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Abstract
In environmental data analysis, it is common to encounter left-censored data, such as rainfall and

particulate matter data, which follow the delta-lognormal distribution. This paper focuses on estimat-
ing confidence intervals for the common mean of delta-lognormal distributions based on left-censored
data. The confidence intervals are constructed using four approaches: the generalized confidence in-
terval approach, the Bayesian approach, the parametric bootstrap approach, and the adjusted method
of variance estimates recovery approach. The performance of these approaches is evaluated through
Monte Carlo simulations using RStudio programming. The results reveal that for the number of sam-
ple cases k = 3, the generalized confidence interval approach and the adjusted method of variance
estimates recovery approach performed very well when the sample sizes were small, whereas the
Bayesian approach performed exceptionally well for moderate and large sample sizes. For the num-
ber of sample cases k = 6, the generalized confidence interval approach and the adjusted method
of variance estimates recovery approach performed very well for small and moderate sample sizes,
while the Bayesian approach excelled for large sample sizes. The results are illustrated with rainfall
data from three regions of Thailand.

Keywords: Common mean, confidence interval, delta-lognormal distribution, left-censored data,
rainfall data.

1. Introduction
Thailand is geographically divided into six regions, each with uneven precipitation patterns.

Some regions receive minimal rainfall while others experience abundant rainfall. Consequently,
droughts and floods frequently occur, posing natural disasters that require management rather than
eradication. The common mean is used to describe the average rainfall in different areas. Daily rain-
fall data is typically modeled using the delta-lognormal distribution because it includes both zero and
positive values. Various researchers, such as Maneerat et al. (2020), Maneerat et al. (2021), Thangjai
et al. (2022), Yosboonruang et al. (2022), Thangjai and Niwitpong (2023a), Thangjai and Niwitpong
(2023b), and Thangjai et al. (2023), have estimated confidence intervals for the parameters of this
distribution, including mean functions, the common coefficient of variation, and percentile functions.
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Censored data sets contain observations within a limited value range, with some data reported as
zero due to being below the measurement threshold. Researchers, like Owen and DeRouen (1980),
Glass and Gray (2001), Krishnamoorthy et al. (2011), Thangjai and Niwitpong (2023a), and Thangjai
and Niwitpong (2023b), have efficiently estimated quantiles and other descriptive statistics of the
underlying continuous distribution using censored data.

In cases where we have k sample cases and k > 2 independent samples, the confidence in-
terval for the common mean derived from several independent delta-lognormal samples based on
left-censored data becomes crucial. Several researchers, such as Krishnamoorthy and Lu (2003), Lin
and Lee (2005), Tian (2005), Tian and Wu (2007), Ye et al. (2010), Ng (2014), Thangjai and Ni-
witpong (2017), Thangjai et al. (2017a), Thangjai et al. (2017b), Thangjai and Niwitpong (2018),
Thangjai and Niwitpong (2020), Thangjai et al. (2020a), Thangjai et al. (2020b), and Thangjai et al.
(2022), have studied this problem.

Interval estimators are preferred over point estimators because they provide a range of values
likely to contain the unknown parameter of interest. However, there has been little statistical research
on interval estimation for the common mean of delta-lognormal distributions based on left-censored
data. This paper aims to address this gap by proposing confidence intervals using various approaches:
the generalized confidence interval (GCI) approach, Bayesian approach, parametric bootstrap ap-
proach, and the adjusted method of variance estimates recovery (adjusted MOVER) approach. These
methods have been compared and evaluated in previous studies. The GCI approach utilizes the gen-
eralized pivotal quantity (GPQ) for constructing the confidence interval. Several researchers have
compared the GCI approach with other approaches for constructing the confidence interval, as docu-
mented in studies by Tian (2005), Chen and Zhou (2006), Tian and Wu (2007), Ye et al. (2010), and
Thangjai et al. (2018). The Bayesian approach involves the utilization of the posterior probability
and enables the comparison with other approaches for constructing confidence intervals. This com-
parison is supported by studies such as Rao and DCunha (2016), Ma and Chen (2018), and Thangjai
et al. (2021). The parametric bootstrap approach uses the sampling distribution and has been utilized
by researchers such as Padgett and Tomlinson (2003), Zhang (2015), and Altunkaynak and Gamgam
(2019) for constructing confidence intervals. The adjusted MOVER approach uses the exact formula
to construct the confidence interval and has been studied by Thangjai and Niwitpong (2017), Thangjai
et al. (2017a), and Thangjai et al. (2017b).

The paper is organized as follows. Section 2 presents the methodologies for constructing con-
fidence intervals for the common mean of delta-lognormal distributions based on left-censored data.
Section 3 assesses the performance of these approaches through Monte Carlo simulations. Section 4
provides an example using rainfall data. Section 5 includes a discussion, and finally, Section 6
presents the conclusion.

2. Methods
For one population, let n = n0 + n1 be the sample size, where n0 is the number of zero

values and n1 is the number of positive values. Moreover, the number of zero values n0 has a
binomial distribution, and the number of positive values n1 has a log-normal distribution. Let Z =
(Z1, Z2, ..., Zn) be the random variable from a delta log-normal distribution with parameters mean
µ, variance σ2, and the probability of obtaining a zero observation δ. The distribution of Z is given
by

G(zj ;µ, σ
2, δ) =

{
δ; zj = 0

δ + (1− δ)F (zj ;µ, σ
2); zj > 0

, (1)

where F (zj ;µ, σ2) is the log-normal distribution function and j = 1, 2, ..., n.
The population mean of Z is defined by

υ = (1− δ) exp

(
µ+

1

2
σ2

)
. (2)
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For estimating the mean of log-normal distribution based on left-censored data, let
X = (X1, X2, ..., Xn) be the random variable from the log-normal distribution with parameters µ
and σ2. Let ξ be some censoring point and let n = n1 + n2 observations be a sample size, where
n1 observations less than or equal to log(ξ) are not known but they are assumed to be nonzero and
n2 = n − n1 observations greater than some censoring point log(ξ). Suppose that Yj = log(Xj) is
the observations above log(ξ) and has the normal distribution, where j = 1, 2, ..., n2. Let h = n1

n be
the fraction of observations in the sample that is below log(ξ). The mean of Y is given by

Ȳ =
1

n2

n2∑
j=1

Yj .

