
Thailand Statistician
April 2024; 22(2): 274-285
http://statassoc.or.th
Contributed paper

An Acceptance Sampling Plan for Testing of Product’s Life using
New Weibull-Rayleigh Distribution
Muhammad Bilal [a,b], Muhammad Mohsin [c] and Salman Abbas* [a,d]
[a] Department of Statistics, COMSATS University Islamabad, Lahore Campus, Pakistan
[b] School of Business, University of Veterinary and Animal Sciences, Lahore, Pakistan
[c] College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan
[d] Department of Management, Zhengzhou University, Zhengzhou, China
*Corresponding author; e-mail: s.salmanabbas932@gmail.com

Received: 4 September 2020
Revised: 1 October 2020

Accepted: 2 October 2020

Abstract
Acceptance sampling plans are vital in account to make decision about the life of the product.

In present article, we propose an acceptance sampling plan for the life length of a product which
follows Weibull-Rayleigh distribution. Plans are designed for both finite and infinite sample sizes at
different combinations of parameters. Operating characteristic curves are derived to demonstrate the
efficiency of the proposed acceptance sampling plan. Numerical and graphical presentation of the
proposed plans lead us to draw a useful conclusion for the acceptance probability.
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1. Introduction
Customers satisfaction is an important tool to observe quality of a product. In manufacturing

process, quality engineers do not take any risk about the material and other aspects of the product
because if a single product does not meet the requirement than all the effort is useless. Therefore,
the quality supervisor try its best to produce such product which meet all requirements and have no
objection.

Several measure are designed for the acceptance or rejection of a lot. These measures are helpful
to make the manufacturing process more efficient and effective. To make a decision about the accep-
tance or rejection of a lot, quality engineers inspected a set amount of the items. This process is an
application of acceptance sampling plans in quality control. An acceptance sampling plan plays an
indispensable role in the performance assessment of the product. It is distinct from statistical process
control, which is an aim to achieve the goal of improving the future product.

Statistical models, the lifetime distributions, are widely applied in different fields such as medicine,
economics, survival analysis, finance, reliability sciences and many more. Sometimes these distribu-
tions faced many problems when the real-life data does not assume any of the standard probability
models. This flaw always demands new modifications of the existing models. In general, prod-
ucts are categorized according to their lifetime, which is a natural process and follows a particular
probability distribution. The competency of sampling plans under different probabilities models de-
pends on the products lifetime behavior. Several accepting sampling plans are designed by using
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probability models. Goode and Kao (1960) provided the set of an acceptance sampling plan for life-
time testing and reliability under the Weibull distribution. Gupta and Groll (1961) constructed the
acceptance-sampling plan for gamma distribution. Rosaiah and Kantam (2005) developed an accep-
tance sampling plan for inverse Raleigh distribution. Kantam et al. (2001) established the acceptance
sampling plan for the log-logistic model. Dumi et.al. (2012) provided a decision making process for
assessing the quality of lot using single and double acceptance sampling plan. Shahbaz et al. (2018)
described a single and double acceptance sampling plans for the lifetime of product using the Power
Lindley distribution. Singh et al. (2019) formed a repetitive acceptance sampling plan for truncated
life test using generalized Pareto distribution.

The high demand of quality products encourage researchers to develop more effective and quick
tool to handle the situations. In this article, an acceptance sampling plan is designed. For this purpose,
we use a new Weibull-Rayleigh (WR) distribution given by Bilal et al (2019). Sampling plans are
proposed for both finite and infinite lot sized using WR distribution and graphical demonstration
is made on the basis of Operating Characteristic (OC) curves. We hope the work will motivate
researchers to enhance their expertise in the dimension.

The article is unfolded. In Section 2, the new WR distribution is proposed. In Section 3, sam-
pling plans are discussed. In Section 4, acceptance sampling plans are established for the proposed
distribution. In Section 5, the conclusion is reported.

