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Abstract
In this paper, we consider a linear regression intercept-only model under the hypothesis of non-

normality. Generally, the errors are independent and normally distributed. In our case, we assume
the errors are independent and follow an exponential law. We prove the consistency and establish
the asymptotic distribution of the maximum likelihood estimator for the parameter of the intercept-
only model. Numerical simulations confirm the accuracy of this estimator. We notably exhibit the
advantages of the maximum likelihood estimator compared to the classical ordinary least square
estimator. Finally, we applied the approach to a data of a real-life example, namely the Canadian lynx
data.
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1. Introduction
The main use of regression is to illuminate a supposed linear relationship between predictor

variables and an outcome variable Azais (2005). Regression is an old and established statistical
method, with a background that is more relevant for its role in traditional explanatory modeling than
for prediction. With the advent of big data, regression is widely used to train a model for predicting
outcomes, rather than explaining the data. In this case, the main items of interest are the fitted
outcome values. If the main point of a model is prediction, we might not care too much about which
independent variables are included, as long as the model fits well. But if the purpose of our model
is to see which variables are significant, then much attention needs to be paid to this issue. The
goodness of fit is closely related to model selection. Usually, the first step is to determine if there
is a relationship between the outcome and the predictors. The null hypothesis refers that there is
no relationship between any of the predictors and the response. If the null hypothesis is accepted,
we retain the intercept-only model. In these case, it should be noted that there is no slope then
the intercept is estimated by the mean response, in Gaussian case. For the sequel, the mean model
is linked with the gaussian case else it is the intercept-only model. The mean model may seem
overly simplistic, but the sample average is a simple but very powerful descriptor. It counts among
the most basic ways to describe, analyze and summarize information about a phenomenon. In the
absence of explanatory variables, the mean can be a model by itself. At first glance, it does not
seem that studying regression without predictors would be very useful. We are not suggesting that
using regression without predictors is a major data analysis tool. Often a model with intercept and
predictors is compared to an intercept-only model to test whether the predictors add over and above
the intercept-only. There are many phenomena that, when graphed, do not have an incline. Points of
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the cloud are almost around a horizontal line. If we are trying to model those phenomena, thus we
want our model not to contain a slope.

The mean model is often the starting point for constructing forecasting models for time series
data, including random walk models. For example, a brief look at the intercept-only model, consider
a time series presenting the daily closing price of the Dow Jones Industrial Average over a some
period. Suppose we wish to create a regression model for this time series. But we don’t know what
factors influence the Closing Price. Neither do we want to assume any inflation, trend or seasonality
in the data set. In the absence of any assumptions about inflation, trend, seasonality or the presence of
explanatory variables, the best we can do is the intercept-only model. In the intercept-only model, all
forecasts take the value of the intercept. Some mathematical transformation (e.g., differencing, log-
ging, deflating, etc.) converts the original time series into a sequence of values, that are independent
and identically distributed. Then we can use the mean model to obtain forecasts and confidence limits
for the transformed series. We can use the mean model to obtain forecasts and confidence limits for
the transformed series. Then, we reverse the transformation to get previsions and confidence limits
for the original series. We get the mean of the outcome, e.g. expected value of the outcome, when we
do not control for anything. Another reason for doing this is that some packages require the user to
define a base model.

We do think that it is worthwhile to look at regression models without predictors to see what
they can tell us about the nature of the constant. Understanding the regression constant parameter in
these simpler models will help us to understand both the constant and the other regression coefficients
in later more complex models. In the case where there are no predictors, the equation reduces to,

yi = a+ ui i = 1, ..., n. (1)

The disadvantage of parametric modeling is the requirement that the structural model and er-
ror distribution be correctly specified. In some cases, for example, if the observations come from a
discrete distribution or the deviations from the mean have a strong dissymmetry, the hypothesis of
normality is no longer tenable. Violation of the normality assumption sometimes may be attributed to
the skewed nature of the dependent variable. The data distribution may deviate from a Gaussian dis-
tribution in multiple ways. Rather than being continuous, data may be discrete, such as integer counts
or even binomial character states. Continuous variables may deviate from normality in terms of skew-
ness (showing a long tail on one side), kurtosis (curvature leading to light or heavy tails), and even
higher-order moments. For example, measures of actuating asymmetry are distributed half-normally.
Many applications have positive response variables. Such variables usually have distributions right-
skewed. The boundary at zero limits the left tail of the distribution.

We suppose that residues ui are i.i.d.having exponential distribution E(θ−1), θ > 0 with E(u1) =
θ, V ar(u1) = θ2. The exponential probability distribution describes the probabilities with which a
random variable u takes on values, where u can only be positive. More precisely, the probability
density function of the law exponential for value u is given by

f(u) = θ−1 exp
(
−θ−1u

)
. (2)

For example, package of R contains a data set on the number of lynx caught per year in Canada
between 1821 and 1934; see also (K.S. Lim, 2020). The shape of the histogram has a decreasing
tendency, the values of the observations are all positive; it makes us think of an exponential law. We
can suppose that the observations (x1, ..., xn) with n = 114 are the realizations of random variables
X1, ..., Xn independent of exponential law E(θ) with θ > 0.

