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Abstract

Meta-analysis refers to a quantitative method for performing statistical analysis and summarizing
results from independent studies, to draw overall conclusions. When the small number of events in
individual studies are observed in one or both treatment groups, the classical meta-analysis can lead
to perversion because of data sparsity. In this paper, two confidence intervals for the risk ratio in
rare events meta-analysis are proposed. They are derived through the profile likelihood ratio method.
An extensive simulation study is performed to evaluate the performance of the proposed estimators.
These are compared to the Wald-type and Mantel-Haenzel confidence intervals. By mean of simula-
tions, our confidence interval is found to have a good performance in general cases in the study. It is
also robust; in other words, regardless of the number of studies, its simulated coverage probability is
close to the specified confidence coefficient with an acceptable average length. Real data analysis on
epidemiology and transmission is conducted to assess the computational feasibility of the proposed
methods.

Keywords: Multiple studies, interval estimation, likelihood ratio, risk ratio, small events.

1. Introduction

Meta-analysis has become an important statistical tool to summarize and assess the same out-
comes from individually multiple independent studies on the same research topic. It is widely used in
areas of social science, epidemiology, public health science, and medicine (Borenstein et al., 2009).
The outcomes in a meta-analysis can be treated as continuous, counts, or dichotomous data in 2x2
tables. In this paper, we are interested in a meta-analysis setting of binary endpoints with the oc-
currence of rare events situation. Rare event is a small number of events with a low probability of
occurrence and very unlikely to observe in a trial. If the trial has a zero event in one group, we refer to
it as a single-zero study. If the trial involves zero events in both arms, we refer to it as a double-zero
study (Bohning et al., 2015; Wei el al., 2021). The situation in such a case can be happened in areas
of data, such as clinical trial, natural phenomena (e.g. major earthquakes and tsunamis), and anthro-
pogenic hazards (Zabriskie et al., 2021). Since some of traditional methods for meta-analysis are not
well suited to handle rare outcomes, the approach for dealing with meta-analysing studies with low
event rates is challenging and will be taken into a deeper look.

The motivation for this work is given by a real data example in epidemiology. We know that the
coronavirus causes Middle East respiratory syndrome (MERS or MERS-CoV), which is the highly
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pathogenic and deadly human coronavirus, as well as SARS-CoV and SARS-CoV-2 or COVID-19
(Manmana et al., 2020; Zhu el al., 2020). This virus can be transmitted from person to person, who
are in close contact with each other. To avoid this, the Ministry of Public Health (MoPH), health care,
and non-health-care (e.g. community) settings have been provided some knowledge, information,
and personal data protection policy to avoid person-to-person virus transmission. These are included
the use of face masks, eye protection, and physical distancing. In a meta-analytic study referred to
Chu et al. (2020), they aimed to investigate the effects of eye protection (face-shield and goggles)
on virus transmission. This is because eye protection worn is typically underconsidered, but it may
be effective in community settings. Moreover, it is debated in the mainstream media and public
health authorities for eye protection on virus transmission in general people. Then, Chu et al. (2020)
performed a systematic review (Cooper et al., 2009) on this topic and used four studies published
in Years 2016-2019. Table 1 shows the related meta-analytic data used in the previous work. The
number of patients with eye protection (treatment group) and without eye protection (control group)
that are infected with the MERS-CoV virus, and sample sizes of the patients from each study are
reported. Here, one study has double-zero events and two studies have single-zero trial. We can see
that all four studies have small events compared to sample sizes in the study. The forest plot with
study-specific estimated risk ratios corresponding to the MERS-CoV dataset is displayed in Figure
1. This plot is obtained on performing the inverse variance-weighted average meta-analysis (IVW)
using the metan command in Stata software (Stata Corp, 2013). We notice that the IVW method
excludes the double-zero-event study, which can lead to bias in estimation, especially for small study
sizes, as pointed out in Kaul and Diamond (2011). A closer look into these data will be taken again
in the numerical application section of this paper.

Table 1 Meta-analytic data on the association of eye protection with risk of MERS-CoV transmission

Number of event Sample size
Study Year Eye protection No eye protection  Eye protection  No eye protection
Alraddadietal. 2016 1 17 47 165
Ki et al. 2019 0 6 9 64
Kim et al. 2016 0 2 443 294
Ryu et al. 2019 0 0 24 10
Risk Ratio %
Study (95% Cl) Weight
Alraddadi et al. (2016) —«:—— 0.21(0.03, 1.51) 51.63
Ki et al. (2019) 0.50 (0.03, 8.21) 26.13
Kim et al. (2016) 0.13 (0.01, 2.76) 22.24
Overall, IV (I* = 0.0%, p = 0.806) 0 0.24 (0.06, 0.99) 100.00
T T T T T
A 5 1 2 5 80
Favours eye protection Favours no eye protection

