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Abstract

A new generalized class of distributions called the log-logistic modified Weibull power series
(LLoGMWPS) distribution is developed and presented. The LLoOGMWPS class of distributions gen-
eralizes several distributions including the log-logistic exponential power series, log-logistic Weibull
power series, log-logistic Rayleigh power series, log-logistic power series class of distributions and
a host of other distributions including log-logistic modified Weibull, log-logistic Weibull, and log-
logistic distributions. The special case of the log-logistic modified Weibull Poisson (LLoOGMWP)
and log-logistic modified Weibull Logarithmic (LLoGMWL) distributions are studied in detail. We
apply the method of maximum likelihood to estimate the parameters of this new distribution. Finally,
real data examples are presented to illustrate the usefulness and applicability of both LLoGMWP and
LLoGMWL distributions.

Keywords: Generalized distribution, power series distribution, modified Weibull distribution, Log-
logistic modified Weibull distribution, maximum likelihood estimation.

1. Introduction

Several useful ways of generating new probability distributions from classic ones to relative new
distributions are given in the literature on statistical distributions and modeling. Murthy et al. (2004)
stated that, distributions with bathtub-shaped failure rate are sufficiently complex and, therefore, diffi-
cult to model. The distribution proposed by Hjorth (1980) is such an example. Rajarshi and Rajarshi
(1988) presented a revision of these distributions, and Haupt and Schabe (1992) developed a new
lifetime model with bathtub-shaped failure rates. Unfortunately, these models are not sufficient to
address various practical situations, so new classes of distributions were presented based on modifi-
cations of Weibull distribution to satisfy non-monotonic failure rate. For a comprehensive review of
these models, please refer to Mudholkar and Srivastava (1993), and Pham and Lai (2007), where the
authors summarized some generalizations of the Weibull distribution.

The development and applications of generalized distributions have led to important and use-
ful contributions to the statistical literature in recent times. Oluyede and Yang (2015) on the beta
generalized Lindley distribution, Oluyede et al. (2014) on the gamma-Dagum distribution, as well
general family of univariate distributions generated from Weibull distribution that was introduced by
Gurvich et al. (1997) where the authors developed a new statistical distribution for characterizing the
random strength of brittle materials. There are other generalizations that include the exponentiated
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Weibull (EW) by Gupta and Kundu (2001), the modified Weibull (MW) by Lai et al. (2003) and the
beta exponential (BE) presented by Nadarajah and Kotz (2006). Some more recent extensions are the
generalized modified Weibull (GMW) studied by Carrasco et al. (2008), the beta modified Weibull
(BMW) reported by Silva et al. (2010), Nadarajah et al. (2011), the Weibull-G family reported by
Bourguignon et al. (2014) and the gamma-exponentiated Weibull distributions (GEW) by Pinho et al.
(2012). The generalized class of compound distributions have applications in various fields of study
such as economics, engineering, public health, industrial reliability and medicine.

There are several new distributions that have been developed by compounding well known con-
tinuous distributions such as the exponential, Weibull, Burr XII and exponentiated exponential dis-
tributions with the power series distribution that includes the Poisson, logarithmic, geometric and
binomial distributions as particular cases. Compound distributions are important due to their flexibil-
ity in modelling distributions with both monotonic and non-monotonic hazard rate functions which
are encountered in real life. These compound distribution include the class of Weibull-power series
(WPS) distributions byMorais and Barreto-Souza (2011). Silva et al. (2013) studied the extended
Weibull power series family, which includes as special models the exponential power series and
Weibull power series distributions. Silva and Cordeiro (2015) introduced a new family of Burr XII
power series models, and Oluyede et al. (2019) further proposed the Burr-Weibull power series class
of distributions. Oluyede et al. (2016) recently proposed a log-logistic Weibull Poisson distribution
which has applications in several areas including lifetime data analysis, reliability and economics.

Our primary motivations include the advantages of generalized distributions with respect to hav-
ing hazard rate functions that exhibits increasing, decreasing, up-side-down and bathtub shapes, as
well as the versatility and flexibility of the log-logistic and modified Weibull distributions in mod-
elling lifetime data. In this context, we propose and study the new class of distributions called the
log-logistic modified Weibull power series class of distributions. This new class of distributions in-
herits these desirable properties and has quite flexible variety of shapes. There is an added advantage
to this model, in that it also has added dispersion parameter, depending on the overall form that ac-
counts for the scale of the underlying random variable. The distribution also has exponential dumping
in the upper tail making the distribution suitable for modelling samples that display power behaviour
for intermediate observations and decrease in tail probability for large observations or beyond a cer-
tain threshold or specified value. The proposed new class of distributions has quite a large number of
sub-models and also generalizes the log-logistic, Weibull and modified Weibull distributions.

This paper is organized as follows. In Section 2, we present the generalized class of distribu-
tions called the log-logistic modified Weibull power series (LLoOGMWPS) class of distributions. The
hazard rate function, quantile function and various sub-classes are presented. Also, some additional
structural properties of the LLoOGMWPS class of distributions including moments, conditional mo-
ments, mean deviations, order statistics, entropy and estimates of model parameters are discussed in
Section 2. The special cases of the log-logistic modified Weibull Poisson and log-logistic modified
Weibull logarithmic distributions are presented and discussed in Section 3 followed by applications
and comparisons with other models. Concluding remarks are given in Section 4.

2. The Log-Logistic Modified Weibull Power Series Class of Distributions

In this section, the log-logistic modified Weibull power series (LLoOGMWPS) class of distribu-
tions and some of its statistical properties are presented. We first of all present the log-logistic and
modified Weibull distributions. The cumulative distribution function (cdf) and probability density
function (pdf) of log-logistic distribution are given by F,, () =1— (1+2¢)"tand f,, .(7) =
cx¢~ (14 2¢)~2, for ¢ > 0 and z > 0. The modified Weibull (MW) distribution BY Lai et al. (2003)
is given by

F . (z;0,8,)\) =1 —exp(—az’e’®), z>0,a>0,8>0,1>0. ¢))
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The corresponding pdf is given by
Faw (w10, 8,0) = aa? 71X (8 + dz) exp(—ax’e’), b)

forz > 0,a > 0,5 > 0,and A > 0. Note that the parameter o control the scale of the distribution, 5
controls the shape, whereas \ can be considered to be an accelerating factor in the imperfection time
and a factor of fragility in the survival of the individual as time increases. When A = 0, we obtain
Weibull distribution. Weibull distribution is well known and has been extensively used for modeling
data in several areas including reliability. Weibull distribution is particularly useful for modeling
monotone hazard rates.

Consider a sequence of N independent and identically distributed random variables, say X,
1 =1,..., N, from the log-logistic modified Weibull distribution (Oluyede et al., 2018). That is, the
cdf of X is given by

Firocuw (r5¢,0,8,\) =1 —(1+ ajc)_l exp(—axﬂe)‘x), 3
and the corresponding pdf is given by

c—1

-1
o @ioa s ) = (1) e tevn+ sk @

forc, o, 8 > 0, A > 0 and x > 0. The survival and hazard rate functions are given by

Sprecaw (@5 6,0,B,0) =1 = F | o (T50,0, 8,0) = (14 mc)il EXP(_OéSUﬂe)\x)
c—1

; A
I’;C,Oé,ﬂ,A) — fLLoGMW(xvc7a’ﬁ’ ) :alﬂile/\z(5+)\$)+ cx

and h :
Stroamw (T3€ 0,8, A) (14 z°)

LLoGMW (

respectively.

Now, let N be a discrete random variable following a power series distribution assumed to be
truncated at zero, whose probability mass function (pmf) is given by

an, 0"

c(9)’

P(N=n)= n=12 ...,

where C'(0) = 220:1 a,0™ is finite, # > 0, and {a,}»>1 a sequence of positive real numbers.
Considering X1y = min(X1,..., Xx) and conditioning upon N' = n, the conditional distribution
of X (1) given N = n is obtained as

(1_FLLUGMW(J:)) =1-57 («T) = 1_<1+$C)_n eXp(—nozxﬁe’\’”).

n
LLoGMW
i—1

3

Proposition 1 The cdf of X(,), say Fp, is given by

C’(G(l +2¢)7! exp(—axﬁem))

Fg(l‘):1— C(Q)
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Proof: Note that
F@({L‘) = ZGXU)\N n ( :n)

07’74
[1-(1+z9" exp(—naxﬁem)] dn?_

I
MS I

n=1 0(9)
B >, a, > [9(1 +2¢)71 exp(—ozxﬁem)]n
; C( ) Zl c(0)
C( exp(fa:cﬁe)“”))

C(9)

Proposition2 F,, ... () = lim Fy(x).

60—0t

Proof: Recall that C'(0) = | a,,6". Then,
S0 an [0(1 4 2°) "L exp(—aafer®)]" o S and™S™(z)
D ey an" Yoo anf®

Letting & — 07, the second term to the right of this equation is undetermined. Thus, applying
I’Hopital’s rule, we have

Fg(l’) =1-

S na 0" tS"(x)

lim Fp(z) = 1-— lim

0—0+ 6—0+ ZOO 1 na,0m—1
n—1gqn
— 1 lim arS(z) + 3.0 g na, 0" 1S ()
0—0+ ar + anz na, 01
= 1- SLLoGMMW (:C)

= F

LLoGMW (x)'

Remark 1 Let C’(6) be the derivative of C(6), thatis, C'(0) = Y>>~ na,0™'. Then the density
of Fy, say fy, is given by

dFp(z) _ 0f(x)C"(05(x))

Jolw) === = C(0)

2.1. Some generalized sub-classes of distributions

In this section, we present several new and known sub-classes of distributions including the
log-logistic power series (LLoGPS), log-logistic modified exponential power series (LLoGMEPS),
log-logistic Rayleigh power series (LLoGRPS), and other sub-classes of distributions.

e If A = 0, we obtain the log-logistic Weibull power series (LLoGWPS) class of distributions.

e If A =0, and 8 = 1, we obtain the log-logistic exponential power series (LLoGEPS) class of
distributions.

When oo — 0%, we have the log-logistic power series (LLoGPS) class of distributions.

If A = 0 and 8 = 2, we have the log-logistic Rayleigh power series (LLoGRPS) class of
distributions.

If 5 = 1, we obtain the log-logistic modified exponential power series (LLoOGMEPS) class of
distributions.
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e If 3 = 2, we have the log-logistic modified Rayleigh (LLoGMRPS) class of distributions.

e Several new classes of distributions can be readily obtained by setting c=1; c=1, 5=1; c=I,
B=2; c =1, B=1, A=0; c=1, A=0; o — 0™, c=1 and c=a=1, respectively.

2.2. Hazard rate and reverse hazard functions

We present the hazard rate and reverse hazard functions of the proposed LLoOGMWPS class of
distributions in this section. The hazard rate function (hrf) is given by hg(x) = fp(x)/Sp(x), where
Se(x) = 1 — Fyp(z). Explicitly,

C'(05(x))

ho(z) = Qf(w)ma

where [, ..w (2) = f(x) is the log-logistic modified Weibull pdf. On the other hand, the reverse
hazard function, 79(x) = fo(x)/Fy(z), is given by

2.3. Log-logistic modified Weibull poisson, geometric, logarithmic and binomial distributions

The cdfs, pdfs and hrfs of the log-logistic modified Weibull Poisson (LLoGMWP), log-logistic
modified Weibull geometric (LLoGMWG), log-logistic modified Weibull logarithmic (LLoGMWL)
and log-logistic modified Weibull binomial (LLoGMWB) distributions are presented in this section.