The variance of Y is given by

S2 =
1

n2

n2∑
j=1

(Yj − Ȳ )2. (3)

Suppose that ϕ and Φ are the density function and the distributions function of the standard nor-
mal distribution, respectively. According to Krishnamoorthy et al. (2011), the maximum likelihood
estimators of µ and σ2 are given by

µ̂ = Ȳ − ψ (h, a)
(
Ȳ − log(ξ)

)
and σ̂2 = S2 + ψ (h, a)

(
Ȳ − log(ξ)

)2
,

where

a =
log(ξ)− µ

σ
, W (a) =

ϕ(a)

1− Φ(a)
, V (h, a) =

hW (−a)
1− h

, ψ (h, a) =
V (h, a)

V (h, a)− a
.

The mean of log-normal distribution based on left-censored data is

θ = exp

(
µ+

1

2
σ2

)
.

Therefore, the estimator of the mean of log-normal distribution based on left-censored data is

θ̂ = exp

(
µ̂+

1

2
σ̂2

)
.

For k populations, for i = 1, 2, ..., k, let Xi = (Xi1, Xi2, ..., Xini
) be the random variable

from the log-normal distribution with parameters µi and σ2
i . Let ξi be some censoring points and

let ni = ni(1) + ni(2) observations be a sample sizes, where ni(1) observations less than or equal to
log(ξi) and ni(2) = ni − ni(1) observations greater than some censoring point log(ξi). Suppose that
Yij = log(Xij) is the observations above log(ξi), where i = 1, 2, ..., k and j = 1, 2, ..., ni(2). Let
hi =

ni(1)

ni
be the fraction of observations in the sample that is below log(ξi). Let Ȳi and S2

i be the
mean and variance of Yi, respectively. The maximum likelihood estimators of µi and σ2

i are given by

µ̂i = Ȳi − ψ (hi, ai)
(
Ȳi − log(ξi)

)
(4)

and σ̂2
i = S2

i + ψ (hi, ai)
(
Ȳi − log(ξi)

)2
, (5)

where

ai =
log(ξi)− µi

σi
,W (ai) =

ϕ(ai)

1− Φ(ai)
, V (hi, ai) =

hiW (−ai)
1− hi

, ψ (hi, ai) =
V (hi, ai)

V (hi, ai)− ai
. (6)
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The mean of log-normal distribution based on left-censored data is given by

θi = exp

(
µi +

1

2
σ2
i

)
.

Therefore, the estimator of the mean of log-normal distribution based on left-censored data is given
by

θ̂i = exp

(
µ̂i +

1

2
σ̂2
i

)
.

The variance of θ̂i is given by

V ar(θ̂i) =

(
2σ̂2

i + σ̂4
i

2ni

)
exp

(
2µ̂i + (σ̂)2i

)
. (7)

The common mean of log-normal distributions based on left-censored data is the weighted average
of θ̂i based on k individual sample which is defined by

θ̂ =

k∑
i=1

θ̂i

V ar(θ̂i)

/
k∑

i=1

1

V ar(θ̂i)
,

where V ar(θ̂i) is defined in Eqn. (7).

2.1. Generalized confidence interval approach
A generalized pivotal quantity (GPQ) is used to construct the generalized confidence interval.

Definition: Let R(X;x, µ, σ2, δ) be a function of X , z, µ, σ2, and δ. Then R(X;x, µ, σ2, δ) is said
to be the GPQ if it satisfies the following conditions:
1. R(X;x, µ, σ2, δ) has a probability distribution free of unknown parameters.
2. The observed pivotal of R(X;x, µ, σ2, δ) does not depend on the nuisance parameter.

The 100(1− α)% two-sided confidence intervals for the common mean of delta-lognormal dis-
tributions based on left-censored data can be constructed using [R(α/2), R(1−α/2)], whereR(α/2)
denote the (α/2)-th quantile of R(X;x, µ, σ2, δ) and R(1 − α/2) denote the (1 − α/2)-th quantile
of R(X;x, µ, σ2, δ).

The GPQ for µi is given by

Rµi
= µ̂i −

µ̂∗
i

σ̂∗
i

σ̂i, (8)

where µ̂∗
i and σ̂∗

i are the maximum likelihood estimators based on a censored sample from standard
normal distribution and µ̂i and σ̂i are defined in Eqn. (4) and Eqn. (5).

The GPQ for σi is given by

Rσi
=
σ̂i
σ̂∗
i

, (9)

where σ̂∗
i is the maximum likelihood estimator based on a censored sample from standard normal

distribution.
The GPQ for θi is given by

Rθi = exp

(
Rµi +

1

2
(Rσi)

2

)
, (10)

where Rµi and Rσi are defined in Eqn. (23) and Eqn. (24), respectively. The GPQ for V ar
(
θ̂i

)
is given by

RV ar(θ̂i) =

(
2 (Rσi)

2 + (Rσi)
4

2ni

)
exp

(
2Rµi + (Rσi)

2) , (11)

where Rµi and Rσi are defined in Eqns. (8) and (9), respectively.
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The GPQ for the common mean of delta-lognormal distributions based on left-censored data is
a weighted average of the GPQ of θi based on k individual sample. The GPQ for the common mean
of delta-lognormal distributions based on left-censored data is given by

Rθ =

k∑
i=1

Rθi

RV ar(θ̂i)

/
k∑

i=1

1

RV ar(θ̂i)

, (12)

where Rθi is defined in Eqn. (10) and RV ar(θ̂i)
is defined in Eqn. (11).

Therefore, the 100(1 − α)% two-sided confidence interval for the common mean of delta-
lognormal distributions based on left-censored data using the GCI approach is given by

CIGCI = [LGCI , UGCI ] = [Rθ(α/2), Rθ(1− α/2)],

where Rθ(α/2) and Rθ(1 − α/2) denote the 100(α/2)-th and 100(1 − α/2)-th percentiles of Rθ,
respectively.