NOTE: Continuity correction applied to studies with zero cells

Figure 1 Forest plot of the risk ratio for the association of eye protection to prevent person-to-person
transmission of MERS-CoV
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We now consider the theoretical part. Summarizing the association between two variables of
count outcomes often uses the risk ratio. It is the ratio of the probability of an outcome in an treatment
to the probability of an outcome in a comparison group. In a meta-analysis of k independent studies,
the traditional approach to pool the risk ratio uses the IVW method. This typically requires the
number of events in two groups and sample sizes in study ¢ for ¢ = 1,2, ..., k, to calculate the risk or
log-risk ratio. According to the IVW approach, the estimated risk ratio calculated on the log-scale is

of the form o .
i log(6:)/Var(log(0:))
K 1/Var(log(d:))

where log(éi) is the log-risk ratio in study ¢ and 0, is the study-specific risk ratio estimate, computed
by éi = 21140/ (zi0mi1). We note that ;7 and x;( are the number of events of study 4 in the treatment
and control groups, respectively, and n;; and n;o are the sample sizes of study ¢ in the two groups.
Here, Var(log(6;)) is the estimated variance of log(f; ), derived using the delta method based on the
first-order Taylor series. It is given by

log(Orvw) = (1

— . 1 1 1 1
Var(log(6i)) = — — — + ; 2

Til Ml Tio M40
where the weights I7a\r(1og(éi)) > 0. The variance of log(0;y) is obtained from the reciprocal
of the sum of the weights. For interval estimation, a (1 — «)100% confidence interval for the true
log-risk ratio using the Wald-type method is given as

k
Clpy = log(Orvw) £ zaj2y |1/ Y Var(log(d:)), (3)

=1

where « is the significance level and 2,5 is the (/2)100th upper percentile of a standard normal
distribution (Schulze et al., 2003). Anti-logarithm of (1) and (3), the estimated risk ratio is then ob-
tained. Although the risk ratio based on the IVW method is simple and often applied in applications.
However, it is important to notice that (1) is undefined for the meta-analysis with zero-event study,
as (2) cannot be computed. To address this issue and hold the IVW approach in use, researches sug-
gest excluding the double-zero study before the analysis. Unfortunately, the exclusion of double-zero
study which is a set of available real data can bias the treatment effect parameter estimate (Giinhan et
al., 2020). Number of studies used in this method will be also eliminated, as shown in the forest plot
of Figure 1. Alternatively, the value of 0.5 is suggested to add in each cell in the fourfold table of a
zero study. It is simple and easy to use; however, adding the corrected value can be affected the bias
performance of the estimator in statistical inference of meta-analysis. See more details in Sweeting
et al. (2004), Efthimiou el al. (2019), and Bakbergenuly et al. (2020). Instead of using any corrected
value, the Mantel-Haenszel (MH) method is introduced for pooling the effect size estimate in homo-
geneity meta-analysis (Mantel and Haenszel, 1959). Some advantages of the MH method is that it
is in the form of a ratio of sum. Hence, it is not sensitive to zero counts in an arm. Moreover, the
MH estimator has a closed-form solution which is close to the profile likelihood estimator (Bohning
et al., 2008). However, if all studies in either one or both arms have zero events, the MH estimator is
undefined. This is a limitation of this method.

In the literature, several statistical methodologies have introduced point estimators for dealing
with zero or rare events in the meta-analysis, see for example, Bohning et al. (2022), Noma and
Nagashima (2016), and Piaget-Rossel and Taffé (2019). Interval estimation is usually used in appli-
cations as well. In this paper, we therefore aim to construct the alternative confidence interval for the
risk ratio. These are derived based on the profile likelihood to obtain the Wald-type and likelihood
ratio confidence limits. We evaluate the performance of the confidence intervals via simulations,
under meta-analytic data in rare-event situations. It will be compared to the well-known IVW and
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MH confidence intervals. Finally, the proposed confidence intervals are illustrated with the real-data
example motivated at the beginning of this section.