2.3.1 Log-logistic modified Weibull poisson distribution
The log-logistic modified Weibull Poisson (LLoGMWP) distribution is a special case of the
LLoGMWPS class of distributions with C'(¢) = ¢’ — 1 and a,, = ;. The cdf is given by

e(@(l—&-azc)*lexp(—awﬂexz)) -1

Frrocmuwp(zic,a, B,A,0) =1 — T ) (5)
forc,, 8,0 > 0, A > 0. The pdf is given by
: 1 —agBere
ee—amﬂeM‘ 14+ 2 —269(1+m°) Lemaale
frrocuwp(zic, o, B, A, 0) = ( e?g 7
X (cxc_l + a7 e (B + Ax) (1 + xc)) . 6)

The hrf is

) vl —azBeAz
ee—amﬂekl(l_"_xc)—Qe&(l-&-m) Lemazle

h ) =
LLoGMWP(Z) O(1te) te P _

x (cx® '+ afz’ e (B + \x)(1 + z9)).

2.3.2 Log-logistic modified Weibull geometric distribution

The log-logistic modified Weibull geometric (LLoOGMWG) distribution is obtained from the
LLoGMWPS class of distributions with C'(#) = (1 — 6)~! and a,, = 1. The cdf of the LLoOGMWG
distribution is given by

(1 _ 9)(1 + ‘,L.c)—le—amﬁe)‘z

e forc,a, 8,0 > 0, A > 0.

Frroamuwa(zsc,a,B,A,0) =1 —



242 Thailand Statistician, 2024; 22(2): 237-273

The corresponding pdf is given by

(1 —9)(6_‘” e (1+33 )72)
o ;C, O 7)\59 = B oAa
frroamwa(x;c, o, B ) (1= 0(1 + a0)Le—azPerr)2

x (cx® ' + azP e (B + Ax) (1 + z9)),

and the hrf is given by

(14297 (ca®™ ! + azP1er (B + Az)(1 + 2°))
_ 9(1 + xc)—le—axﬁeAI :

hiroamwea(z) =

2.3.3 Log-logistic modified Weibull logarithmic distribution
The log-logistic modified Weibull logarithmic (LLoGMWL) distribution is obtained from the
the LLoOGMWPS class of distributions with C(f) = —log(1 — 6) and a,, = L. The cdf is given by

)

B Az

log(1 — (1 + 2¢)~te—®

F o 56 Q@ >>‘a 0)=1- ’ 7
LLoaMwL(T5 ¢, 0, B, X, 0) Tog(1 = 0) (7
for c,r, 8,0 > 0 and A > 0. The corresponding pdf is given by
B Az
e~ ¢ (14 CEC)_2 (Cxc_l + a:pﬁ_lem(ﬁ +Ax)(1+ xc))
o 7 9 b 7A7 9 = 9 8
freoamwr(z;c, o, B, A, 0) (L= 0(1+ %) Te—aP ) log(1 — 0) @®)
and the hrf is
—azPer® c\—2 c—1 B—1_Xx c
0 1 Ax)(1
hirocarws (i e, BN 6) = e 1+ =z (cz: +az® e (B+ )1+ )) ©

—(1—0(1 + xc)~Le—aafer)log(1 — (1 + xc)~Le—ealer®)’

2.3.4 Log-logistic modified Weibull binomial distribution

The log-logistic modified Weibull binomial distribution (LLoGMWB) is a special case of the
LLoGMWPS class of distributions with C(#) = (1 +6)™ — 1, (n < m), and a,, = (”"). The cdf is
given by

(1401 +2°)~Lemaz"ym _q
F o ; G &, 7)‘76 =1- ) 1
LLoGMwB(Z; ¢, a, B, A, 0) 0107 -1 (10)
for ¢,a, 3,0 > 0 and A > 0. The corresponding pdf and hrf are given by
fLLoGMWB(x; C,Oé7ﬂ7 )‘79) = _Om (1 +a ) (Cxc_l + am,ﬁ_lekx(ﬁ + )\-'17)(1 + xf))
m(1 + ge—aa’ (14 z° ) kym—1
(1+0)m — ’
and
hrroauws(w;c o, 3,A,0) = e’ (14297 (ca® ' + az? e (B + Az)(1+ z°))
(+9—ame (1+JZ) )ml
X )
(1+ fe—axfers (1 4 ge)=1ym — 1
respectively.

2.4. Quantile function
The quantile function of the proposed LLoOGMWPS class of distributions is obtained by inverting
Fo(z) =u,0 <wu<1,and Fy(z)) = 1-C(0S(z))/C(6). This is equivalent to solving the equation
In(C(6S(x))) +In(C(0)) +In(1 —u) =0, (11)

which can be done using numerical methods. Consequently, random number can be generated based
on Eqn. (11).
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2.5. Moments, mean deviations, order statistics and entropy

In this section, moments, order statistics and Rényi entropy from LLoGMWPS class of distribu-
tions are presented. Mean deviation from the mean and the mean deviation from the median are also
derived in this section. We note that using the result of a power series raised to a positive integer s
(Gradshetyn and Ryzhik, 2000), that is,

S

Za’jy] = st,jyja
j=0 Jj=0

where the coefficients b, ; for (j = 1,2,...) are determined by the recurrence equations by ; =
(jao) ' Y7 _ Im(s+ 1) — jlambs,j—m, and bs o = af, we have

S

(0(9(1 + xc)_le_”ﬂem))s = [ D al000+ 2¢)~Temae’ )i
j=0
= bS,j [0(1 —+ xc)flefamﬁe%m]j. (12)
j=0

2.5.1 Moments

Moments of the LLOGMWPS class of distribution are presented in this subsection. The 7"
moment of the LLoOGMWPS class of distributions is given by

o [T 2 0f(@)C(05(x))
E(X )7/0 x de.

Now, using the transformation y = (1 + 2¢)~!, we have

. o < i (=D + DIFAK + )P

Jrk,p=0
X{ﬁB<J_+1_r+kﬁ+ﬁ+p’r+kﬁ+ﬁ+p)

C (&
r+kB+pB+p+1 r—&-k’ﬁ—l—ﬁ-ﬁ-p—i—l)}

C C

TAB (j +1
06 i bs ;6 (—D)*a(j + 1)]F[kA?

N0 K1p!

J.k,p=0

r+c+kB+p r+c+kﬁ+p> (13)

xB(j+2— ,
c c

where B(a, b) = fol ta=1(1 — t)*~1dt is the complete beta function.

2.5.2 Conditional moments
The " conditional moment of the LLOGMWPS class of distributions is given by

C'(05(x))

r _ 7 0f(2)
EX"|X>t) = Fe(t)/t x 0 dx
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. I o & i (=D (G + DIFA(k + 1)]P
E(X"| X > )= M)C@stﬁ( )Mo k!;]!u )

J.k,p=0

. r+kB+B8+p r+kB+B+p
X[BB(lthC)l <J+1— c ; c

r+kB+B8+p+1 r+kﬁ+6+p+1”

ABiiggey-1 [ j+1—
- (1+t)1<]+ c c

e 3 b RO DT

4
Fo() CO) , klp!

(14)

C C

B, )1<j+2 r+c+kB+p r+c+k6+p>
+te)~ - ) ’

where B c)-1(a, b) is the incomplete beta function.

2.5.3 Mean and median deviations

The amount of scatter in a population is measured to some extent by the totality of deviations
from the mean and median. These are known as the mean deviation about the mean and the mean
deviation about the median, and are defined by

01(z) = /0 | — p|f,(x)dz and d(z) = /0 |z — M|f,(z)dz, (15)

respectively, where u = E(X) and M = Median(X) denotes the median. The measures d; (x) and
d2(x) can be calculated using the relationships

0 (z) = 2uF, (1) — 21 + 2/00 xf,(x)dz, (16)
o
do(z) = —p+ 2/oo xf,(x)dx, 17
M

respectively. When » = 1, we get the mean u = E(X) from Eqn. (13). Note that T'(n) =
f:o zf,(z)dx is given by

T(u) = / ", (@)

 fa & (=D a( + D] ARk + )P
= ow 2 b

Il
Jkp=0 kip!
) 1+kB+B+p 1+kB+B+p
[ (01 882042 1288
. 1+ kB+B+p+1 14+kB+B8+p+1
FAB(1 4 ey <g+1_ B 6»3 p+1 1+kp CB p ”

e § gV + DR

_|_
Ip!
C(0) =, k!p!
. l+c+EkB+p 14+c+EkB+
XCB(1+HC)—1 (] +2— - B p7 - B p) ]

Consequently, the mean deviation about the mean and the mean deviation about the median are
01(z) =2uF, (u) —2pu+ 2T () and  d2(x) = —p + 2T(M),

respectively.
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2.5.4 Order statistics
The pdf of the i*" order statistic from the LLoOGMWPS class of distributions is given by
1

fin(x) = mfa(@b—gil(x)(l - Fe(af))n_i

1 —~ /n—1
— ij-H 1
B(i,n—i-l—l Z( J ) ()

(=)

- an—H—l (])

J:U

CO(1 + 2°) ! exp(—azBe )\ T
X (1 — oo ) .

M

Using binomial expansion

(1_0(9(1+xc>-01:;<)p<—axﬂem>>j”‘l _ j“f(_1>s<j+i—1>

Now, the pdf of the i*" order statistics can be written as

(O(1 + ¢ ) ( az’e A’E))
" ( co) ) |
Note that,
(C(O + z°) L exp(—azPer®)))* = (Z awd(1 + 271 exp(—aacﬂe)‘x)>

Z s w (0(1 + )71 exp(—ozxﬁe)‘x))w ,
w=0

where if e5 ,, = (wag) ™

order statistic is

S Im(s+ 1) — w]amesw—m, and e5o = ag, so that the pdf of the i*"

—ij+i—1 oo its
B n—i\[j+i—1 (—1)7F5eg 0"
I 35 3 3] (o | G e e
x(w+ I +a) Lemaaleu s (g)
—ij+i—1 oo . . i
_ n—1 ¥ +1—1 (_1)J+Ses,w9w *
- Z 2 MZ( VT e e @
where  f*(z) = (w+D)[(1+2°) te L (2)

[
= (w+ DI+ LemaaleXqu

142972 (ex 4 (1 4+ 29BN (B 4 Ax))).

