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Abstract 

In this paper, we use an autoregressive model to investigate the behavior of mergers and 
acquisitions. It studies a non-linear time trend, which is approximately converted into a linear time 
trend using the spline function, which divides the series into piecewise linear segments between the 
knots. These knots are the change points where the trend pattern gets changed. The major aim of this 
study is to offer a merged autoregressive spline (M-ARS) model that can be used to analyze the 
influence of the merger on the parameters as well as model behavior. First, we obtained an estimation 
setup based on the well-known classical least square method and posterior distributions under the 
Bayesian approach with different loss functions. Then, the effect on the series based on the merger 
variable is significantly determined by the Bayes factor. The applicability of the proposed model is 
illustrated based on a simulation study and real application in the Indian banking sector. 
______________________________ 
Keywords:  Autoregressive model, posterior distribution, loss function, merger, spline function, linear and non-
linear time trend. 
 
1. Introduction 

A time series is a method for analyzing and modelling chronological data. When there is an 
association between past observations, then an autoregressive (AR) model is a plausible model to 
forecast future behavior based on previous information (Box and Jenkins 1970, Newbold 1983). The 
AR time series model has attracted a large number of researchers in both econometrics and statistics 
for several decades (Kumar and Kumar 2019). In AR series, sometimes associated series are involved 
along with dependent series, which affect the process (Kumar et al. 2017). Though these associated 
series do not remain with the series for a long time, they get merged with dependent series after some 
time. So, few series under study are terminated after a certain period in the observed series. This 
process is known as merger and acquisition (M&A). Recently, such type of modelling had done by 
Kumar and Agiwal (2020). 

In terms of mergers and acquisitions Hossain (2021) and Alarco (2018), discussed about the 
significant changes in the international landscape over the last several years. Deregulation of the 
financial sector has resulted in the introduction of new players and goods with advanced technology, 
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globalization of the financial markets, changing consumer behavior, broader services at lower prices, 
shareholder wealth demands, and so forth (Paul 2017, Aljadani 2019). Thus, M&A is a powerful 
technique in the globalization of the economy’s growth and expansion. Khan (2011) discussed about 
the major motivation for M&A is to create synergy, which means that two plus two is more than four, 
and this logic tempts organizations to merge during difficult circumstances. 

In recent decades, researchers have taken the inferences to perform research in the area of merger 
concepts for the growth of companies and examined the effects and performance after mergers. There 
is a lot of literature available on the M&A process like Lubatkin (1983) addressed merger problems 
and showed benefits to the acquiring organization. Resende (1999) studied the M&A series using 
Markov switching modes and observed that merger presence and endogenous shocks had a significant 
effect. Diaz et al. (2004) found bank performance when banking and non-banking organizations 
merged and acquired in the European Union and got efficient profit. DeLong and DeYong (2007) 
carried out a study on 50 of the biggest US bank mergers between 1979 and 1984 to analyze cash flow 
performance and observed that the operational performance of the merged organizations improved 
significantly. Agiwal and Kumar (2021) proposed a merged autoregressive (M-AR) model for analysis 
of the M&A concept in univariate mobile banking series. 

When the time trend comes non-linear it’s difficult to predict. So, to overcome this problem spline 
function is a plausible function to M&A (Kumar et. al 2020) and the trend pattern of the structure 
shows the data's non-linearity. Hence, the spline function can be used to approximate this non-linear 
trend into piece-wise modelling. With advancements on both the theoretical and computational fronts, 
spline function has become a well-established technique in statistical analysis. Eubank (1999) 
discussed that a spline function is the smoothest possible piecewise polynomial that retains a segment 
nature. Hurley et al. (2006) called spline as lines or curves function which is usually required to be 
continuous and smooth. In particular, it is frequently used to build explanatory models in time series 
and economics. This is used to describe smooth functions of interest, including non-linear effects, in 
many new methodological developments in the current time series. 