2. Background and Likelihoods

Consider k independent studies in a meta-analysis, we suppose that X;; and X, are the number
of events in study ¢, for ¢ = 1,2, ..., k, of the treatment and control groups, respectively. Also, we
assume that X;; and X;o are two random samples from two Poisson distributions with means 7n;1p;1
and n,op;o, respectively. These are denoted as X;; ~ Po(n;;p;;), where n;; are the sample sizes
and p;; € (0,1) are the event-risk parameters in study ¢ and group j, for j = 0,1. Note that in
rare events situation the probability of an event occurring is low, so the event parameter has a small
probability value. Under the assumption given above, the likelihood function of p;; and p,g, given
observed values X;; = x;; is given by

k *nilpil( . ) Til —TN4i0Pi0 . . )Tio
e ni1Pi1) e (niopio)
L(pi - mia) = X
(pllaplo) l:H1 |: xil! xiO!
with the log-likelihood
k
log L(pi1, pio) = Z [—ni1pi1 + i1 1og(niipi1) — nioPio + xio log(niopio)] - 4)
i=1

The profile likelihood method is then considered. This technique reduces a likelihood to a func-
tion of one interested parameter and eliminates the other parameter in the model (Murphy and van
der Vaart, 2000; Royston, 2007). The processes used in this work are given as follows. In study
i of a meta-analysis, the risk ratio parameter is defined as 6; = p;1/p;o. According to Béhning et
al. (2008), p;1 can be rewritten to be p;; = 0;p;o. If it is replaced in (4), the profile log-likelihood
function for 0; and p;q is then given by

k
log L(6;, pio) = Z[—(nio + ni16i)pio + i1 log(0;) + x; log(pio)), ®)

i=1

where x; = x;1 + x;0 denotes the total events in study 7. Eqn. (5) is used to find the maximum
likelihood (ML) estimator for p;o, which is established as p;0 = x;/(nio + n;160;). Again, p;o is
replaced in p;o of (5). Hence, we have the profile log-likelihood for 6;:

k

log L*(0;) = Z[am log(0;) — w; log(nio + ni16;)].
i—1

In homogeneity case, where 6; = 6 for all 7, the profile log-likelihood for the overall risk ratio (6) is

then given as
k

log L*(0) = Z[l‘il log(0) — x; log(nio + n416)]. (6)
i=1
To find the ML estimator for 6, log-likelihood (6) is maximized by taking the first-partial derivative
with respective to 6. This yields

9 — Zle 21141/ (nio + n4i10) ;
TSk : @)
> i1 Tionio/ (nio + ni10)

To solve the maximum profile-likelihood estimate for 6, (7) is used with the iterative method based
on the fixed point iteration. This applies the processes given in Algorithm 1.
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Algorithm 1: Profile maximum likelihood estimate for 6
Step 0: Given initial value 6(°) for

Step 1: Estimate

k
gl+1) — Y i Tt/ (nao + n,-le@)).
Zf:l xiOniO/(nio + nu@(t))

Step 2: Repeat Step 1 until [§(+D — 91| < ¢,

Note that e is a small error value, say 0.000001, and 0(t+1) is the estimated value in the (t+
1)th iteration, where t = 0,1,2,...,m and m is the largest iteration. The maximum profile
likelihood estimate obtained from this approach is denoted as 0p;,.

Another estimator derived based on the basis of the profile likelihood method is explained. This
supposes that 6 being on the right-hand side of (7) is equal to one (generally, # > 0). Hence, the
explicit formula for 6 is simply obtained. It is known as the Mantel-Haenzel (MH) estimator (Mantel
and Haenszel, 1959). The MH formula for the risk ratio can be written as

S zamnio/ng

éMH =
Zizl xi()nil/ni7

where n; = n;1 + n;9. The variance estimator for log(é v derived by Greenland and Robins
(Greenland and Robins, 1985) is formulated as

¥ (@inanio/n2 — ziaxio/n:)
S (@inio/ni) S0 (ziona /ni)

Note that Greenland and Robins (Greenland and Robins, 1985) assumed the random variables fol-
lowed binomial distributions. Under the large-sample approximation, a (1 — «)100% confidence
interval for log(6) using the Wald-type method is therefore given by

CIE2 = IOg(éJWH) + ZQ/Q \/ @'(log(éMH)), (8)

where 2,/ is the (a /2)100th upper percentile of a standard normal distribution. The confidence
limits for # can be obtained by anti-logarithm of (8).

Var(log(frr)) =

3. Alternative Confidence Interval

In this section, the new confidence intervals for the log-risk ratio in meta-analysis are introduced.
They are based on the Wald-type and likelihood ratio methods using the basis of profile-likelihood
function.