2. The Weibull Rayleigh Distribution
Bilal et al. (1987) derive a new Weibull Rayleigh (WR) distribution with distribution function

(CDF) given as

F (x) = 1− exp
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)c)
. (1)

The corresponding probability density function (pdf) is obtained as
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where c is the shape parameter and α, γ, σ2 are scale parameters. The q-th moment of the WR
distribution is extracted as
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The quantile of WR distribution is given as follows

Q(p) =

√
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(
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)) 1
c

;α, γ, σ2, c > 0; 0 < p < 1. (4)

The average and quantile function are playing an important role for developing the acceptance sam-
pling plans.

3. Acceptance Sampling Plans
In quality control, the acceptance sampling plans are importantly used to draw conclusion about

the acceptance or rejection of the inspected lot. A considerable work on the development of accep-
tance sampling plans is available in literature. Two effectively used method are single and double
acceptance sampling plans. The acceptance of the lot in single sampling plan is based on the number
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of items to be inspected (m) and the affordable number of defective items (k) among inspected items.
For single sampling plan, the probability of acceptance of the lot is computed as

L(p) =

k∑
j=0

(
m

j

)
pj(1− p)n−j ,

where, k is maximum allowed defectives in a lot and p is a pre-assigned probability.
The sampling plans are based on continuing an experiment until a prespecified time point, , and

terminating the experiment after that. If the defective items are fewer than k in inspected item during
given interval [0, t0], the lot is accepted. The acceptance or rejection of the lot is similarly to the
testing of hypothesis such as H0 : j > j0, where j is life of the component and j0 is a pre-defined test
value. Producer risk a and consumer risk b are the integral parts of the acceptance sampling plans. In
the development of single acceptance sampling plan, the values of m and k are obtained by solving
following

k∑
j=0

(
m

j

)
AQLj(1− AQL)n−j ≥ 1− a (5)

and
k∑

j=0

(
m

j

)
LTPDj(1− LPTD)n−j ≤ b (6)

for m and k. AQL is acceptable quality level and LTPD is lot tolerance percent defective. Eqns. (5)
and (6) utilize binomial distribution as it is accepted the lot size is infinite or M >> k ∗m, here M
is lot size and k is adequately large numbers, such as 500 or more. At the finite lot size, the binomial
distribution is supplanted by the hyper-geometric distribution.

4. Sampling Plan for WR Distribution
In this section, we derive the sampling plan for life length of the product which follows the WR

distribution.

4.1. Sampling plan for infinite lot size
On the account of infinite lot size, the acceptance sampling plan is based upon the values of m

and k which satisfies Eqns. (5) and (6), where AQL and LTPD are probabilities acquired from the
distribution and quantile function of WR distribution for α = 1 as

F (x, γ, σ2, c) = 1− exp

[
−
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)c]
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, γ, σ2, c > 0; 0 < p < 1.

Now assuming that the life length of the product is to = αoµo, where µo is the average life of the

product, then using x = αoµo = αµ
(

µ
µo

)−1

and further using µ = Q(u) , we can write Eqn. (1) as

p = 1− exp
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The acceptance sampling plans are constructed for various ratios of µ
µo

,γ, σ2 and c. The values of n
and c which satisfy inequalities Eqns. (5) and (6), for different values of , are given in Table A.1 and
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Table A.2, respectively, in Appendix A. The values of LTPD have been obtained by using µ = µo.
The values of n and c in these tables provide information about number of items to be put on test and
number of defective items observed for rejection of the lot. For example, in Table A.1, the values of
n and c for γ = 2, σ2 = 0.5, c = 1.25, αo = 0.75, p = 0.95, α = 0.05, β = 0.01and µ = 3µo are
7 and 2, respectively. These values indicate that if the quality control engineer is interested in testing
the hypothesis that life length of a component is 1000 hours and true average life is thrice this value,
then the engineer can test 7 items; if fewer than 2 items fail in 750 hours; as αo = 0.75 and life length
is in thousands of hours; then the engineer can conclude with 95% confidence that the life is more
than 3000 hours.