Algorithm 1 is used to construct the GCI for the common mean of delta-lognormal distributions
based on left-censored data.
Algorithm 1.
Step 1: Generate sample from the standard normal distribution and compute µ̂∗

i and σ̂∗
i

Step 2: Compute Rµi
from Eqn. (8)

Step 3: Compute Rσi
from Eqn. (9)

Step 4: Compute Rθi from Eqn. (10)
Step 5: Compute RV ar(θ̂i

) from Eqn. (11)
Step 6: Compute Rθ from Eqn. (12)
Step 7: Repeat step 1 - step 6, a total m times and obtain an array of Rθs
Step 8: Compute LGCI and UGCI

2.2. Bayesian approach
The Bayesian approach is a method for updating probabilities using the Bayes’ theorem. In

this paper, the Jeffreys Independence prior is updated using Bayes’ rule. The prior is defined as
p(µi, σ

2
i ) = p(µi)p(σ

2
i ). The posterior distribution of σ2

i is the inverse gamma distribution. The
posterior distribution of σ2

i is defined by

σ2
i |yi ∼ IG

(
ni(2) − 1

2
,
(ni(2) − 1)σ̂2

i

2

)
, (13)

where σ̂2
i is defined in Eqn. (5).

The posterior distribution of µi given σ2
i is the normal distribution. The posterior distribution of

µi given σ2
i is defined by

µi|σ2
i , yi ∼ N

(
µ̂i,

σ2
i

ni(2)

)
, (14)

where µ̂i is defined in Eqn. (4) and σ2
i is defined in Eqn. (13).

The posterior distribution of θi is defined by

θi = exp

(
µi +

1

2
σ2
i

)
, (15)

where σ2
i and µi are defined in Eqn. (13) and Eqn. (14), respectively.

The variance of θi is given by

V ar (θi) =

(
2σ2

i + σ4
i

2ni

)
exp

(
2µi + σ2

i

)
, (16)

where σ2
i and µi are defined in Eqn. (13) and Eqn. (14), respectively.
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The common mean of delta-lognormal distributions based on left-censored data is defined by

θBS =

k∑
i=1

θi
V ar(θi)

/
k∑

i=1

1

V ar(θi)
, (17)

where θi is defined in Eqn. (15) and V ar(θi) is defined in Eqn. (16).
Therefore, the 100(1−α)% two-sided credible interval for the common mean of delta-lognormal

distributions based on left-censored data using the Bayesian approach is given by

CIBS = [LBS , UBS ],

where LBS and UBS denote the lower and upper limits of the shortest 100(1−α)% highest posterior
density interval of θBS , respectively.

Algorithm 2 is used to construct the Bayesian credible interval for the common mean of delta-
lognormal distributions based on left-censored data.
Algorithm 2.
Step 1: Compute σ2

i |yi from Eqn. (13)
Step 2: Compute µi|σ2

i , yi from Eqn. (14)
Step 3: Compute θi from Eqn. (15)
Step 4: Compute V ar(θi) from Eqn. (16)
Step 5: Compute θBS from Eqn. (17)
Step 6: Repeat step 1 - step 5, a total m times and obtain an array of θBSs
Step 7: Compute LBS and UBS

2.3. Parametric bootstrap approach
Let Y ∗

i1, Y
∗
i2, ..., Y

∗
ini(2)

be the sample with replacement from Yi1, Yi2, ..., Yini(2)
. Moreover, let

Ȳ ∗
i be the estimator of the population mean. It is given by

Ȳ ∗
i =

1

ni(2)

ni(2)∑
j=1

Y ∗
ij . (18)

Suppose S2∗
i is the estimator of the population variance. It is given by

S2∗
i =

1

ni(2)

ni(2)∑
j=1

(
Y ∗
ij − Ȳ ∗

i

)2
. (19)

The maximum likelihood estimators of µ∗
i and σ2∗

i are given by

µ̂∗
i = Ȳ ∗

i − ψ (hi, ai)
(
Ȳ ∗
i − log(ξi)

)
(20)

and σ̂2∗
i = S2∗

i + ψ (hi, ai)
(
Ȳ ∗
i − log(ξi)

)2
, (21)

where ψ (hi, ai) is defined by Eqn. (6).
The estimator of the mean of log-normal distribution based on left-censored data is given by

θ̂∗i = exp

(
µ̂∗
i +

1

2
σ̂2∗
i

)
. (22)

The variance of θ̂∗i is given by

V ar(θ̂∗i ) =

(
2σ̂2∗

i + σ̂4∗
i

2ni

)
exp

(
2µ̂∗

i + σ̂2∗
i

)
. (23)
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The common mean of log-normal distributions based on left-censored data is the weighted aver-
age of θ̂∗i based on k individual sample which is defined by

θ̂∗ =

k∑
i=1

θ̂∗i

V ar(θ̂∗i )

/
k∑

i=1

1

V ar(θ̂∗i )
, (24)

where V ar(θ̂∗i ) is defined in Eqn. (23).
The lower and upper limits of the confidence interval for the common mean of delta-lognormal

distributions based on left-censored data using the parametric bootstrap approach are given by

LPB = θ̂∗ − z1−α/2sd(θ̂
∗) (25)

and UPB = θ̂∗ + z1−α/2sd(θ̂
∗), (26)

where θ̂∗ is the mean of θ̂∗, sd(θ̂∗) is the standard deviation of θ̂∗, and z1−α/2 is the 100(1−α/2)-th
percentile of the standard normal distribution.