X [e—om:
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The corresponding cdf is given by

ol

Fin(z) = n (

_3 k( () i
k=i j= oji <J+k>(n;k)<k)( Ly

<c<e<1 z) Cf;«)m aa:ﬁe“»)ﬂ

)Fé“(x)(l ~ Ryt

where Fg(l‘) - 1_ C(é‘(l—‘rmc)*lcc();g)(—azﬁe)\m))7 and

C(O(1 + )~ exp(—az’er?)) Zaj (142 exp(faxﬁe)‘m)]j.
7=0

2.5.5 Rényi entropy

The most widely used information measures are Rényi entropy (Rényi, 1961) and Shannon en-
tropy (Shannon, 1974). Statistically, Rényi entropy is defined as an extension of Shannon entropy
and is given as

Ir(v) = 1ivlog </Ooo[f(x;c,a7ﬂ,)\,9)]”dac> ,v#£1,v>0. (18)

Rényi entropy tends to Shannon entropy as v — 1. With

/OO f(x; e, B, A, 0)de = /OO 16 (x)dx
0 0

written as /000 1o (x)dz = <Cf€)>v/Ooo(f(:v)C'(HS(x)))”dx,

and C'O(1 +a°) " temom ey = Znan (14271 *‘”ﬁem]"*l
n=1
= Y- (nt Va1 +a%) e
n=0
- Zb (1+a¢) " temaae ], (19)
n=0

where b, = (n + D)any1, and (307 bay™)” = S oo i duny™, where y = 6(1 + xc)_le_o‘wﬁ,

dyn = b, and dy ,, = — ZTZO(W m + j)bjdy m—j, we have

mbo
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| s = <cw)vfi%"/’ 14 - Tgmesb e

e (aﬁxﬂ LA (B 1 Ax) + fi:)}dm’
B <Ci9))vnp§:ﬂ (fl)p[o;f!n+1)]p [)\(p+l1!)fk)]l (Z) (vsk)

xendunc al~ k)\st k— s/ ckJrvakﬁvarerl(l+xc)fn+v7k72vdl,.
0

><|:1—|—LI? 1—aac

Now, let y = (1 + 2¢)7!, and set 6* = ck + vB8 — kB — v + s + | + 1, then Rényi entropy for
LLoGMWPS class of distributions is given by

_ 1 0\ & (—Plan+ 1)) Ap+o—k)
Inlv) = 1—v1°g<(0(9>> ,;:0 pl I

— 41 0" +1
x (”) (” k) 0" dyckar kA grh—e (n SR s ) >
k s c c

forv # 1,and v > 0.

2.6. Estimation
Let X ~ LLoGMW PS(c,a, 3,),0) and A = (¢, 3, A\, 0)T be the parameter vector. The
log-likelihood function ¢ = ¢(A) based on a random sample of size n is given by

0=0,(A) = nln() —nln(CO)) + Z In(f(z:) + 3 In(C"(0S(x,)))

=1

= nln(@) —nln(C(9)) + i —axl ) 2§:In(l + )

+ 3 Infea "+ (1 af)aa) N (B4 M)

+Zln(0’( emoml e (1 4 29) 7).

The equations obtained by setting the partial derivatives to zero are not in closed form and
the values of the parameters ¢, o, 3, A and # must be found via iterative methods. The maximum
likelihood estimates of the parameters, denoted by A is obtained by solving the nonlinear equation

oL L L oL ot

(3> B> 26 Bn %)T = 0, using a numerical method such as Newton-Raphson procedure. The

Fisher information matrix given by I(A) = [Ip, ,]5x5 = E(—%), 1,7 = 1,2,3,4,5, can be
numerically obtained by MATLAB or NLMIXED in SAS or R software. The total Fisher information

matrix nI(A) can be approximated by

J.(A) [ o ] ,j=1,2,3,4,5 (20)
n ~ - 9 Za .] = 1,4,9,% 9.
I 90:00; | a—alsxs

For a given set of observations, the matrix given in equation [29] is obtained after the conver-
gence of the Newton-Raphson procedure via NLMIXED in SAS or R software. Note that the expec-
tations in the Fisher Information Matrix (FIM) can be obtained numerically. Let A= (&, ﬁ, )\ 9)




248 Thailand Statistician, 2024; 22(2): 237-273

be the maximum likelihood estimate of A = (¢, a, 8, A, §). Under the usual regularity conditions
and that the parameters are in the interior of the parameter space, but not on the boundary, we have:
V(A — A) < N5(0,I(A)~1), where I(A) is the expected Fisher information matrix. The
asymptotic behavior is still valid if 7(A) is replaced by the observed information matrix evaluated
at A, that is J(A). The multivariate normal distribution N5(0, J~'(A)), where the mean vector
0 = (0,0,0,0,0)T, can be used to construct confidence intervals and confidence regions for the in-
dividual model parameters and for the survival and hazard rate functions. That is, the approximate
100(1 — 1)% two-sided confidence intervals for ¢, A, v, 8 and 6 are given by:

CEZo\ I (A), a%Zu\Iah(A), B+Zs\/I5H(A), X+ Zs\/I1(A),
and 0+ Zy1\/T55(A),

respectively, where I1(A),I;1(A), I ( ), 1 (A) and 19_91(3) are the diagonal elements of

ke 7e%

I;'(A) = (nI(A))~' and Z» 1 is the upper gt percentlle of a standard normal distribution.

n

3. Some Special Cases of the LLoGMWPS Class of Distributions

Two special cases of the log-logistic modified Weibull power series (LLoOGMWPS) class of
distributions, namely the log-logistic modified Weibull Poisson and log-logistic modified Weibull
Logarithmic distributions are presented including pdfs, cdfs, hazard rate and reverse hazard functions,
moments, conditional moments, distribution of order statistics and Rényi entropy. Plots of the pdf
and hrf for selected values of the model parameters are given. The method of maximum likelihood
estimation is used for estimating parameters and simulation is conducted to illustrate the performance
of the two special cases of the LLoOGMWPS class of distributions. Real life data sets are applied to
demonstrate the flexibility and applicability of the two special cases.

3.1. Log-logistic modified Weibull poisson distribution
The cdf and pdf of the LLoOGMWP distribution are given by Eqns. (5) and (6). Plots of the
LLoGMWP pdf for selected values of the model parameters are given in Figure 1.

&7 — 6=092720,c=40,0=0.3,p=2.0 ~ — 8=2.0,.=0.3,c=4.0,a=2.0,=0.9,
— 6=1.0,.-0.5,c=05,0=1.0,3=5.0 6=051=1.0.c=1.0.0=2.0,6=05
— 8=1.0,.-0.4,c=2.0,0:=0.3,5=1.0 6=0.41=2.0,c=0.05,0:=0.7,6=0.4

density
10
density
L
\
/

05

00

Figure 1 Plots of the pdf of the LLoGMWP distribution for the selected values of the model param-
eters
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Figure 1 shows that the plots of the pdf can be right-skewed, reverse-J and decreasing among
many other shapes among many potential shapes. The density can exhibit different shapes depending
on the values of the parameters, as shown in these plots.

3.1.1 Hazard rate function
In this section, the hrf of the LLoOGMWP distribution is presented. Plots of the hrf for selected
values of the model parameters are also given. The hrf of the LLoGMWP distribution is given by

x ey—1_ —azBerT
ee—aacﬁek (1+xc)—269(1+$) le

hirocmwp(z) = T -
x  (ex® '+ afz’ e (B + \x)(1 + z))

forx >0,c,a, 5>0,A>0,0 > 0.

v
<A \ — 6=2.0,4=0.3,c=4.0,0=2.0,8=0.9,
\ 6=0.5,1=1.0,c=1.0,0=2.0,3=0.5

60.4,.=2.0,c=0.05,0=0.7, =04

hazard

hazard
1
/’

=40,003,p=20 ~
7.20.5,c=05,0.=10,=50
0.4,6=2.0,0=0.3,p=1.0 =

Figure 2 Plots of the hrf LLoGMWP distribution for the selected values of the model parameters

The graphs in Figure 2 exhibit decreasing, increasing, uni-modal and bathtub followed by upside
down bathtub shapes for the selected values of the model parameters. This very attractive flexibility
makes the LLOGMWP hrf useful and suitable for non-monotonic empirical hazard behaviours which
are more likely to be encountered in practice or real life situations.

3.1.2 Quantile function

The LLoGMWP quantile function can be obtained by inverting F/

LLoG]VIWP(x) =u,0<u<l,
where

| = bl temee )

FLLoGlMWP(I) = 1- 1_¢f . (21

The quantile function of the LLoOGMWP distribution is obtained by the solving non-linear equation

axP e 4+ log(1 + z°) + log ( <; log (1 —(1—u)(1 - e9)>> ) =0, (22)

using numerical methods. Consequently, random number can be generated based on (22). Table of
quantiles from the LLoGMWP distribution for selected values of model parameters are given below.
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Table 1 LLoGMWP quantile for selected values

(C7 )\7 07 a’ /B)

u (0.1,0.2,2.8,04,0.5) (2.8,3.54.03.0,1.0) (2.0,1.0,1.0,1.0,0.3) (1.0,0.9,1.0,1.0,1.0)  (1.0,1.0,1.0,0.6,1.0)
0.1 0.0732 0.0964 0.1241 0.0846 0.1067
0.2 0.2539 0.1417 0.0642 0.1677 0.2123
0.3 0.4259 0.1740 0.1390 0.2505 0.3174
0.4 0.5736 0.2007 0.2258 0.3344 0.4231
0.5 0.7138 0.2249 0.3222 0.4215 0.5310
0.6 0.8611 0.2484 0.4296 0.5145 0.6439
0.7 1.0327 0.2730 0.5532 0.6181 0.7667
0.8 1.2619 0.3011 0.7045 0.7418 0.9093
0.9 1.6561 0.3391 0.9191 0.9137 1.1009

Table 2 LLoGMWP moments for selected values

(c,0,\, c, B)

Moments (1.0,3.0,2.0,3.0,1.0) (1.0,3.0,1.0,1.5,2.0) (1.0,3.0,0.9,1.5,1.0)  (0.9,2,0.8,0.5,2.0) (0.4,1.0,1.0,3.0,1.0)
ull 4.3759 1.5883 1.4355 1.0340 0.5515
/.1/2 6.1566 2.8842 2.1994 0.4162 0.4804
ul3 2.7520 6.1940 3.6307 0.5738 0.4916
/J,; 3.0311 6.4748 6.5323 0.9791 0.5564
u; 6.4121 7.0603 12.9794 1.9405 0.6783
SD 6.5129 0.6011 0.3723 0.2541 0.8774
(6\Y 1.4883 0.3784 0.2593 0.1212 0.4197
CS 7.6433 2.1399 1.4564 1.3556 0.7610
CK 1.4500 129121 7.2475 6.4151 0.2858

LLoGMWP(c, 0.5, B, 0.2, 0.5) LLoGMWP(c. 0.5, B, 0.2, 0.5)

Figure 3 Plots of skewness and kurtosis of the LLoGMWP distribution

The first five moments, standard deviation (SD), coefficient of variation (CV), coefficient of
skewness (CS) and coefficient of kurtosis (CK) for selected values of the parameters of the LLoOGMWP
distribution are listed in Table 2.