Assuming that ¢ = log(0) is the log-risk ratio, which is the parameter of interest. If it is
replaced in (6), the profile log-likelihood function for ¢ given the observed value of X;; = x;;, for
1=1,2,...,kand 5 = 0, 1, is then given by

k k
log L*(¢) = ¢ Z Tyl — Z x; log(ni + nire?). 9)
=1 =1

Under maximization of log L*(¢) with respect to ¢, the maximum profile likelihood estimate for ¢ is

satisfied X
¢ = log = Zi:l i1 .
Zz':l zi1n1/ (nio + ni1e?)
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We denote the estimated log-risk ratio from this approach as qAS pr. Since there has no closed-form
solution for qAb pr,, the iterative method is therefore required to find the estimate of ¢. Based on the
normal approximation, the estimated variance of qAS pr, derived from the inverse of Fisher information
using (9) is given by
. -1
L minanae?rt )
—)2 ,

@'(QBPL) = <Z (nio + nilquPL

i=1
where e?P~ is obtained from the fixed point iteration with

k
¢(t+1) _ log ( - Zi:l Ti1 > )

>oisq Tianit/ (nio + nied®)

‘We note that ngS pr, and log(é pr,) are identical (see the result in the application section), so Algorithm
1 can be applied to solve the solution. However, ngS pr and log(é M) are totally different, although
they are derived under the profile likelihood method. According to the Wald-type method with the
estimated variance of ¢py,, a (1 — @)100% confidence interval for ¢ is given as

Clpi = ¢pr % 202 V Var(épr), (10)

where 2, /5 is the (a/2)100th upper percentile of a standard normal distribution.

Although the Wald method is widely used to construct the confidence interval for parameter, it
often performs well when sample sizes or number of studies in meta-analysis are large enough. As
noted in Agresti (1990), the likelihood ratio (LR) method could be addressed the problem of small
sample sizes. In this section, we introduce the likelihood ratio confidence interval using the profile
likelihood function. Here, we first consider the LR statistic:

—2 x profile log-likelihood ratio test.

This has an approximate chi-square distributed with one degree of freedom under the null hypothesis,
Hy : ¢ = ¢p, where ¢ is a given value of the log-risk ratio. The sets of overall parameter space and
parameter space under Hp are = {¢: —00 < ¢ < 0o} and w = {¢ : ¢ = ¢y}, respectively. The
profile likelihood ratio statistic is then defined by

A= —2log <M) = —2log (%) :
This can be also re-written as
A = =2 [log L*(¢) — log L* (dr1)] . (11)
where

k k
log L*(¢p1) = ¢pL Z i1 — Z z;log(nig + ni1e?")

i=1 i=1

is the profile log-likelihood function under €2 and

k k
log L*($) = ¢ Y win — Y _ wilog(nio + nie?)
i=1 i=1

is the profile log-likelihood function under Hy. The likelihood ratio statistic given in (11) is an
approximately chi-square distribution with one degree of freedom (or Xflle).
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In a simple way, the following probability statement is applied to find the lower and upper limits
for ¢. We have that

P (Xi/&df:l <A< Xffa/gdf:l) =1-a.

Replacing (11) in the above statement, the lower and upper limits for ¢ would be satisfied the two
following expressions, respectively,

—0.5 x Xi/Q,df=1 + Zf:l X; log(n,;o + n,;lem) + (,ZASPL Zle X1 — A
b1 = - (12)
2im1 Til

and

—0.5 x X%_Q/de:l + Zle x;log(nio + ni1e®v) + (;ASPL Zle T — A 13
Ef:l Til ’

where A = Zle xilog(nig + nile‘ﬁ,L). Xi/zdle and Xia/27df:1 are the (/2)100th and (1 —
a/2)100th percentiles of a chi-square distribution with one degree of freedom, respectively. As can
be seen from the above expressions, using (12) and (13) may be arduous and hardly control a given
confidence probability level, since there has no closed-form solution exists for the interval estimator.
Another method which is still based on the likelihood ratio is then applied instead. According to
the idea from Doganaksoy (2021), the confidence interval is defined as the minimum and maximum
values of a parameter that satisfy a set value of the log-likelihood. So, we use the profile log-likelihood
given in (9), and have that

du =

log L*(¢) = &, (14)
where k is a constant once data are observed, and « is given by

e 1
x =log L*(¢pL) — §X%7a,df:1'
Therefore, the two endpoints of interval which related to a (1 — a/)100% confidence interval for ¢ are
obtained by solving (14). Here, we denote it as C'Ipy. In our computation, the gosolnp package in
the Rsolnp function (Ghalanos and Theussl, 2012) of R statistical software is used to calculate the
lower and upper limits of C'Ips.