Therefore, the 100(1 − α)% two-sided confidence interval for the common mean of delta-
lognormal distributions based on left-censored data using the parametric bootstrap approach is given
by

CIPB = [LPB , UPB ],

where LPB and UPB are defined in Eqn. (25) and Eqn. (26), respectively.
Algorithm 3 is used to construct the parametric bootstrap confidence interval for the common

mean of delta-lognormal distributions based on left-censored data.
Algorithm 3.
Step 1: In parametric bootstrapping, the underlying assumption is that the data originates from a
recognized distribution with unspecified parameters. To address this, we calculate these parameters
based on the data and subsequently employ the estimated distributions to generate simulated samples.
Generate y∗i1, y

∗
i2, ..., y

∗
ini(2)

from normal distributions with µ̂i and σ̂2
i

Step 2: Compute ȳ∗i from Eqn. (18)
Step 3: Compute s2∗i from Eqn. (19)
Step 4: Compute µ̂∗

i from Eqn. (20)
Step 5: Compute σ̂2∗

i from Eqn. (21)
Step 6: Compute θ̂∗i from Eqn. (22)
Step 7: Compute V ar(θ̂∗i ) from Eqn. (23)
Step 8: Compute θ̂∗ from Eqn. (24)
Step 9: Repeat step 1 - step 8, a total m times and obtain an array of θ̂∗s
Step 10: Compute LPB and UPB

2.4. Adjusted method of variance estimates recovery approach
Thangjai and Niwitpong (2023a) proposed the confidence interval for the mean of delta-lognormal

distribution based on left-censored data. The lower and upper limits for the mean of delta-lognormal
distribution based on left-censored data are defined by

lθi = exp

(µ̂i +
1

2
σ̂2
i

)
−

√
(µ̂i − lµi)

2 +

(
1

2
σ̂2
i − 1

2
lσ2

i

)2


and uθi = exp

(µ̂i +
1

2
σ̂2
i

)
+

√
(uµi − µ̂i)

2 +

(
1

2
uσ2

i
− 1

2
σ̂2
i

)2
 ,
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where lµi = µ̂i − z1−α/2

√
(ni(2) − 1)σ̂2

i

ni(2)χ2
ni(2)−1

, uµi = µ̂i + z1−α/2

√
(ni(2) − 1)σ̂2

i

ni(2)χ2
ni(2)−1

lσ2
i
=

(ni(2) − 1)σ̂2
i

χ2
1−α/2,ni(2)−1

, uσ2
i
=

(ni(2) − 1)σ̂2
i

χ2
α/2,ni(2)−1

,

and µ̂i is defined in Eqn. (4), σ̂i is defined in Eqn. (5), z1−α/2 is the 100(1 − α/2)-th percentile of
the standard normal distribution, χ2

ni(2)−1 is the chi-squared distribution with ni(2) − 1 degrees of
freedom, and χ2

1−α/2,ni(2)−1 and χ2
α/2,ni(2)−1 are the 100(1 − α/2)-th and 100(α/2)-th percentiles

of the chi-squared distribution with ni(2) − 1 degrees of freedom, respectively.
The common mean of log-normal distributions based on left-censored data is the weighted aver-

age of θ̂i based on k individual sample which is defined by

θ̂ =

k∑
i=1

θ̂i

V ar(θ̂i)

/
k∑

i=1

1

V ar(θ̂i)
,

where θ̂i = exp

(
µ̂i +

1

2
σ̂2
i

)
and V̂ ar(θ̂i) =

1

2


(
θ̂i − lθi

)2

z2α/2
+

(
uθi − θ̂i

)2

z2α/2

 .

According to Thangjai and Niwitpong (2020), the lower and upper limits of the confidence
interval for the weighted average of θi based on adjusted MOVER approach are defined by

LAM = θ̂ −

√√√√√√ k∑
i=1

(
θ̂i − lθi

)2

(
V̂ ar

(
θ̂li

))2

/
k∑

i=1

1(
V̂ ar

(
θ̂li

))2 (27)

and UAM = θ̂ +

√√√√√√ k∑
i=1

(
uθi − θ̂i

)2

(
V̂ ar

(
θ̂ui

))2

/
k∑

i=1

1(
V̂ ar

(
θ̂ui

))2 , (28)

where V̂ ar
(
θ̂li

)
=

(
θ̂i − lθi

)2

z2α/2

, V̂ ar
(
θ̂ui

)
=

(
uθi − θ̂i

)2

z2α/2

.

Therefore, the 100(1 − α)% two-sided confidence interval for the common mean of delta-
lognormal distributions based on left-censored data using the adjusted MOVER approach is given
by

CIAM = [LAM , UAM ],

where LAM and UAM are defined in Eqns. (27) and (28), respectively.

3. Results
In this section, we present the numerical results obtained from Monte Carlo simulation studies,

which are used to compare the four approaches proposed in Section 2. The coverage probability
and average length of the confidence intervals were calculated using the RStudio programming. The
performance of the confidence intervals is assessed using the coverage probability and the average
length. The best-performing confidence interval is identified as having a coverage probability greater
than or equal to 0.95 and the shortest average length. The RStudio programming language is used
to construct the confidence intervals based on the GCI, Bayesian, parametric bootstrap, and adjusted
MOVER approaches. Each approach is executed with M = 5,000 runs, and the GCI, Bayesian, and
parametric bootstrap approaches use m = 2,500 runs.
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In this study, five configuration factors were considered to evaluate the performance of the con-
fidence intervals: the number of groups, sample sizes, population means, population standard de-
viations, probabilities of obtaining zero observation, and censoring points. Algorithm 4 is used to
compute the coverage probabilities and average lengths of the confidence intervals for the common
mean of delta-lognormal distributions based on left-censored data.
Algorithm 4.
Step 1: Generate zi from delta-lognormal distributions with parameters µi, σi, and δi and set xi from
log-normal distributions with parameters µi and σi, where i = 1, 2, ..., k
Step 2: Compute yi = log(xi) and select yi > log(ξi)

Step 3: Compute ni(1), ni(2), µ̂i, σ̂i, θ̂i, and θ̂
Step 4: Construct the confidence intervals CIGCI , CIBS , CIPB , and CIAM

Step 5: If L 6 θ 6 U , set p = 1; else set p = 0
Step 6: Compute U − L
Step 7: Repeat step 1 - step 6, a total M times
Step 8: Compute mean of p defined by the coverage probability
Step 9: Compute mean of U − L defined by the average length

For the number of sample cases k = 3, the population means, population standard deviations,
probabilities of obtaining zero observation, and censoring points are presented in Table 1. The
sample sizes were set as (n1, n2, n3) = (20,20,20), (30,30,30), (20,20,30), (50,50,50), (30,30,50),
(100,100,100), and (50,50,100). From Table 2, the results indicate that the coverage probabilities of
the adjusted MOVER approach were greater than the nominal confidence level of 0.95 for all cases.
The GCI and adjusted MOVER approaches were greater than the nominal confidence level of 0.95
for small sample sizes (ni 6 20). Moreover, the average lengths of the GCI and adjusted MOVER
approaches were shorter than the average length of the adjusted MOVER approach when the sam-
ple sizes were small. Therefore, the GCI and adjusted MOVER approaches are recommended for
constructing the confidence interval when the sample sizes are small. Additionally, the Bayesian ap-
proach performed satisfactorily in terms of coverage probability and average length for moderate and
large sample sizes.