4.2. Sampling plan for finite lot size
We will now discuss the sampling plans when the life length of product follows W Rayleigh

and the lot has finite number of components. The inequalities Eqns. (5) and (6) are slightly modified
in this case and are given as

c∑
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)(
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) ≥ 1− α, (7)
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where N is lot size. Now, using equation Eqns. (7) and (8), the values of AQL and LTPD can
be obtained for various choices of and various choices of parameters , µ

µo
and c. The values of

n and c which satisfy Eqns. (7) and (8) are given in Tables A.3 through A.5. The values of n
and c in these tables are the number of items to be put on test and the number of defective items
observed for rejection of the lot, respectively. For example, in Table A.3, the values of n and c for
N = 50, γ = 2.0, σ2 = 0.5, c = 1.25, αo = 0.75, p = 0.95, α = 0.05, β = 0.01 and µ = 3µo are 10
and 5. These values indicate that if the quality control engineer is interested in testing the hypothesis
that the life length of a component is 1000 hours and true average life is thrice this value, then the
engineer can test 5 items out of 50; if fewer than 1 items fail in 750 hours; as αo = 0.75 and life
length is in thousands of hours; then the engineer can conclude with 95% confidence that the life is
more than 3000 hours.

4.3. Operating characteristic curves
The operating characteristic (OC) curve provides useful information about performance of an

acceptance sampling plan. The OC values for a sampling plan gives the probability of acceptance
of the lot under a specific sampling plan when actual lot contains a specified percentage of defective
items and is given in Eqn. 4. The OC values for the given sampling plan under WRayleigh distribution
with specific values of the parameters given in Table A.6 in Appendix A. We see that the probability
of acceptance decreases as the value of αo increases for fixed ratio. Additionally, we can see that
for fixed value of αo, the acceptance probability increases with increase in µ

µo
. Figures 1 and 2

demonstrate the OC curve depicts the oppressive control of an acceptance-inspecting plan. It can see
in Figures 1 and 2 as defective ratio increases the probability of acceptance increases for fixed value
of αo.

5. Conclusions and Recommendations
In this article, we develop the acceptance sampling plans for when the length of life length of

the product follows the WR distribution. The sampling plans are developed for various choices of
the proposed distribution parameters. We constructed single acceptance sampling plans. The single-
acceptance sampling plans are obtained for finite and infinite lot sizes. It is seen that the acceptance
number decreases with an increase in the design parameters. It is also observed that with an increase



278 Thailand Statistician, 2024; 22(2): 274-285

in the ratio, µ
µo

the number of defective items required for acceptance of the lot decreases. It is
suspected that the total number of components to be observed is smaller for a finite lot size compared
with the infinite lot size, and this difference decreases with an increase in the lot size. The constructed
sampling plans are useful when the life length of components follow the WR distribution. In such
cases, the quality control engineer can use this plan for efficient decision making.
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Appendix A

Figure 1 Plot of OC Curve of WR distribution atγ = 2.5, σ2 = 1.5, c = 0.75, p = 0.85, c = 2
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Figure 2 Plot of OC Curve of WR distribution atγ = 2.5, σ2 = 1.5, c = 0.75, p = 0.90, c = 2
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Table 1 Values of (n, c) for infinite lot size at different p values and α = 0.05

µ/µo

γ, σ2, c αo p β 1.5 2 3 4 5
(1.5,2.5,0.5) 0.75 0.75 0.01 179,100 68,34 31,13 22,8 18,6

0.05 126,72 48,25 23,10 15,6 13,5
0.1 102,59 36,19 19,9 12,5 10,4
0.25 62,37 25,14 12,6 9,4 5,2

0.95 0.01 151,125 53,41 22,15 16,10 12,7
0.05 105,88 38,30 17,12 11,7 8,5
0.1 89,75 30,24 14,10 9,6 8,5
0.25 56,48 22,18 8,6 7,5 6,4

1 0.75 0.01 158,105 58,35 27,14 19,9 15,6
0.05 111,75 42,26 20,11 14,7 9,4
0.1 91,62 33,21 16,9 10,5 9,4
0.25 57,40 23,15 10,6 7,4 6,3