In this paper, we are focused on developing the M-ARS time series model with the help of the 
AR model and some associated series. These associated series are merged into the observed series 
after a considerable period. In this newly developed model, the spline function is used as a trend 
converter. Therefore, an extended time series model is proposed to manage the non-linear time trend 
and to understand the effects of mergers and acquisitions. Section 2 describes the expanded form of 
the merger autoregressive model through the spline function. The classical and Bayesian 
methodologies under different loss functions are discussed in Section 3 for the proposed model and 
also defined the testing procedure to show the merged effect. Sections 4 and 5 respectively consider 
the simulation and real data analysis to show the methodology’s adequacy and appropriateness in a 
real application. The brief conclusion is defined in Section 6. 
 
2. Merger Autoregressive Spline (M-ARS) Model 

This section considers the merged autoregressive (M-AR)  model with the inclusion of spline 
function for controlling the non-linear trend pattern through piecewise models. Up to merger time Tm, 
the observed series follows AR(p1) process with k  time-dependent associated variables and a linear 
spline function.  These associate series also follow the AR model with different orders ( ;hr h  1, 2, 

…, ).k  After the merger time point, associate series are merged into the observed AR series with a 

different order 2 .p  This shows that observations of the associate series are not recorded due to being 
merged into the acquired series. But this may change the structure of the series which is controlled by 
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linear spline function only.  The proposed model is called a merged autoregressive spline(M-ARS) 
model. Finally, the structure of the M-ARS model will be in this form. 
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where { , 1,2,..., }ty t T  is an observed series, 1  and 2  are the intercept terms, 1A  is the number of 

knots before merger time that contain locations of knots 
111 12 1( , ,..., )At t t  and 2A  is the number of knots 

after merger time that contains locations of knots 
221 22 2( , ,..., ).At t t  in  is the coefficient of thn  knot, 

where i = 1 and 2, and by Equation (2), we define ( )nS t  which is a spline function, described as a 
linear polynomial form which is as follows. 
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t  is assumed to be i.i.d. (independently identically distributed) normal random variable with mean 

zero and unknown variance 2  and the merger coefficient of the thh  series is denoted by .h  Model 
(1) can be defined in matrix notation as shown below. 

1 1 1 1       
m m m m m mT T T T T TY l X Z S                                                  (3) 

2 2 2 .        
m m m m mT T T T T T T T T TY l X S                                              (4) 

Moreover, the final model in matrix form has been written by combining Equations (3) and (4), 
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We can also write the Equation (5) in this form,  
,Y L X Z S                                                             (6) 
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The proposed AR model is used to analyze the non- linear trend components when the merger is 
taking place.  This merger has several impacts to change the structure of the observed series which 
only be analyzed by putting the spline function that makes the model as a piecewise linear AR model 
with merging observations.  Thus, the spline function can be used as a very important tool to convert 
the non- linear trend pattern into a linear trend pattern in the presence of the M&A process.  The 
inference of the proposed model is described under both classical and Bayesian points of view in the 
next section. 
 
3.    Inference for the Study 

The primary conclusion of any research problem is to understand the data generating process 
based on the available information. The time series models are used to develop a future forecasting 
mechanism based on current and previous situations. In time series, one may be interested in drawing 
inferences about the structure of the model through estimation as well as concluding the model through 
hypothesis testing. Hence, the purpose of this section is to discuss the estimation and testing techniques 
to determine the M-ARS model’s performance. 
 
3.1. Classical estimators 

Maximum likelihood (ML) and least squared (LS) techniques are commonly used for parameter 
estimation in regression-based models because it gains a closed functional form or simply transfer in 
matrix form (Ghosh. et al.  2007). For the M-ARS model, parameters of interest are , , ,    and 
by using LS and its associated sum of square residuals (SSR)define in the Equations (7) and (8) for a 
given time series model in Equation (6) is given below, 
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3.2. Bayesian estimation 

In the Bayesian framework, prior information is about the unknown parameters which are equally 
important as the likelihood function of the model. To determine the posterior probability, the prior 
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function is needed. For all parameters of the M-ARS model, we consider the informative conjugate 
priors function and adopt a multivariate normal (MVN) distribution with a different means and 
common variance for intercept, autoregressive, merging coefficients, and spline coefficients. Assume 
an inverted gamma prior where “ a ” and “b ” are the hyper parameters of gamma prior. These priors 
are chosen the same as the priors taken in the paper Kumar and Agiwal (2020). Which are as follows, 

2
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By using the priors, which are defined in Equations (9) to (13), we obtain the joint prior 
distribution defined in Equation (14). 