For the number of sample cases k = 6, the population means, population standard devia-
tions, probabilities of obtaining zero observation, and censoring points are presented in Table 3.
The sample sizes were set as (n1, n2, n3, n4, n5, n6) = (20,20,20,20,20,20), (30,30,30,30,30,30),
(20,20,20,30,30,30), (50,50,50,50,50,50), (30,30,30,50,50,50), (100,100,100,100,100,100), and
(50,50,50,100,100,100). From Table 4, the results show that the GCI and the adjusted MOVER ap-
proach performed satisfactorily in terms of coverage probability and average length for small and
moderate sample sizes. Additionally, the Bayesian approach provided the best credible interval for
large sample sizes.

Table 1 Values selected for the population means, population standard deviations, probabilities of
obtaining zero observation, and censoring points: 3 sample cases

Run number (µ1, µ2, µ3) (σ1, σ2, σ3) (δ1, δ2, δ3) (ξ1, ξ2, ξ3)

1 (0.00,0.00,0.00) (1.00,1.00,1.00) (0.10,0.10,0.10) (0.10,0.10,0.10)
2 (0.00,0.00,0.00) (1.00,1.00,1.00) (0.10,0.10,0.10) (0.10,0.10,0.25)
3 (0.00,0.00,0.00) (1.00,1.00,1.00) (0.10,0.10,0.25) (0.10,0.10,0.10)
4 (0.00,0.00,0.00) (1.00,1.00,1.00) (0.10,0.10,0.25) (0.10,0.10,0.25)
5 (0.00,0.00,0.00) (1.00,1.00,2.00) (0.10,0.10,0.10) (0.10,0.10,0.10)
6 (0.00,0.00,0.00) (1.00,1.00,2.00) (0.10,0.10,0.10) (0.10,0.10,0.25)
7 (0.00,0.00,0.00) (1.00,1.00,2.00) (0.10,0.10,0.25) (0.10,0.10,0.10)
8 (0.00,0.00,0.00) (1.00,1.00,2.00) (0.10,0.10,0.25) (0.10,0.10,0.25)
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Table 2 The coverage probabilities (CPs) and average lengths (ALs) of 95% two-sided confidence
intervals for the common mean of delta-lognormal distributions based on left-censored data: 3 sample
cases

(n1, n2, n3) Run number
CP (AL)

CIGCI CIBS CIPB CIAM

(20,20,20) 1 0.9468 0.9098 0.7590 0.9810
(1.5410) (1.4516) (1.1274) (2.9523)

2 0.9342 0.8856 0.7162 0.9712
(1.5063) (1.3700) (1.0803) (2.7297)

3 0.9582 0.9266 0.7896 0.9814
(1.7308) (1.6458) (1.2143) (3.4897)

4 0.9304 0.8838 0.6962 0.9802
(1.6113) (1.4907) (1.1173) (3.1804)

5 0.9686 0.9472 0.8292 0.9778
(2.1064) (1.9209) (1.4099) (3.6141)

6 0.9714 0.9518 0.8282 0.9786
(2.1248) (1.9369) (1.4119) (3.6956)

7 0.9704 0.9482 0.8316 0.9800
(2.1200) (1.9408) (1.4225) (3.7170)

8 0.9652 0.9408 0.8142 0.9802
(2.0744) (1.8877) (1.3833) (3.5957)

(30,30,30) 1 0.9616 0.9356 0.8210 0.9856
(1.3008) (1.2409) (0.9765) (2.2711)

2 0.9448 0.9108 0.7742 0.9810
(1.2636) (1.1580) (0.9283) (2.0616)

3 0.9682 0.9454 0.8338 0.9878
(1.4369) (1.3877) (1.0447) (2.5271)

4 0.9538 0.9108 0.7530 0.9870
(1.3612) (1.2738) (0.9748) (2.3667)

5 0.9818 0.9652 0.8752 0.9868
(1.7310) (1.6157) (1.2156) (2.5664)

6 0.9792 0.9658 0.8814 0.9878
(1.7123) (1.5999) (1.2085) (2.5550)

7 0.9804 0.9660 0.8720 0.9896
(1.7132) (1.5985) (1.2070) (2.5699)

8 0.9784 0.9626 0.8746 0.9918
(1.7063) (1.5891) (1.2019) (2.5657)

(20,20,30) 1 0.9530 0.9184 0.7868 0.9854
(1.4522) (1.3778) (1.0808) (2.6118)

2 0.9344 0.8926 0.7390 0.9744
(1.4082) (1.2769) (1.0206) (2.2924)

3 0.9626 0.9316 0.7936 0.9870
(1.6605) (1.5794) (1.1763) (3.3816)

4 0.9286 0.8776 0.6890 0.9758
(1.5022) (1.3830) (1.0539) (2.7844)

5 0.9722 0.9502 0.8402 0.9780
(2.1906) (1.9909) (1.4414) (3.7320)

6 0.9718 0.9512 0.8368 0.9796
(2.1506) (1.9597) (1.4205) (3.6412)

7 0.9758 0.9528 0.8294 0.9842
(2.1461) (1.9474) (1.4112) (3.6694)