The 3D plots of skewness and kurtosis for the LLoOGMWP distribution are given in Figures 3
and 4. We observe that
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LLoGMWP(1, , 1.2, %, 0.35) LLoGMWP(1, o, 1.2, %, 0.35)

Figure 4 Plots of skewness and kurtosis of the LLoGMWP distribution

e When we fix the parameters o, A and 6, the skewness and kurtosis of LLoOGMWP increase as ¢
and [ increase.

e When we fix the parameters ¢, 8 and 6, the skewness and kurtosis of LLoOGMWP increase as «
and )\ increase.

3.1.3 Estimation

Let X ~ LLoGMW P(c,a, 3,\,0) and A = (c,a, 3, \,0)T be the parameter vector. The
log-likelihood function £ = ¢(A) based on a random sample of size n is given by

(=10,(A) = nn(d) —nln(CH)) + Z In(g(z:)) + > In(C'(0S(;))

i=1

= nln(d) —nln(e? — 1)+ Z(—aw?e)‘“) -2 Z In(1+ %)
i=1 i=1
+ Infeaf Tt 4 (14 af)afrl T e (B + Aay))
=1
+0D (1= e (14 2) 7. (23)
=1

We obtain the maximum likelihood estimates of parameters denoted by A by solving the non-

. <90 oL 9L 9L DUNT _
linear equation (%,%,@7ma%) = 0.

3.1.4 Simulation

In this section, the performance of the maximum likelihood estimates is examined by conducting
simulation studies for different sample sizes. We examine the performance of the LLoOGMWP dis-
tribution by conducting various simulations for different sizes (n=25, 50, 100, 200, 400, 800, 1600)
via the R package. We simulate N = 1000 samples and the true parameters values I : § = 0.5,¢ =
0.5,a=01,=05,A=12,1I:0=1.0,c=1.0,aa=0.1,5 = 0.3, A = 1.0, The mean, aver-
age bias and root mean square error (RMSE) were computed. The mean for the estimated parameter
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6, average bias and RMSE are given by

N A N 5
Mean = % ABias(0) = Z:Tﬁ —0 and RMSE(f) =

The table lists the mean MLEs of the parameters along with the respective average bias and root mean
squared errors (RMSEs).

Table 3 Monte Carlo simulation results: Mean, Average Bias and RMSE

I I
Parameter n Mean  Average Bias RMSE Mean  Average Bias RMSE
0 25 0.9575 1.5802 0.4523 | 3.2679 20.4624 2.2679
50 0.7539 0.5933 0.2539 | 1.2195 1.6281 0.2195
100 0.6183 0.4247 0.1183 | 1.0887 0.8129 0.0887
200  0.5425 0.3424 0.0425 | 1.1013 0.6287 0.1013
400  0.4845 0.2698 -0.0154 | 1.0549 0.4887 0.0549
800  0.4284 0.2144 -0.0715 | 1.0621 0.3540 0.0621
1600  0.4983 0.0528 -0.0016 | 1.0954 0.2774 0.0954
c 25 0.5686 0.2964 0.0686 | 2.0350 1.5543 1.0350
50 0.5410 0.1724 0.0410 | 1.9783 1.3260 0.9783
100 0.5288 0.0994 0.0288 | 1.9590 1.2525 0.9590
200  0.5211 0.0627 0.0211 | 1.9371 1.1921 0.9371
400  0.5208 0.0467 0.0208 | 1.9510 1.1390 0.9510
800  0.5292 0.0371 0.0292 | 0.9928 0.4008 -0.0072
1600  0.5167 0.0168 0.0167 | 0.9556 0.0825 -0.0443
e 25 0.1792 0.2468 0.0792 | 0.2089 0.5388 0.1089
50 0.1642 0.1543 0.0642 | 0.1533 0.1906 0.0533
100 0.1338 0.0955 0.0338 | 0.1369 0.1325 0.0369
200  0.1187 0.0634 0.0187 | 0.1332 0.1076 0.0332
400  0.1050 0.0420 0.0050 | 0.1199 0.0757 0.0199
800  0.1044 0.0262 0.0044 | 0.1188 0.0535 0.0188
1600  0.1037 0.0041 0.0037 | 0.1218 0.0440 0.0218
B8 25 1.2602 1.2992 0.7602 | 1.2374 1.4298 0.9374
50 1.1215 1.1941 0.6215 | 1.0798 1.2891 0.7798
100 0.9277 1.0101 0.4277 | 0.8783 1.1181 0.5783
200  0.7493 0.7094 0.2493 | 0.7078 0.8834 0.4078
400  0.7333 0.7232 0.2333 | 0.5520 0.6036 0.2520
800  0.5392 0.0613 0.0392 | 0.4253 0.2894 0.1253
1600  0.5132 0.0521 0.0132 | 0.3965 0.1078 0.0965
A 25 1.0804 0.8024 -0.1195 | 0.8538 0.7104 -0.1461
50 0.9752 0.6738 -0.2247 | 0.8051 0.5963 -0.1948
100 1.0338 0.5376 -0.1661 | 0.8353 0.4925 -0.1646
200  1.0936 0.3791 -0.1063 | 0.8566 0.3821 -0.1433
400  1.1255 0.3376 -0.0744 | 0.9089 0.2751 -0.0910
800  1.2210 0.0983 0.0210 | 0.9320 0.1745 -0.0679
1600  1.2005 0.0140 0.0005 | 0.9923 0.1562 -0.0077

The results in Table 3 show that the mean MLEs converge to the true values and the average bias
decreases for all parametric values as the sample size n increases, and the RMSEs decay toward zero.

3.1.5 Applications

In this section, applications of LLoOGMWP distribution to real data are presented. The maximum
likelihood estimates (MLEs) of the LLoOGMWP parameters A = (¢, «, 3, \,0) are computed by
maximizing the objective function via the subroutine NLMIXED in SAS as well as the function nlm
in R (R Development Core Team (2011)). The estimated values of the parameters (standard error
in parenthesis), -2log-likelihood statistic (—21n(L)), Akaike Information Criterion (AIC' = 2p —
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21n(L)), Bayesian Information Criterion (BIC' = pln(n) — 2In(L)) and AICC=AIC + 22(_177;_1%,
where L = L(A) is the value of the likelihood function evaluated at the parameter estimates, 7 is the
number of observations, and p is the number of estimated parameters are presented in Tables 4 and
5. The Cramér-von Mises (W*) and Anderson-Darling (A*) goodness-of-fit statistics, described by
Chen and Balakrishnan (1995) are also presented in the tables. These statistics can be used to verify
which distribution fits better to the data. In general, the smaller the values of W* and A*, the better

the fit. The Sum of Squares (SS) from the probability plots is given by
n . 2
j—0.375
SS = E Flxy) — | —————
< [ () (n 4025 )]

and was also computed for the fitted models, where j = 1,2....., n and z(; are the ordered values of
the observed data.

We can use the likelihood ratio (LR) test to compare the fit of the LLoOGMWP distribution
with its sub-models for a given data set. For example, to test 5 = 1, the LR statistic is w =
2[In(L(e, @,B, 5\7@) —In(L(¢, &, 1, A, 9))]7 where ¢, &, 3, \, and 0 are the unrestricted estimates,
and ¢, &, A, and 0 are the restricted estimates. The LR test rejects the null hypothesis if w > Xf,
where Xf denote the upper 100¢% point of the x? distribution with 1 degrees of freedom.

The data sets in this section are used to illustrate the flexibility of the LLoOGMWP distribution
and its sub-models (LLoGP, LLoGEP) for data modeling. We compare the LLoOGMWP distribution
with the gamma-Dagum (GD) (Oluyede et al., 2014), Exponentiated Kumaraswamy Dagum (EKD)
(Huang and Oluyede, 2014), Beta Weibull log-logistic BWLLoG (Makubate et al., 2018), Exponen-
tiated Kumaraswamy Weibull (EKW) (Eissa and Abdulaziz, 2014), LoG-Logistic Weibull Poisson
(LLoGWP) (Oluyede et al., 2016), and Burr XII Weibull Logarithmic (BrWLn) (Oluyede et al., 2018)
distributions. The pdfs of the GD, EKD, BWLLoG, EKW, LLoGWP, and BrWLn distributions are
given by

A3z =91 ot
fop (@) = ?(2)904(1 + )\a?_‘s)_ﬂ_l < —log[l — (14 Ax_5)_ﬂ]>
X[1— (14 A7) A1/0=1 fora, A, 6,5,0 > 0,2 > 0. (24)
Forn(@) = aXdgfz 011+ Az )" [1 = (14 Az—%) ]
X {1 --a+ Aa:‘s)a]‘“}, for a, \,8,6,60 > 0,2 > 0. (25)
_ Oéﬂc c—1 c\—2 [1 B (1 + l.(:)—l]ﬂ_l
fBWLLoG(x) - B(@J))‘T (1+$ ) [<1+xc)_115+1

Xexp {—ab (142 — 1][3}

X {1 - exp{—oz (14 2°) — 1]"}}‘1_1 fora,b,c,a, 8> 0,2 > 0. (26)
forw (@) = BabeXztexp — (A\x)°[1 — exp — (Ax)]*
x {1 —[1—exp— (Ax)“}a} " {1 —[1—[1—exp— (Ax)"}“]br_l, 27
fora,b,c,\,0 >0, x > 0,
00 (1-(1(2)) e

Frvoown (@) = o (1 e (3)1) .

» [ (1 n (f)); (E)C_l + aﬁxﬁly for s,c,a, 3,0 > 0,2 > 0. (28)
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—az? cy—k—1 c—1 B—1 c
Foinla) = 2O e) (e 4 bl (L4 e) (29)
- (1 —60(1+z) e*‘mﬂ) log (1 —0)

fork,c,a, 3,0 >0,z > 0.

3.1.5.1 Failure time of 50 components data

The first set of data represent failure times of 50 components from Murthy et al. (2004). Es-
timates of the parameters of LLoOGMWP distribution and its related sub-models (standard error in
parentheses), AIC, AICC, BIC, W*, A*, KS, P-value and SS are give in Table 4. The asymptotic
variance-covariance matrix of the MLEs for the LLoOGMWP distribution is given by:

0.0739  0.0134  0.0004 —0.4383 —0.0170

0.0134  0.0157 —0.0011 -0.0156 —0.0144

0.0004 —0.0011 0.0007 —0.0418 0.0054 (30)
—0.4383 —0.0156 —0.0418 4.7653 —0.1960

—0.0170 —0.0144 0.00542 —0.1960 0.2903

and the approximate 95% two-sided confidence intervals for \, ¢, , 3 and 6 are given by 0.2478 +
0.5329, 0.7776 + 0.2459, 0.0065 + 0.0523, 0.7740 + 4.2786, and 0.3708 + 1.0560, respectively.