0.95 0.01 167,151 56,48 23,18 14,10 12,8
0.05 122,111 39,34 15,12 11,8 7,5
0.1 94,86 33,29 15,12 8,6 7,5
0.25 65,60 26,23 11,9 5,4 4,3

(2.5,1.5,0.75) 0.75 0.75 0.01 92,43 39,15 20,6 13,3 11,2
0.05 66,32 27,11 13,4 11,3 9,2
0.1 53,26 19,8 12,4 8,2 8,2
0.25 33,17 13,6 8,3 6,2 4,1

0.95 0.01 66,49 26,17 12,6 9,4 8,3
0.05 49,37 18,12 9,5 6,3 5,2
0.1 39,30 16,11 7,4 6,3 5,2
0.25 28,22 11,8 5,3 4,2 4,2

1 0.75 0.01 74,46 30,16 15,6 9,3 9,3
0.05 52,33 20,11 9,4 8,3 6,2
0.1 43,28 16,9 9,4 7,3 6,2
0.25 28,19 10,6 6,3 5,2 3,1

0.95 0.01 71,62 24,19 9,6 7,4 6,3
0.05 51,45 16,13 7,5 5,3 4,2
0.1 45,40 16,13 7,5 5,3 4,2
0.25 30,27 12,10 4,3 3,2 3,2

(2.0,0.5,1.25) 0.75 0.75 0.01 48,15 23,5 14,2 11,1 11,1
0.05 33,11 16,4 8,1 8,1 8,1
0.1 26,9 12,3 7,1 7,1 4,1
0.25 16,6 7,2 5,1 5,1 3,1

0.95 0.01 29,16 12,5 7,2 6,1 6,1
0.05 21,12 9,4 4,1 4,1 4,1
0.1 17,10 8,4 4,1 4,1 4,1
0.25 11,7 4,2 3,1 2,1 2,1

1 0.75 0.01 30,16 13,5 8,2 6,1 6,1
0.05 23,13 9,4 6,2 5,1 5,1
0.1 19,11 7,3 4,1 4,1 2,1
0.25 13,8 6,3 3,1 2,1 2,1

0.95 0.01 25,20 9,6 5,2 3,1 3,1
0.05 21,17 6,4 4,2 3,1 3,1
0.1 17,14 6,4 2,1 2,1 2,1
0.25 13,11 4,3 2,1 2,1 2,1
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Table 2 Values of (n, c) for infinite lot size at different p values and α = 0.01

µ/µo

γ, σ2, c αo p β 1.5 2 3 4 5
(1.5,2.5,0.5) 0.75 0.75 0.01 248,142 92,48 42,19 29,12 24,9

0.05 178,104 70,38 31,15 23,10 17,7
0.1 152,90 56,31 26,13 19,9 14,6
0.25 105,64 43,25 19,10 12,6 11,5

0.95 0.01 211,177 73,58 29,21 21,14 16,10
0.05 158,134 53,43 24,18 16,11 12,8
0.1 131,112 45,37 21,16 14,10 10,7
0.25 97,84 32,27 15,12 9,7 8,6

1 0.75 0.01 217,147 80,50 36,20 24,12 19,9
0.05 161,111 59,38 26,15 19,10 14,7
0.1 135,94 50,33 23,14 16,9 13,7
0.25 98,70 35,24 16,10 10,6 9,5

0.95 0.01 238,217 79,69 32,26 21,16 15,11
0.05 182,167 61,54 24,20 15,12 12,9
0.1 153,141 48,43 20,17 15,12 9,7
0.25 114,106 42,38 15,13 11,9 9,7

(2.5,1.5,0.75) 0.75 0.75 0.01 130,63 50,21 24,8 18,5 16,4
0.05 96,48 38,17 19,7 13,4 11,3
0.1 76,39 31,14 16,6 12,4 10,3
0.25 54,29 22,11 12,5 8,3 6,2

0.95 0.01 92,70 35,24 16,9 10,5 9,4
0.05 71,55 27,19 13,8 9,5 6,3
0.1 60,47 22,16 11,7 7,4 6,3
0.25 42,34 17,13 9,6 5,3 5,3