2( ) ( ) ( ) ( ) ( ) ( )f f f f f        
1 2 1 2

1 2 1 2

1 2 1 2

( 2)2 12
2( 2)/ 2 2

1 1 1

1 1.( ) . .exp[ {( ) ( )
2(2 )

( ) ( ) ( ) ( ) ( ) ( ) 2 }],

R P P A A aa

p p R A A

p p R A A

b I
a

I I c I c b

    


       

   
   

    

  
 

   


             

         (14) 

The proposed model’s likelihood function is written as in Equation (15), 
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The posterior distribution is determined by combining the information from the observed series 
with the joint prior distribution. The posterior distribution for the proposed model is of the form in the 
Equation (16). 
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For parameter estimation under the Bayesian approach, a loss function must be specified based 
on decision theory. Several symmetric and asymmetric loss functions can be used to select the most 
favorable explanation of the generated samples, which are decreasing the associated risk in the 
simulated samples. However, there is no method for deciding on the loss function. Hence, we have 
optimized the presented model's inferences by using the following loss functions: (1) squared error 
loss function (SELF), (2) absolute loss function (ALF), and (3) entropy loss function (ELF). 
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It should be noted that evaluating the ratio of multiple integrals, a closed expression is difficult to 
derive analytically. This is a big challenge in implementing the Bayes technique. To obtain posterior 
samples from the posterior distribution, we use the MCMC algorithm. The conditional posterior 
distribution of respective parameters is obtained and given below in the equations from (17) to (21). 
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Here, we use the Gibbs sampling algorithm to obtain posterior samples from the specified 
conditional posterior distribution because all conditional posterior distributions are coming in a closed 
and standard form. 

 
3.3. Significance test for merger coefficient 

From a Bayesian perspective, we are presented a procedure using Bayes factors for testing the 
impact of merger/acquire series on models, intended to analyze the impact on the model as associate 
series may affect the model (Van de et al. 2021). The merger may have favorable or unfavorable 
consequences. This testing procedure is completed with the help of 4 different hypothetical 
procedures. Here, we test some possible hypothesis against the 1H  hypothesis. 
 
H1 : both structural break and merger coefficient are effective, 

1 2 1 2 1 2, , and 0.           
Here, we consider that, break occurred in all parameters of the model, then the model reduces to 

1 : .H Y L X Z S          
H2 : structural break is present but merger coefficients are not effective, 

1 2 1 2 1 2, ,   and  0.           
Here, “Structural Break” means, break occurred in the parameters rather than merger parameter 
δ, and merger parameter 0,   means that merger is not effective model reduces to 

2 : .      H Y L X S  
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H3 : No structural break but merger coefficients are effective, 
1 2 1 2 1 2, ,   and  0.           

Here, “No Structural Break” means, no break occurred in the parameters rather than merger parameter 
,  and merger parameter 0,   means that, merger is effective. Model reduces to 

3 1 1 1 1: .        
m m m m mT T T T TH Y L X Z S

 
H4 : Both structural break and merger coefficients are not effective, 

1 2 1 2 1 2,  ,    and  0.           
Here, we consider that, no break occurred in all parameters of the model, then model reduces to 

4 1 1 1: .      
m m m mT T T TH Y L X S

 
Posterior probability under the hypothesis 1( )H  is defined in the Equation (22), 
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Similarly, posterior probabilities under the alternative hypothesis 2 3,H H  and 4H  are defined as 
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Under the 1H   hypothesis, we find out the Bayes factors 12 13 14( , , )BF BF BF  by using posterior 

probability, 12BF   means that the ratio of the probabilities of 1( | )P Y H  and 2( | ), P Y H  and same did 

for 12BF  and 13 ,BF  
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And all Bayes factors will be in this form, 
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where 
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The Bayes factor makes it simple to decide whether a hypothesis should be accepted or rejected 
(Williams et al. 2017). When the value of 12 13,BF BF  and 14BF  is too much high, then we reject the 

hypothesis 1 2,H H  and 3 ,H  and vice-versa. 
 
