Patiala
(SBP), State bank of Travancore (SBT) including Bharatiya Mahila bank on April 1, 2017. The only
way to help these banking units is to merge SBI associates into SBI. It would not only help their
associates' profits, but it will also provide SBI with a good chance to grow its market position in India's
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untapped market. Payments can be made in a variety of ways in Indian banking. One of the ways to
send money is using NEFT. NEFT is an electronic payment system created by the Reserve Bank of
India to make it easier for consumers to transfer money from one bank to another in India. It is a secure
and efficient way to transfer funds between banks. For real data analysis, we are used the monthly
NEFT data series of SBI and its associated banks from March 2010 to October 2021.

In the present study, we are used primary data and taken a data series in the form of value/volume
every month for model analysis, where value is the number of money transactions every month (in
millions) and volume are the total number of transactions every month in this data set merger time is
at 90. We change the data for the merger banks into payment per transaction for data analysis and took
the NEFT series as autoregressive and perform the analysis to see how associated bank's mergers
influenced the SBI series. First, we fit an autoregressive model for NEFT banking service to find out
the order (lag) of SBI and its associated merger banks and then study the inferences. The descriptive
statistics and lag of the AR model are shown in Table 5.

To find out the knot in the series, we have made the combination of knots on the basis that some
number of knots occurred before the merger and some will occur after the merger. Here, we are
considered a maximum of six (3 (before the merger), 3 (after the merger)) knots in the series and then
find AIC and BIC values of the series. Based on minimum AIC and BIC values, we identify the
number of knots present in the series. As seen in Table 6, one-one knot is present before and after the
merger. This shows that the series is having a linear time trend model. Then, we find out the location
of knots using AIC and BIC. The most suitable location of the knot before and after the merger is T},

=30 and 7,, = 95, respectively. It is concluded that the M-ARS model satisfies the merger situation

because Bayes factors are too much high, i.e., 3.32E+80, 3.46E+76, and 2.12E+195 to reject the
alternative models. After obtaining the lag (order) of each related series, number and location of knots,
we use the M-ARS model to estimate the model parameters using the OLS and Bayesian approaches
and observe that the estimated value may vary when considering the merger and spline function in the
series. From Table 7, we observed that there is a positive impact on the SBI series due to the merger
of associated banks. To know the impact of the associated series, the presence of the merged series is
tested using the proposed hypotheses and reported in Table 8. Table 8 explains the relationship
between associated banks and SBI and shows that bank mergers have a significant impact on the SBI
series because the Bayes factor is so much high to reject the alternative hypothesis and conclude that
the proposed model is well suitable for this banking series. In Table 7, the performance of the Bayes
estimator is compared with OLS. Bayes estimators perform better than OLS, because the estimated
value for most of the parameters is much closed to initial estimates and ALF perform better in
comparison of other Bayes estimators.

Table 5 Descriptive statistics and order of the NEFT series

Series Mean St. deviation Skewness Kurtosis Order
SBI 0.0627 0.0178 1.8360 6.6610 4
SBH 0.0529 0.0104 1.0806 5.9354 2
SBBJ 0.0491 0.0203 3.5720 4.0752 3
SBM 0.0497 0.0111 1.5882 8.8719 3
SBP 0.0707 0.0197 1.4653 5.9649 1
SBT 0.0414 0.0114 4.0519 7.6312 3
M-SBI 0.2972 0.2392 0.0697 1.0399 1
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Table 6 Knot selection using information criteria

No. of Knots Selection criteria
Before merger After merger AIC BIC
1 1 86.1662 121.1296
1 2 86.6106 121.4739
1 3 86.4363 121.2997
3 3 86.4769 121.2912
3 2 86.6019 121.4601
3 1 86.7576 121.6209
2 3 86.4277 121.2915
2 1 86.7576 121.6209
2 2 86.6020 121.4653

Table 7 OLS and Bayes estimates based on NEFT series

Parameters SELF ALF ELF OLS
0, 0.1103 0.0760 0.1558 0.2663
0> 0.0628 0.0691 0.2395 0.2746
OJ8 0.0636 -0.0313 0.6392 -0.1212
Dy 0.3266 0.3669 0.4618 0.4622
Dy 0.2281 0.2395 0.4493 0.5635
o1 0.0080 0.0658 0.3804 -0.9276
d21 -0.0133 -0.0057 0.2966 -0.7008
R -0.0142 -0.0098 0.3643 0.2889
d23 -0.0959 -0.1011 0.3441 -0.5287
024 0.1735 0.2122 0.4180 4.5956
Wi -0.0012 -0.0018 0.0074 -0.0034
Yo 0.0050 0.0053 0.0161 0.0086
Y1 0.0017 0.0030 0.0220 0.0147

c? 0.0595 0.0656 0.0625 0.0203

Table 8 Testing the hypothesis for NEFT series

Spline Knots
T Ta
90 30 95 3.32E+80 3.46E+76 2.12E+195

BF12 BFi3 BF14

Tm (Time of merger)

6. Conclusions

In this paper, a time series model with a polynomial-time trend approximated by a spline function
is proposed to describe the merger and acquisition situation. The spline function has the property of
approximating non-linear time series with an appropriate degree of polynomial-time trend model.
Classical and Bayesian estimation approaches are used to record the estimated values of the M-ARS
model parameters. The testing procedure is used to observe the existence of merged series in the
acquisition series in presence of knot points. As we know, SBI associate banks have merged into SBI
to improve Indian banking performance. We used the NEFT banking data of SBI for analysis purposes.
The simulation and empirical analysis verify the model's applicability and purposes. The methodology
suggested that under absolute loss function, model perform better as compared to other estimators.
This may be happened because ALF considered both under and over estimation equally. This work
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may be extended for the case of multiple mergers with spline function in both AR and panel merger
models. This model may also be useful in various applications when series having non-linear nature
with a merger was taken place in the study series.
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