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Abstract
A new generalized class of distributions called the log-logistic modified Weibull power series

(LLoGMWPS) distribution is developed and presented. The LLoGMWPS class of distributions gen-
eralizes several distributions including the log-logistic exponential power series, log-logistic Weibull
power series, log-logistic Rayleigh power series, log-logistic power series class of distributions and
a host of other distributions including log-logistic modified Weibull, log-logistic Weibull, and log-
logistic distributions. The special case of the log-logistic modified Weibull Poisson (LLoGMWP)
and log-logistic modified Weibull Logarithmic (LLoGMWL) distributions are studied in detail. We
apply the method of maximum likelihood to estimate the parameters of this new distribution. Finally,
real data examples are presented to illustrate the usefulness and applicability of both LLoGMWP and
LLoGMWL distributions.

Keywords: Generalized distribution, power series distribution, modified Weibull distribution, Log-
logistic modified Weibull distribution, maximum likelihood estimation.

1. Introduction
Several useful ways of generating new probability distributions from classic ones to relative new

distributions are given in the literature on statistical distributions and modeling. Murthy et al. (2004)
stated that, distributions with bathtub-shaped failure rate are sufficiently complex and, therefore, diffi-
cult to model. The distribution proposed by Hjorth (1980) is such an example. Rajarshi and Rajarshi
(1988) presented a revision of these distributions, and Haupt and Schabe (1992) developed a new
lifetime model with bathtub-shaped failure rates. Unfortunately, these models are not sufficient to
address various practical situations, so new classes of distributions were presented based on modifi-
cations of Weibull distribution to satisfy non-monotonic failure rate. For a comprehensive review of
these models, please refer to Mudholkar and Srivastava (1993), and Pham and Lai (2007), where the
authors summarized some generalizations of the Weibull distribution.

The development and applications of generalized distributions have led to important and use-
ful contributions to the statistical literature in recent times. Oluyede and Yang (2015) on the beta
generalized Lindley distribution, Oluyede et al. (2014) on the gamma-Dagum distribution, as well
general family of univariate distributions generated from Weibull distribution that was introduced by
Gurvich et al. (1997) where the authors developed a new statistical distribution for characterizing the
random strength of brittle materials. There are other generalizations that include the exponentiated
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Weibull (EW) by Gupta and Kundu (2001), the modified Weibull (MW) by Lai et al. (2003) and the
beta exponential (BE) presented by Nadarajah and Kotz (2006). Some more recent extensions are the
generalized modified Weibull (GMW) studied by Carrasco et al. (2008), the beta modified Weibull
(BMW) reported by Silva et al. (2010), Nadarajah et al. (2011), the Weibull-G family reported by
Bourguignon et al. (2014) and the gamma-exponentiated Weibull distributions (GEW) by Pinho et al.
(2012). The generalized class of compound distributions have applications in various fields of study
such as economics, engineering, public health, industrial reliability and medicine.

There are several new distributions that have been developed by compounding well known con-
tinuous distributions such as the exponential, Weibull, Burr XII and exponentiated exponential dis-
tributions with the power series distribution that includes the Poisson, logarithmic, geometric and
binomial distributions as particular cases. Compound distributions are important due to their flexibil-
ity in modelling distributions with both monotonic and non-monotonic hazard rate functions which
are encountered in real life. These compound distribution include the class of Weibull-power series
(WPS) distributions byMorais and Barreto-Souza (2011). Silva et al. (2013) studied the extended
Weibull power series family, which includes as special models the exponential power series and
Weibull power series distributions. Silva and Cordeiro (2015) introduced a new family of Burr XII
power series models, and Oluyede et al. (2019) further proposed the Burr-Weibull power series class
of distributions. Oluyede et al. (2016) recently proposed a log-logistic Weibull Poisson distribution
which has applications in several areas including lifetime data analysis, reliability and economics.

Our primary motivations include the advantages of generalized distributions with respect to hav-
ing hazard rate functions that exhibits increasing, decreasing, up-side-down and bathtub shapes, as
well as the versatility and flexibility of the log-logistic and modified Weibull distributions in mod-
elling lifetime data. In this context, we propose and study the new class of distributions called the
log-logistic modified Weibull power series class of distributions. This new class of distributions in-
herits these desirable properties and has quite flexible variety of shapes. There is an added advantage
to this model, in that it also has added dispersion parameter, depending on the overall form that ac-
counts for the scale of the underlying random variable. The distribution also has exponential dumping
in the upper tail making the distribution suitable for modelling samples that display power behaviour
for intermediate observations and decrease in tail probability for large observations or beyond a cer-
tain threshold or specified value. The proposed new class of distributions has quite a large number of
sub-models and also generalizes the log-logistic, Weibull and modified Weibull distributions.

This paper is organized as follows. In Section 2, we present the generalized class of distribu-
tions called the log-logistic modified Weibull power series (LLoGMWPS) class of distributions. The
hazard rate function, quantile function and various sub-classes are presented. Also, some additional
structural properties of the LLoGMWPS class of distributions including moments, conditional mo-
ments, mean deviations, order statistics, entropy and estimates of model parameters are discussed in
Section 2. The special cases of the log-logistic modified Weibull Poisson and log-logistic modified
Weibull logarithmic distributions are presented and discussed in Section 3 followed by applications
and comparisons with other models. Concluding remarks are given in Section 4.

2. The Log-Logistic Modified Weibull Power Series Class of Distributions

In this section, the log-logistic modified Weibull power series (LLoGMWPS) class of distribu-
tions and some of its statistical properties are presented. We first of all present the log-logistic and
modified Weibull distributions. The cumulative distribution function (cdf) and probability density
function (pdf) of log-logistic distribution are given by F

LLoG
(x) = 1− (1 + xc)−1 and f

LLoG
(x) =

cxc−1(1+xc)−2, for c > 0 and x ≥ 0. The modified Weibull (MW) distribution BY Lai et al. (2003)
is given by

F
MW

(x;α, β, λ) = 1− exp(−αxβeλx), x ≥ 0, α > 0, β > 0, λ ≥ 0. (1)



Broderick Oluyede et al. 239

The corresponding pdf is given by

f
MW

(x;α, β, λ) = αxβ−1eλx(β + λx) exp(−αxβeλx), (2)

for x ≥ 0, α > 0, β > 0, and λ ≥ 0. Note that the parameter α control the scale of the distribution, β
controls the shape, whereas λ can be considered to be an accelerating factor in the imperfection time
and a factor of fragility in the survival of the individual as time increases. When λ = 0, we obtain
Weibull distribution. Weibull distribution is well known and has been extensively used for modeling
data in several areas including reliability. Weibull distribution is particularly useful for modeling
monotone hazard rates.

Consider a sequence of N independent and identically distributed random variables, say Xi,
i = 1, . . . , N , from the log-logistic modified Weibull distribution (Oluyede et al., 2018). That is, the
cdf of X is given by

F
LLoGMW

(x; c, α, β, λ) = 1− (1 + xc)
−1

exp(−αxβeλx), (3)

and the corresponding pdf is given by

f
LLoGMW

(x; c, α, β, λ) = e−αxβeλx

(
1 + xc

)−1{
αxβ−1eλx(β + λx) +

cxc−1

(1 + xc)

}
, (4)

for c, α, β > 0, λ ≥ 0 and x ≥ 0. The survival and hazard rate functions are given by

S
LLoGMW

(x; c, α, β, λ) = 1− F
LLoGMW

(x; c, α, β, λ) = (1 + xc)
−1

exp(−αxβeλx)

and h
LLoGMW

(x; c, α, β, λ) =
f
LLoGMW

(x; c, α, β, λ)

S
LLoGMW

(x; c, α, β, λ)
= αxβ−1eλx(β + λx) +

cxc−1

(1 + xc)
,

respectively.
Now, let N be a discrete random variable following a power series distribution assumed to be

truncated at zero, whose probability mass function (pmf) is given by

P (N = n) =
anθ

n

C(θ)
, n = 1, 2, . . . ,

where C(θ) =
∑∞

n=1 anθ
n is finite, θ > 0, and {an}n≥1 a sequence of positive real numbers.

Considering X(1) = min(X1, . . . , XN ) and conditioning upon N = n, the conditional distribution
of X(1) given N = n is obtained as

GX(1)|N=n(x) = 1−
n∏

i=1

(1−F
LLoGMW

(x)) = 1−Sn
LLoGMW

(x) = 1−(1+xc)−n exp(−nαxβeλx).

Proposition 1 The cdf of X(1), say Fθ, is given by

Fθ(x) = 1−
C
(
θ(1 + xc)−1 exp(−αxβeλx)

)
C(θ)

.
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Proof: Note that

Fθ(x) =

∞∑
n=1

GX(1)|N=n(x)P (N = n)

=
∞∑

n=1

[
1− (1 + xc)−n exp(−nαxβeλx)

] anθn
C(θ)

=

∞∑
n=1

anθ
n

C(θ)
−

∞∑
n=1

an
[
θ(1 + xc)−1 exp(−αxβeλx)

]n
C(θ)

= 1−
C
(
θ(1 + xc)−1 exp(−αxβeλx)

)
C(θ)

.

Proposition 2 F
LLoGMW

(x) = lim
θ→0+

Fθ(x).

Proof: Recall that C(θ) =
∑∞

n=1 anθ
n. Then,

Fθ(x) = 1−
∑∞

n=1 an
[
θ(1 + xc)−1 exp(−αxβeλx)

]n∑∞
n=1 anθ

n
= 1−

∑∞
n=1 anθ

nSn(x)∑∞
n=1 anθ

n
.

Letting θ → 0+, the second term to the right of this equation is undetermined. Thus, applying
l’Hopital’s rule, we have

lim
θ→0+

Fθ(x) = 1− lim
θ→0+

∑∞
n=1 nanθ

n−1Sn(x)∑∞
n=1 nanθ

n−1

= 1− lim
θ→0+

a1S(x) +
∑∞

n=2 nanθ
n−1Sn(x)

a1 +
∑∞

n=2 nanθ
n−1

= 1− S
LLoGMMW

(x)

= F
LLoGMW

(x).

Remark 1 Let C ′(θ) be the derivative of C(θ), that is, C ′(θ) =
∑∞

n=1 nanθ
n−1. Then the density

of Fθ, say fθ, is given by

fθ(x) =
dFθ(x)

dx
=

θf(x)C ′(θS(x))

C(θ)
.

2.1. Some generalized sub-classes of distributions
In this section, we present several new and known sub-classes of distributions including the

log-logistic power series (LLoGPS), log-logistic modified exponential power series (LLoGMEPS),
log-logistic Rayleigh power series (LLoGRPS), and other sub-classes of distributions.

• If λ = 0, we obtain the log-logistic Weibull power series (LLoGWPS) class of distributions.

• If λ = 0, and β = 1, we obtain the log-logistic exponential power series (LLoGEPS) class of
distributions.

• When α → 0+, we have the log-logistic power series (LLoGPS) class of distributions.

• If λ = 0 and β = 2, we have the log-logistic Rayleigh power series (LLoGRPS) class of
distributions.

• If β = 1, we obtain the log-logistic modified exponential power series (LLoGMEPS) class of
distributions.
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• If β = 2, we have the log-logistic modified Rayleigh (LLoGMRPS) class of distributions.

• Several new classes of distributions can be readily obtained by setting c=1; c=1, β=1; c=1,
β=2; c = 1, β=1, λ=0; c=1, λ=0; α → 0+, c=1 and c=α=1, respectively.

2.2. Hazard rate and reverse hazard functions
We present the hazard rate and reverse hazard functions of the proposed LLoGMWPS class of

distributions in this section. The hazard rate function (hrf) is given by hθ(x) = fθ(x)/Sθ(x), where
Sθ(x) = 1− Fθ(x). Explicitly,

hθ(x) = θf(x)
C ′(θS(x))

C(θS(x))
,

where f
LLoGMW

(x) = f(x) is the log-logistic modified Weibull pdf. On the other hand, the reverse
hazard function, τθ(x) = fθ(x)/Fθ(x), is given by

τθ(x) = θf(x)
C ′(θS(x))

C(θ)− C(θS(x))
.

2.3. Log-logistic modified Weibull poisson, geometric, logarithmic and binomial distributions
The cdfs, pdfs and hrfs of the log-logistic modified Weibull Poisson (LLoGMWP), log-logistic

modified Weibull geometric (LLoGMWG), log-logistic modified Weibull logarithmic (LLoGMWL)
and log-logistic modified Weibull binomial (LLoGMWB) distributions are presented in this section.