4.    Simulation Study 

The main aim of statistics is to use appropriate statistical theories to make significant inferences 
for a given model. Simulation is a flexible technique for analyzing the behavior of a proposed study 
and comparing the best estimate. In the simulation, a sample of random data is generated in such a 
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manner that it properly analyses the problem and presents the results. Based on simulated samples 
with various sample sizes, we observe the behavior of the AR model in the presence of merger and 
spline function. We do this by simulating a series of sizes T (100, 200) with merger locations (T/4, 
T/2, 3T/4) and consider different knot locations including before and after merger under the condition 
that the number of knots is known in advance. The response series Y ’s initial value is assumed 10. 
With the help of the initial value of ,Y  we easily generate complete series of the autoregressive model. 
We also assume that the merger series follows the AR model with different orders ( ).hr  Before and 
after the merger, the process follows AR(1) and AR(2) model, respectively.  

The average estimates (AE) and related mean square errors (MSE) of the Bayes estimators of the 
model parameters are reported after obtaining the estimators of the parameters of the proposed model 
for each generated sample. We use the Gibbs sampling technique for 10000 iterations and burn-in 
1000 replications to get the posterior samples from the conditional posterior. For the different sizes of 
the series with varying merger time and knot locations ( 11T  and 12T  are knots before the merger, 21T  

knot after the merger), AE of the estimators of the parameters have been summarized in Tables 1-6. 
Figure 1 to Figure12 show the comparison between the estimation methods. 

 
Table 1 Average estimated values at merger time ( ) / 4mT T  

Parameters 
T=100, T11=15, T12=20, T21=30 T=200, T11=30, T12=40, T21=60 

OLS SELF ELF ALF OLS SELF ELF ALF 
θ1 (0.25) 0.2682 0.2679 0.2677 0.2676 0.2499 0.2497 0.0249 0.2495 
θ2 (0.35) 0.3615 0.3609 0.3674 0.3614 0.3392 0.3497 0.0349 0.3491 
Φ11(0.4) 0.4112 0.4155 0.4124 0.4112 0.4053 0.4012 0.4015 0.4012 

Φ12 (0.7) 0.7184 0.7171 0.7163 0.7159 0.7125 0.7089 0.7115 0.7098 
Φ22 (0.2) 0.2154 0.2121 0.2146 0.2118 0.2123 0.2018 0.2031 0.2002 
δ11 (0.2) 0.2143 0.2143 0.2147 0.2143 0.2026 0.2036 0.2065 0.2031 
δ21 (0.3) 0.3195 0.3187 0.3184 0.3183 0.3145 0.3032 0.3016 0.3025 
δ22 (0.2) 0.2164 0.2194 0.2213 0.2153 0.2123 0.2136 0.2125 0.2112 

Ψ11 (1.2) 1.2352 1.2386 1.2334 1.2318 1.2154 1.2178 1.2045 1.2027 
Ψ12 (1.7) 1.7248 1.7273 1.7208 1.7204 1.7012 1.7065 1.7032 1.7012 
Ψ21 (0.2) 0.2138 0.2139 0.2138 0.2108 0.2101 0.2098 0.2085 0.1998 

σ2 (0.5) 0.5116 0.5191 0.5132 0.5128 0.5025 0.5011 0.5036 0.5021 
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Table 2 Average estimated values at merger time ( ) / 2mT T  

Parameters 
T=100, T11=25, T12=40, T21=70 T=200,T11=70, T12=90, T21=150 

OLS SELF ELF ALF OLS SELF ELF ALF 
θ1 (0.25) 0.2682 0.2672 0.2673 0.2672 0.2418 0.2415 0.2414 0.2411 
θ2 (0.35) 0.3612 0.3606 0.3654 0.3611 0.3472 0.3481 0.3415 0.3442 
Φ11(0.4) 0.4195 0.4155 0.4122 0.4198 0.3977 0.3911 0.3925 0.3922 