8 0.9690 0.9460 0.8246 0.9780
(2.1171) (1.9180) (1.3968) (3.6484)
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Table 2 Continued

(n1, n2, n3) Run number
CP (AL)

CIGCI CIBS CIPB CIAM

(50,50,50) 1 0.9766 0.9598 0.8850 0.9962
(1.0328) (0.9960) (0.7902) (1.7003)

2 0.9638 0.9328 0.8252 0.9900
(1.0087) (0.9283) (0.7552) (1.5560)

3 0.9850 0.9706 0.9004 0.9948
(1.1473) (1.1198) (0.8537) (1.8696)

4 0.9672 0.9294 0.8044 0.9944
(1.0736) (1.0165) (0.7905) (1.7279)

5 0.9836 0.9740 0.9146 0.9920
(1.3461) (1.2795) (0.9843) (1.8455)

6 0.9858 0.9784 0.9214 0.9944
(1.3262) (1.2691) (0.9814) (1.8245)

7 0.9860 0.9732 0.9068 0.9946
(1.3278) (1.2606) (0.9707) (1.8330)

8 0.9866 0.9750 0.9182 0.9942
(1.3300) (1.2669) (0.9775) (1.8431)

(30,30,50) 1 0.9728 0.9506 0.8542 0.9910
(1.1995) (1.1506) (0.9139) (1.9614)

2 0.9464 0.9068 0.7928 0.9794
(1.1454) (1.0412) (0.8488) (1.6842)

3 0.9790 0.9562 0.8566 0.9902
(1.3698) (1.3222) (1.0044) (2.4498)

4 0.9472 0.9082 0.7422 0.9862
(1.2442) (1.1543) (0.8889) (2.0535)

5 0.9806 0.9670 0.8824 0.9876
(1.7838) (1.6589) (1.2404) (2.5643)

6 0.9806 0.9682 0.8886 0.9850
(1.7642) (1.6570) (1.2446) (2.5725)

7 0.9790 0.9632 0.8706 0.9866
(1.7408) (1.6180) (1.2111) (2.5510)

8 0.9780 0.9628 0.8744 0.9874
(1.7431) (1.6246) (1.2178) (2.5826)

(100,100,100) 1 0.9900 0.9836 0.9434 0.9992
(0.7350) (0.7128) (0.5692) (1.1939)

2 0.9810 0.9582 0.8956 0.9964
(0.7205) (0.6633) (0.5465) (1.0901)

3 0.9896 0.9858 0.9416 0.9990
(0.8166) (0.8018) (0.6177) (1.2826)

4 0.9774 0.9540 0.8738 0.9976
(0.7679) (0.7333) (0.5731) (1.2068)

5 0.9850 0.9872 0.9526 0.9952
(0.9429) (0.9095) (0.7123) (1.2424)

6 0.9846 0.9856 0.9484 0.9982
(0.9337) (0.9107) (0.7155) (1.2477)

7 0.9860 0.9862 0.9462 0.9980
(0.9300) (0.8976) (0.7016) (1.2468)

8 0.9868 0.9856 0.9422 0.9970
(0.9256) (0.8983) (0.7045) (1.2433)
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Table 2 Continued

(n1, n2, n3) Run number
CP (AL)

CIGCI CIBS CIPB CIAM

(50,50,100) 1 0.9830 0.9732 0.9092 0.9974
(0.9027) (0.8737) (0.6980) (1.3941)

2 0.9620 0.9294 0.8372 0.9888
(0.8606) (0.7785) (0.6426) (1.1753)

3 0.9884 0.9798 0.9204 0.9970
(1.0686) (1.0410) (0.7955) (1.7992)

4 0.9598 0.9166 0.7912 0.9902
(0.9485) (0.8821) (0.6854) (1.4459)

5 0.9854 0.9800 0.9238 0.9938
(1.3924) (1.3241) (1.0162) (1.8392)

6 0.9856 0.9776 0.9234 0.9918
(1.3597) (1.3186) (1.0167) (1.8355)

7 0.9854 0.9754 0.9142 0.9924
(1.3525) (1.2847) (0.9859) (1.8308)

8 0.9844 0.9760 0.9112 0.9942
(1.3432) (1.2909) (0.9937) (1.8327)

Table 3 Values selected for the population means, population standard deviations, probabilities of
obtaining zero observation, and censoring points: 6 sample cases

Run number (µ1, µ2, µ3, (σ1, σ2, σ3, (δ1, δ2, δ3, (ξ1, ξ2, ξ3,
µ4, µ5, µ6) σ4, σ5, σ6) δ4, δ5, δ6) (ξ4, ξ5, ξ6)

1 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 1.00,1.00,1.00) 0.10,0.10,0.10) 0.10,0.10,0.10)

2 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 1.00,1.00,1.00) 0.10,0.10,0.10) 0.25,0.25,0.25)

3 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 1.00,1.00,1.00) 0.25,0.25,0.25) 0.10,0.10,0.10)

4 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 1.00,1.00,1.00) 0.25,0.25,0.25) 0.25,0.25,0.25)

5 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 2.00,2.00,2.00) 0.10,0.10,0.10) 0.10,0.10,0.10)

6 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 2.00,2.00,2.00) 0.10,0.10,0.10) 0.25,0.25,0.25)

7 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 2.00,2.00,2.00) 0.25,0.25,0.25) 0.10,0.10,0.10)

8 (0.00,0.00,0.00, (1.00,1.00,1.00, (0.10,0.10,0.10, (0.10,0.10,0.10,
0.00,0.00,0.00) 2.00,2.00,2.00) 0.25,0.25,0.25) 0.25,0.25,0.25)
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Table 4 The coverage probabilities (CPs) and average lengths (ALs) of 95% two-sided confidence
intervals for the common mean of delta-lognormal distributions based on left-censored data: 6 sample
cases

(n1, n2, n3, n4, n5, n6) Run number
CP (AL)

CIGCI CIBS CIPB CIAM

(20,20,20,20,20,20) 1 0.7976 0.7246 0.5510 0.9720
(0.9965) (0.9693) (0.8297) (2.3012)