2.3.1 Log-logistic modified Weibull poisson distribution
The log-logistic modified Weibull Poisson (LLoGMWP) distribution is a special case of the

LLoGMWPS class of distributions with C(θ) = eθ − 1 and an = 1
n! . The cdf is given by

FLLoGMWP (x; c, α, β, λ, θ) = 1− e(θ(1+xc)−1 exp(−αxβeλx)) − 1

eθ − 1
, (5)

for c, α, β, θ > 0, λ ≥ 0. The pdf is given by

fLLoGMWP (x; c, α, β, λ, θ) =
θe−αxβeλx

(1 + xc)−2eθ(1+xc)−1e−αxβeλx

eθ − 1

×
(
cxc−1 + αxβ−1eλx(β + λx)(1 + xc)

)
. (6)

The hrf is

hLLoGMWP (x) =
θe−αxβeλx

(1 + xc)−2eθ(1+xc)−1e−αxβeλx

eθ(1+xc)−1e−αxβeλx − 1

×
(
cxc−1 + αβxβ−1eλx(β + λx)(1 + xc)

)
.

2.3.2 Log-logistic modified Weibull geometric distribution
The log-logistic modified Weibull geometric (LLoGMWG) distribution is obtained from the

LLoGMWPS class of distributions with C(θ) = θ(1− θ)−1 and an = 1. The cdf of the LLoGMWG
distribution is given by

FLLoGMWG(x; c, α, β, λ, θ) = 1− (1− θ)(1 + xc)−1e−αxβeλx

1− θ(1 + xc)−1e−αxβeλx for c, α, β, θ > 0, λ ≥ 0.
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The corresponding pdf is given by

fLLoGMWG(x; c, α, β, λ, θ) =
(1− θ)(e−αxβeλx

(1 + xc)−2)

(1− θ(1 + xc)−1e−αxβeλx)2

×
(
cxc−1 + αxβ−1eλx(β + λx)(1 + xc)

)
,

and the hrf is given by

hLLoGMWG(x) =
(1 + xc)−1

(
cxc−1 + αxβ−1eλx(β + λx)(1 + xc)

)
1− θ(1 + xc)−1e−αxβeλx .

2.3.3 Log-logistic modified Weibull logarithmic distribution
The log-logistic modified Weibull logarithmic (LLoGMWL) distribution is obtained from the

the LLoGMWPS class of distributions with C(θ) = − log(1− θ) and an = 1
n . The cdf is given by

FLLoGMWL(x; c, α, β, λ, θ) = 1− log(1− θ(1 + xc)−1e−αxβeλx

)

log(1− θ)
, (7)

for c, α, β, θ > 0 and λ ≥ 0. The corresponding pdf is given by

fLLoGMWL(x; c, α, β, λ, θ) =
θe−αxβeλx

(1 + xc)−2
(
cxc−1 + αxβ−1eλx(β + λx)(1 + xc)

)
−(1− θ(1 + xc)−1e−αxβeλx) log(1− θ)

, (8)

and the hrf is

hLLoGMWL(x; c, α, β, λ, θ) =
θe−αxβeλx

(1 + xc)−2
(
cxc−1 + αxβ−1eλx(β + λx)(1 + xc)

)
−(1− θ(1 + xc)−1e−αxβeλx) log(1− θ(1 + xc)−1e−αxβeλx)

. (9)

2.3.4 Log-logistic modified Weibull binomial distribution
The log-logistic modified Weibull binomial distribution (LLoGMWB) is a special case of the

LLoGMWPS class of distributions with C(θ) = (1 + θ)m − 1, (n ≤ m), and an =
(
m
n

)
. The cdf is

given by

FLLoGMWB(x; c, α, β, λ, θ) = 1− (1 + θ(1 + xc)−1e−αxβeλx

)m − 1

(1 + θ)m − 1
, (10)

for c, α, β, θ > 0 and λ ≥ 0. The corresponding pdf and hrf are given by

fLLoGMWB(x; c, α, β, λ, θ) = e−αxβ

(1 + xc)−2
(
cxc−1 + αxβ−1eλx(β + λx)(1 + xc)

)
×m(1 + θe−αxβ

(1 + xc)−k)m−1

(1 + θ)m − 1
,

and

hLLoGMWB(x; c, α, β, λ, θ) = e−αxβ

(1 + xc)−2
(
cxc−1 + αxβ−1eλx(β + λx)(1 + xc)

)
×m(1 + θe−αxβeλx

(1 + xc)−1)m−1

(1 + θe−αxβeλx(1 + xc)−1)m − 1
,

respectively.

2.4. Quantile function
The quantile function of the proposed LLoGMWPS class of distributions is obtained by inverting

Fθ(x) = u, 0 ≤ u ≤ 1, and Fθ(x)) = 1−C(θS(x))/C(θ). This is equivalent to solving the equation

ln(C(θS(x))) + ln(C(θ)) + ln(1− u) = 0, (11)

which can be done using numerical methods. Consequently, random number can be generated based
on Eqn. (11).
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2.5. Moments, mean deviations, order statistics and entropy
In this section, moments, order statistics and Rényi entropy from LLoGMWPS class of distribu-

tions are presented. Mean deviation from the mean and the mean deviation from the median are also
derived in this section. We note that using the result of a power series raised to a positive integer s
(Gradshetyn and Ryzhik, 2000), that is, ∞∑

j=0

ajy
j

s

=

∞∑
j=0

bs,jy
j ,

where the coefficients bs,j for (j = 1, 2, ...) are determined by the recurrence equations bs,j =

(ja0)
−1
∑j

m=1[m(s+ 1)− j]ambs,j−m, and bs,0 = as0, we have

(
C(θ(1 + xc)−1e−αxβeλx

)
)s

=

 ∞∑
j=0

aj [θ(1 + xc)−1e−αxβeλx

]j

s

=

∞∑
j=0

bs,j [θ(1 + xc)−1e−αxβeλx

]j . (12)

2.5.1 Moments
Moments of the LLoGMWPS class of distribution are presented in this subsection. The rth

moment of the LLoGMWPS class of distributions is given by

E(Xr) =

∫ ∞

0

xr θf(x)C
′(θS(x))

C(θ)
dx.

Now, using the transformation y = (1 + xc)−1, we have

E(Xr) =
θα

C(θ)

∞∑
j,k,p=0

bs,jθ
j (−1)k[α(j + 1)]k[λ(k + 1)]p

k!p!

×
[
βB

(
j + 1− r + kβ + β + p

c
,
r + kβ + β + p

c

)
+λB

(
j + 1− r + kβ + β + p+ 1

c
,
r + kβ + β + p+ 1

c

)]
+

θc

C(θ)

∞∑
j,k,p=0

bs,jθ
j (−1)k[α(j + 1)]k[kλ]p

k!p!

×B

(
j + 2− r + c+ kβ + p

c
,
r + c+ kβ + p

c

)
, (13)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt is the complete beta function.

2.5.2 Conditional moments
The rth conditional moment of the LLoGMWPS class of distributions is given by

E(Xr | X > t) =
1

F θ(t)

∫ ∞

t

xr θf(x)C
′(θS(x))

C(θ)
dx
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E(Xr | X > t) =
1

F θ(t)

θα

C(θ)

∞∑
j,k,p=0

bs,jθ
j (−1)k[α(j + 1)]k[λ(k + 1)]p

k!p!

×
[
βB(1+tc)−1

(
j + 1− r + kβ + β + p

c
,
r + kβ + β + p

c

)
+λB(1+tc)−1

(
j + 1− r + kβ + β + p+ 1

c
,
r + kβ + β + p+ 1

c

)]
+

1

F θ(t)

θc

C(θ)

∞∑
j,k,p=0

bs,jθ
j (−1)k[α(j + 1)]k[kλ]p

k!p!

+B(1+tc)−1

(
j + 2− r + c+ kβ + p

c
,
r + c+ kβ + p

c

)
, (14)

where B(1+tc)−1(a, b) is the incomplete beta function.

2.5.3 Mean and median deviations
The amount of scatter in a population is measured to some extent by the totality of deviations

from the mean and median. These are known as the mean deviation about the mean and the mean
deviation about the median, and are defined by

δ1(x) =

∫ ∞

0

|x− µ|f
θ
(x)dx and δ2(x) =

∫ ∞

0

|x−M |f
θ
(x)dx, (15)

respectively, where µ = E(X) and M = Median(X) denotes the median. The measures δ1(x) and
δ2(x) can be calculated using the relationships

δ1(x) = 2µF
θ
(µ)− 2µ+ 2

∫ ∞

µ

xf
θ
(x)dx, (16)

δ2(x) = −µ+ 2

∫ ∞

M

xf
θ
(x)dx, (17)

respectively. When r = 1, we get the mean µ = E(X) from Eqn. (13). Note that T (µ) =∫∞
µ

xf
θ
(x)dx is given by

T (µ) =

∫ ∞

µ

xf
θ
(x)dx

=
θα

C(θ)

∞∑
j,k,p=0

bs,jθ
j (−1)k[α(j + 1)]k[λ(k + 1)]p

k!p!

×
[
βB(1+µc)−1

(
j + 1− 1 + kβ + β + p

c
,
1 + kβ + β + p

c

)
+λB(1+µc)−1

(
j + 1− 1 + kβ + β + p+ 1

c
,
1 + kβ + β + p+ 1

c

)]
+

θc

C(θ)

∞∑
j,k,p=0

bs,jθ
j (−1)k[α(j + 1)]k[kλ]p

k!p!

×cB(1+µc)−1

(
j + 2− 1 + c+ kβ + p

c
,
1 + c+ kβ + p

c

)
.

Consequently, the mean deviation about the mean and the mean deviation about the median are

δ1(x) = 2µF
θ
(µ)− 2µ+ 2T (µ) and δ2(x) = −µ+ 2T (M),

respectively.
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2.5.4 Order statistics
The pdf of the ith order statistic from the LLoGMWPS class of distributions is given by

fi:n(x) =
1

B(i, n− i+ 1)
fθ(x)F

i−1
θ (x)(1− Fθ(x))

n−i

=
1

B(i, n− i+ 1)
fθ(x)

n−i∑
j=0

(
n− i

j

)
(−1)jF j+i−1

θ (x)

=
fθ(x)

B(i, n− i+ 1)

n−i∑
j=0

(
n− i

j

)
(−1)j

×
(
1− C(θ(1 + xc)−1 exp(−αxβeλx))

C(θ)

)j+i−1

.

Using binomial expansion(
1− C(θ(1 + xc)−1 exp(−αxβeλx))

C(θ)

)j+i−1

=

j+i−1∑
s=0

(−1)s
(
j + i− 1

s

)
×
(
C(θ(1 + xc)−1 exp(−αxβeλx))

C(θ)

)s

.

Now, the pdf of the ith order statistics can be written as

fi:n(x) =
fθ(x)

B(i, n− i+ 1)

n−i∑
j=0

j+i−1∑
s=0

(
n− i

j

)(
j + i− 1

s

)
(−1)j+s

×
(
C(θ(1 + xc)−1 exp(−αxβeλx))

C(θ)

)s

.

Note that,

(C(θ(1 + xc)−1 exp(−αxβeλx)))s =

( ∞∑
w=0

awθ(1 + xc)−1 exp(−αxβeλx)

)w

=

∞∑
w=0

es,w
(
θ(1 + xc)−1 exp(−αxβeλx)

)w
,

where if es,w = (wa0)
−1
∑w

m=1[m(s+ 1)− w]ames,w−m, and es,0 = as0, so that the pdf of the ith

order statistic is

fi:n(x) =

n−i∑
j=0

j+i−1∑
s=0

∞∑
w=0

(
n− i

j

)(
j + i− 1

s

)
(−1)j+ses,wθ

w

(w + 1)B(i, n− i+ 1)(C(θ))s

×(w + 1)[(1 + xc)−1e−αxβeλx

]wf
θ
(x)

=

n−i∑
j=0

j+i−1∑
s=0

∞∑
w=0

(
n− i

j

)(
j + i− 1

s

)
(−1)j+ses,wθ

w

(w + 1)B(i, n− i+ 1)(C(θ))s
f∗(x),

where f∗(x) = (w + 1)[(1 + xc)−1e−αxβeλx

]wf
θ
(x)

= (w + 1)[(1 + xc)−1e−αxβeλx

]w

×[e−αxβeλx

(1 + xc)−2(cxc−1 + (1 + xc)αβxβ−1eλx(β + λx))].
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The corresponding cdf is given by

Fi:n(x) =

n∑
k=i

(
n

k

)
F k
θ (x)(1− Fθ(x))

n−k

=

n∑
k=i

n−k∑
j=0

(
n− k

j

)(
n

k

)
(−1)j [Fθ(x)]

j+k

=

n∑
k=i

n−k∑
j=0

j+k∑
m=0

(
j + k

m

)(
n− k

j

)(
n

k

)
(−1)j+m

×
(
C(θ(1 + xc)−1 exp(−αxβeλx))

C(θ)

)m

,

where Fθ(x) = 1− C(θ(1+xc)−1 exp(−αxβeλx))
C(θ) , and

C(θ(1 + xc)−1 exp(−αxβeλx)) =

∞∑
j=0

aj
[
θ(1 + xc)−1 exp(−αxβeλx)

]j
.