4. Simulation Study

A simulation study based on several situations is performed to investigate the performance of
the confidence intervals given in the previous section. We generate the data for number of events
in the treatment and control groups from two Poisson distributions, where X;; ~ Po(n;1p;1) and
Xio ~ Po(niopio). Number of studies in meta-analysis (k) are 5, 10, 20, and 30, representing small
to large study sizes. The sample sizes in two groups are sampled from two uniform distributions:
n;1 ~ U(50,150) and n;o = ni; x U(r — 0.1,7 4+ 0.1), where the degree of unbalance size (r) is
given by 0.5. The log-risk ratio parameter ¢ = log(p;1/pi0) is considered in two scenarios: 1) no
difference in risk (¢ = 0) and an increased risk in the treatment group (¢ > 0) and 2) a reduced
risk in the treatment group (¢ < 0). We set the baseline risk parameter (pg) as 0.01, 0.05, and 0.10.
Hence, the risk in treatment group can be computed by p;; = p;pe®. Notice that the event occurrence
probabilities under these settings are given to be low value, reflecting rare events situations. All
parameter settings grouped by the situation of rare events are summarized in Table 2. Then, the
95% confidence intervals for ¢ obtained from the four methods, Clgy, Clgs, Clp1, and Clpo,
are computed. Only C'Ig requires the continuity correction when single- or double-zero events are
observed. Here, we add the value of 0.5 to zero cells in single- and double-zero-event studies, as
it is usually done in practice. So that C'Ig; can be computed and compared to the other interval
estimators.
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Table 2 Parameter settings in simulation study

Scenario 1 Scenario 2
Situation Pio ¢ Pi1 (ZS Pi1

Extremely rare event  0.01 0 00100 -2 0.0014
0.5 0.0165 -1.5 0.0022
1.5 0.0448 -0.5 0.0061
Very rare event 005 O 0.0500 -2  0.0068
0.5 0.0824 -15 00112
1.5 02241 -0.5 0.0303
Rare event 0.10 0 0.1000 -2  0.0135
05 0.1649 -1.5 0.0223
1.5 04482 -0.5 0.0607

Each situation given in a simulation is repeated 5,000 times. These are implemented in the open-
source R statistical platform (R Core Team, 2022). The performance of the confidence interval for the
log-risk ratio is evaluated in terms of coverage probability (CP) and expected length (EL) on handling
meta-analysis with rare events. In computation by averaging over 5,000 replications, the assessment
criteria are approximated by

#L<o<U) oo S (Un = L)
5,000 5,000 ’

CP =

where L and U are the lower and upper limits of parameter ¢, #(L < ¢ < U) denotes number of
times that ¢ is in between the limits, and h is the h-th iteration. In the decision, the confidence interval
which has a coverage probability close to the nominal level of 0.95 with a short expected length is
preferred. All this is just another way to say that the confidence interval satisfied this criterion means
it can precisely estimate the true parameter.

The coverage probability and interval length of the confidence intervals from simulations under
Scenario 1 are shown in Table 3 and Figure 2. It can be seen that the method uses zero-cell corrections
or C'Ig; has low performance in terms of coverage probability in many situations. It cannot control
the confidence level to cover the parameter ¢. Especially, if ¢ > 0.5, coverage probabilities of
Clg, are too small, as they are much lower than the target probability level at 0.95. We say that
C1Ig1 cannot be used to assess the certainty which a log-risk ratio parameter is in a particular range.
Then, we consider the performance of C'Igo derived based on MH estimation. C'Igo works well to
estimate ¢ than Clg,. Coverage probabilities of Clgo are satisfied the target level in many cases
when p;o < 0.1. However, if p;g is increased, coverage probabilities of C'Igo decrease and are lower
than 0.95. The latter point is similar to the result obtained from C'Ig;. Next, the coverage probability
of the two methods based on the profile likelihood proposed in this paper is described. C'Ip; and
C1Ip9 have coverage probabilities close to or greater than the nominal coverage probability level at
0.95 in general cases. It seems the coverage probabilities of these two confidence intervals do not
depend on ¢ or k. Hence, C'Ip; and C'Ipy are more consistent than C'Ig; and C'Igy. Comparing
the two proposed interval estimators, C'I po has the simulated coverage probability closer to 0.95 than
ClIp;. Since Clg is unsatisfied as noted before, only the coverage probabilities of C'1gs, Clpy,
and C'Ipy are displayed by graph, see Figure 2 (a). Clarity, we summarize the best performance of
estimators by ordering as C'Ipy, CIpy, and C'Igo. Figure 2 (b) shows the expected lengths of C'Ig,,
ClIp1, and C'Ips. It can be seen that they are slightly different.
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Table 3 Simulated coverage probability and expected length of the four 95% confidence intervals
(CIs) for the log-risk ratio ¢ under Scenario 1

Coverage probability Expected length
Dio ¢ k Clgpn Clgz Clpr  Clpz Clgr  Clgz  Clpr Clp2

001 O 5 09922 09848 09848 0.9602 2.6927 3.5130 3.5259 3.8558
10 09844 09784 0.9784 0.9556 1.8970 2.3605 23701 2.4645

20 09722 09622 09622 09528 1.3357 1.5785 1.5855 1.6094

30 09378 09632 0.9632 09592 1.0911 12712 1.2765 1.2889

05 5 09678 09660 0.9680 0.9612 2.5448 3.2938 3.3044 3.5904
10 09298 09702 09712 09544 1.7757 2.1798 2.1922 2.2713