Φ12 (0.7) 0.7182 0.7171 0.7163 0.7158 0.6991 0.6978 0.6978 0.6985 
Φ22 (0.2) 0.2152 0.2123 0.2143 0.2113 0.1981 0.1993 0.1965 0.1987 
δ11 (0.2) 0.2141 0.2142 0.2144 0.2141 0.1965 0.192 0.1925 0.1911 
δ21 (0.3) 0.3175 0.3185 0.3183 0.3182 0.2995 0.2931 0.2965 0.2941 
δ22 (0.2) 0.2162 0.2192 0.2198 0.2151 0.1998 0.1982 0.1984 0.1991 

Ψ11 (1.2) 1.2348 1.2362 1.2312 1.2315 1.1956 1.1952 1.1924 1.1924 
Ψ12 (1.7) 1.7224 1.7255 1.7205 1.7202 1.6971 1.6962 1.6951 1.6932 
Ψ21 (0.2) 0.2125 0.2115 0.2125 0.2105 0.1971 0.1981 0.1965 0.1912 

σ2 (0.5) 0.5101 0.5146 0.5126 0.5116 0.4932 0.4957 0.4953 0.4905 
 

Table 3 Average estimated values at merger time ( ) 3 / 4mT T  

Parameters 
T=100, T11=45, T12=70, T21=90 T=200, T11=110, T12=140, T21=190 

OLS SELF ELF ALF OLS SELF ELF ALF 
θ1 (0.25) 0.2411 0.2412 0.2409 0.2405 0.2411 0.2412 0.2409 0.2405 
θ2 (0.35) 0.3462 0.3451 0.3414 0.3412 0.3462 0.3451 0.3414 0.3412 
Φ11(0.4) 0.3962 0.3902 0.3913 0.3918 0.3962 0.3902 0.3913 0.3918 

Φ12 (0.7) 0.6975 0.6966 0.6961 0.6948 0.6975 0.6966 0.6961 0.6948 
Φ22 (0.2) 0.1919 0.1939 0.1932 0.1925 0.1919 0.1939 0.1932 0.1925 
δ11 (0.2) 0.1958 0.1917 0.1916 0.1908 0.1958 0.1917 0.1916 0.1908 
δ21 (0.3) 0.2946 0.2922 0.2952 0.2935 0.2946 0.2922 0.2952 0.2935 
δ22 (0.2) 0.1981 0.1974 0.1971 0.1981 0.1981 0.1974 0.1971 0.1981 

Ψ11 (1.2) 1.1949 1.194 1.1912 1.1913 1.1949 1.194 1.1912 1.1913 
Ψ12 (1.7) 1.6963 1.6953 1.6941 1.6924 1.6963 1.6953 1.6941 1.6924 
Ψ21 (0.2) 0.1964 0.1972 0.1961 0.1877 0.1964 0.1972 0.1961 0.1877 

σ2 (0.5) 0.4915 0.4931 0.4941 0.4901 0.4915 0.4931 0.4941 0.4901 
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Table 4 Testing of the hypothesis with varying time, knot, and merger locations 

T Tm 
Location of the knots 

BF12 BF13 BF14 
T11 T12 T21 

100 
T/4=25 15 20 30 1.81E+115 2.40E+208 7.35E+195 
T/2=50 30 40 60 1.30E+115 3.45E+115 3.58E+195 

3T/4=75 45 70 90 3.48E+195 2.86E+166 6.29E+174 

200 
T/4=50 30 40 60 1.89E+115 3.86E+208 8.73E+195 

T/2=100 70 90 150 1.59E+115 3.76E+115 3.87E+195 
3T/4=150 110 140 190 5.65E+195 4.46E+166 8.78E+174 

 

 
 

Figure 1 MSE for the parameters 1  with varying T  and mT  

 
 

Figure 2 MSE for the parameters 2   with varying T  and mT  
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Figure 3 MSE for the parameters Φ11 with varying T  and mT  
 

 
 

Figure 4 MSE for the parameters  Φ12   with varying T  and mT  
 

 
 

Figure 5 MSE for the parameters Φ22 with varying T  and mT  
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Figure 6 MSE for the parameters δ11with varying T  and mT  
 

 
 

Figure 7 MSE for the parameters δ21 with varying T  and mT  
 

 
 

Figure 8 MSE for the parameters δ22 with varying T  and mT  
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Figure 9 MSE for the parameters Ψ11 with varying T  and mT  
 

 
 

Figure 10 MSE for the parameters Ψ12 with varying T  and mT  
 

 
 

Figure 11 MSE for the parameters Ψ21 with varying T  and mT  
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Figure 12 MSE for the parameters 2  with varying T  and mT  
 
The performance of the Bayes estimator is compared with OLS. The estimated values of the 

parameters are obtained by taking the average over all the cycles of the respective parameters and are 
recorded in Tables 1-3 for different sizes of the series at different merger times with different knot 
locations, values of MSE of the parameters over all the cycles are also calculated and are compared 
by Figure 1 to Figure 12. Tables 1-3 and Figure1 to Figure12 observed the following. 