2.5.5 Rényi entropy
The most widely used information measures are Rényi entropy (Rényi, 1961) and Shannon en-

tropy (Shannon, 1974). Statistically, Rényi entropy is defined as an extension of Shannon entropy
and is given as

IR(v) =
1

1− v
log

(∫ ∞

0

[f(x; c, α, β, λ, θ)]vdx

)
, v ̸= 1, v > 0. (18)

Rényi entropy tends to Shannon entropy as v → 1. With∫ ∞

0

fv(x; c, α, β, λ, θ)dx =

∫ ∞

0

fv
θ (x)dx

written as
∫ ∞

0

fv
θ (x)dx =

(
θ

C(θ)

)v ∫ ∞

0

(f(x)C ′(θS(x)))vdx,

and C ′(θ(1 + xc)−1e−αxβeλx

) =

∞∑
n=1

nan[θ(1 + xc)−1e−αxβeλx

]n−1

=

∞∑
n=0

(n+ 1)an+1[θ(1 + xc)−1e−αxβeλx

]n

=

∞∑
n=0

bn[θ(1 + xc)−1e−αxβeλx

]n, (19)

where bn = (n + 1)an+1, and (
∑∞

n=0 bny
n)

v
=
∑∞

n=0 dv,ny
n, where y = θ(1 + xc)−1e−αxβ

,
dv,n = bn0 , and dv,m = 1

mb0

∑m
j=0(jv −m+ j)bjdv,m−j , we have
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∫ ∞

0

fv
θ (x)dx =

(
θ

C(θ)

)v ∞∑
n=0

dv,n

∫ ∞

0

[θ(1 + xc)−1e−αxβeλx

]n

×
[
(1 + xc)−1e−αxβeλx

(
αβxβ−1eλx(β + λx) +

cxc−1

1 + xc

)]v
dx

=

(
θ

C(θ)

)v ∞∑
n,p,k,l,s=0

(−1)p[α(n+ 1)]p

p!

[λ(p+ v − k)]l

l!

(
v

k

)(
v − k

s

)
×θndv,nc

kαv−kλsβv−k−s

∫ ∞

0

xck+vβ−kβ−v+s+l(1 + xc)−n+v−k−2vdx.

Now, let y = (1 + xc)−1, and set δ∗ = ck + vβ − kβ − v + s + l + 1, then Rényi entropy for
LLoGMWPS class of distributions is given by

IR(v) =
1

1− v
log

((
θ

C(θ)

)v ∞∑
n,p,k,l,s=0

(−1)p[α(n+ 1)]p

p!

[λ(p+ v − k)]l

l!

×
(
v

k

)(
v − k

s

)
θndnc

kαv−kλsβv−k−sB

(
n+ v + k − δ∗ + 1

c
,
δ∗ + 1

c

))
,

for v ̸= 1, and v > 0.

2.6. Estimation
Let X ∼ LLoGMWPS(c, α, β, λ, θ) and ∆ = (c, α, β, λ, θ)T be the parameter vector. The

log-likelihood function ℓ = ℓ(∆) based on a random sample of size n is given by

ℓ = ℓn(∆) = n ln(θ)− n ln(C(θ)) +

n∑
i=1

ln(f(xi)) +

n∑
i=1

ln(C ′(θS(xi)))

= n ln(θ)− n ln(C(θ)) +

n∑
i=1

(−αxβ
i e

λxi)− 2

n∑
i=1

ln(1 + xc
i )

+

n∑
i=1

ln[cxc−1
i + (1 + xc

i )αx
β−1
i eλxi(β + λxi)]

+

n∑
i=1

ln(C ′(θe−αxβ
i e

λxi
(1 + xc

i )
−1)).

The equations obtained by setting the partial derivatives to zero are not in closed form and
the values of the parameters c, α, β, λ and θ must be found via iterative methods. The maximum
likelihood estimates of the parameters, denoted by ∆̂ is obtained by solving the nonlinear equation
( ∂ℓ∂c ,

∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂λ ,

∂ℓ
∂θ )

T = 0, using a numerical method such as Newton-Raphson procedure. The

Fisher information matrix given by I(∆) = [Iθi,θj ]5X5 = E(− ∂2ℓ
∂θi∂θj

), i, j = 1, 2, 3, 4, 5, can be
numerically obtained by MATLAB or NLMIXED in SAS or R software. The total Fisher information
matrix nI(∆) can be approximated by

Jn(∆̂) ≈
[
− ∂2ℓ

∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, 2, 3, 4, 5. (20)

For a given set of observations, the matrix given in equation [29] is obtained after the conver-
gence of the Newton-Raphson procedure via NLMIXED in SAS or R software. Note that the expec-
tations in the Fisher Information Matrix (FIM) can be obtained numerically. Let ∆̂ = (ĉ, α̂, β̂, λ̂, θ̂)
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be the maximum likelihood estimate of ∆ = (c, α, β, λ, θ). Under the usual regularity conditions
and that the parameters are in the interior of the parameter space, but not on the boundary, we have:
√
n(∆̂ − ∆)

d−→ N5(0, I(∆)−1), where I(∆) is the expected Fisher information matrix. The
asymptotic behavior is still valid if I(∆) is replaced by the observed information matrix evaluated
at ∆̂, that is J(∆̂). The multivariate normal distribution N5(0, J

−1(∆̂)), where the mean vector
0 = (0, 0, 0, 0, 0)T , can be used to construct confidence intervals and confidence regions for the in-
dividual model parameters and for the survival and hazard rate functions. That is, the approximate
100(1− η)% two-sided confidence intervals for c, λ, α, β and θ are given by:

ĉ± Z η
2

√
I−1
cc (∆̂), α̂± Z η

2

√
I−1
αα(∆̂), β̂ ± Z η

2

√
I−1
ββ (∆̂), λ̂± Z η

2

√
I−1
λλ (∆̂),

and θ̂ ± Z η
2

√
I−1
θθ (∆̂),

respectively, where I−1
cc (∆̂), I−1

αα(∆̂), I−1
ββ (∆̂), I−1

λλ (∆̂) and I−1
θθ (∆̂) are the diagonal elements of

I−1
n (∆̂) = (nI(∆̂))−1 and Z η

2
is the upper η

2
th percentile of a standard normal distribution.

3. Some Special Cases of the LLoGMWPS Class of Distributions
Two special cases of the log-logistic modified Weibull power series (LLoGMWPS) class of

distributions, namely the log-logistic modified Weibull Poisson and log-logistic modified Weibull
Logarithmic distributions are presented including pdfs, cdfs, hazard rate and reverse hazard functions,
moments, conditional moments, distribution of order statistics and Rényi entropy. Plots of the pdf
and hrf for selected values of the model parameters are given. The method of maximum likelihood
estimation is used for estimating parameters and simulation is conducted to illustrate the performance
of the two special cases of the LLoGMWPS class of distributions. Real life data sets are applied to
demonstrate the flexibility and applicability of the two special cases.

3.1. Log-logistic modified Weibull poisson distribution
The cdf and pdf of the LLoGMWP distribution are given by Eqns. (5) and (6). Plots of the

LLoGMWP pdf for selected values of the model parameters are given in Figure 1.

Figure 1 Plots of the pdf of the LLoGMWP distribution for the selected values of the model param-
eters
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Figure 1 shows that the plots of the pdf can be right-skewed, reverse-J and decreasing among
many other shapes among many potential shapes. The density can exhibit different shapes depending
on the values of the parameters, as shown in these plots.

3.1.1 Hazard rate function
In this section, the hrf of the LLoGMWP distribution is presented. Plots of the hrf for selected

values of the model parameters are also given. The hrf of the LLoGMWP distribution is given by

hLLoGMWP (x) =
θe−αxβeλx

(1 + xc)−2eθ(1+xc)−1e−αxβeλx

eθ(1+xc)−1e−αxβeλx − 1

×
(
cxc−1 + αβxβ−1eλx(β + λx)(1 + xc)

)
for x ≥ 0, c, α, β > 0, λ ≥ 0, θ > 0.

Figure 2 Plots of the hrf LLoGMWP distribution for the selected values of the model parameters

The graphs in Figure 2 exhibit decreasing, increasing, uni-modal and bathtub followed by upside
down bathtub shapes for the selected values of the model parameters. This very attractive flexibility
makes the LLoGMWP hrf useful and suitable for non-monotonic empirical hazard behaviours which
are more likely to be encountered in practice or real life situations.

3.1.2 Quantile function
The LLoGMWP quantile function can be obtained by inverting F

LLoGMWP
(x) = u, 0 ≤ u ≤ 1,

where

F
LLoGMWP

(x) = 1− 1− eθ((1+xc)−1e−αxβeλx
)

1− eθ
. (21)

The quantile function of the LLoGMWP distribution is obtained by the solving non-linear equation

αxβeλx + log(1 + xc) + log

((
1

θ
log

(
1− (1− u)(1− eθ)

)))
= 0, (22)

using numerical methods. Consequently, random number can be generated based on (22). Table of
quantiles from the LLoGMWP distribution for selected values of model parameters are given below.
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Table 1 LLoGMWP quantile for selected values

(c, λ, θ, α, β)

u (0.1,0.2,2.8,0.4,0.5) (2.8,3.5,4.0,3.0,1.0) (2.0,1.0,1.0,1.0,0.3) (1.0,0.9,1.0,1.0,1.0) (1.0,1.0,1.0,0.6,1.0)
0.1 0.0732 0.0964 0.1241 0.0846 0.1067
0.2 0.2539 0.1417 0.0642 0.1677 0.2123
0.3 0.4259 0.1740 0.1390 0.2505 0.3174
0.4 0.5736 0.2007 0.2258 0.3344 0.4231
0.5 0.7138 0.2249 0.3222 0.4215 0.5310
0.6 0.8611 0.2484 0.4296 0.5145 0.6439
0.7 1.0327 0.2730 0.5532 0.6181 0.7667
0.8 1.2619 0.3011 0.7045 0.7418 0.9093
0.9 1.6561 0.3391 0.9191 0.9137 1.1009

Table 2 LLoGMWP moments for selected values

(c, θ, λ, α, β)

Moments ( 1.0,3.0,2.0,3.0,1.0) ( 1.0,3.0,1.0,1.5,2.0) ( 1.0,3.0,0.9,1.5,1.0) (0.9,2,0.8,0.5,2.0) (0.4,1.0,1.0,3.0,1.0)
µ

′
1 4.3759 1.5883 1.4355 1.0340 0.5515

µ
′
2 6.1566 2.8842 2.1994 0.4162 0.4804

µ
′
3 2.7520 6.1940 3.6307 0.5738 0.4916

µ
′
4 3.0311 6.4748 6.5323 0.9791 0.5564

µ
′
5 6.4121 7.0603 12.9794 1.9405 0.6783

SD 6.5129 0.6011 0.3723 0.2541 0.8774
CV 1.4883 0.3784 0.2593 0.1212 0.4197
CS 7.6433 2.1399 1.4564 1.3556 0.7610
CK 1.4500 12.9121 7.2475 6.4151 0.2858

Figure 3 Plots of skewness and kurtosis of the LLoGMWP distribution

The first five moments, standard deviation (SD), coefficient of variation (CV), coefficient of
skewness (CS) and coefficient of kurtosis (CK) for selected values of the parameters of the LLoGMWP
distribution are listed in Table 2.

The 3D plots of skewness and kurtosis for the LLoGMWP distribution are given in Figures 3
and 4. We observe that
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Figure 4 Plots of skewness and kurtosis of the LLoGMWP distribution

• When we fix the parameters α, λ and θ, the skewness and kurtosis of LLoGMWP increase as c
and β increase.

• When we fix the parameters c, β and θ, the skewness and kurtosis of LLoGMWP increase as α
and λ increase.

3.1.3 Estimation
Let X ∼ LLoGMWP (c, α, β, λ, θ) and ∆ = (c, α, β, λ, θ)T be the parameter vector. The

log-likelihood function ℓ = ℓ(∆) based on a random sample of size n is given by

ℓ = ℓn(∆) = n ln(θ)− n ln(C(θ)) +

n∑
i=1

ln(g(xi)) +

n∑
i=1

ln(C ′(θS(xi))

= n ln(θ)− n ln(eθ − 1) +

n∑
i=1

(−αxβ
i e

λxi)− 2

n∑
i=1

ln(1 + xc
i )

+

n∑
i=1

ln[cxc−1
i + (1 + xc

i )αβx
β−1
i eλxi(β + λxi)]

+θ

n∑
i=1

[1− e−αxβ
i e

λxi
(1 + xc

i )
−1]. (23)

We obtain the maximum likelihood estimates of parameters denoted by ∆̂ by solving the non-
linear equation ( ∂ℓ∂c ,

∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂λ ,

∂ℓ
∂θ )

T = 0.