1 0.75 0.01 103,66 39,22 19,9 15,6 11,4
0.05 76,50 29,17 14,7 9,4 8,3
0.1 63,42 23,14 12,6 9,4 7,3
0.25 46,32 17,11 7,4 6,3 6,3

0.95 0.01 98,87 34,28 14,10 9,6 7,4
0.05 78,70 26,22 12,9 7,5 6,4
0.1 63,57 21,18 9,7 7,5 6,4
0.25 48,44 17,15 9,7 4,3 4,3

(2.0,0.5,1.25) 0.75 0.75 0.01 65,22 31,8 17,3 14,2 11,1
0.05 48,17 21,6 11,2 11,2 8,1
0.1 40,15 17,5 9,2 7,1 7,1
0.25 27,11 12,4 7,2 5,1 5,1

0.95 0.01 41,24 17,8 9,3 7,2 6,1
0.05 31,19 12,6 8,3 6,2 4,1
0.1 27,17 11,6 5,2 5,2 4,1
0.25 18,12 7,4 4,2 3,1 3,1

1 0.75 0.01 42,24 18,8 9,3 8,2 6,1
0.05 32,19 14,7 8,3 6,2 5,1
0.1 26,16 10,5 7,3 6,2 4,1
0.25 17,11 7,4 5,2 3,1 3,1

0.95 0.01 35,29 13,9 7,4 5,2 3,1
0.05 27,23 11,8 5,3 4,2 3,1
0.1 22,19 9,7 5,3 2,1 2,1
0.25 17,15 9,7 3,2 2,1 2,1
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Table 3 Values of (n, c) for lot size of 50 at different parameters values and α = 0.05

µ/µo

γ, σ2, c αo p β 1.5 2 3 4 5
(1.5,2.5,0.5) 0.75 0.75 0.01 40,22 29,14 21,9 16,6 13,4

0.05 38,21 24,12 16,7 11,4 9,3
0.1 37,21 23,12 15,7 10,4 8,3
0.25 31,18 19,10 12,6 7,3 5,2

0.95 0.01 36,30 26,20 15,10 11,7 9,5
0.05 36,30 23,18 10,7 8,5 7,4
0.1 32,27 20,16 10,7 8,5 7,4
0.25 27,23 16,13 8,6 6,4 6,4

1 0.75 0.01 40,26 27,16 19,10 15,7 12,5
0.05 36,24 23,14 15,8 12,6 9,4
0.1 36,24 21,13 13,7 10,5 7,3
0.25 29,20 17,11 10,6 7,4 6,3

0.95 0.01 38,34 27,23 17,13 10,7 9,6
0.05 38,34 27,23 14,11 10,7 7,5
0.1 38,34 23,20 14,11 8,6 7,5
0.25 32,29 23,20 11,9 8,6 4,3

(2.5,1.5,0.75) 0.75 0.75 0.01 31,14 21,8 14,4 10,2 10,2
0.05 28,13 19,8 10,3 8,2 8,2
0.1 25,12 16,7 9,3 7,2 5,1
0.25 20,10 11,5 6,2 4,1 4,1

0.95 0.01 31,23 17,11 10,5 7,3 6,2
0.05 25,19 12,8 7,4 6,3 5,2
0.1 25,19 12,8 7,4 4,2 4,2
0.25 18,14 10,7 5,3 4,2 4,2

1 0.75 0.01 30,18 19,10 12,5 9,3 7,2
0.05 26,16 15,8 9,4 6,2 6,2
0.1 24,15 13,7 7,3 6,2 6,2
0.25 20,13 10,6 6,3 5,2 3,1

0.95 0.01 30,26 18,14 9,6 7,4 6,3
0.05 30,26 15,12 7,5 5,3 4,2
0.1 24,21 15,12 7,5 5,3 4,2
0.25 24,21 11,9 4,3 3,2 3,2

(2.0,0.5,1.25) 0.75 0.75 0.01 26,8 17,4 10,1 10,1 10,1
0.05 21,7 12,3 7,1 7,1 7,1
0.1 18,6 11,3 6,1 6,1 6,1
0.25 11,4 7,2 5,1 2,1 2,1