(i) The average estimates of the parameters are close to the true values of the parameter. When 
the series size increases, the average estimated values move closer to the true values and thus provide 
more efficient estimates for all the model parameters. 

(ii) All estimators are efficient because we noted that as the size of the series increases, the MSE 
of the estimator decreases. 

(iii) For all the parameters, the MSE of OLS is higher than Bayes estimators, and also, for most 
of the parameters, the MSE of ALF is least compared to the remaining estimators. Therefore, ALF 
under the Bayes estimator outperforms the SELF, ELF and OLS in terms of because ALF considered 
equal weight to under and over estimation.  

(iv) So, we conclude in terms of known prior distribution that the Bayesian procedure provides 
better performance in comparison to OLS because it contains additional information about the model 
parameters. 

(v) In Table 4, we observed that there is strong evidence to support the presence of mergers in the 
series. Because of the Bayes factor, as we increased the size of series at different merger times and 
different knot locations got the increasing Bayes factor values. So after the analysis, we reject the 
alternative hypothesis and conclude that the merger affects the series positively. 
 
5.    Real Data Analysis 

Over the previous two decades, the entire Indian banking sector has been consolidated to reap the 
benefits of mergers and acquisitions. Banks' primary and ultimate responsibility is to accelerate the 
country's economic growth and provide capital for investment. The State Bank of India (SBI) is the 
country's largest bank. SBI combined with five of its associate bank’s names, State bank of Hyderabad 
(SBH), State bank of Bikaner & Jaipur (SBBJ), State bank of Mysore (SBM), State bank of Patiala 
(SBP), State bank of Travancore (SBT) including Bharatiya Mahila bank on April 1, 2017. The only 
way to help these banking units is to merge SBI associates into SBI. It would not only help their 
associates' profits, but it will also provide SBI with a good chance to grow its market position in India's 
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untapped market. Payments can be made in a variety of ways in Indian banking. One of the ways to 
send money is using NEFT. NEFT is an electronic payment system created by the Reserve Bank of 
India to make it easier for consumers to transfer money from one bank to another in India. It is a secure 
and efficient way to transfer funds between banks. For real data analysis, we are used the monthly 
NEFT data series of SBI and its associated banks from March 2010 to October 2021. 

In the present study, we are used primary data and taken a data series in the form of value/volume 
every month for model analysis, where value is the number of money transactions every month (in 
millions) and volume are the total number of transactions every month in this data set merger time is 
at 90. We change the data for the merger banks into payment per transaction for data analysis and took 
the NEFT series as autoregressive and perform the analysis to see how associated bank's mergers 
influenced the SBI series. First, we fit an autoregressive model for NEFT banking service to find out 
the order (lag) of SBI and its associated merger banks and then study the inferences. The descriptive 
statistics and lag of the AR model are shown in Table 5. 

To find out the knot in the series, we have made the combination of knots on the basis that some 
number of knots occurred before the merger and some will occur after the merger. Here, we are 
considered a maximum of six (3 (before the merger), 3 (after the merger)) knots in the series and then 
find AIC and BIC values of the series. Based on minimum AIC and BIC values, we identify the 
number of knots present in the series. As seen in Table 6, one-one knot is present before and after the 
merger. This shows that the series is having a linear time trend model. Then, we find out the location 
of knots using AIC and BIC. The most suitable location of the knot before and after the merger is 11T  