20 0.8342 09674 09686 09514 1.2575 1.4914 1.4991 1.5206

30 0.6888 09440 0.9450 0.9490 1.0194 1.1760 1.1827 1.1929

1.5 5 0.8934 09656 0.9686 0.9666 22306 3.0162 3.0345 3.2954
10 0.7634 0.9650 0.9662 0.9554 1.5600 2.0370 2.0464 2.1212

20 04584 09542 09586 0.9502 1.0936 1.3493 13575 1.3751

30 02428 09622 0.9622 09526 0.8918 1.0866 1.0935 1.1023

005 O 5 09742 09536 09588 0.9541 1.4404 1.3909 1.4239 1.4409
10 09576 09408 0.9438 0.9542 0.9994 09553 09789 0.9841

20 09500 0.9466 0.9530 0.9548 0.7013 0.6680 0.6851 0.6868

30 09394 09388 0.9486 09542 0.5715 0.5446 0.5584 0.5593

05 5 09378 09398 09494 09544 1.2947 1.2737 13104 1.3245
10 09372 09516 0.9594 09506 09140 0.8924 09179 0.9225

20 0.8752 0.9430 0.9490 0.9504 0.6361 0.6187 0.6369 0.6383

30 0.8466 09560 0.9624 09503 0.5194 05045 0.5192 0.5200

1.5 5 09116 09376 09448 09525 1.1694 1.1845 1.2235 1.2364
10 0.8646 09524 0.9580 0.9556 0.8156 0.8200 0.8474 0.8515

20 0.7744 09422 09552 09505 0.5708 0.5730 0.5923  0.5937

30 0.6534 09368 0.9430 0.9496 0.4621 04632 0.4791 0.4798

0.10 O 5 09498 09446 09500 0.9512 0.9606 0.9365 0.9850 0.9904
10 09516 09454 0.9540 009512 0.6741 0.6551 0.6893 0.6911

20 0.9410 0.9378 0.9504 0.9500 0.4730 0.4594 0.4837 0.4843

30 09356 09426 0.9540 09544 0.3854 03742 03941 0.3944

05 5 09446 09402 0.9522 09526 0.8793 0.8675 09192 0.9238
10 09110 09360 0.9496 0.9490 0.6121 0.6029 0.6397 0.6414

20 0.8768 09370 0.9578 0.9578 0.4308 0.4238 0.4499 0.4504

30 0.8412 09256 0.9394 09494 0.3515 03457 03671 0.3674

1.5 5 08922 09370 0.9502 0.9508 0.7814 0.7844 0.8414 0.8454
10 0.8686 0.9308 0.9464 0.9500 0.5507 0.5527 0.5927 0.5940

20 0.7872 09306 0.9490 0.9496 03840 0.3854 0.4138 0.4143

30 0.7148 09192 09470 09489 0.3144 03156 0.3387 0.3390
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Figure 2 Simulated coverage probability (a) and expected length (b) of the 95% confidence intervals
for the log-risk ratio (¢), varied on baseline risk parameter (p;o) and number of studies (k) under
Scenario 1
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Table 4 Simulated coverage probability and expected length of the four 95% confidence intervals
(CIs) for the log-risk ratio ¢ under Scenario 2

Coverage probability Expected length
Dio ¢ k. Clgppn  Clgz Clpr Clpz  Clgr  Clgz  Clpr Clpe

0.01 -2 5 09764 09912 09924 0.9748 3.1208 5.5123 5.5060 6.1977
10 0.7784 09692 0.9708 09714 2.1902 43790 4.3692 4.8321

20 0.2566 09728 0.9720 0.9656 1.5408 3.0989 3.0957 3.3414

30 0.0448 09700 0.9728 09496 1.2571 2.4532 24490 2.5690

-1.5 5 09964 09956 09954 0.9780 3.0568 5.0801 5.0847 5.7458
10 0.9267 09832 09836 09674 2.1483 3.7377 3.7340 4.1023

20 0.8928 0.9670 0.9678 09539 15109 2.4841 2.4855 2.6009

30 0.7720 09656 0.9622 0.9483 1.2328 1.9457 19454 1.9845

0.5 5 09992 09966 0.9966 0.9652 2.8611 4.0450 4.0596 4.5451
10 09984 09767 0.9695 09533 2.0035 2.6469 2.6545 2.7481