3.1.4 Simulation
In this section, the performance of the maximum likelihood estimates is examined by conducting

simulation studies for different sample sizes. We examine the performance of the LLoGMWP dis-
tribution by conducting various simulations for different sizes (n=25, 50, 100, 200, 400, 800, 1600)
via the R package. We simulate N = 1000 samples and the true parameters values I : θ = 0.5, c =
0.5, α = 0.1, β = 0.5, λ = 1.2 , II : θ = 1.0, c = 1.0, α = 0.1, β = 0.3, λ = 1.0, The mean, aver-
age bias and root mean square error (RMSE) were computed. The mean for the estimated parameter
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θ̂, average bias and RMSE are given by

Mean =

∑N
i=1 θ̂

N
,ABias(θ̂) =

∑N
i=1 θ̂i
N

− θ and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
.

The table lists the mean MLEs of the parameters along with the respective average bias and root mean
squared errors (RMSEs).

Table 3 Monte Carlo simulation results: Mean, Average Bias and RMSE

I II

Parameter n Mean Average Bias RMSE Mean Average Bias RMSE
θ 25 0.9575 1.5802 0.4523 3.2679 20.4624 2.2679

50 0.7539 0.5933 0.2539 1.2195 1.6281 0.2195
100 0.6183 0.4247 0.1183 1.0887 0.8129 0.0887
200 0.5425 0.3424 0.0425 1.1013 0.6287 0.1013
400 0.4845 0.2698 -0.0154 1.0549 0.4887 0.0549
800 0.4284 0.2144 -0.0715 1.0621 0.3540 0.0621

1600 0.4983 0.0528 -0.0016 1.0954 0.2774 0.0954
c 25 0.5686 0.2964 0.0686 2.0350 1.5543 1.0350

50 0.5410 0.1724 0.0410 1.9783 1.3260 0.9783
100 0.5288 0.0994 0.0288 1.9590 1.2525 0.9590
200 0.5211 0.0627 0.0211 1.9371 1.1921 0.9371
400 0.5208 0.0467 0.0208 1.9510 1.1390 0.9510
800 0.5292 0.0371 0.0292 0.9928 0.4008 -0.0072

1600 0.5167 0.0168 0.0167 0.9556 0.0825 -0.0443
α 25 0.1792 0.2468 0.0792 0.2089 0.5388 0.1089

50 0.1642 0.1543 0.0642 0.1533 0.1906 0.0533
100 0.1338 0.0955 0.0338 0.1369 0.1325 0.0369
200 0.1187 0.0634 0.0187 0.1332 0.1076 0.0332
400 0.1050 0.0420 0.0050 0.1199 0.0757 0.0199
800 0.1044 0.0262 0.0044 0.1188 0.0535 0.0188

1600 0.1037 0.0041 0.0037 0.1218 0.0440 0.0218
β 25 1.2602 1.2992 0.7602 1.2374 1.4298 0.9374

50 1.1215 1.1941 0.6215 1.0798 1.2891 0.7798
100 0.9277 1.0101 0.4277 0.8783 1.1181 0.5783
200 0.7493 0.7094 0.2493 0.7078 0.8834 0.4078
400 0.7333 0.7232 0.2333 0.5520 0.6036 0.2520
800 0.5392 0.0613 0.0392 0.4253 0.2894 0.1253

1600 0.5132 0.0521 0.0132 0.3965 0.1078 0.0965
λ 25 1.0804 0.8024 -0.1195 0.8538 0.7104 -0.1461

50 0.9752 0.6738 -0.2247 0.8051 0.5963 -0.1948
100 1.0338 0.5376 -0.1661 0.8353 0.4925 -0.1646
200 1.0936 0.3791 -0.1063 0.8566 0.3821 -0.1433
400 1.1255 0.3376 -0.0744 0.9089 0.2751 -0.0910
800 1.2210 0.0983 0.0210 0.9320 0.1745 -0.0679

1600 1.2005 0.0140 0.0005 0.9923 0.1562 -0.0077

The results in Table 3 show that the mean MLEs converge to the true values and the average bias
decreases for all parametric values as the sample size n increases, and the RMSEs decay toward zero.

3.1.5 Applications
In this section, applications of LLoGMWP distribution to real data are presented. The maximum

likelihood estimates (MLEs) of the LLoGMWP parameters ∆ = (c, α, β, λ, θ) are computed by
maximizing the objective function via the subroutine NLMIXED in SAS as well as the function nlm
in R (R Development Core Team (2011)). The estimated values of the parameters (standard error
in parenthesis), -2log-likelihood statistic (−2 ln(L)), Akaike Information Criterion (AIC = 2p −
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2 ln(L)), Bayesian Information Criterion (BIC = p ln(n) − 2 ln(L)) and AICC=AIC + 2 p(p+1)
n−p−1 ,

where L = L(∆̂) is the value of the likelihood function evaluated at the parameter estimates, n is the
number of observations, and p is the number of estimated parameters are presented in Tables 4 and
5. The Cramér-von Mises (W ∗) and Anderson-Darling (A∗) goodness-of-fit statistics, described by
Chen and Balakrishnan (1995) are also presented in the tables. These statistics can be used to verify
which distribution fits better to the data. In general, the smaller the values of W ∗ and A∗, the better
the fit. The Sum of Squares (SS) from the probability plots is given by

SS =

n∑
j=1

[
F (x(j))−

(
j − 0.375

n+ 0.25

)]2
,

and was also computed for the fitted models, where j = 1, 2....., n and x(j) are the ordered values of
the observed data.

We can use the likelihood ratio (LR) test to compare the fit of the LLoGMWP distribution
with its sub-models for a given data set. For example, to test β = 1, the LR statistic is ω =
2[ln(L(ĉ, α̂, β̂, λ̂, θ̂)) − ln(L(c̃, α̃, 1, λ̃, θ̃))], where ĉ, α̂, β̂, λ̂, and θ̂ are the unrestricted estimates,
and c̃, α̃, λ̃, and θ̃ are the restricted estimates. The LR test rejects the null hypothesis if ω > χ2

ϵ
,

where χ2
ϵ

denote the upper 100ϵ% point of the χ2 distribution with 1 degrees of freedom.
The data sets in this section are used to illustrate the flexibility of the LLoGMWP distribution

and its sub-models (LLoGP, LLoGEP) for data modeling. We compare the LLoGMWP distribution
with the gamma-Dagum (GD) (Oluyede et al., 2014), Exponentiated Kumaraswamy Dagum (EKD)
(Huang and Oluyede, 2014), Beta Weibull log-logistic BWLLoG (Makubate et al., 2018), Exponen-
tiated Kumaraswamy Weibull (EKW) (Eissa and Abdulaziz, 2014), LoG-Logistic Weibull Poisson
(LLoGWP) (Oluyede et al., 2016), and Burr XII Weibull Logarithmic (BrWLn) (Oluyede et al., 2018)
distributions. The pdfs of the GD, EKD, BWLLoG, EKW, LLoGWP, and BrWLn distributions are
given by

f
GD

(x) =
λβδx−δ−1

Γ(α)θα
(1 + λx−δ)−β−1

(
− log[1− (1 + λx−δ)−β ]

)α−1

×[1− (1 + λx−δ)−β ](1/θ)−1, for α, λ, δ, β, θ > 0, x > 0. (24)

f
EKD

(x) = αλδϕθx−δ−1(1 + λx−δ)−α−1
[
1− (1 + λx−δ)−α

]ϕ−1

×
[
1−

[
1− (1 + λx−δ)−α

]θ−1
]
, for α, λ, δ, ϕ, θ > 0, x > 0. (25)

f
BWLLoG

(x) =
αβc

B(a, b)
xc−1(1 + xc)−2

[
1− (1 + xc)−1

]β−1

[(1 + xc)−1]
β+1

×exp
{
−αb [(1 + xc)− 1]

β
}

×
[
1− exp

{
−α [(1 + xc)− 1]

β
}]a−1

, for a, b, c, α, β > 0, x > 0. (26)

f
EKW

(x) = θabcλcxc−1exp− (λx)c[1− exp− (λx)c]a−1

×
[
1− [1− exp− (λx)c]a

]b−1[
1− [1− [1− exp− (λx)c]a]

b

]θ−1

, (27)

for a, b, c, λ, θ > 0, x > 0,

f
LLoGWP

(x) =
θe

θ
(
1−(1+( x

s )
c
)
−1

e−αxβ
)

eθ−1

(
1 +

(
1 +

(x
s

)c)−1
)
e−αxβ

×
[(

1 +
(x
s

)c)c c
s

(x
s

)c−1

+ αβxβ−1

]
, for s, c, α, β, θ > 0, x > 0. (28)
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f
BrWLn

(x) =
θe−αxβ

(1 + xc)
−k−1 (

kcxc−1 + αβxβ−1 (1 + xc)
)

−
(
1− θ (1 + xc)

−k
e−αxβ

)
log (1− θ)

, (29)

for k, c, α, β, θ > 0, x > 0.

3.1.5.1 Failure time of 50 components data
The first set of data represent failure times of 50 components from Murthy et al. (2004). Es-

timates of the parameters of LLoGMWP distribution and its related sub-models (standard error in
parentheses), AIC, AICC, BIC, W∗, A∗, KS, P-value and SS are give in Table 4. The asymptotic
variance-covariance matrix of the MLEs for the LLoGMWP distribution is given by:

0.0739 0.0134 0.0004 −0.4383 −0.0170
0.0134 0.0157 −0.0011 −0.0156 −0.0144
0.0004 −0.0011 0.0007 −0.0418 0.0054
−0.4383 −0.0156 −0.0418 4.7653 −0.1960
−0.0170 −0.0144 0.00542 −0.1960 0.2903

 (30)

and the approximate 95% two-sided confidence intervals for λ, c, α, β and θ are given by 0.2478 ±
0.5329, 0.7776± 0.2459, 0.0065± 0.0523, 0.7740± 4.2786, and 0.3708± 1.0560, respectively.

Table 4 Estimates of model for failure times of 50 components data

Estimates Statistics
Model λ c α β θ −2 logŁ AIC AICC BIC W ∗ A∗ SS KS P − V ALUE

LLoGMWP 0.2478 0.7776 0.0066 0.7740 0.3708 197.6134 207.6134 208.9771 217.1735 0.0941 0.6137 0.0853 0.0994 0.6696
(0.2719) (0.1246) (0.0267) (2.1832) (0.5388)

LLoGP - 0.9098 - - 0.9558 210.9849 214.9849 215.2402 218.8089 0.2140 1.3296 0.5448 0.1372 0.2774
- (0.1029) - - (0.4911)

LLoGEP - 0.7372 0.7800 - 3.6898× 10−08 206.2124 212.2124 212.7342 217.9485 0.1523 0.9451 0.3066 0.1839 0.0592
- (0.1238) (0.3954) - (0.2131)
α λ δ ϕ θ

EKD 1.0279 1.846 1486.00 0.7485 9250.1000 204.7135 214.7135 216.0771 224.2736 0.1499 0.9460 3.4806 0.1331 0.3101
(0.3081) (0.0000014) (0.7378) (0.000002) (1.5469)

λ β δ α θ

GD 0.0004 0.5934 1.2483 12.5790 0.6682 208.2542 218.2543 219.6179 227.8144 0.2148 1.3219 0.2162 0.1606 0.1359
(0.0018) (0.2332) (0.6123) (0.0391) (0.3247)

c a b θ λ

EKW 0.5110 10.0989 7.1749 0.1173 0.2359 202.8997 212.8998 214.2634 222.4599 0.1318 0.8531 0.1353 0.1363 0.2845
(0.3118) (9.7929) (11.3697) (0.1166) (0.2870)

c a b α β

BWLLoG 0.4256 1.4584 13.3910 0.0709 1.2299 204.6975 214.6975 216.0612 224.2577 0.1549 0.9658 0.1616 0.1187 0.4475
(2.4626) (3.2680) (56.1346) (0.2913) (7.1157)

s c α β θ

LLoGWP 1.6389 0.6939 0.0268 1.5685 5.5051× 10−06 200.4967 210.4967 211.8603 220.0568 0.1123 0.7305 0.0970 0.1075 0.5723
(0.8462) (0.1230) (0.0457) (0.6521) (0.2441)

k c α β θ

BrWLn 1.051× 10−10 1.2728 0.2679 0.6168 5.3097× 10−09 228.4620 238.4625 239.8261 248.0226 0.1524 0.9498 1.8593 0.2750 0.0007
(1.0310× 10−06) (0.6154) (0.04024) (0.0721) (0.0107)

The LR for the following hypothesis testing H0 : LLoGP against Ha : LLoGMWP and H0 :
LLoGEP against Ha : LLoGMWP are 13.3715 (p-value=0.0038) and 8.599 (p-value= 0.0136). We
conclude that there is significant difference between the non-nested models and LLoGMWP distribu-
tion. The goodness-of-fit statistics W ∗, A∗, KS and its p-value show that the LLoGMWP distribution
is far better than the sub-models, and the non-nested models. Also, the values of AIC, AICC and BIC
shows that the LLoGMWP distribution fits better than the non-nested distributions.