0.95 0.01 20,11 10,4 5,1 5,1 5,1
0.05 16,9 7,3 4,1 4,1 4,1
0.1 14,8 7,3 4,1 4,1 2,1
0.25 11,7 4,2 3,1 2,1 2,1

1 0.75 0.01 19,10 11,4 7,2 6,1 6,1
0.05 16,9 9,4 4,1 4,1 4,1
0.1 14,8 7,3 4,1 4,1 2,1
0.25 10,6 6,3 3,1 3,1 2,1

0.95 0.01 18,14 8,5 5,2 3,1 3,1
0.05 15,12 6,4 4,2 3,1 3,1
0.1 15,12 6,4 4,2 3,1 3,1
0.25 11,9 4,3 2,1 2,1 2,1
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Table 4 Values of (n, c) for lot size of 100 at different parameters values and α = 0.05

µ/µo

γ, σ2, c αo p β 1.5 2 3 4 5
(1.5,2.5,0.5) 0.75 0.75 0.01 63,35 40,20 24,10 19,7 15,5

0.05 56,32 33,17 18,8 13,5 11,4
0.1 52,30 30,16 15,7 10,4 8,3

0.25 37,22 20,11 10,5 7,3 5,2
0.95 0.01 63,52 34,26 19,13 13,8 11,6

0.05 59,49 27,21 14,10 11,7 8,5
0.1 50,42 24,19 14,10 9,6 8,5

0.25 40,34 16,13 8,6 7,5 6,4
1 0.75 0.01 62,41 37,22 22,11 16,7 12,5

0.05 54,36 31,19 15,8 12,6 9,4
0.1 49,33 27,17 14,8 10,5 9,4

0.25 36,25 20,13 10,6 7,4 6,3
0.95 0.01 60,54 35,30 18,14 11,8 9,6

0.05 53,48 30,26 14,11 8,6 7,5
0.1 53,48 25,22 11,9 8,6 7,5

0.25 45,41 19,17 11,9 5,4 4,3
(2.5,1.5,0.75) 0.75 0.75 0.01 52,24 29,11 17,5 13,3 11,2

0.05 42,20 20,8 13,4 8,2 8,2
0.1 35,17 17,7 11,4 7,2 5,1

0.25 29,15 13,6 8,3 6,2 4,1
0.95 0.01 38,28 20,13 10,5 7,3 7,3

0.05 32,24 15,10 9,5 6,3 5,2
0.1 29,22 13,9 7,4 4,2 4,2

0.25 22,17 10,7 5,3 4,2 4,2
1 0.75 0.01 42,26 23,12 12,5 9,3 9,3

0.05 35,22 18,10 9,4 8,3 6,2
0.1 31,20 14,8 7,3 5,2 5,2

0.25 21,14 10,6 6,3 5,2 3,1
0.95 0.01 39,34 19,15 9,6 7,4 6,3

0.05 33,29 15,12 7,5 5,3 4,2
0.1 33,29 15,12 7,5 5,3 4,2

0.25 27,24 12,10 4,3 3,2 3,2
(2.0,0.5,1.25) 0.75 0.75 0.01 35,11 19,4 10,1 10,1 10,1

0.05 27,9 13,3 8,1 8,1 5,1
0.1 21,7 12,3 7,1 7,1 4,1

0.25 16,6 7,2 5,1 5,1 3,1
0.95 0.01 22,12 10,4 7,2 5,1 5,1

0.05 19,11 7,3 4,1 4,1 4,1
0.1 15,9 7,3 4,1 4,1 4,1

0.25 11,7 4,2 3,1 2,1 2,1
1 0.75 0.01 24,13 12,5 8,2 6,1 6,1

0.05 18,10 9,4 4,1 4,1 4,1
0.1 14,8 7,3 4,1 4,1 2,1

0.25 10,6 6,3 3,1 2,1 2,1
0.95 0.01 20,16 8,5 5,2 3,1 3,1

0.05 16,13 6,4 4,2 3,1 3,1
0.1 16,13 6,4 2,1 2,1 2,1

0.25 12,10 4,3 2,1 2,1 2,1
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Table 5 Values of (n, c) for lot size of 100 at different parameters values and α = 0.05