20 09976 09563 0.9568 0.9488 1.4143 1.7502 1.7564 1.7870

30 09920 09585 0.9586 09506 1.1535 1.4098 1.4150 1.4304

005 -2 5 09620 0.9686 09680 0.9596 22870 2.7253 2.7409 2.8139
10 09202 0.9658 0.9650 0.9532 1.6007 1.8013 1.8122 1.8464

20 0.8048 09652 0.9653 0.9498 1.1248 1.2247 1.2322 1.2438

30 0.7358 09612 0.9656 0.9578 0.9189 0.9958 1.0022 1.0082

-1.5 5 09854 09704 09712 09518 2.0776 2.1614 2.1802 2.2454
10 0.9357 09428 09450 0.9539 1.4535 1.4517 1.4653 1.4839

20 09496 09426 0.9429 09505 1.0222 1.0096 1.0201 1.0261

30 09224 09455 0.9458 0.9548 0.8280 0.8127 0.8217 0.8247

-0.5 5 09798 09655 09604 0.9510 1.6183 1.5394 1.5690 1.5821
10 09826 09522 09558 0.9502 1.1280 1.0634 1.0849 1.0919

20 09786 09424 0.9429 09501 0.7904 0.7420 0.7572  0.7595

30 09804 09488 0.9456 09540 0.6439 0.6037 0.6164 0.6176

0.10 -2 5 09540 0.9666 09686 0.9497 1.7501 1.8069 1.8304 1.8566
10 09292 09588 09612 09504 1.2173 1.2234 1.2409 1.2528

20 0.8628 09484 0.9492 09505 0.8550 0.8488 0.8616 0.8654

30 0.7830 09480 0.9550 0.9500 0.6973 0.6910 0.7012 0.7032

-1.5 5 09642 09460 09451 0.9539 1.4909 1.4448 1.4760 1.4953
10 09536 09582 09574 09512 1.0381 0.9971 1.0190 1.0252

20 09232 09426 0.9540 0.9552 0.7305 0.6987 0.7145 0.7165

30 09146 09422 09514 0.9507 0.5950 0.5685 0.5814 0.5826

-0.5 5 09660 09448 09524 0.9478 1.0880 1.0479 1.0921 1.0991
10 0.9670 0.9404 09532 09508 0.7562 0.7261 0.7574 0.7597

20 09728 09440 0.9534 09513 0.5325 0.5107 0.5329 0.5337

30 09650 09390 0.9486 0.9480 0.4348 04166 0.4346 0.4351

The performance of the four confidence intervals for ¢ based on generated data under Scenario
2 is considered. Table 4 shows that coverage probabilities of C'Ip5 are closer to the target probability
level at 0.95 than the other confidence intervals in general cases. The expected lengths of C'Ips are
slightly greater than those of the comparators. C'Ip; works well when p;o > 0.01. Similarly to the re-
sult given in Scenario 1, coverage probabilities of C'Ig; differ from the nominal coverage probability
in many situations. So, C'Ig; cannot control the confidence level to cover the true parameter for rare
events. C'Igs has a good performance in terms of coverage probability than C'Ig, but its coverage
probability is still lower than 0.95 in many cases in the study. The behaviour of Clgy, CIpy, and
CIpy are shown by graphs, given in Figure 3.
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Figure 3 Simulated coverage probability (a) and expected length (b) of the 95% confidence intervals
for the log-risk ratio (¢), varied on baseline risk parameter (p;o) and number of studies (k) under
Scenario 2
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As a summary of performance with regard to the coverage probability and length of interval,
both scenarios provide the results in the same way. We recommend C'Ip5 as an alternative confidence
interval for estimating the log-risk ratio (or risk ratio) in meta-analysis of rare events.

5. Data Application

The data on eye protection for virus transmission as noted in Section 1 were used to illustrate
the methods proposed in this paper. They were taken from Chu et al. (2020) and related to the
number of MERS-CoV infected patients who used or did not use a barrier to protect infectious virus
entering the eye. For this meta-analytic dataset, no statistically significant difference in risk ratios
was found across studies (Cochran’s Q statistic = 0.43, p-value = 0.81, and I? = 0%). Therefore,
we did a meta-analysis of associations by pooling risk ratios using the four methods (E1, E2, P1,
and P2) derived under the homogeneity assumption. As can be seen from the available data given in
Table 1, zero studies are observed in both one and two treatment arms. The traditional IVW method
can be used, once the continuity value of 0.5 is added to the studies with zero events before the
analysis. Meanwhile, estimation for the risk ratio using the MH and profile likelihood methods can
be computed using the original data, without adding any continuity value.