Plots of the fitted densities and probability plots are given in Figure 5. For probability plots
figure, the plot with the smallest SS value corresponds to the model with points that are closer to the
diagonal line. See Table 4 for the SS-values.
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Figure 5 Fitted PDF and probability plots for failure times of 50 components data

3.1.5.2 Aircraft windshield failure data
The dataset analyzed in Table 5 represents the data sets for a particular aircraft windshield re-

ported by Murthy et al. (2004). The dataset is divided into two different sets of data being the 88
observations that are classified as failed windshields and the 65 observations which are service times
of windshields that had not failed at the time of observation. The measurement unit is 1000 hours.

Table 5 Estimates of model for aircraft windshield failure data

Estimates Statistics
Model λ c α β θ −2 log L AIC AICC BIC W ∗ A∗ KS P − V ALUE SS

LLoGMWP 0.3222 0.1024 0.1776 0.06971 25.0918 253.6165 263.6165 264.3857 275.7706 0.0469 0.5376 0.0642 0.9689 0.0728
(0.1233) (0.4118) (0.9597) (0.2213) (30.4056)

LLoGP - 2.3891 - - 5.6505 286.4005 290.4005 290.5487 295.5622 0.3113 2.2440 0.1304 0.1147 0.2087
- (0.1737) - - (0.76491)

LLoGEP - 0.4780 0.2590 - 1.2934X10−08 419.3331 425.3331 425.6333 432.6257 0.1512 1.3009 0.1785 0.5743 0.3222
- (0.5083) (0.1490) - (0.0090)
λ β δ α θ

GD 5.0919 6.6830 0.7827 0.4698 0.0010 260.4438 270.4440 271.2132 282.5981 0.0658 0.6310 0.0775 0.6934 0.5995
(0.0101) (0.0038) (0.2214) (0.1492) (0.0016)

α λ δ ϕ θ

EKD 2.8909 16.1328 1.9388 10.5093 0.4057 261.9840 271.9840 272.7532 284.1381 0.0649 0.6581 0.0756 0.7224 0.0881
(1.4745) (12.3388) (0.4457) ( 5.4744) (0.2462)

c a b θ λ

EKW 1.8858 3.6003 1.53512 0.3442 0.34900 261.1730 271.1730 271.9422 283.3271 0.0643 0.6435 0.0753 0.7278 0.0843
(0.5653) (2.2276) (1.1677) (0.2446) (0.0721)

c a b α β

BWLLoG 5.8439 0.2885 5.3215 0.0005 2.5840 255.4797 265.4797 266.2490 277.6338 0.1185 0.7838 0.0680 0.9421 7.8727
(0.0018) (0.0307) (2.0250x10−6) (1.1249x10−6) (0.0113)

s c α β θ

LLoGWP 2.5559 4.3028 0.0714 0.8998 0.3062 258.8826 268.8826 269.6519 281.0367 0.0770 0.5822 0.0770 0.5822 0.0877
(0.6394) (0.5457) (0.1189) (0.6295) (2.8061)

k c α β θ

BrWLn 1.7919× 10−06 1.9719 0.5418 0.4345 1.8402× 10−09 450.7534 460.7547 461.5239 472.9088 0.3257 2.4118 0.3257 2.591× 10−10 1.8593
(1.0310× 10−06) (2.3539× 10−05) (0.0250) (0.0459) (0.0052)

The estimated variance-covariance matrix for the LLoGMWP distribution is given by:
0.0152 0.03261 −0.1009 −0.0025 −2.9859
0.03261 0.1696 −0.1149 −0.06028 −2.8573
−0.1009 −0.1149 0.9210 −0.0891 28.9171
−0.0025 −0.0603 −0.0891 0.0489 −3.282
−2.9858 −2.8573 28.9171 −3.2824 924.5021


and the approximate 95% two-sided confidence intervals for λ, c, α, β and θ are given by 0.3222 ±
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0.2416, 0.1024± 0.8072, 1.1776± 1.8810, 0.0691± 0.4337, and 25.0918± 59.5950, respectively.
The following hypothesis were tested using the LR test. The values for LR test statistic for

testing H0 : LLoGP against Ha : LLoGMWP and H0 : LLoGEP against Ha: LLoGMWP are
32.7840 (p-value<0.00001) and 165.7166 (p-value<0.00001). We conclude that there is significant
difference between LLoGP, LLoGEP and LLoGMWP distributions. However, the goodness-of-fit
statistics W ∗, A∗ and KS and its p-value show that the LLoGMWP distribution fits better than the
sub-models and the non-nested models. Lastly, the values of AIC, AICC and BIC shows that the
LLoGMWP distribution fits better than the non-nested distributions. The probability plots and fitted
densities are given in Figure 6.

Figure 6 Fitted densities and probability plots for aircraft windshield failure data

3.2. Log-Logistic modified Weibull logarithmic distribution
The cdf and pdf of the LLoGMWL distribution are given by Eqns. (7) and (8), respectively. Plots

of the pdf of the LLoGMWL distribution are given in the Figure 5.

Figure 7 Plots of the LLoGMWL density function

Figure 7 show that plots of the the LLoGMWL pdf can be decreasing, increasing-decreasing,
right-skewed, uni-modal and reverse-J shapes for different selected values of the parameters.

3.2.1 Hazard rate function
The hrf of the LLoGMWL distribution is given in Eqn. (9). The graphs below show the hrf of

LLoGMWL distribution in different shapes.
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Figure 8 Plots of the LLoGMWL hazard function

The graphs in Figure 8 exhibit increasing, decreasing, bathtub and unimodal shapes for the
selected values of the model parameters.

3.2.2 Quantile function
The quantile function of the LLoGMWL distribution can be obtained by inverting F

LLoGMWL
(x) =

u, 0 ≤ u ≤ 1, where

F
LLoGMWL

(x) = 1− log(1− θ(1 + xc)e−αxβeλy

)

log(1− θ)
.

The quantile function of the LLoGMWL distribution is obtained by solving the non-linear equation

αxβeλx + log(1 + xc) + log

(
1

θ

(
1− 1− θ

(1− θ)u

))
= 0. (31)

Quantiles of the LLoGMWL distribution are presented in Table 6 for selected values of the model
parameters.

Table 6 LLoGMWL quantiles for selected parameter values

(c, λ, θ, α, β)

u (0.1,0.2,2.8,0.4,0.5) (0.1,3.5,4.0,3.0,0.8) (0.2,1.0,1.0,1.0,0.3) (0.1,0.9,1.0,1.0,0.5) (0.9,1.0,1.0,0.6,1.0)
0.1 0.0607 0.0134 0.0003 0.0083 0.0182
0.2 0.2236 0.0318 0.0043 0.0312. 0.0418
0.3 0.3921 0.0524 0.0182 0.0674 0.0727
0.4 0.5388 0.0748 0.0476 0.1167 0.1135
0.5 0.6777 0.0989 0.0967 0.1810 0.1681
0.6 0.8230 0.1254 0.1691 0.2636 0.2423
0.7 0.9918 0.1555 0.2716 0.3715 0.3457
0.8 1.2166 0.1917 0.4194 0.5191 0.4959
0.9 1.6030 0.2422 0.6565 0.7484 0.7369

The first six moments, standard deviation (SD), coefficient of variation (CV), coefficient of skew-
ness (CS) and coefficient of kurtosis (CK) for selected values of the parameters of the LLoGMWL
distribution are listed in Table 7.

The 3D plots of skewness and kurtosis for the LLoGMWL distribution are given in Figures 9
and 10. We observe that
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Table 7 LLoGMWL moments for selected parameter values

(c, θ, λ, α, β)

Moments ( 1.0,1.0,1.0,1.0,1.0) (0.2,0.0,0.1,1.0,0.2) ( 1.0,1.0,1.0,0.9,1.0) (0.6,0.6,0.5,0.5,0.05) (0.3,1.0,1.6,1.0,0.1)
µ

′
1 0.0802 0.0530 0.0288 0.0319 0.0996

µ
′
2 0.0567 0.0360 0.0194 0.0213 0.0707

µ
′
3 0.0443 0.0275 0.0147 0.0160 0.0560

µ
′
4 0.0365 0.0222 0.0120 0.0128 0.0451

µ
′
5 0.0310 0.0188 0.0102 0.0107 0.0382

µ
′
6 0.0271 0.0162 0.0088 0.0092 0.0332

SD 0.2243 0.1821 0.1363 0.1425 0.2465
CV 2.7982 3.4367 4.7233 4.4695 2.4747
CS 2.8062 3.6496 5.2023 4.8617 2.3936
CK 9.6071 15.5148 30.1957 25.5557 7.3354

Figure 9 Plots of skewness and kurtosis of the LLoGMWL distribution.

Figure 10 Plots of skewness and kurtosis of the LLoGMWl distribution.
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• When we fix the parameters β, λ and θ, the skewness and kurtosis of LLoGMWL increase as c
and α increase.

• When we fix the parameters c, α and θ, the skewness and kurtosis of LLoGMWL decrease as
β and λ increase.

3.2.3 Estimation
Let X ∼ LLoGMWL(c, α, β, λ, θ) and ∆ = (c, α, β, λ, θ)T be the parameter vector. The

log-likelihood function ℓ = ℓ(∆) for a single observation x of X is given by

ℓ = logL = ln(θ)− 2 ln (1 + xc)− αxβeλx + ln
(
cxc−1 + αxβ−1eλx(β + λx)

)
− ln

(
−
(
1− θ (1 + xc)

−1
e−αxβeλx

))
− ln (ln(1− θ)) .

Elements of the score vector are given in the web-appendix.

3.2.4 Simulation study
A simulation study was conducted to check the performance of the maximum likelihood esti-

mates. The simulation study was repeated N = 1000 times each with sample size n = 35, 65, 90, 200,
400, 800 with the true parameters values I : θ = 0.6, λ = 0.5, c = 0.8, α = 4.0, β = 1.8, and
II : θ = 0.5, λ = 0.7, c = 1.0, α = 4.0, β = 8. The table below shows the mean MLEs with
respective their average bias and Root Mean Square Error (RMSE). The results in Tables 8 show that
the mean MLEs converge to the true value and the RMSEs decay toward zero as the sample size n
increases. Also, the average bias decreases as the sample size n increases for all parametric values.

Table 8 Monte Carlo simulation results: Mean, Average Bias and RMSE

I II

Parameter n Mean Average Bias RMSE Mean Average Bias RMSE
θ 25 0.6977 0.0977 0.3026 0.8623 0.3623 0.2491

50 0.6474 0.0474 0.2564 0.8415 0.3415 0.2297
100 0.6337 0.0337 0.2398 0.8067 0.2067 0.1985
200 0.6242 0.0244 0.2333 0.7794 0.2794 0.1757
400 0.6127 0.0127 0.2285 0.6875 0.1875 0.1335
800 0.6079 0.0079 0.2252 0.4896 0.0104 0.0993

λ 25 1.2407 0.7407 2.5277 1.2228 0.5228 2.7739
50 0.9818 0.4818 1.7046 1.1944 0.4940 2.5901
100 0.7942 0.2942 0.8581 1.0297 0.3297 2.2550
200 0.7169 0.2169 0.8580 0.8585 0.1585 1.8065
400 0.6039 0.1039 0.6147 0.7842 0.0842 1.3980
800 0.4540 -0.0454 0.4992 0.7401 0.0410 1.3820

c 25 0.9122 0.1122 0.4366 1.515 0.5152 0.3310
50 0.8915 0.0915 0.2559 1.4356 0.4356 0.2295
100 0.8635 0.0635 0.1838 1.3101 0.0310 0.1510
200 0.8630 0.0630 0.1410 1.1474 0.1474 0.1112
400 0.8382 0.0382 0.1032 1.0624 0.0624 0.0781
800 0.8309 0.0309 0.0882 1.0011 0.0011 0.0558

α 25 7.3775 3.3776 13.5132 11.6146 7.6146 20.6478
50 5.3212 1.3212 4.8617 8.4929 4.4929 9.7755
100 4.6752 0.6752 3.0319 7.2175 3.2175 5.6443
200 4.3856 0.3856 2.4560 6.5282 2.5286 4.4378
400 4.1856 0.1856 2.1026 6.0693 2.0693 3.9642
800 4.0351 0.0350 1.7837 4.3504 0.3504 0.7296

β 25 2.0542 0.9054 3.2785 8.9300 0.9300 5.4126
50 1.9266 0.1266 0.6707 8.2174 0.2174 3.4122
100 1.9138 0.1138 0.5261 8.6611 0.6611 2.6054
200 1.9115 0.1115 0.4689 8.4289 0.4288 1.9195
400 1.9225 0.1225 0.4215 8.1695 0.1695 1.3855
800 1.8273 0.0270 0.3901 7.8895 -0.1104 1.2641
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3.2.5 Applications
In this subsection, some datasets are used to illustrate the usefulness and applicability of the

LLoGMWL distribution. The LLoGMWL distribution is compared with its sub-models: log-logistic
Weibull (LLoGW), log-logistic Rayleigh (LLoGR) and log-logistic (LLoG) distributions. We also
compare the LLoGMWL distribution with Gamma Dagum (GD) (Oluyede et al., 2014), Exponen-
tiated Kumaraswamy Dagum (EKD) (Huang and Oluyede, 2014), Exponentiated Kumaraswamy
Weibull (EKW) (Eissa and Abdulaziz, 2014), LoG-Logistic Weibull Poisson (LLoGWP) (Oluyede
et al., 2016), and Burr XII Weibull Logarithmic (BrWLn) (Oluyede et al., 2018) distributions.