2 0.7110 0.6372 0.4544 0.9622
(0.9545) (0.8986) (0.7815) (2.0889)

3 0.8430 0.7600 0.5692 0.9796
(1.1522) (1.1457) (0.9152) (2.8571)

4 0.6972 0.5906 0.3716 0.9634
(1.0340) (0.9912) (0.8139) (2.4771)

5 0.9340 0.8920 0.7460 0.9746
(1.5244) (1.4398) (1.1665) (3.0086)

6 0.9402 0.9002 0.7354 0.9816
(1.4911) (1.4114) (1.1407) (2.9246)

7 0.9282 0.8802 0.7232 0.9738
(1.4923) (1.4203) (1.1642) (2.9674)

8 0.9272 0.8778 0.7192 0.9736
(1.4825) (1.4040) (1.1465) (2.9844)

(30,30,30,30,30,30) 1 0.8766 0.8216 0.6528 0.9894
(0.8755) (0.8525) (0.7203) (1.9309)

2 0.7744 0.7042 0.5282 0.9792
(0.8390) (0.7798) (0.6749) (1.7279)

3 0.9128 0.8548 0.7064 0.9912
(1.0194) (1.0147) (0.8038) (2.2930)

4 0.7568 0.6548 0.4448 0.9828
(0.9129) (0.8722) (0.7129) (2.0178)

5 0.9632 0.9344 0.8272 0.9858
(1.3326) (1.2680) (1.0205) (2.2862)

6 0.9644 0.9400 0.8286 0.9872
(1.3065) (1.2524) (1.0074) (2.2772)

7 0.9536 0.9254 0.7984 0.9864
(1.2954) (1.2342) (0.9962) (2.2565)

8 0.9492 0.9192 0.8016 0.9832
(1.2871) (1.2263) (0.9949) (2.2553)

(20,20,20,30,30,30) 1 0.8584 0.7912 0.6256 0.9838
(0.9399) (0.9162) (0.7803) (2.0672)

2 0.7228 0.6672 0.4818 0.9712
(0.8839) (0.8237) (0.7146) (1.7766)

3 0.8788 0.8016 0.6388 0.9850
(1.1062) (1.0902) (0.8814) (2.7627)

4 0.7036 0.5848 0.3816 0.9708
(0.9589) (0.9103) (0.7473) (2.1986)

5 0.9460 0.9062 0.7650 0.9698
(1.5886) (1.4922) (1.1810) (3.0023)

6 0.9388 0.9084 0.7664 0.9750
(1.5578) (1.4755) (1.1723) (3.0085)

7 0.9378 0.8902 0.7274 0.9762
(1.5465) (1.4493) (1.1545) (3.0043)

8 0.9348 0.8942 0.7366 0.9778
(1.5261) (1.4345) (1.1457) (3.0017)
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Table 4 Continued

(n1, n2, n3, n4, n5, n6) Run number
CP (AL)

CIGCI CIBS CIPB CIAM

(50,50,50,50,50,50) 1 0.9488 0.9140 0.8018 0.9982
(0.7171) (0.6983) (0.5784) (1.5655)

2 0.8602 0.7940 0.6362 0.9946
(0.6899) (0.6323) (0.5442) (1.3864)

3 0.9628 0.9256 0.8360 0.9978
(0.8382) (0.8339) (0.6526) (1.7927)

4 0.8450 0.7394 0.5420 0.9924
(0.7560) (0.7194) (0.5800) (1.5954)

5 0.9832 0.9680 0.9002 0.9950
(1.0853) (1.0435) (0.8339) (1.7153)

6 0.9772 0.9642 0.8982 0.9932
(1.0623) (1.0352) (0.8283) (1.7150)

7 0.9750 0.9572 0.8742 0.9918
(1.0500) (1.0088) (0.8067) (1.7021)

8 0.9714 0.9554 0.8786 0.9926
(1.0404) (1.0044) (0.8075) (1.7037)

(30,30,30,50,50,50) 1 0.9188 0.8732 0.7414 0.9962
(0.7919) (0.7713) (0.6506) (1.6687)

2 0.7906 0.7288 0.5644 0.9890
(0.7435) (0.6812) (0.5906) (1.4154)

3 0.9380 0.8912 0.7648 0.9930
(0.9520) (0.9388) (0.7505) (2.2184)

4 0.7710 0.6474 0.4376 0.9832
(0.8190) (0.7691) (0.6242) (1.7447)

5 0.9664 0.9408 0.8410 0.9850
(1.3847) (1.3154) (1.0410) (2.2483)

6 0.9576 0.9390 0.8328 0.9860
(1.3478) (1.3062) (1.0398) (2.2754)

7 0.9566 0.9226 0.8024 0.9844
(1.3399) (1.2702) (1.0094) (2.2578)

8 0.9582 0.9334 0.8224 0.9882
(1.3332) (1.2744) (1.0210) (2.2864)

(100,100,100,100,100,100) 1 0.9858 0.9654 0.9142 1.0000
(0.5190) (0.5052) (0.4113) (1.1510)

2 0.9178 0.8556 0.7340 0.9988
(0.5000) (0.4535) (0.3873) (1.0087)

3 0.9928 0.9828 0.9386 0.9998
(0.6120) (0.6067) (0.4697) (1.2829)

4 0.9202 0.8032 0.6282 0.9994
(0.5508) (0.5230) (0.4150) (1.1626)

5 0.9908 0.9862 0.9490 0.9994
(0.7771) (0.7546) (0.6026) (1.1972)

6 0.9870 0.9860 0.9472 0.9994
(0.7637) (0.7568) (0.6048) (1.2025)

7 0.9846 0.9776 0.9352 0.9988
(0.7596) (0.7373) (0.5888) (1.1988)

8 0.9876 0.9808 0.9386 0.9984
(0.7553) (0.7417) (0.5932) (1.2041)
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Table 4 Continued

(n1, n2, n3, n4, n5, n6) Run number
CP (AL)

CIGCI CIBS CIPB CIAM

(50,50,50,100,100,100) 1 0.9736 0.9520 0.8774 0.9994
(0.6029) (0.5869) (0.4851) (1.2516)