Table 4 Estimates of model for failure times of 50 components data

Estimates Statistics

Model A ¢ a 8 6 —2logk AIC  AICC BIC w A* SS KS P-VALUE

LLoGMWP 0.2478 0.7776 0.0066 0.7740 03708 197.6134  207.6134 2089771 217.1735 0.0941 0.6137 0.0853 0.0994 0.6696
(0.2719) (0.1246)  (0.0267)  (2.1832) (0.5388)

LLoGP - 0.9098 - 0.9558  210.9849 214.9849 2152402 218.8089 0.2140 13296 0.5448 0.1372 02774
(0.1029) - (0.4911)

LLoGEP - 0.7372 0.7800 - 36898 x 107 2062124 2122124 2127342 217.9485  0.1523  0.9451 0.3066 0.1839 0.0592
(0.1238)  (0.3954) - (0.2131)
a A ) [ 0

EKD 1.0279 1.846  1486.00 0.7485 9250.1000 204.7135 2147135 216.0771 2242736 0.1499 0.9460 3.4806 0.1331 0.3101
(0.3081)  (0.0000014)  (0.7378)  (0.000002) (1.5469)
A 5 ) a 0

GD 0.0004 0.5934 1.2483 12.5790 0.6682 208.2542 218.2543 219.6179 227.8144 02148 13219 02162 0.1606 0.1359
(0.0018) (0.2332)  (0.6123)  (0.0391) (0.3247)
c a b 0 A

EKW 0.5110 10.0989 7.1749 0.1173 0.2359 202.8997 212.8998 214.2634 2224599 0.1318 0.8531 0.1353 0.1363 0.2845
(0.3118) (9.7929) (11.3697)  (0.1166) (0.2870)
c a b a I’

BWLLoG 0.4256 14584 13.3910 0.0709 12299 204.6975 214.6975 216.0612 2242577 0.1549 09658 0.1616 0.1187 0.4475
(2.4626) (3.2680) (56.1346)  (0.2913) (7.1157)
s c o 8 o

LLoGWP 1.6389 0.6939 0.0268 15685 5.5051 x 107°° 2004967 2104967 211.8603 220.0568 0.1123 0.7305 0.0970 0.1075 0.5723
(0.8462) (0.1230)  (0.0457)  (0.6521) (0.2441)
k c a 8 [

BrWLn 1.051 x 10710 12728 0.2679 0.6168 53097 x 107%9 2284620 2384625 239.8261 2480226 0.1524 0.9498 1.8593 0.2750 0.0007
(1.0310 x 107%) (0.6154)  (0.04024)  (0.0721) (0.0107)

The LR for the following hypothesis testing Hy : LLoGP against H, : LLoGMWP and H :
LLoGEP against H, : LLoOGMWP are 13.3715 (p-value=0.0038) and 8.599 (p-value= 0.0136). We
conclude that there is significant difference between the non-nested models and LLoGMWP distribu-
tion. The goodness-of-fit statistics W*, A*, KS and its p-value show that the LLoGMWP distribution
is far better than the sub-models, and the non-nested models. Also, the values of AIC, AICC and BIC
shows that the LLoOGMWP distribution fits better than the non-nested distributions.

Plots of the fitted densities and probability plots are given in Figure 5. For probability plots
figure, the plot with the smallest SS value corresponds to the model with points that are closer to the
diagonal line. See Table 4 for the SS-values.
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Figure 5 Fitted PDF and probability plots for failure times of 50 components data

3.1.5.2 Aircraft windshield failure data
The dataset analyzed in Table 5 represents the data sets for a particular aircraft windshield re-
ported by Murthy et al. (2004). The dataset is divided into two different sets of data being the 88
observations that are classified as failed windshields and the 65 observations which are service times
of windshields that had not failed at the time of observation. The measurement unit is 1000 hours.

Table 5 Estimates of model for aircraft windshield failure data

255

Estimates Statistics

Model A ¢ a 8 9 —2log L AIC AlCC BIC  W* A+ KS P-VALUE  S§

LLoGMWP 03222 0.1024 0.1776 0.06971 250918 2536165 263.6165 2643857 2757706 0.0469 05376 0.0642 09689 00728
(0.1233) (0.4118) (0.9597) (0.2213) (30.4056)

LLoGP - 23891 - 56505 2864005 2904005 2905487 295.5622 03113 22440 0.1304 0.1147 02087
(0.1737) - (0.76491)

LLoGEP 04780 02590 1.2934X10°% 4193331 4253331 4256333 4326257 0.1512 13009 0.1785 0.5743 03222
- (0.5083) (0.1490) (0.0090)
A 8 [} a 0

GD 50919 6.6830 07827 0.4698 00010 2604438 2704440 2712132 282.5981 0.0658 0.6310 0.0775 06934 05995
(0.0101) (0.0038) (0.2214) (0.1492) (0.0016)
a A ) @ [

EKD 2.8909 16.1328 19388 10.5093 04057 2619840 2719840 2727532 284.1381 0.0649 0.6581 0.0756 07224 0.0881
(1.4745) (12.3388) (0.4457) (54744) (0.2462)
¢ a b 0 A

EKW 18858 3.6003 153512 0.3442 034900 2611730 2711730 2719422 2833271 0.0643 06435 0.0753 07278 0.0843
(0.5653) (2.2276) (1.1677) (0.2446) 0.0721)
¢ a b a B

BWLLoG 5.8439 0.2885 53215 0.0005 25840 2554797 2654797 2662490 277.6338 0.1185 0.7838 0.0680 09421 78727
(0.0018) (0.0307)  (2.02502107%)  (1.12492107°) 0.0113)
s c @ 8 [

LLoGWP 2.5559 43028 00714 0.8998 03062 258.8826 268.8826 269.6519 2810367 0.0770 0.5822 0.0770 0.5822 0.0877
(0.6394) (0.5457) (0.1189) (0.6295) (2.8061)
k c @ 8 0

BrWLn  1.7919 x 10°% 19719 05418 04345 18402 % 1079 4507534 460.7547 461.5239 4729088 03257 24118 03257 2.591x 1071 18593
(10310 x 107%)  (2.3539 x 10~%) (0.0250) (0.0459) (0.0052)

The estimated variance-covariance matrix for the LLoGMWP distribution is given by:

0.0152
0.03261

—0.1009
—0.0025
—2.9858

0.03261
0.1696

—0.1149
—0.0603
—2.8573

—0.1009
—0.1149
0.9210
—0.0891
28.9171

—0.0025
—0.06028
—0.0891
0.0489
—3.2824

—2.9859
—2.8573

28.9171

-3

924.5021

.282

and the approximate 95% two-sided confidence intervals for A, ¢, o, 3 and 6 are given by 0.3222 +
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0.2416, 0.1024 + 0.8072, 1.1776 £ 1.8810, 0.0691 £ 0.4337, and 25.0918 &£ 59.5950, respectively.

The following hypothesis were tested using the LR test. The values for LR test statistic for
testing Hy : LLoGP against H, : LLoOGMWP and Hy : LLoGEP against H,: LLoGMWP are
32.7840 (p-value<0.00001) and 165.7166 (p-value<0.00001). We conclude that there is significant
difference between LLoGP, LLoGEP and LLoGMWP distributions. However, the goodness-of-fit
statistics W*, A* and KS and its p-value show that the LLoOGMWP distribution fits better than the
sub-models and the non-nested models. Lastly, the values of AIC, AICC and BIC shows that the
LLoGMWP distribution fits better than the non-nested distributions. The probability plots and fitted

densities are given in Figure 6.

Density

Figure 6 Fitted densities and probability plots for aircraft windshield failure data
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3.2. Log-Logistic modified Weibull logarithmic distribution

The cdf and pdf of the LLoOGMWL distribution are given by Eqns. (7) and (8), respectively. Plots

of the pdf of the LLoOGMWL distribution are given in the Figure 5.

Figure 7 show that plots of the the LLOGMWL pdf can be decreasing, increasing-decreasing,
right-skewed, uni-modal and reverse-J shapes for different selected values of the parameters.

10

=026

=02,p=4

SLLL

=0.08,5=0.002
=8

Figure 7 Plots of the LLoOGMWL density function

3.2.1 Hazard rate function

The hrf of the LLoOGMWL distribution is given in Eqn. (9). The graphs below show the hrf of

LLoGMWL distribution in different shapes.
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hazard
hazard

Figure 8 Plots of the LLoGMWL hazard function

The graphs in Figure 8 exhibit increasing, decreasing, bathtub and unimodal shapes for the
selected values of the model parameters.

3.2.2 Quantile function
The quantile function of the LLoGMWL distribution can be obtained by inverting F', , .\, .. (Z) =
u, 0 <u <1, where

B Ay

log(1 —6(1 4 z®)e = )
FLLocMWL (I) = 1- log(l — 9)

The quantile function of the LLoOGMWL distribution is obtained by solving the non-linear equation

1 1-46
azPer +1og(1 4 ) + log <9 (1 — (1_9)u) ) =0. 31

Quantiles of the LLoGMWL distribution are presented in Table 6 for selected values of the model
parameters.

Table 6 LLoGMWL quantiles for selected parameter values

(C7 >\7 67 a7 ﬁ)

U (0.1,0.2,2.8,04,0.5) (0.1,3.5,4.0,3.0,0.8) (0.2,1.0,1.0,1.0,0.3)  (0.1,0.9,1.0,1.0,0.5)  (0.9,1.0,1.0,0.6,1.0)
0.1 0.0607 0.0134 0.0003 0.0083 0.0182
0.2 0.2236 0.0318 0.0043 0.0312. 0.0418
0.3 0.3921 0.0524 0.0182 0.0674 0.0727
0.4 0.5388 0.0748 0.0476 0.1167 0.1135
0.5 0.6777 0.0989 0.0967 0.1810 0.1681
0.6 0.8230 0.1254 0.1691 0.2636 0.2423
0.7 0.9918 0.1555 0.2716 0.3715 0.3457
0.8 1.2166 0.1917 0.4194 0.5191 0.4959
0.9 1.6030 0.2422 0.6565 0.7484 0.7369

The first six moments, standard deviation (SD), coefficient of variation (CV), coefficient of skew-
ness (CS) and coefficient of kurtosis (CK) for selected values of the parameters of the LLoGMWL
distribution are listed in Table 7.

The 3D plots of skewness and kurtosis for the LLoGMWL distribution are given in Figures 9
and 10. We observe that
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Table 7 LLoGMWL moments for selected parameter values

(¢, 0, )\, c, B)

Moments (1.0,1.0,1.0,1.0,1.0) (0.2,0.0,0.1,1.0,0.2) (1.0,1.0,1.0,0.9,1.0) (0.6,0.6,0.5,0.5,0.05)  (0.3,1.0,1.6,1.0,0.1)
;All 0.0802 0.0530 0.0288 0.0319 0.0996
;/2 0.0567 0.0360 0.0194 0.0213 0.0707
u; 0.0443 0.0275 0.0147 0.0160 0.0560
/J,; 0.0365 0.0222 0.0120 0.0128 0.0451
MIS 0.0310 0.0188 0.0102 0.0107 0.0382
/J,g 0.0271 0.0162 0.0088 0.0092 0.0332
SD 0.2243 0.1821 0.1363 0.1425 0.2465
CvV 2.7982 3.4367 4.7233 4.4695 2.4747
CS 2.8062 3.6496 5.2023 4.8617 2.3936
CK 9.6071 15.5148 30.1957 25.5557 7.3354

LLoGMWL(c, . 1.5.8.8,0.9) LLoGMWL(c, . 1.5.8.8,0.9)

Figure 9 Plots of skewness and kurtosis of the LLoGMWL distribution.