3.2.5.1 Caterpillar body mass data
The first dataset comes from R software package ”Stat2Data” Caterpillars data, consisting of 267

observations corresponding to body mass (in grams) of Manduca Sexta caterpillars. The estimated
variance-covariance matrix of the LLoGMWL distribution is given by

0.01584 0.00108 −0.00016 0.00014 0.00096
0.00108 0.00140 −0.00001 0.00009 0.00106
−0.00016 −0.00001 0.000001 −0.00001 −0.00001
0.00145 0.00009 −0.00001 0.00013 0.00008
0.00096 0.00106 −0.00001 0.00008 0.00169


and the approximate 95% two-sided confidence intervals for λ, c, α, β and θ are given by 0.5371 ±
0.2467, 0.5722± 0.0735, 0.0008± 0.0025, 0.5926± 0.0227, and 0.8651± 0.0806, respectively.

Table 9 Estimates of model for caterpillar body mass data

Estimates Statistics
Model λ c α β θ −2 log L AIC AICC BIC W ∗ A∗ KS P − V ALUE SS

LLoGMWL 0.5371 0.5723 0.0008 0.5926 0.8651 281.2231 291.2231 291.4530 309.1594 0.3005 1.9010 0.0606 0.2500 0.2747
(0.1259) (0.0375) (0.0013) (0.0116) (0.0412)

LLoGW - 0.4153 0.4903 0.5498 - 343.5370 349.5370 349.6282 360.2987 0.5982 4.0694 0.6935 0.0074 0.5975
- (0.0364) (0.0925) (0.0805) -

LLoGR - 0.4268 0.0149 - - 348.5562 433.9442 433.9896 441.1187 0.5364 3.6470 0.2085 1.644×10−10 4.1926
- (0.0251) (0.0025) - -

LLoG - 0.5139 - - - 448.3505 450.3505 450.3656 453.9377 0.6294 4.2539 0.2318 6.969×10−13 7.0787
- (0.0259) - - -
λ β δ α θ

GD 3.3889 3.0748 0.0612 3.0667 0.0015 341.9914 351.9913 352.2211 369.9275 0.5309 3.6239 0.1064 0.0046 0.5396
(0.000009) (0.00005) (0.0027) (0.00001) (0.00001)

α λ δ ϕ θ

EKD 0.0050 312.5400 2.3520 2.0050 22.2950 324.4124 334.4124 334.3423 352.3486 0.4682 3.2383 0.0912 0.0235 0.5282
(0.3081) (0.0000014) (0.7378) (0.000002) (1.5469)

c a b θ λ

EKW 0.8727 3.7969 0.9770 0.0891 0.2629 357.6407 447.8232 448.1462 469.3467 1.1149 7.2879 0.1594 2.574×10−06 0.9779
(0.7512) (3.4702) (0.8459) (0.0807) (0.2582)

s c α β θ

LLoGWP 0.2276 0.4769 0.0975 1.0561 1.7582× 10−09 322.8534 332.8395 333.0694 350.7757 0.4386 3.0787 0.0732 0.1136 0.2969
(0.0553) (0.3135) (0.0385) (0.1771) (0.0020)

k c α β θ

BrWLn 1.6843 0.4602 1.8759× 10−05 4.6779 6.4784× 10−03 292.0598 302.0598 302.2897 319.9961 0.3701 2.4162 0.0814 0.0577 0.3097
(0.0553) (0.3135) (0.0385) (0.1771) (0.0020)

To test if the LLoGMWL distribution is significantly different from LLoGW, LLoGR and LLoG
distributions, the LR test is used and the following hypothesis are tested. H0 : LLoGW against Ha :
LLoGMWL, H0 : LLoGR against Ha : LLoGMWL and H0 : LLoG against Ha : LLoGMWL.
The values of LR test statistic and corresponding p-values are: 62.3139 (p-value<0.00001), 67.3331
(p-value<0.00001) and 164.1274 (p-value<0.00001), respectively. We conclude that there are sig-
nificant differences between each one of LLoGW, LLoGR, LLoG and LLoGMWL distributions. The
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LLoGMWL distribution is performing far better when compared to the nested and non-nested models
when looking at the W ∗, A∗ and SS values. Also, the values of AIC, AICC and BIC shows that the
LLoGMWL distribution fits better than the non-nested distributions. Plots of the fitted densities and
probability plots are given in Figure 11.

Figure 11 Fitted pdf and probability plots for caterpillar body mass data

3.2.5.2 Kevlar 49/Epoxy strands data
Cooray and Ananda (2008) analyzed this data. The data set consist of 101 data points that

represent the stress-rupture of kevlar 49/epoxy strands life which are subjected to constant sustained
pressure at the 90 percent stress level until all have failed, so that the complete data set with the exact
times of failures is recorded. Andrews and Herzberg (1985) and Barlow (1984) presented this failure
times in hours.The estimated variance-covariance matrix of the LLoGMWL distribution is given by

0.0053 −0.0021 7.648× 10−6 −0.0064 −0.0057
−0.0021 0.0618 −1.1325× 10−5 0.0064 0.0012

7.648× 10−6 −1.1325× 10−5 0.0001 −4.2426× 10−5 3.9738× 10−06

−0.0064 0.0064 −4.2426× 10−5 0.0154 0.0063
−0.0057 0.0012 3.9738× 10−6 0.0063 0.0129


and the approximate 95% two-sided confidence intervals for λ, c, α, β and θ are given by 0.0103 ±
0.1434, 2.2224± 0.4875, 1.0× 10−8± 0.2433, 0.6007± 0.2225, and 0.6984± 0.0274, respectively.

The LR test statistics of the hypothesis; H0 : LLoGW against Ha : LLoGMWL, H0 : LLoGR
against Ha : LLoGMWL, H0 : LLoG against Ha : LLoGMWL are 82.3328 (p-value<0.00001),
88.6469 (p-value<0.00001)and 112.8602 (p-value<0.00001), respectively. We conclude that there is
significant difference between each one of the nested LLoGW, LLoGR, LLoG distributions and the
LLoGMWL distribution. When using goodness-of-fit statistics W ∗, A∗, KS and its p-value and SS
values, it is clear that the LLoGMWL distribution is performing far much better when compared to
both the nested and non-nested models. Also, the smallest values of the AIC, AICC and BIC shows
that the LLoGMWL distribution fits better than the non-nested models. Plots of the fitted densities
and probability plots are given in Figure 12, respectively.
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Table 10 Estimates of model for failure time to kevlar 49/epoxy strands data

Estimates Statistics
Model λ c α β θ −2 log L AIC AICC BIC W ∗ A∗ KS P − V ALUE SS

LLoGMWL 0.0103 2.2224 1.0× 10−8 0.6007 0.6984 124.6988 134.6988 135.3304 147.7744 0.0094 0.0291 0.0444 0.9744 0.0274
(0.0732) (0.2487) (0.0139) (0.1242) (0.1136)

LLoGW - 0.8734 0.3246 1.4600 - 207.0316 213.0316 213.2791 220.8770 0.1850 1.0609 0.1030 0.2341 0.2214
- (0.1197) (0.1002) (0.2149) -

LLoGR - 0.9114 0.1423 - - 213.3457 229.1762 229.2986 234.4064 0.4110 2.2007 0.1755 0.0039 0.2475
- (0.1119) (0.0376) - -

LLoG - 1.2265 - - - 237.5890 239.5390 239.6294 242.2041 0.4759 2.5805 0.2168 0.0002 1.3146
- (0.1057) - - -
λ β δ α θ

GD 245.8243 0.3347 12.969 0.1518 9.7490 196.2327 206.2327 206.8642 219.3083 0.1349 0.8790 0.0587 0.8771 0.0352
(0.0567) (0.0.2353) (2.8917) (0.0757) (4.5375)

α λ δ ϕ θ

EKD 0.0179 6.7074 3.7473 0.8577 8.4926 196.3005 206.3005 206.9321 219.3761 0.1363 0.8853 0.0597 0.8641 0.0580
(0.0116) (6.5662) (0.9029) (0.2266) (0.3646)

c a b θ λ

EKW 0.4812 5.1187 11.0960 0.3773 0.4858 205.0968 215.0974 215.7289 228.1730 0.1666 0.9584 0.0859 0.4440 0.1682
(1.1202) (14.8182) (66.4748) (0.3696) (1.2823)

s c α β θ

LLoGWP 1.5153 2.7714 0.6232 0.6516 1.1597× 10−07 199.0136 209.0136 209.6452 222.0892 0.0396 0.3579 0.0549 0.9206 0.0386
(0.2438) (0.5053) (0.1321) (0.1053) (0.0272)

k c α β θ

BrWLn 0.2334 5.8336 0.4259 0.7695 0.7290 196.1191 206.1191 206.7507 219.1947 0.0428 0.3107 0.0516 0.9505 4.1609
(0.1268) (2.0869) (0.3960) (0.1738) (0.5966)

Figure 12 Fitted pdf and probability plots for failure time to kevlar 49/epoxy strands data

4. Concluding Remarks
We have presented a new class of generalized distributions called the LLoGMWPS distribution

that is suitable for applications in various areas including reliability, survival analysis, just to mention
a few areas. This general class of distributions and some of its structural properties including hazard
rate function, quantile function, moments, conditional moments, mean deviations, Rényi entropy,
distribution of order statistics, maximum likelihood estimates, asymptotic confidence intervals are
presented. Two special cases of the LLoGMWPS class of distributions, namely, LLoGMWP and
LLoGMWL distributions are considered in details. Applications of these two special cases to real
data sets are given in order to illustrate the applicability and usefulness of the proposed class of
distributions.
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Appendix

A. The rth Moment of the LLoGMWPS Class of distribution is given by

E(Xr) =

∫ ∞

0

xr θf(x)C
′(θS(x))

C(θ)
dx

=
θ

C(θ)

∞∑
j=0

bs,jθ
j

∫ ∞

0

xr(1 + xc)−je−jαxβeλx

× [(1 + xc)−2e−αxβeλx

(cxc−1 + (1 + xc)(β + λx)eλxαxβ−1)]dx

=
θ

C(θ)

∞∑
j=0

bs,jθ
j

∫ ∞

0

xr(1 + xc)−j−2e−(j+1)αxβeλx

× [(cxc−1 + (1 + xc)(β + λx)eλxαxβ−1)]dx

=
θ

C(θ)

∞∑
j=0

bs,jθ
j

[ ∫ ∞

0

xr+kβ(1 + xc)−j−2
∞∑

k=0

(−1)k(α(j + 1)eλx)k

k!

× (1 + xc)αxβ−1eλx(β + λx)dx

+

∫ ∞

0

xr+kβcxc−1(1 + xc)−j−2
∞∑

k=0

(−1)k(α(j + 1)eλx)k

k!
dx

]

=
θα

C(θ)

∞∑
j=0

bs,jθ
j

[ ∞∑
k,p=0

(−1)k[α(j + 1)]k[λ(k + 1)]p

k!p!

×
∫ ∞

0

xr+kβ+p+β−1(1 + xc)−j−2+1(β + λx)dx

+

∞∑
k,p=0

(−1)k[α(j + 1)]k[kλ]pc

k!p!