2 0.8572 0.7976 0.6466 0.9962
(0.5609) (0.5043) (0.4319) (1.0304)

3 0.9828 0.9614 0.8996 0.9990
(0.7579) (0.7470) (0.5857) (1.7060)

4 0.8370 0.6924 0.4816 0.9978
(0.6324) (0.5864) (0.4676) (1.2876)

5 0.9784 0.9638 0.9024 0.9936
(1.1461) (1.1044) (0.8783) (1.7129)

6 0.9732 0.9642 0.9058 0.9934
(1.1104) (1.1063) (0.8814) (1.7260)

7 0.9726 0.9536 0.8672 0.9926
(1.0874) (1.0463) (0.8334) (1.6972)

8 0.9736 0.9646 0.8902 0.9942
(1.0847) (1.0663) (0.8508) (1.7230)

Figure 1 Comparison of the coverage probabilities of proposed approaches according to sample sizes
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Figure 2 Comparison of the coverage probabilities of proposed approaches according to probabilities
of non-zero values

Figure 3 Comparison of the coverage probabilities of proposed approaches according to standard
deviations

Figure 4 Comparison of the average lengths of proposed approaches according to sample sizes
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Figure 5 Comparison of the average lengths of proposed approaches according to probabilities of
non-zero values

Figure 6 Comparison of the average lengths of proposed approaches according to standard deviations

4. Empirical Application
Real datasets are used to illustrate the efficacy of the proposed confidence intervals. A Monte

Carlo simulation consisting of 2,500 repetitions was run to construct the GCI, Bayesian, and para-
metric bootstrap confidence intervals.

On September 1, 2021, the Thai Meteorological Department reported rainfall data for five re-
gions in Thailand. Thangjai et al. (2022) found that the rainfall data for the northern, northeastern,
and eastern regions of Thailand follow delta-lognormal distributions. The statistics of the rainfall data
for the northern, northeastern, and eastern regions are presented in Table 5. The common mean of the
rainfall data for the northern, northeastern, and eastern regions is θ̂ = 8.18 mm.

The 95% two-sided confidence intervals for the common mean of delta-lognormal distributions
based on left-censored data, using the rainfall data for the northern, northeastern, and eastern regions,
are shown in Table 6. From the 95% confidence interval estimates, the length of the Bayesian credible
interval is the shortest, but it does not contain the true common mean. Moreover, the length of the
parametric bootstrap confidence interval is shorter than the lengths of the GCI and adjusted MOVER
confidence intervals. However, the coverage probabilities of the parametric bootstrap confidence
interval are less than the nominal confidence level of 0.95 in the simulation proposed in Section 3.
Additionally, the length of the GCI is shorter than the length of the adjusted MOVER confidence
interval. Therefore, for the number of sample cases k = 3, the GCI approach is recommended to
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construct the common mean of delta-lognormal distributions based on left-censored data when the
sample sizes are small.

Furthermore, it is important to mention that confidence intervals for the common mean of delta-
lognormal distributions, obtained from data with left-censoring, can be applied in the realm of envi-
ronmental, meteorological, and climatological data. These datasets often contain positive values and
exhibit right-skewed distributions, as observed in variables like particulate matter 2.5 (PM2.5) and
particulate matter 10 (PM10).

Table 5 Sample statistics of the rainfall data for the northern, northeastern, and eastern regions

Statistics Northern Northeastern Eastern

ni 29 28 15
ni(1) 6 10 1
ni(2) 23 18 14
µ̂i -0.23 -0.66 1.05
σ̂2
i 4.44 9.09 4.88
θ̂i 7.34 48.74 32.67

Table 6 The 95% two-sided confidence intervals for the common mean of delta-lognormal distribu-
tions based on left-censored data using the rainfall data for three regions

Approaches Confidence intervals
Lower Upper Length

GCI 2.7476 39.8908 37.1432
Bayesian 0.5644 0.6773 0.1129

Parametric bootstrap 0.3057 17.0749 16.7692
Adjusted MOVER 2.0329 80.0942 78.0613

5. Discussion
Thangjai and Niwitpong (2023a) estimated confidence intervals for the mean of a delta-lognormal

distribution based on left-censored data using the GCI, Bayesian, and parametric bootstrap approaches.
They also constructed confidence intervals for the difference between means of delta-lognormal dis-
tributions based on left-censored data using the GCI, Bayesian, parametric bootstrap, and MOVER
approaches. In a separate study, Thangjai and Niwitpong (2023b) proposed confidence intervals
for the ratio of means of delta-lognormal distributions based on left-censored data using the GCI,
Bayesian, parametric bootstrap, and adjusted MOVER approaches. In this paper, we utilized the
concepts introduced by Thangjai and Niwitpong (2023a) and Thangjai and Niwitpong (2023b) to
construct confidence intervals for the common mean of delta-lognormal distributions based on left-
censored data using the GCI, Bayesian, parametric bootstrap, and adjusted MOVER approaches.

The GCI, Bayesian, and adjusted MOVER approaches are recommended for constructing con-
fidence intervals for the common mean of delta-lognormal distributions based on left-censored data.
The results are consistent with the findings from previous studies conducted by Thangjai and Ni-
witpong (2017), Thangjai et al. (2017c), Thangjai and Niwitpong (2018), Thangjai et al. (2021),
Thangjai and Niwitpong (2022), and Thangjai et al. (2022).

6. Conclusion
The confidence intervals for the common mean of delta-lognormal distributions based on left-

censored data were constructed using the GCI, Bayesian, parametric bootstrap, and adjusted MOVER
approaches. For the number of sample cases k = 3, the GCI and adjusted MOVER approaches were
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recommended for constructing the confidence intervals when the sample sizes were small, while
the Bayesian approach was suggested for constructing credible interval when the sample sizes were
moderate and large. For the number of sample cases k = 6, the GCI and adjusted MOVER approaches
were recommended for constructing the confidence interval when the sample sizes were small and
moderate, while the Bayesian approach were recommended for constructing the confidence interval
when the sample sizes were large.
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