LLoGMWL(5.5. 0.05, B. 2. 0.1) LLoGMWL(5.5, 0.05, B, 2, 0.1)

Figure 10 Plots of skewness and kurtosis of the LLoGMWI distribution.
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e When we fix the parameters 3, A and 6, the skewness and kurtosis of LLoOGMWL increase as ¢
and « increase.

e When we fix the parameters ¢, o and 6, the skewness and kurtosis of LLoOGMWL decrease as
[ and \ increase.

3.2.3 Estimation
Let X ~ LLoGMW L(c,a,3,\,0) and A = (c,, 3, \,0)T be the parameter vector. The
log-likelihood function ¢ = ¢(A) for a single observation x of X is given by

t=logL = In(0)—2In(1+2° —az’e +In(cz° ' + az’ e (8 + A2))

B Az

- 1n< (170(1+x°)7167‘” e )> ~In(In(1 — 6)).
Elements of the score vector are given in the web-appendix.

3.2.4 Simulation study

A simulation study was conducted to check the performance of the maximum likelihood esti-
mates. The simulation study was repeated N = 1000 times each with sample size n = 35, 65, 90, 200,
400, 800 with the true parameters values I : 6 = 0.6,\ = 0.5,¢ = 0.8, = 4.0, = 1.8, and
Il : 6 = 05X =0.7,¢c = 1.0,a = 4.0,8 = 8. The table below shows the mean MLEs with
respective their average bias and Root Mean Square Error (RMSE). The results in Tables 8 show that
the mean MLEs converge to the true value and the RMSEs decay toward zero as the sample size n
increases. Also, the average bias decreases as the sample size n increases for all parametric values.

Table 8 Monte Carlo simulation results: Mean, Average Bias and RMSE

1 I

Parameter n Mean Average Bias RMSE Mean Average Bias RMSE
[4 25 0.6977 0.0977 0.3026 0.8623 0.3623 0.2491
50 0.6474 0.0474 0.2564 0.8415 0.3415 0.2297

100 0.6337 0.0337 0.2398 0.8067 0.2067 0.1985

200 0.6242 0.0244 0.2333 0.7794 0.2794 0.1757

400  0.6127 0.0127 0.2285 0.6875 0.1875 0.1335

800  0.6079 0.0079 0.2252 0.4896 0.0104 0.0993

A 25 1.2407 0.7407 2.5277 1.2228 0.5228 2.7739
50 0.9818 0.4818 1.7046 1.1944 0.4940 2.5901

100 0.7942 0.2942 0.8581 1.0297 0.3297 2.2550

200  0.7169 0.2169 0.8580 0.8585 0.1585 1.8065

400  0.6039 0.1039 0.6147 0.7842 0.0842 1.3980

800  0.4540 -0.0454 0.4992 0.7401 0.0410 1.3820

c 25 0.9122 0.1122 0.4366 1.515 0.5152 0.3310
50 0.8915 0.0915 0.2559 1.4356 0.4356 0.2295

100 0.8635 0.0635 0.1838 1.3101 0.0310 0.1510

200  0.8630 0.0630 0.1410 1.1474 0.1474 0.1112

400  0.8382 0.0382 0.1032 1.0624 0.0624 0.0781

800  0.8309 0.0309 0.0882 1.0011 0.0011 0.0558

a 25 7.3775 3.3776 13.5132 | 11.6146 7.6146 20.6478
50 5.3212 1.3212 4.8617 8.4929 4.4929 9.7755

100 4.6752 0.6752 3.0319 7.2175 3.2175 5.6443

200  4.3856 0.3856 2.4560 6.5282 2.5286 4.4378

400  4.1856 0.1856 2.1026 6.0693 2.0693 3.9642

800  4.0351 0.0350 1.7837 4.3504 0.3504 0.7296

B8 25 2.0542 0.9054 3.2785 8.9300 0.9300 5.4126
50 1.9266 0.1266 0.6707 8.2174 0.2174 3.4122

100 1.9138 0.1138 0.5261 8.6611 0.6611 2.6054

200 19115 0.1115 0.4689 8.4289 0.4288 1.9195

400 19225 0.1225 0.4215 8.1695 0.1695 1.3855

800  1.8273 0.0270 0.3901 7.8895 -0.1104 1.2641




260 Thailand Statistician, 2024; 22(2): 237-273

3.2.5 Applications

In this subsection, some datasets are used to illustrate the usefulness and applicability of the
LLoGMWL distribution. The LLoGMWL distribution is compared with its sub-models: log-logistic
Weibull (LLoGW), log-logistic Rayleigh (LLoGR) and log-logistic (LLoG) distributions. We also
compare the LLOGMWL distribution with Gamma Dagum (GD) (Oluyede et al., 2014), Exponen-
tiated Kumaraswamy Dagum (EKD) (Huang and Oluyede, 2014), Exponentiated Kumaraswamy
Weibull (EKW) (Eissa and Abdulaziz, 2014), LoG-Logistic Weibull Poisson (LLoGWP) (Oluyede
et al., 2016), and Burr XII Weibull Logarithmic (BrWLn) (Oluyede et al., 2018) distributions.

3.2.5.1 Caterpillar body mass data

The first dataset comes from R software package ”Stat2Data” Caterpillars data, consisting of 267
observations corresponding to body mass (in grams) of Manduca Sexta caterpillars. The estimated
variance-covariance matrix of the LLoGMWL distribution is given by

0.01584  0.00108 —0.00016 0.00014  0.00096
0.00108  0.00140 —0.00001  0.00009  0.00106
—0.00016 —0.00001 0.000001 —0.00001 —0.00001
0.00145 0.00009 —0.00001 0.00013  0.00008
0.00096  0.00106 —0.00001  0.00008  0.00169

and the approximate 95% two-sided confidence intervals for A, ¢, a, 5 and 6 are given by 0.5371 +
0.2467, 0.5722 + 0.0735, 0.0008 £ 0.0025, 0.5926 £ 0.0227, and 0.8651 =+ 0.0806, respectively.

Table 9 Estimates of model for caterpillar body mass data

Estimates Statistics

Model A c a B 6 —2log L AIC  AICC BIC w* A* KS P-VALUE SS

LLoGMWL 0.5371 0.5723 0.0008 0.5926 0.8651 2812231 291.2231 291.4530 309.1594 0.3005 1.9010 0.0606 0.2500  0.2747
(0.1259) (0.0375) (0.0013) (0.0116) (0.0412)

LLoGW - 0.4153 0.4903 0.5498 - 3435370 3495370 349.6282  360.2987 0.5982 4.0694 0.6935 0.0074  0.5975

(0.0364) (0.0925) (0.0805)

LLoGR - 0.4268 0.0149 - - 3485562 4339442 4339896 441.1187 05364 3.6470 02085 1.644x10710  4.1926
(0.0251) (0.0025) -

LLoG - 0.5139 - - 4483505 4503505 450.3656 4539377 0.6294 42539 02318  6.969x1071  7.0787
- (0.0259) - - -
A B8 § a 0

GD 3.3889 3.0748 0.0612 3.0667 0.0015 341.9914 3519913 3522211 369.9275 0.5309 3.6239 0.1064 0.0046  0.5396
(0.000009) (0.00005) (0.0027)  (0.00001) (0.00001)
a A ) [} (4

EKD 0.0050 312.5400 2.3520 2.0050 222950 3244124 3344124 3343423 352.3486 04682 3.2383 0.0912 0.0235  0.5282
(0.3081)  (0.0000014) (0.7378)  (0.000002) (1.5469)
c a b 0 A

EKW 0.8727 3.7969 0.9770 0.0891 0.2629 357.6407 447.8232 448.1462 469.3467 1.1149 7.2879 0.1594 2.574x107% 0.9779
(0.7512) (3.4702) (0.8459) (0.0807) (0.2582)
s c a 5] 0

LLoGWP 0.2276 0.4769 0.0975 10561 1.7582x 107 322.8534 332.8395 333.0694 350.7757 0.4386 3.0787 0.0732 0.1136  0.2969
(0.0553) (0.3135) (0.0385) (0.1771) (0.0020)
k ¢ a 5 0

BrWLn 1.6843 04602 1.8759 x 107% 46779 6.4784x 1079 2920598 302.0598 302.2897 319.9961 03701 24162 0.0814 0.0577  0.3097
(0.0553) (0.3135) (0.0385) (0.1771) (0.0020)

To test if the LLoOGMWL distribution is significantly different from LLoGW, LLoGR and LLoG
distributions, the LR test is used and the following hypothesis are tested. Hy : LLoOGW against H, :
LLoGMWL, H; : LLoGR against H, : LLoOGMWL and H, : LLoG against H, : LLoGMWL.
The values of LR test statistic and corresponding p-values are: 62.3139 (p-value<0.00001), 67.3331
(p-value<0.00001) and 164.1274 (p-value<0.00001), respectively. We conclude that there are sig-
nificant differences between each one of LLoGW, LLoGR, LLoG and LLoGMWL distributions. The
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LLoGMWL distribution is performing far better when compared to the nested and non-nested models
when looking at the W*, A* and SS values. Also, the values of AIC, AICC and BIC shows that the
LLoGMWL distribution fits better than the non-nested distributions. Plots of the fitted densities and
probability plots are given in Figure 11.

Fitted PDF

o
T == LLLoGMWL = T~ LLOGMWL (S8=0.2747)
LLoG LLoGW (S5=0.5975)
|~ LLoGR |~ GD (55=0.6396)
B LLoG EKD (S5=0.5282)
|~— GD @ == EKW (S8=0.9779)
EKD o LLoGWR(SS=0.2969)
4 EKW | <~ BWLn(SS=0.3097)
| == BrVLr
o

Density
Expected Probability

00 01 02 03 04 05 06 07

X Observed Probability

Figure 11 Fitted pdf and probability plots for caterpillar body mass data

3.2.5.2 Kevlar 49/Epoxy strands data

Cooray and Ananda (2008) analyzed this data. The data set consist of 101 data points that
represent the stress-rupture of kevlar 49/epoxy strands life which are subjected to constant sustained
pressure at the 90 percent stress level until all have failed, so that the complete data set with the exact
times of failures is recorded. Andrews and Herzberg (1985) and Barlow (1984) presented this failure
times in hours.The estimated variance-covariance matrix of the LLoGMWL distribution is given by

0.0053 —0.0021 7.648 x 1076 —0.0064 —0.0057
—0.0021 0.0618 —1.1325 x 107° 0.0064 0.0012
7.648 x 1076 —1.1325 x 107° 0.0001 —4.2426 x 107°  3.9738 x 10796
—0.0064 0.0064 —4.2426 x 107° 0.0154 0.0063
—0.0057 0.0012 3.9738 x 107¢ 0.0063 0.0129

and the approximate 95% two-sided confidence intervals for \, ¢, , 3 and 6 are given by 0.0103 +
0.1434, 2.2224 4 0.4875, 1.0 x 1078 £0.2433, 0.6007 - 0.2225, and 0.6984 + 0.0274, respectively.