µ/µo

γ, σ2, c αo p β 1.5 2 3 4 5
(1.5,2.5,0.5) 0.75 0.75 0.01 136,76 60,30 29,12 22,8 18,6

0.05 100,57 45,23 22,10 15,6 13,5
0.1 83,48 36,19 18,8 12,5 10,4
0.25 57,34 25,14 12,6 9,4 5,2

0.95 0.01 116,96 48,37 22,15 13,8 12,7
0.05 91,76 33,26 17,12 11,7 8,5
0.1 76,64 29,23 14,10 9,6 8,5
0.25 55,47 21,17 8,6 7,5 6,4

1 0.75 0.01 122,81 53,32 25,13 18,8 14,6
0.05 92,62 39,24 19,10 14,7 9,4
0.1 76,52 30,19 16,9 10,5 9,4
0.25 53,37 23,15 10,6 7,4 6,3

0.95 0.01 124,112 49,42 22,17 14,10 9,6
0.05 99,90 38,33 15,12 11,8 7,5
0.1 81,74 32,28 15,12 8,6 7,5
0.25 63,58 19,17 11,9 5,4 4,3

(2.5,1.5,0.75) 0.75 0.75 0.01 79,37 34,13 20,6 13,3 11,2
0.05 56,27 25,10 13,4 11,3 9,2
0.1 49,24 19,8 12,4 8,2 8,2
0.25 29,15 13,6 8,3 6,2 4,1

0.95 0.01 58,43 23,15 12,6 7,3 7,3
0.05 45,34 18,12 9,5 6,3 5,2
0.1 38,29 13,9 7,4 4,2 4,2
0.25 24,19 11,8 5,3 4,2 4,2

1 0.75 0.01 63,39 28,15 14,6 9,3 9,3
0.05 47,30 20,11 9,4 8,3 6,2
0.1 40,26 16,9 9,4 7,3 6,2
0.25 27,18 10,6 6,3 5,2 3,1

0.95 0.01 63,55 24,19 9,6 7,4 6,3
0.05 50,44 16,13 7,5 5,3 4,2
0.1 43,38 16,13 7,5 5,3 4,2
0.25 30,27 12,10 4,3 3,2 3,2

(2.0,0.5,1.25) 0.75 0.75 0.01 42,13 22,5 14,2 11,1 11,1
0.05 33,11 13,3 8,1 8,1 8,1
0.1 26,9 12,3 7,1 7,1 4,1
0.25 16,6 7,2 5,1 5,1 3,1

0.95 0.01 27,15 12,5 7,2 6,1 6,1
0.05 19,11 9,4 4,1 4,1 4,1
0.1 17,10 8,4 4,1 4,1 4,1
0.25 11,7 4,2 3,1 2,1 2,1

1 0.75 0.01 28,15 13,5 8,2 6,1 6,1
0.05 20,11 9,4 6,2 5,1 5,1
0.1 19,11 7,3 4,1 4,1 2,1
0.25 13,8 6,3 3,1 2,1 2,1

0.95 0.01 24,19 9,6 5,2 3,1 3,1
0.05 17,14 6,4 4,2 3,1 3,1
0.1 17,14 6,4 2,1 2,1 2,1
0.25 12,10 4,3 2,1 2,1 2,1
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Table 6 OC Values for Weibull-Ralyeigh sampling plan