∫ ∞

0

xr+kβ+p+c−1(1 + xc)−j−2dx

]
.
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B. The elements of the score vector for LLoGMWPS Class of distribution U(∆) =
(

∂ℓ
∂θ ,

∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂λ ,

∂ℓ
∂c

)
are given by

∂ℓ

∂θ
=
n

θ
− C′(θ)

C(θ)
+

n∑
i=1

C′′(θ(e−αx
β
i eλxi

(1 + xc
i )

−1))e−αx
β
i eλxi

(1 + xc
i )

−1

C′(θ(e−αx
β
i eλxi (1 + xc

i )
−1))

,

∂ℓ

∂α
=−

n∑
i=1

xβ
i e

λxi +

n∑
i=1

(1 + xc
i )(β + λxi)x

β−1
i eλxi

cxc−1
i + (1 + xc

i )αx
β−1
i (β + λxi)eλxi

−
n∑

i=1

C′′(θ(e−αx
β
i eλxi

(1 + xc
i )

−1))θe−αx
β
i eλxi

xβ
i e

λxi

C′(θ(e−αx
β
i eλxi (1 + xc

i )
−1))

,

∂ℓ

∂β
=− α

n∑
i=1

xβ
i e

λxi ln(xi) +

n∑
i=1

α(1 + xc
i )

−1[xβ−1
i eλxi(1 + (β + λxi) ln(xi))]

cxc−1
i + (1 + xc

i )αx
β−1
i (β + λxi)eλxi

−
n∑

i=1

C′′(θ(e−αx
β
i eλxi

(1 + xc
i )

−1))θ(1 + xc
i )

−1e−αx
β
i eλxi

αeλxixβ
i ln(xi)

C′(θ(e−αx
β
i eλxi (1 + xc

i )
−1))

,

∂ℓ

∂λ
=− α

n∑
i=1

xβ
i e

λxixi +

n∑
i=1

(1 + xc
i )αx

β
i e

λxi(1 + β + λxi)

cxc−1
i + (1 + xc

i )αx
β−1
i (β + λxi)eλxi

−
n∑

i=1

C′′(θ(e−αx
β
i eλxi

(1 + xc
i )

−1))θ(1 + xc
i )

−1e−αx
β
i eλxi

αeλxixβ+1
i

C′(θ(e−αx
β
i eλxi (1 + xc

i )
−1))

and
∂ℓ

∂c
=− 2

n∑
i=1

xc
i ln(xi)

1 + xc
i

+

n∑
i=1

xc−1
i ln(xi)[c+ αxβ−1

i eλxi(β + λxi)] + xc−1
i

cxc−1
i + (1 + xc

i )αx
β−1
i eλxi(β + λxi)

−
n∑

i=1

C′′(θ(e−αx
β
i eλxi

(1 + xc
i )

−1))θe−αx
β
i eλxi

(1 + xc
i )

−2xc
i ln(xi)

C′(θ(e−αx
β
i eλxi (1 + xc

i )
−1))

.

C. The rth Moment of the LLoGMWP distribution is given by

E(Xr) =

∫ ∞

0

xr θf(x)C
′(θS(x))

C(θ)
dx

=
θ

eθ − 1

∞∑
n=0

bnθ
n

∫ ∞

0

xr(1 + xc)−ne−nαxβeλx

× [(1 + xc)−2e−αxβeλx

(cxc−1 + (1 + xc)(β + λx)eλxαxβ−1)]dx

=
θ

eθ − 1

∞∑
n=0

bnθ
n

∫ ∞

0

xr(1 + xc)−n−2e−(n+1)αxβeλx

× [(cxc−1 + (1 + xc)(β + λx)eλxαxβ−1)]dx

=
θ

eθ − 1

∞∑
n=0

bnθ
n

[ ∫ ∞

0

xr+kβ(1 + xc)−n−2
∞∑

k=0

(−1)k(α(n+ 1)eλx)k

k!

× (1 + xc)αxβ−1eλx(β + λx)dx

+ c

∫ ∞

0

xr+kβ+c−1(1 + xc)−n−2
∞∑

k=0

(−1)k(α(n+ 1)eλx)k

k!
dx

]

=
θα

eθ − 1

∞∑
n=0

bnθ
n

[ ∞∑
k,p=0

(−1)k[α(n+ 1)]k[λ(k + 1)]p

k!p!

×
∫ ∞

0

xr+kβ+p+β−1(1 + xc)−n−1(β + λx)dx

+

∞∑
k,p=0

(−1)k[α(n+ 1)]k[kλ]pc

k!p!

∫ ∞

0

xr+kβ+p+c−1(1 + xc)−n−2dx

]
.
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D. The elements of the score vector for LLoGMWP distribution is given as U(∆) =
(

∂ℓ
∂θ ,

∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂λ ,

∂ℓ
∂c

)
are given by

∂ℓ

∂θ
=

n

θ
− neθ

eθ − 1
+

n∑
i=1

[1− e−αx
β
i eλxi

(1 + xc
i )

−1],

∂ℓ

∂α
=θ

n∑
i=1

[1− e−αx
β
i eλxi

(1 + xc
i )

−1]xβ
i −

n∑
i=1

xβ
i e

λxi

+

n∑
i=1

(1 + xc
i )(β + λxi)x

β−1
i eλxi

cxc−1
i + (1 + xc

i )αx
β−1
i (β + λxi)eλxi

,

∂ℓ

∂β
=− α

n∑
i=1

xβ
i e

λxi ln(xi) + θ

n∑
i=1

e−αx
β
i eλxi

(1 + xc
i )

−1αeλxixβ
i ln(xi)

+

n∑
i=1

αeλ(1+xc
i )

−1[x
β−1
i xi(1 + (β + λxi) ln(xi))]

cxc−1
i + (1 + xc

i )αx
β−1
i (β + λxi)eλxi

,

∂ℓ

∂λ
=

∑n
i=1(1 + xc

i )αx
β−1
i eλxi(β + λxi)ln(xi)

cxc−1
i + (1 + xc

i )αx
β−1
i (β + λxi)eλxi

+ α

n∑
i=1

xiln(xi)
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∂c
=− 2

n∑
i=1

xc
i ln(xi)

1 + xc
i

+

n∑
i=1

e−αx
β
i eλxi

(1 + xc
i )

−2xi ln(xi)

−
n∑

i=1

[xic + cxic−1 ln(xi)] + αxβ−1
i eλxi(β + λxi)xi lnxi

cxc−1
i + (1 + xc

i )αx
β−1
i (β + λxi)eλxi

.

E. The elements of the score vector for LLoGMWL distribution are given as

∂ℓ

∂θ
=
1

θ
− (1 + xc)−1 e−αxβeλx

1− θ (1 + xc)−1 e−αxβeλx
− 1

(1− θ) ln(1− θ)
,

∂ℓ

∂c
=
−2xc ln(x)

(1 + xc)
+

xc−1
(
1 + c ln(x) + αxβ−1eλx (β + λx)xc ln(x)

)
(cxc−1 + αxβ−1eλx(β + λx) (1 + xc))

+
θxce−αxβeλx

ln(x) (1 + xc)−1

(1− θ) (1 + xc)−1 e−αxβeλx
,

∂ℓ

∂α
= − xβeλx +

(1 + xc)xβ−1eλx (β + λx)(
cxc−1 + αxβ−1eλx(β + λx) (1 + xc)−1) +

θxβe−xβeλx

(α+ λx)

(1− θ) (1 + xc)−1 e−αxβeλx
,

∂ℓ

∂β
= αxβ−1 ln(x)eλx +

αeλx (1 + xc)
(
xβ−1 + (β + λx)xβ−1 ln(x)

)
(cxc−1 + αxβ−1eλx(β + λx) (1 + xc))

+
θαxβ−1 ln(x)eλxe−αxβeλx

(1− θ (1 + xc)−1 e−αxβeλx)
,

∂ℓ

∂λ
= − αxβeλx +

(1 + xc)αxβ−1
(
xeλx(β + λx) + xeλx

)
(cxc−1 + αxβ−1eλx(β + λx) (1 + xc))

+
θαxβ+1 ln(x)eλx (1 + xc)−1 e−αxβeλx

(1− θ (1 + xc)−1 e−αxβeλx)
.

F. LLoGMWP DISTRIBUTION R ALGORITHMS

#### define LLoGMWL cdf
LLoGMWL_cdf=function(x,c,alpha ,beta,lambda ,theta){

(1-log((1-exp(theta*(1-(1+xˆc)ˆ(-1)*exp(-alpha*(xˆbeta)

*exp(lambda*x)))))/(1 -exp(theta ))))/log(1-theta)
}

#### define LLoGMWL_hazard
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LLoGMWL_hazard=function(x,theta,alpha,lambda,beta,c){
LLoGMWL_pdf(x,c,alpha,beta,lambda,theta)/

(1-LLoGMWL_cdf(x,c,alpha,beta,lambda,theta))
}

#Define the quantile of LLLoGMWL
quantile =function(theta,lambda,c,alpha,beta,u){

f=function(x){log(1+xˆc)+(alpha*xˆbeta*exp(lambda*x))
+log ((1/ theta)*(1-(1-theta)ˆ(1-u)))

}
rc<-uniroot(f, lower=0,upper=1000,tol=1e-9)
result=rc$root

}
LLLoGMWL_LL<-function(par){

bb=(par[1]*(exp(-(par[4])*(xˆ(par[5]))

*exp(par[2]*x) )*((1+xˆpar[3])ˆ(-2))))
cc=(par[4]*(xˆ(par[5]))*(exp(par[2]*x))

*(par[5]+par[2]*x)*(1+xˆ(par[3])) + par[3]*(xˆ(par[3]-1)))
dd=(-(1-par[1]*(exp(-(par[4])*(xˆpar[5])*exp(par[2]*x))

*((1+xˆ(par[3]))ˆ(-1))))*(log(1-par[1])))
-sum(log(bb*cc/dd))

}
theta=0.8
lambda=0.6
c=0.5
alpha=3.0
beta=1.8

n1<-c(25)

# To check one sample at a time, use n1<-c(sample size)

for (i in 1: length(n1)){
n=n1[i]
N=1000
mle_theta<-c(rep(0,N))
mle_lambda<-c(rep(0,N))
mle_c<-c(rep(0,N))
mle_alpha<-c(rep(0,N))
mle_beta<-c(rep(0,N))

LC_theta<-c(rep(0,N))
UC_theta<-c(rep(0,N))
LC_lambda<-c(rep(0,N))
UC_lambda<-c(rep(0,N))
LC_c<-c(rep(0,N))
UC_c<-c(rep(0,N))
LC_alpha<-c(rep(0,N))
UC_alpha<-c(rep(0,N))
LC_beta<-c(rep(0,N))
UC_beta<-c(rep(0,N))

count_theta=0
count_lambda=0
count_c=0
count_alpha=0
count_beta=0

temp=1

HH1<-matrix(c(rep(5,25)), nrow=5, ncol=5)
HH2<-matrix(c(rep(5,25)), nrow=5, ncol=5)
for (i in 1:N)
{
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#print (i)
#flush.console()
repeat{

x<-c(rep(0,n))

#Generate a random variable from uniform distribution
u<-0
u<-runif(n,min=0,max=1)

for (k in 1:n){
x[k]<-quantile(theta,lambda,c,alpha,beta,u[k])

}

#Maximum likelihood estimation
mle.result<-nlminb(c(theta,lambda,c,alpha,beta),
LLLoGMWL_LL, lower = 0, upper = Inf)

temp=mle.result$convergence
if (temp==0){
temp_theta<-mle.result$par[1]
temp_lambda<-mle.result$par[2]
temp_c<-mle.result$par[3]
temp_alpha<-mle.result$par[4]
temp_beta<-mle.result$par[5]

HH1<-hessian(LLLoGMWL_LL, c(temp_theta,
temp_lambda, temp_c, temp_alpha,temp_beta))
if ( sum(is.nan(HH1))==0 & (diag(HH1)[1]>0)

& (diag(HH1)[2]>0) & (diag(HH1)[3]>0) & (diag(HH1)[4]>0)
& (diag(HH1)[5]>0)){

HH2<-solve(HH1)
#print(det(hh1))

}
else{

temp=1}
}

if ((temp==0) & (diag(HH2)[1]>0) & (diag(HH2)[2]>0)
& (diag(HH2)[3]>0) & (diag(HH2)[4]>0)&
(diag(HH2)[5]>0) & (sum( is.nan(HH2))==0)){

break
}

}
#print(temp)
temp=1

mle_theta[i]<-mle.result$par[1]
mle_lambda[i]<-mle.result$par[2]
mle_c[i]<-mle.result$par[3]
mle_alpha[i]<-mle.result$par[4]
mle_beta[i]<-mle.result$par[5]