Table 5 Estimated risk ratio and 95% confidence interval using meta-analytic data on the association
of eye protection with risk of MERS-CoV transmission

Method Estimated risk ratio (Log-risk ratio)  95% ClI for risk ratio
IVW (El) 0.2544 (-1.3688) (0.0665, 0.9724)
MH (E2) 0.1363 (-1.9929) (0.0204, 0.9064)
Profile likelihood 1 (P1) 0.1199 (-2.1211) (0.0157, 0.9133)
Profile likelihood 2 (P2) 0.1199 (-2.1211) (0.0066, 0.5909)

The point estimates and 95% confidence intervals for the risk ratio are shown in Table 5. Since
the estimated risk ratios from the existing approaches (E1 and E2) and the proposed methods (P1 and
P2) were lower than one, it can be concluded that MERS-CoV virus transmission was lower with
eye protection, compared to no eye protection. However, the values of estimated risk ratios from
these methods are different. A question arises: what is the estimated value that could be used for this
dataset? To answer this point, we refer to the simulation results under Scenario 2. As highlighted in
the previous section, the profile likelihood ratio confidence interval (C'Ip9) can precisely estimate the
log-risk ratio in rare events meta-analysis with the suitable coverage probability and expected length.
For this application, we therefore interpreted the 95% confidence interval for the risk ratio by CI =
(0.0066, 0.5909). The risk in transmission of the virus was 40.91% to 99.34% lower in patients with
eye protection compared to patients without eye protection. Note that Opr, =0.1199 and log(é PL) =
-2.1211.

In the end, Figure 4 shows that our method based on the profile likelihood ratio works well in
computation. It can be solved for the lower and upper limits of the log-risk ratio. From the figure, the
red-dash lines denote the lower and upper limits, while the black-dash line shows the point estimate
of the log-risk ratio for the MERS-CoV data example.
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Figure 4 Likelihood ratio plot of 95% profile likelihood ratio confidence interval (C'Ipsy) for the
log-risk ratio, using the real-data example

6. Conclusions

In this paper, we develop the two confidence intervals for the risk ratio in meta-analysis for
the count outcomes with rare events. The first one is the Wald-type confidence interval using the
variance of the profile maximum likelihood estimator derived from the inverse of Fisher information.
This extends the idea of constructing the Mantel-Haenzel estimator, which comes from specifying
the value of the risk ratio 6 on the right-hand side of (7) equal to one. However, in fact, 6 can be
the positive real value. Moreover, the variance of Mantel-Haenzel estimator derived by Greenland
and Robins (1985) uses the random variables which are assumed to have binomial distributions. In
the current work, the maximum profile likelihood estimate derived from the profile log-likelihood
function for the log-risk ratio is used instated. It does not limit the value of § = 1. We expect that
our approach can be used in wider situations. The second confidence interval is derived based on
the likelihood ratio method. Here, the new profile likelihood ratio statistic is proposed. It has an
approximate chi-square distribution with one degree of freedom. We use this method because it is
noted that the likelihood ratio can be addressed the problem of small data (Agresti, 1990). This could
be beneficial for the situation of rare events.

To evaluate the performance of the proposed confidence intervals, an extensive simulation study
is conducted. It can be seen that the proposed profile likelihood ratio confidence interval outperforms
the confidence intervals based on the Wald and Mantel-Haenzel estimation. In particular, this estima-
tor provides the coverage probability close to the target level with an acceptable short-length interval.
It produces consistent estimates, as the performance in terms of coverage probability does not depend
on the parameter settings, i.e. number of studies and level of the risk ratio. This means that the profile
likelihood ratio confidence interval proposed in this study can be applied in any situation. The Wald-
type confidence interval has low performance in estimating the risk ratio in meta-analysis with rare
events. This is not a surprise as its method is derived based on the large-sample and normal approxi-
mation. So that our work confirms that the Wald method should be avoided for the analysis of rare or
zero-study events. The Mantel-Haenzel confidence interval can be used in rare events meta-analysis
when the two groups are identical or have a similar risk in very rare or rare events. It is simple to
use with the explicit formula. However, we show that its performance is lower than our proposed
likelihood ratio confidence interval.

A limitation of our study is that the estimator from the profile likelihood ratio method does not
have the explicit formula. Statistical programming is therefore required to find the optimal limits of
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the confidence interval. Herein, we suggest the gosolnp package in the R programming language
for solving the problem. It is evidenced by the analysis given in the application section of this paper
to ensure convergence to an optimum solution. Finally, it is important to note that the confidence
intervals studied in this work are derived based on the homogeneity assumption of the risk ratio.
The estimator is then suitable to be used in the fixed effect meta-analysis. However, the effect size
estimates can be varied across studies. The random effects model is needed in such a case. In
future work, interval estimation on meta-analysis with rare events in heterogeneity situations will be
considered and we will take a deeper look into the efficiency of the estimator.
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