= 30 and 21T = 95, respectively. It is concluded that the M-ARS model satisfies the merger situation 
because Bayes factors are too much high, i.e., 3.32E+80, 3.46E+76, and 2.12E+195 to reject the 
alternative models. After obtaining the lag (order) of each related series, number and location of knots, 
we use the M-ARS model to estimate the model parameters using the OLS and Bayesian approaches 
and observe that the estimated value may vary when considering the merger and spline function in the 
series. From Table 7, we observed that there is a positive impact on the SBI series due to the merger 
of associated banks. To know the impact of the associated series, the presence of the merged series is 
tested using the proposed hypotheses and reported in Table 8. Table 8 explains the relationship 
between associated banks and SBI and shows that bank mergers have a significant impact on the SBI 
series because the Bayes factor is so much high to reject the alternative hypothesis and conclude that 
the proposed model is well suitable for this banking series. In Table 7, the performance of the Bayes 
estimator is compared with OLS. Bayes estimators perform better than OLS, because the estimated 
value for most of the parameters is much closed to initial estimates and ALF perform better in 
comparison of other Bayes estimators. 

 
Table 5 Descriptive statistics and order of the NEFT series 

Series Mean St. deviation Skewness Kurtosis Order 
SBI 0.0627 0.0178 1.8360 6.6610 4 

SBH 0.0529 0.0104 1.0806 5.9354 2 
SBBJ 0.0491 0.0203 3.5720 4.0752 3 
SBM 0.0497 0.0111 1.5882 8.8719 3 
SBP 0.0707 0.0197 1.4653 5.9649 1 
SBT 0.0414 0.0114 4.0519 7.6312 3 

M-SBI 0.2972 0.2392 0.0697 1.0399 1 
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Table 6 Knot selection using information criteria 
No. of Knots Selection criteria 

Before merger After merger AIC BIC 
1 1 86.1662 121.1296 
1 2 86.6106 121.4739 
1 3 86.4363 121.2997 
3 3 86.4769 121.2912 
3 2 86.6019 121.4601 
3 1 86.7576 121.6209 
2 3 86.4277 121.2915 
2 1 86.7576 121.6209 
2 2 86.6020 121.4653 

 
Table 7 OLS and Bayes estimates based on NEFT series 

Parameters SELF ALF ELF OLS 
θ1 0.1103 0.0760 0.1558 0.2663 
θ2 0.0628 0.0691 0.2395 0.2746 

Φ11 0.0636 -0.0313 0.6392 -0.1212 
Φ21 0.3266 0.3669 0.4618 0.4622 
Φ22 0.2281 0.2395 0.4493 0.5635 
δ11 0.0080 0.0658 0.3804 -0.9276 
δ21 -0.0133 -0.0057 0.2966 -0.7008 
δ22 -0.0142 -0.0098 0.3643 0.2889 
δ23 -0.0959 -0.1011 0.3441 -0.5287 
δ24 0.1735 0.2122 0.4180 4.5956 

Ψ11 -0.0012 -0.0018 0.0074 -0.0034 
Ψ12 0.0050 0.0053 0.0161 0.0086 
Ψ21 0.0017 0.0030 0.0220 0.0147 

σ2 0.0595 0.0656 0.0625 0.0203 
 

Table 8 Testing the hypothesis for NEFT series 

Tm (Time of merger) 
Spline Knots 

BF12 BF13 BF14 T11 T21 
90 30 95 3.32E+80 3.46E+76 2.12E+195 

 
6.    Conclusions 

In this paper, a time series model with a polynomial-time trend approximated by a spline function 
is proposed to describe the merger and acquisition situation. The spline function has the property of 
approximating non-linear time series with an appropriate degree of polynomial-time trend model. 
Classical and Bayesian estimation approaches are used to record the estimated values of the M-ARS 
model parameters. The testing procedure is used to observe the existence of merged series in the 
acquisition series in presence of knot points. As we know, SBI associate banks have merged into SBI 
to improve Indian banking performance. We used the NEFT banking data of SBI for analysis purposes. 
The simulation and empirical analysis verify the model's applicability and purposes. The methodology 
suggested that under absolute loss function, model perform better as compared to other estimators. 
This may be happened because ALF considered both under and over estimation equally. This work 
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may be extended for the case of multiple mergers with spline function in both AR and panel merger 
models. This model may also be useful in various applications when series having non-linear nature 
with a merger was taken place in the study series. 
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