γ = 2.5, σ2 = 1.5, c = 0.75, p = 0.85, c = 2 γ = 2.5, σ2 = 1.5, c = 0.75, p = 0.90, c = 2
µ/µo µ/µo

n A 2 3 4 5 n A 2 3 4 5
16 0.4 0.5338 0.8377 0.9374 0.9724 16 0.4 0.4053 0.763 0.9024 0.9554
12 0.6 0.3375 0.7148 0.8778 0.9429 12 0.6 0.2185 0.6078 0.8174 0.9104
10 0.8 0.1996 0.5866 0.8042 0.903 10 0.8 0.1093 0.4615 0.7193 0.8527
8 1 0.1599 0.5369 0.7719 0.8844 8 1 0.0821 0.4089 0.6783 0.8266
7 1.2 0.1105 0.4615 0.7186 0.8521 7 1.2 0.0511 0.3332 0.6128 0.7826
6 1.4 0.0961 0.4338 0.697 0.8383 6 1.4 0.0429 0.307 0.5873 0.7643
5 1.6 0.1114 0.4581 0.7145 0.8491 5 1.6 0.0523 0.3311 0.6087 0.7789

γ = 2.5, σ2 = 1.5, c = 0.75, p = 0.95, c = 2 γ = 2.5, σ2 = 1.5, c = 0.75, p = 0.99, c = 2
µ/µo µ/µo

n A 2 3 4 5 n A 2 3 4 5
12 0.4 0.4383 0.7838 0.9125 0.9604 12 0.4 0.1731 0.5553 0.7845 0.8918
10 0.6 0.1861 0.5709 0.7943 0.8974 10 0.6 0.0362 0.2892 0.5718 0.7539
8 0.8 0.1072 0.4567 0.7154 0.8502 8 0.8 0.0139 0.1881 0.4577 0.6654
7 1 0.0535 0.3399 0.6189 0.7868 7 1 0.0043 0.1085 0.3409 0.5608
6 1.2 0.0368 0.287 0.5676 0.7501 6 1.2 0.0024 0.0803 0.2879 0.5068
5 1.4 0.0393 0.2915 0.5706 0.7516 5 1.4 0.0028 0.0839 0.2925 0.5102
4 1.6 0.0701 0.3684 0.6391 0.7987 4 1.6 0.0078 0.1315 0.3694 0.5834

γ = 1.5, σ2 = 0.75, c = 1.25, p = 0.85, c = 2 γ = 1.5, σ2 = 0.75, c = 1.25, p = 0.90, c = 2
µ/µo µ/µo

n A 2 3 4 5 n A 2 3 4 5
16 0.4 0.985 0.9991 0.9999 1 16 0.4 0.9752 0.9984 0.9998 1
12 0.6 0.915 0.9935 0.9991 0.9998 12 0.6 0.8698 0.989 0.9985 0.9997
10 0.8 0.7526 0.9744 0.9963 0.9992 10 0.8 0.654 0.9585 0.9936 0.9987
9 1 0.5036 0.9256 0.9877 0.9973 9 1 0.3746 0.8851 0.9795 0.9954
7 1.2 0.3966 0.8926 0.9811 0.9958 7 1.2 0.2717 0.8382 0.969 0.9928
6 1.4 0.2711 0.837 0.9686 0.9927 6 1.4 0.1644 0.7625 0.9495 0.9878
5 1.6 0.2162 0.8013 0.9597 0.9904 5 1.6 0.123 0.7162 0.9359 0.984

γ = 1.5, σ2 = 0.75, c = 1.25, p = 0.95, c = 2 γ = 1.5, σ2 = 0.75, c = 1.25, p = 0.99, c = 2
µ/µo µ/µo

n A 2 3 4 5 n A 2 3 4 5
12 0.4 0.9781 0.9986 0.9998 1 12 0.4 0.9366 0.9954 0.9994 0.9999
10 0.6 0.8521 0.9871 0.9982 0.9996 10 0.6 0.6685 0.9611 0.9941 0.9988
8 0.8 0.6497 0.9576 0.9935 0.9986 8 0.8 0.3754 0.8852 0.9795 0.9954
7 1 0.3959 0.8924 0.981 0.9958 7 1 0.144 0.7443 0.9446 0.9864
6 1.2 0.229 0.8119 0.9625 0.9912 6 1.2 0.0536 0.6012 0.8973 0.9728
5 1.4 0.1537 0.7497 0.9457 0.9867 5 1.4 0.0273 0.5076 0.8577 0.9602
4 1.6 0.1509 0.7404 0.9425 0.9858 4 1.6 0.0279 0.4973 0.851 0.9577
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