HH<-hessian(LLLoGMWL_LL,c(mle_theta[i],mle_lambda[i],
mle_c[i],mle_alpha[i],mle_beta[i]))
H<-solve(HH)
LC_theta[i]<-mle_theta[i]-1.96*sqrt(diag(H)[1])
UC_theta[i]<-mle_theta[i]+1.96*sqrt(diag(H)[1])
if ((LC_theta[i]<=theta) & (theta<=UC_theta[i])){

count_theta=count_theta+1
}

LC_lambda[i]<-mle_lambda[i]-1.96*sqrt(diag(H)[2])
UC_lambda[i]<-mle_lambda[i]+1.96*sqrt(diag(H)[2])
if ((LC_lambda[i]<=lambda) & (lambda<=UC_lambda[i])){
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count_lambda=count_lambda+1
}

LC_c[i]<-mle_c[i]-1.96*sqrt(diag(H)[3])
UC_c[i]<-mle_c[i]+1.96*sqrt(diag(H)[3])
if ((LC_c[i]<=c) & (c<=UC_lambda[i])){

count_c=count_c+1
}

LC_alpha[i]<-mle_alpha[i]-1.96*sqrt(diag(H)[4])
UC_alpha[i]<-mle_alpha[i]+1.96*sqrt(diag(H)[4])
if ((LC_alpha[i]<=alpha) & (alpha<=UC_alpha[i])){
count_alpha=count_alpha+1

}

LC_beta[i]<-mle_beta[i]-1.96*sqrt(diag(H)[5])
UC_beta[i]<-mle_beta[i]+1.96*sqrt(diag(H)[5])
if ((LC_beta[i]<=beta) & (beta<=UC_beta[i])){
count_beta=count_beta+1

}

#Calculate Mean
Mean_theta<-sum(mle_theta)/N
Mean_lambda<-sum(mle_lambda)/N
Mean_c<-sum(mle_c)/N
Mean_alpha<-sum(mle_alpha)/N
Mean_beta<-sum(mle_beta)/N

print(cbind(Mean_theta, Mean_lambda,Mean_c,
Mean_alpha, Mean_beta ))

#Calculate Average Bias
Bias_theta<-sum(mle_theta-theta)/N
Bias_lambda<-sum(mle_lambda-lambda)/N
Bias_c<-sum(mle_c-c)/N
Bias_alpha<-sum(mle_alpha-alpha)/N
Bias_beta<-sum(mle_beta-beta)/N

print(cbind(Bias_theta, Bias_lambda,Bias_c,
Bias_alpha, Bias_beta ))

#Calculate RMSE
RMSE_theta<-sqrt(sum((theta-mle_theta)ˆ2)/N)
RMSE_lambda<-sqrt(sum((lambda-mle_lambda)ˆ2)/N)
RMSE_c<-sqrt(sum((c-mle_c)ˆ2)/N)
RMSE_alpha<-sqrt(sum((alpha-mle_alpha)ˆ2)/N)
RMSE_beta<-sqrt(sum((beta-mle_beta)ˆ2)/N)

print(cbind(RMSE_theta, RMSE_lambda,RMSE_c,
RMSE_alpha, RMSE_beta ))

#Converge Probability
CP_theta<-count_theta/N
CP_lambda<-count_lambda/N
CP_c<-count_c/N
CP_alpha<-count_alpha/N
CP_beta<-count_beta/N

print(cbind(CP_theta, CP_lambda,CP_c,CP_alpha, CP_beta ))

# Average Width
AW_theta<-sum(abs(UC_theta-LC_theta))/N
AW_lambda<-sum(abs(UC_lambda-LC_lambda))/N
AW_c<-sum(abs(UC_c-LC_c))/N
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AW_alpha<-sum(abs(UC_alpha-LC_alpha))/N
AW_beta<-sum(abs(UC_beta-LC_beta))/N

print(cbind(AW_theta, AW_lambda,AW_c,AW_alpha, AW_beta))
}

}

G.LLoGMWL DISTRIBUTION R ALGORITHMS

#### define LLoGMWP cdf
LLoGMWP_cdf=function(y,c,alpha ,beta,lambda ,theta){

(1-exp(theta*(1-(1+xˆc)ˆ(-1)*(exp(-alpha*(xˆbeta)*
exp(lambda*x))))))/(1-exp(theta))

}

#### define LLoGMWP_hazard
LLoGMWP_hazard=function(x,theta,alpha,lambda,beta,c){

LLoGMWP_pdf(x,c,alpha,beta,lambda,theta)/
(1-LLoGMWP_cdf(x,c,alpha,beta,lambda,theta))
}
LLoMWP_pdf <- function(lambda,c,alpha,beta,theta) {

aa=(theta*(exp(theta*(1+xˆc)ˆ(-1)*exp(-alpha*(xˆbeta)

*exp(lambda*x)))))/(exp(theta)-1)
bb=((1+xˆc)ˆ(-2)*(exp(-alpha*(xˆbeta)*exp(lambda*x))))
cc=(alpha*(xˆ(beta-1))*exp(lambda*x)*(beta+lambda*x)*

(1+xˆc) + c*(xˆ(c-1)))
-sum(log(aa*bb*cc))

}

#Define the quantile of LLoGMWP
quantile =function(theta,lambda,c,alpha,beta,u){
f=function(x){
log(1+xˆc)+alpha*xˆ(beta)*exp(lambda*x)+

log((log(1-(1-u)*(1-exp(theta)))/ theta))}
rc<-uniroot(f, lower=0,upper=1000,tol=1e-9)
result=rc$root

}
LLoGMWP_LL<-function(par){
aa=(par[1]*exp(par[1]*((1+xˆpar[3])ˆ(-1))*

(exp(-par[4]*(xˆpar[5])*(exp(par[2]*x)))))/(exp(par[1])-1))
bb=(((1+xˆpar[3])ˆ(-2))*(exp(-par[4]*(xˆpar[5])*

(exp(par[2]*x)) )))
cc=(par[3]*(xˆ(par[3]-1))+(1+xˆpar[3])*par[4]*

(xˆ(par[5]-1))*(exp(par[2]*x))*(par[5]+(par[2]*x)) )
-sum(log(aa*bb*cc))

}

theta=0.95
lambda=0.5
c=0.5
alpha=6.
beta=3.75
n1<-c(25)

# To check one sample at a time, use n1<-c(sample size)

for (j in 1: length(n1)){
n=n1[j]
N=1000
mle_theta<-c(rep(0,N))
mle_lambda<-c(rep(0,N))
mle_c<-c(rep(0,N))
mle_alpha<-c(rep(0,N))
mle_beta<-c(rep(0,N))
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LC_theta<-c(rep(0,N))
UC_theta<-c(rep(0,N))
LC_lambda<-c(rep(0,N))
UC_lambda<-c(rep(0,N))
LC_c<-c(rep(0,N))
UC_c<-c(rep(0,N))
LC_alpha<-c(rep(0,N))
UC_alpha<-c(rep(0,N))
LC_beta<-c(rep(0,N))
UC_beta<-c(rep(0,N))
count_theta=0
count_lambda=0
count_c=0
count_alpha=0
count_beta=0

temp=1
HH1<-matrix(c(rep(2,25)), nrow=5, ncol=5)
HH2<-matrix(c(rep(2,25)), nrow=5, ncol=5)
for (i in 1:N)
{
print (i)
flush.console()
repeat{

x<-c(rep(0,n))

#Generate a random variable from uniform distribution
u<-0
u<-runif(n,min=0,max=1)

for (k in 1:n){
x[k]<-quantile(theta,lambda,c,alpha,beta,u[k])

}

#Maximum likelihood estimation
mle.result<-nlminb(c(theta,lambda,c,alpha,beta),

LLoGMWP_LL, lower = 0, upper = Inf)

temp=mle.result$convergence
if (temp==0){

temp_theta<-mle.result$par[1]
temp_lambda<-mle.result$par[2]
temp_c<-mle.result$par[3]
temp_alpha<-mle.result$par[4]
temp_beta<-mle.result$par[5]

HH1<-hessian(LLoGMWP_LL, c(temp_theta, temp_lambda,
temp_c, temp_alpha,temp_beta))

if (( rcond (HH1)> 1e-9)&sum(is.nan(HH1))==0 & (diag(HH1)[1]>0) & (diag(HH1)[2]>0)
& (diag(HH1)[3]>0) & (diag(HH1)[4]>0)& (diag(HH1)[5]>0)){

HH2<-solve(HH1)
#print(det(HH1))

}
else{

temp=1}
}

if ((temp==0) & (diag(HH2)[1]>0) & (diag(HH2)[2]>0)
& (diag(HH2)[3]>0) & (diag(HH2)[4]>0)& (diag(HH2)[5]>0)
& (sum( is.nan(HH2))==0)){

break
}
else{

temp=1}
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}
temp=1

mle_theta[i]<-mle.result$par[1]
mle_lambda[i]<-mle.result$par[2]
mle_c[i]<-mle.result$par[3]
mle_alpha[i]<-mle.result$par[4]
mle_beta[i]<-mle.result$par[5]

HH<-hessian(LLoGMWP_LL,c(mle_theta[i],mle_lambda[i],
mle_c[i],mle_alpha[i],mle_beta[i]))
H<-solve(HH)
LC_theta[i]<-mle_theta[i]-qnorm(0.975)*sqrt(diag(H)[1])
UC_theta[i]<-mle_theta[i]+qnorm(0.975)*sqrt(diag(H)[1])
if ((LC_theta[i]<=theta) & (theta<=UC_theta[i])){

count_theta=count_theta+1
}

LC_lambda[i]<-mle_lambda[i]-qnorm(0.975)*sqrt(diag(H)[2])
UC_lambda[i]<-mle_lambda[i]+qnorm(0.975)*sqrt(diag(H)[2])
if ((LC_lambda[i]<=lambda) & (lambda<=UC_lambda[i])){

count_lambda=count_lambda+1
}

LC_c[i]<-mle_c[i]-qnorm(0.975)*sqrt(diag(H)[3])
UC_c[i]<-mle_c[i]+qnorm(0.975)*sqrt(diag(H)[3])
if ((LC_c[i]<=c) & (c<=UC_c[i])){

count_c=count_c+1
}

LC_alpha[i]<-mle_alpha[i]-qnorm(0.975)*sqrt(diag(H)[4])
UC_alpha[i]<-mle_alpha[i]+qnorm(0.975)*sqrt(diag(H)[4])
if ((LC_alpha[i]<=alpha) & (alpha<=UC_alpha[i])){

count_alpha=count_alpha+1
}

LC_beta[i]<-mle_beta[i]-qnorm(0.975)*sqrt(diag(H)[5])
UC_beta[i]<-mle_beta[i]+qnorm(0.975)*sqrt(diag(H)[5])
if ((LC_beta[i]<=beta) & (beta<=UC_beta[i])){

count_beta=count_beta+1
}

#Calculate Mean
Mean_theta<-sum(mle_theta)/N
Mean_lambda<-sum(mle_lambda)/N
Mean_c<-sum(mle_c)/N
Mean_alpha<-sum(mle_alpha)/N
Mean_beta<-sum(mle_beta)/N

print(cbind(Mean_theta, Mean_lambda,Mean_c,Mean_alpha, Mean_beta ))

#Calculate Average Bias
Bias_theta<-sum(mle_theta-theta)/N
Bias_lambda<-sum(mle_lambda-lambda)/N
Bias_c<-sum(mle_c-c)/N
Bias_alpha<-sum(mle_alpha-alpha)/N
Bias_beta<-sum(mle_beta-beta)/N

print(cbind(Bias_theta, Bias_lambda,Bias_c, Bias_alpha, Bias_beta ))

#Calculate RMSE
RMSE_theta<-sqrt(sum((theta-mle_theta)ˆ2)/N)
RMSE_lambda<-sqrt(sum((lambda-mle_lambda)ˆ2)/N)
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RMSE_c<-sqrt(sum((c-mle_c)ˆ2)/N)
RMSE_alpha<-sqrt(sum((alpha-mle_alpha)ˆ2)/N)
RMSE_beta<-sqrt(sum((beta-mle_beta)ˆ2)/N)

print(cbind(RMSE_theta, RMSE_lambda,RMSE_c,RMSE_alpha,RMSE_beta ))

#Converge Probability
CP_theta<-count_theta/N
CP_lambda<-count_lambda/N
CP_c<-count_c/N
CP_alpha<-count_alpha/N
CP_beta<-count_beta/N

print(cbind(CP_theta, CP_lambda,CP_c,CP_alpha, CP_beta ))

# Average Width
AW_theta<-sum(abs(UC_theta-LC_theta))/N
AW_lambda<-sum(abs(UC_lambda-LC_lambda))/N
AW_c<-sum(abs(UC_c-LC_c))/N
AW_alpha<-sum(abs(UC_alpha-LC_alpha))/N
AW_beta<-sum(abs(UC_beta-LC_beta))/N

print(cbind(AW_theta, AW_lambda,AW_c,AW_alpha, AW_beta))
}

}
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