The LR test statistics of the hypothesis; Hy : LLoGW against H, : LLoGMWL, Hj : LLoGR
against H, : LLoGMWL, Hy : LLoG against H, : LLoOGMWL are 82.3328 (p-value<0.00001),
88.6469 (p-value<0.00001)and 112.8602 (p-value<0.00001), respectively. We conclude that there is
significant difference between each one of the nested LLoGW, LLoGR, LLoG distributions and the
LLoGMWL distribution. When using goodness-of-fit statistics W*, A*, KS and its p-value and SS
values, it is clear that the LLoGMWL distribution is performing far much better when compared to
both the nested and non-nested models. Also, the smallest values of the AIC, AICC and BIC shows
that the LLoGMWL distribution fits better than the non-nested models. Plots of the fitted densities
and probability plots are given in Figure 12, respectively.
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Table 10 Estimates of model for failure time to kevlar 49/epoxy strands data

Estimates Statistics
Model A c a g 6 —2log L AIC AICC BIC w A* KS P-VALUE 5SS
LLoGMWL 0.0103 22224 1.0x1078%  0.6007 0.6984 124.6988 134.6988 135.3304 147.7744 0.0094 0.0291 0.0444 09744 0.0274
0.0732)  (0.2487) (0.0139)  (0.1242) (0.1136)
LLoGW - 0.8734 0.3246  1.4600 - 207.0316 213.0316 2132791 220.8770 0.1850 1.0609 0.1030 0.2341 02214
- (0.1197) (0.1002)  (0.2149)
LLoGR - 09114 0.1423 - - 2133457 229.1762  229.2986 234.4064 0.4110 2.2007 0.1755 0.0039  0.2475
- (0.1119) (0.0376) -
LLoG - 1.2265 - - 237.5890 239.5390 239.6294 242.2041 0.4759 2.5805 0.2168 0.0002 1.3146
- (0.1057) - - -
A 5 0 « [4
GD 245.8243 0.3347 12969  0.1518 9.7490  196.2327 206.2327 206.8642 219.3083 0.1349 0.8790 0.0587 0.8771  0.0352
(0.0567)  (0.0.2353) (2.8917)  (0.0757) (4.5375)
a A 0 [} 0
EKD 0.0179 6.7074 3.7473  0.8577 8.4926 196.3005 206.3005 206.9321 219.3761 0.1363 0.8853  0.0597 0.8641  0.0580
0.0116)  (6.5662) (0.9029)  (0.2266) (0.3646)
¢ a b 0 A
EKW 0.4812 5.1187 11.0960  0.3773 0.4858 2050968 215.0974 215.7289 228.1730 0.1666 0.9584 0.0859 04440  0.1682
(1.1202)  (14.8182)  (66.4748) (0.3696) (1.2823)
s ¢ a B 0
LLoGWP 1.5153 27714 06232 0.6516 1.1597 x 1077 199.0136 209.0136 209.6452 222.0892 0.0396 0.3579 0.0549 0.9206  0.0386
(0.2438)  (0.5053) (0.1321)  (0.1053) (0.0272)
k c a g (4
BrWLn 0.2334 5.8336 04259 0.7695 0.7290 196.1191  206.1191  206.7507 219.1947 0.0428 0.3107 0.0516 0.9505  4.1609
(0.1268)  (2.0869) (0.3960)  (0.1738) (0.5966)
Fitted PDF
R |<— LLLoGMWL 2 - LoomwL (ss=0.0274)
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Figure 12 Fitted pdf and probability plots for failure time to kevlar 49/epoxy strands data

4. Concluding Remarks

We have presented a new class of generalized distributions called the LLoGMWPS distribution
that is suitable for applications in various areas including reliability, survival analysis, just to mention
a few areas. This general class of distributions and some of its structural properties including hazard
rate function, quantile function, moments, conditional moments, mean deviations, Rényi entropy,
distribution of order statistics, maximum likelihood estimates, asymptotic confidence intervals are
presented. Two special cases of the LLoOGMWPS class of distributions, namely, LLoOGMWP and
LLoGMWL distributions are considered in details. Applications of these two special cases to real
data sets are given in order to illustrate the applicability and usefulness of the proposed class of
distributions.
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Appendix

A. The r*"* Moment of the LLOGMWPS Class of distribution is given by
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B. The elements of the score vector for LLoOGMWPS Class of distribution U (A) = (%7 (%’ %, %, %)

are given by
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D. The elements of the score vector for LLOGMWP distribution is given as U (A) = (%, g—ﬁ, %, %, %

are given by
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E. The elements of the score vector for LLoOGMWL distribution are given as
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F. LLoGMWP DISTRIBUTION R ALGORITHMS

#### define LLoGMWL cdf

LLoGMWL_cdf=function (x,c,alpha ,beta,lambda ,theta) {
(1-log ((l-exp (thetax (1-(1+x"c) " (-1) xexp (-alphax* (x"beta)
xexp (lambdaxx)))))/ (1 —exp(theta ))))/log(l-theta)

}

#### define LLOGMWL_hazard
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LLoGMWL_hazard=function (x,theta,alpha, lambda, beta, c) {
LLoGMWL_pdf (x, c, alpha, beta, lambda, theta) /

(1-LLoGMWL_cdf (x, c,alpha, beta, lambda, theta))

}

#Define the quantile of LLLoGMWL

quantile =function(theta,lambda,c,alpha,beta,u) {
f=function(x) {log(l+x"c)+ (alpha*x"betaxexp (lambdaxx))

+log ((1/ theta)x(1-(l-theta)”(1-u)))

}
rc<-uniroot (£, lower=0,upper=1000,tol=1le-9)
result=rc$root

}

LLLoGMWL_LL<-function (par) {
bb=(par[1l]* (exp (- (par[4])«(x" (par([5]))

xexp (par[2]+x) )x ((l+x"par[3])~(-2))))
cc=(par[4]x(x"(par[5])) * (exp(par[2]*x))

* (par[S]+par[2]*x) * (1+x” (par[3])) + par[3]*(x"(par[3]1-1)))
dd=(-(l-par[l]* (exp (- (par[4])*(x"par[5])~exp (par[2]*x))

* ((1+x" (par[3])) " (-1)))) = (log(l-par[l])))

-sum (log (bbxcc/dd))
}
theta=0.8
lambda=0.6
c=0.5
alpha=3.0
beta=1.8

nl<-c(25)
# To check one sample at a time, use nl<-c(sample size)

for (i in 1: length(nl)) {
n=nl[i]
N=1000
mle_theta<-c(rep(0,N))
mle_lambda<-c (rep (0,N))
mle_c<-c(rep(0,N))
mle_alpha<-c (rep(0,N))
mle_beta<-c(rep(0,N))

LC_theta<-c (rep(0,N))
UC_theta<-c(rep(0,N))
LC_lambda<-c (rep (0,N))
UC_lambda<-c (rep(0,N))
LC_c<-c(rep(0,N))
UC_c<-c (rep(0,N))
LC_alpha<-c (rep(0,N))
UC_alpha<-c(rep(0,N))
LC_beta<-c (rep(0,N))
UC_beta<-c(rep(0,N))

count_theta=0
count_lambda=0
count_c=0
count_alpha=0
count_beta=0

temp=1
HHl<-matrix (c(rep(5,25)), nrow=5, ncol=5)
HH2<-matrix (c(rep(5,25)), nrow=5, ncol=5)

for (i in 1:N)
{

267
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#print (i)
#flush.console ()
repeat {

x<-c (rep(0,n))

#Generate a random variable from uniform distribution
u<-0
u<-runif (n,min=0, max=1)

for (k in 1:n) {
x[k]<-quantile (theta, lambda, ¢, alpha,beta,ulk])
}

#Maximum likelihood estimation
mle.result<-nlminb (c (theta, lambda, c,alpha, beta),
LLLoGMWL_LL, lower = 0, upper = Inf)

temp=mle.result$convergence

if (temp==0) {
temp_theta<-mle.resultS$par[l]
temp_lambda<-mle.result$par[2]
temp_c<-mle.resultS$par[3]
temp_alpha<-mle.resultS$par[4]
temp_beta<-mle.resultS$par[5]

HHl1<-hessian (LLLoGMWL_LL, c(temp_theta,
temp_lambda, temp_c, temp_alpha,temp_beta))
if ( sum(is.nan (HH1))==0 & (diag(HH1)[1]>0)
& (diag(HH1) [2]1>0) & (diag(HH1) [3]1>0) & (diag(HH1) [4]1>0)
(diag (HH1) [51>0)) {
HH2<-solve (HH1)
#print (det (hhl))
}

else{
temp=1}
}
if ((temp==0) & (diag(HH2) [1]>0) & (diag(HH2) [2]>0)
& (diag(HH2) [3]1>0) & (diag(HH2) [4]1>0)s&
(diag (HH2) [5]1>0) & (sum( is.nan (HH2))==0)) {
break

}
}
#print (temp)
temp=1

mle_theta[i]<-mle.result$par([1l]
mle_lambda[i]<-mle.resultS$Spar[2]
mle_c[i]<-mle.result$par[3]
mle_alpha[i]<-mle.result$par[4]
mle_beta[i]l<-mle.result$par[5]

HH<-hessian (LLLOoGMWL_LL, c (mle_theta[i],mle_lambdali],

mle_c[i],mle_alpha[i],mle_betali]))

H<-solve (HH)

LC_theta[i]<-mle_theta[i]-1.96xsqgrt (diag(H) [1])

UC_theta[i]<-mle_thetal[i]+1.96+sqgrt (diag(H) [1])

if ((LC_theta[i]<=theta) & (theta<=UC_thetali])){
count_theta=count_theta+l

}

LC_lambda[i]<-mle_lambda[i]-1.96*sqgrt (diag(H) [2])
UC_lambda[i]l<-mle_lambda[i]+1.96+sqgrt (diag(H) [2])
if ((LC_lambda[i]<=lambda) & (lambda<=UC_lambdali])) {
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count_lambda=count_lambda+1

LC_cl[il<-mle_c[i]-1.96xsqgrt (diag(H) [3])

UC_c[i]l<-mle_c[i]+1.96*sgrt (diag(H) [3])

if ((LC_cl[i]l<=c) & (c<=UC_lambdali])) {
count_c=count_c+1

LC_alpha[i]l<-mle_alpha[i]l-1.96xsqgrt (diag (H) [4])

UC_alpha[i]<-mle_alpha[i]+1.96*sqgrt (diag(H) [4])

if ((LC_alphal[il<=alpha) & (alpha<=UC_alphalil)) {
count_alpha=count_alpha+l

LC_betal[i]<-mle_betal[i]-1.96*sqgrt (diag(H) [5])

UC_beta[i]l<-mle_beta[i]+1.96*sqgrt (diag(H) [5])

if ((LC_beta[i]l<=beta) & (beta<=UC_betal[il])) {
count_beta=count_beta+1l

#Calculate Mean
Mean_theta<-sum(mle_theta) /N
Mean_lambda<-sum (mle_lambda) /N
Mean_c<-sum(mle_c) /N
Mean_alpha<-sum(mle_alpha) /N
Mean_beta<-sum (mle_beta) /N

print (cbind (Mean_theta, Mean_lambda,Mean_c,
Mean_alpha, Mean_beta ))

#Calculate Average Bias
Bias_theta<-sum(mle_theta-theta) /N
Bias_lambda<-sum(mle_lambda—lambda) /N
Bias_c<-sum(mle_c-c) /N
Bias_alpha<-sum(mle_alpha-alpha) /N
Bias_beta<-sum(mle_beta-beta) /N

print (cbind(Bias_theta, Bias_lambda,Bias_c,
Bias_alpha, Bias_beta ))

#Calculate RMSE
RMSE_theta<-sqgrt (sum( (theta-mle_theta) "2) /N)
RMSE_lambda<-sqgrt (sum( (lambda-mle_lambda) "2) /N)
RMSE_c<-sqgrt (sum( (c-mle_c) "2) /N)
RMSE_alpha<-sgrt (sum( (alpha-mle_alpha) "2) /N)
RMSE_beta<-sqgrt (sum( (beta-mle_beta) "2) /N)

print (cbind (RMSE_theta, RMSE_lambda, RMSE_c,
RMSE_alpha, RMSE_beta ))

#Converge Probability
CP_theta<-count_theta/N
CP_lambda<-count_lambda/N
CP_c<-count_c/N
CP_alpha<-count_alpha/N
CP_beta<—count_beta/N

print (cbind (CP_theta, CP_lambda,CP_c,CP_alpha, CP_beta ))

# Average Width
AW_theta<-sum (abs (UC_theta-LC_theta)) /N
AW_lambda<-sum (abs (UC_lambda-LC_lambda)) /N
AW_c<-sum (abs (UC_c-LC_c)) /N
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AW_alpha<-sum(abs (UC_alpha-LC_alpha)) /N
AW_beta<-sum(abs (UC_beta-LC_beta)) /N

print (cbind (AW_theta, AW_lambda,AW_c,AW_alpha, AW_beta))
}
}

G.LLoGMWL DISTRIBUTION R ALGORITHMS

#### define LLoGMWP cdf

LLoGMWP_cdf=function(y,c,alpha ,beta,lambda ,theta) {
(1-exp (thetax (1-(1+x"c) " (-1) x (exp (-alphax (x"beta) *
exp (lambdaxx))))))/ (1l-exp(theta))

}

#### define LLOGMWP_hazard

LLoGMWP_hazard=function (x,theta, alpha, lambda, beta, c) {
LLoGMWP_pdf (x, c,alpha, beta, lambda, theta) /

(1-LLoGMWP_cdf (x, c, alpha, beta, lambda, theta))

}

LLoMWP_pdf <- function (lambda,c,alpha,beta,theta) {

aa=(thetax (exp (thetax (1+x"c) " (-1) xexp (-—alphax* (x"beta)
xexp (lambdaxx)))))/ (exp (theta)-1)
bb=((1+x"c) " (-2) * (exp (—alphax (x"beta) rexp (lambdaxx))))

)

cc=(alphax (x" (beta-1)) rexp (lambdax*x) * (beta+lambda*x)
(1+x"c) + c*(x"(c-1)))
—-sum (log (aaxbbx*cc))

}

#Define the quantile of LLoGMWP
quantile =function(theta, lambda, c, alpha, beta, u) {
f=function (x) {
log (1+x”"c) +alpha*x” (beta) xexp (lambdax*x) +
log((log(l-(1l-u)~* (l-exp(theta)))/ theta))}
rc<-uniroot (£, lower=0,upper=1000,tol=1e-9)
result=rcS$root
}
LLoGMWP_LL<-function (par) {

aa=(par[l]l*exp(par[l]*((l+x"par[3]) " (-1))*
(exp (-par[4]« (x"par[5]) * (exp (par[2]+*x)))))/ (exp(par[l])-1))
bb=(((1+x"par[3]) " (-2)) » (exp(-par[4]* (x"par[5])*

(exp (par[2]*x)) )))
cc=(par[3]x(x" (par[3]-1))+(1l+x"par[3]) *xpar[4]x*

(x" (par[5]-1)) x (exp (par[2]*x)) * (par[5]+ (par[2]*x)) )
—sum (log (aa*xbbx*cc))

}

theta=0.95
lambda=0.5
c=0.5
alpha=6.
beta=3.75
nl<-c(25)

# To check one sample at a time, use nl<-c(sample size)

for (j in 1: length(nl)) {
n=n1[7]
N=1000
mle_theta<-c (rep(0,N))
mle_lambda<-c (rep(0,N))
mle_c<-c(rep(0,N))
mle_alpha<-c(rep(0,N))
mle_beta<-c (rep(0,N))
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LC_theta<-c(rep(0,N))
UC_theta<-c (rep(0,N))
LC_lambda<-c (rep(0,N))
UC_lambda<-c (rep(0,N))
LC_c<-c(rep(0,N))
UC_c<-c (rep(0,N))
LC_alpha<-c(rep(0,N))
UC_alpha<-c(rep(0,N))
LC_beta<-c(rep(0,N))
UC_beta<-c(rep(0,N))
count_theta=0
count_lambda=0
count_c=0
count_alpha=0
count_beta=0

temp=1
HHl<-matrix (c(rep(2,25)), nrow=5, ncol=5)
HH2<-matrix (c(rep(2,25)), nrow=5, ncol=5)

for (1 in 1:N)
{

print (i)
flush.console ()
repeat {

x<-c (rep(0,n))

#Generate a random variable from uniform distribution
u<-0
u<-runif (n,min=0, max=1)

for (k in 1:n) {
x[k]<-quantile (theta, lambda, c,alpha,beta,ulk])

#Maximum likelihood estimation
mle.result<-nlminb (c (theta, lambda, c,alpha, beta),
LLoGMWP_LL, lower = 0, upper = Inf)

temp=mle.result$convergence

if (temp==0) {
temp_theta<-mle.resultS$par[l]
temp_lambda<-mle.resultS$par[2]
temp_c<-mle.result$par[3]
temp_alpha<-mle.resultS$par[4]
temp_beta<-mle.resultS$par[5]

HHl1<-hessian (LLoGMWP_LL, c(temp_theta, temp_lambda,
temp_c, temp_alpha,temp_beta))
if (( rcond (HH1)> le-9)é&sum(is.nan(HH1))==0 & (diag(HH1)[1]>0) & (diag(HH1) [2]>0)
& (diag(HH1) [3]1>0) & (diag(HH1) [4]1>0)& (diag(HH1) [5]1>0)) {
HH2<-solve (HH1)
#print (det (HH1))
}

else{
temp=1}
}
if ((temp==0) & (diag(HH2)[1]1>0) & (diag(HH2) [2]>0)
& (diag(HH2) [3]>0) & (diag(HH2)[4]1>0)& (diag(HH2) [5]1>0)
& (sum( is.nan (HH2))==0)) {
break
}
else(

temp=1}
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}
temp=1

mle_theta[i]<-mle.result$par[l]
mle_lambda[i]<-mle.resultS$Spar([2]
mle_c[i]<-mle.result$par[3]
mle_alpha[i]<-mle.result$par[4]
mle_beta[i]l<-mle.resultS$par[5]

HH<-hessian (LLOGMWP_LL,c (mle_theta[i],mle_lambdali],

mle_c[i],mle_alpha[i],mle_betali]l))

H<-solve (HH)

LC_thetal[i]<-mle_theta[i]-gnorm(0.975) *sqgrt (diag (H

UC_theta[i]<-mle_theta[i]+gnorm(0.975) xsqrt (diag (H

if ((LC_thetal[il<=theta) & (theta<=UC_theta[i])) {
count_theta=count_theta+1

) [11)
) [11)

LC_lambda[i]<-mle_lambda[i]-gnorm(0.975) xsqrt (diag (H)

UC_lambda[i]<-mle_lambda[i]+gnorm(0.975) *sqrt (diag (H)

if ((LC_lambda[i]l<=lambda) & (lambda<=UC_lambdal[i])) {
count_lambda=count_lambda+1l

[21)
(21

LC_cl[il<-mle_c[i]-gnorm(0.975) xsqgrt (diag (H) [3])

UC_c[i]l<-mle_c[i]+gnorm(0.975) xsgrt (diag(H) [3])

if ((LC_c[il<=c) & (c<=UC_c[i]1)){
count_c=count_c+1

LC_alphal[i]l<-mle_alpha[i]l-gnorm(0.975) *sqrt (diag(H) [4])

UC_alpha[i]l<-mle_alpha[i]+gnorm(0.975) xsqrt (diag (H) [4])

if ((LC_alphali]l<=alpha) & (alpha<=UC_alphali])) {
count_alpha=count_alpha+l

LC_betal[i]l<-mle_beta[i]-gnorm(0.975) xsqgrt (diag(H) [5])

UC_betal[i]<-mle_beta[i]+gnorm(0.975) xsqgrt (diag(H) [5])

if ((LC_betal[i]l<=beta) & (beta<=UC_betalil])) {
count_beta=count_beta+1

#Calculate Mean
Mean_theta<-sum(mle_theta) /N
Mean_lambda<-sum(mle_lambda) /N
Mean_c<-sum(mle_c) /N
Mean_alpha<-sum(mle_alpha) /N
Mean_beta<-sum (mle_beta) /N

print (cbind (Mean_theta, Mean_lambda,Mean_c,Mean_alpha, Mean_beta ))

#Calculate Average Bias
Bias_theta<-sum(mle_theta-theta) /N
Bias_lambda<-sum (mle_lambda-lambda) /N
Bias_c<-sum(mle_c-c) /N
Bias_alpha<-sum(mle_alpha-alpha) /N
Bias_beta<-sum(mle_beta-beta) /N

print (cbind(Bias_theta, Bias_lambda,Bias_c, Bias_alpha, Bias_beta ))
#Calculate RMSE

RMSE_theta<-sqgrt (sum( (theta-mle_theta) "2) /N)
RMSE_lambda<-sqgrt (sum( (lambda-mle_lambda) "2) /N)
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RMSE_c<-sqgrt (sum( (c-mle_c) "2) /N)
RMSE_alpha<-sgrt (sum( (alpha-mle_alpha) "2) /N)
RMSE_beta<-sqgrt (sum( (beta-mle_beta) "2) /N)

print (cbind (RMSE_theta, RMSE_lambda,RMSE_c,RMSE_alpha, RMSE_beta ))

#Converge Probability
CP_theta<-count_theta/N
CP_lambda<-count_lambda/N
CP_c<-count_c/N
CP_alpha<-count_alpha/N
CP_beta<-count_beta/N

print (cbind (CP_theta, CP_lambda,CP_c,CP_alpha, CP_beta ))

# Average Width

AW_theta<-sum(abs (UC_theta-LC_theta)) /N
AW_lambda<-sum (abs (UC_lambda-LC_lambda)) /N
AW_c<-sum (abs (UC_c-LC_c)) /N
AW_alpha<-sum(abs (UC_alpha-LC_alpha)) /N
AW_beta<-sum (abs (UC_beta-LC_beta)) /N

print (cbind (AW_theta, AW_lambda,AW_c,AW_alpha, AW_beta))
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