We propose to estimate the constant parameter in the intercept-only model (1), using maximum
likelihood and ordinary least square methods. We would study and compare the properties of the
obtained estimators.

Departures from normality may have several causes. For example, they may be due to outlying
values in the responses. For this, several researchers proposed to perform regression analysis using a
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model that assumes a non-Gaussian distribution for the error terms. Bangdiwala (2018) discuss the
statistical and geometric interpretation of simple linear regression models. Gaso et al. (2019) com-
pare the accuracy of two methods. Namely a simple regression method between different vegetation
indices and a time series method based on optimization. In Huber (1981) and Tiku et al. (1986),
it has been mentioned that the underlying distribution is, in most situations, basically non-normal.
Tiku et al.(1986) construct a model with a variety of bivariate non-normal distributions by using the
conditional method. Qamarul Islam et al. (2001) consider the simple linear regression model and con-
sidered several non-normal distributions for the random error, both symmetric and skew. They obtain
the modified maximum likelihood estimators of parameters. Qamarul Islam and Tiku (2004) derive
the modified maximum likelihood estimators of the parameters in multiple linear regression models
and compare them with the least-squares estimators and the Huber (1981) M -estimators. Nguyen
(2015) emphasizes problems where fuzzy data appear naturally and need to be used and analyzed
within applied statistics. In Djaballah and Tazerouti (2022) the problem of checking the linearity of a
regression relationship is addressed.

Many research focused on the broad class of elliptic distributions, particularly on the multivariate
t-distribution. For example, Zellner (1976); Sutradhar and Ali (1986); Galea et al. (2002); Diaz-
Garcia et al. (2003) investigate cases performed within the elliptic distribution family to analyze more
complex situations, such as data with missing values in the response variables, and with monotone
missing response variables. The same problem was also approached, within a Bayesian framework,
by assuming a multivariate skewed and heavy-tailed distribution for the error terms see Ferreira and
Steel (2007, 2012).

The paper is structured as follows: the estimates are presented in Section 2 as well as the finite
and asymptotic properties of the ML estimator. Section 3 provides simulations and application to real
data. Section 4 is devoted to the proofs.

2. Main Results
We will consider two estimators for a, the maximum likelihood estimator and the ordinary least

squares estimator. The least squares technique has traditionally been justified by two assumptive
arguments, it provides the maximal likelihood regression coefficients, if the errors are Gaussian and
of all unbiased linear estimators, least squares have a minimal variance. Both of these properties have
at times been adduced to call least squares the best of regression techniques. Because least squares
possess in addition, the attribute of the computational facility, this method long has reigned as the
foremost tool in reducing data to mathematically descriptive relationships. The first argument above
assumes a normal distribution of the error terms. We argue that this supposition is often unwarranted,
and we can show that significant gains in likelihood may be achieved when the regression technique
allows for the more general class of error distribution.

When the probability distribution of errors is assumed, it is possible, to obtain consistent and
efficient estimates (minimum variance) of the parameters using the maximum likelihood method.
This technique could be widely applied to non-Gaussian noise problems.

2.1. Maximum likelihood estimator
We consider likelihood based inference for the parameter a. For that, let us calculate logL(y1, ..., yn; a)

and look for the solution that maximizes this quantity.

Proposition 1 The log-likelihood of y is given by

L(y1, ..., yn, a, θ) =
1

θn
exp

(
−1

θ

n∑
i=1

(yi − a)

)
1{inf yi−a≥0}. (3)

Suppose θ known, then the estimate of a is given by

âmle = inf
1≤i≤n

yi. (4)
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We have

Corollary 1 If θ is unknown, it can be estimate by

θ̂ = y − inf
1≤i≤n

yi. (5)

The distribution of âmle: it is helpful to know the law of an estimator. It allows us to calculate the
characteristics of the estimator and construct a confidence interval for the parameter. In some cases,
that distribution can be determined directly from observed random variables law. The distribution
function of âmle is:

Fâmle
(t) = P ( inf

1≤i≤n
yi ≤ t) = 1− P ( inf

1≤i≤n
yi ≥ t)

= 1−
n∏

i=1

P (yi ≥ t)

= 1− [1− FY (t)]
n
= 1−

(
e−

(t−a)
θ 1{(t−a)≥0})

)n
= 1− e−n

(t−a)
θ 1{t≥a}.

From where

fâmle
(t) =

n

θ
exp

(
−n(t− a)

θ

)
1{t>a}. (6)

It’s the exponential distribution Exp(nθ ).
An unknown parameter can have more than one estimator. When we use point estimates, we

want them to have certain properties. These properties are important in choosing the best estimator
for the parameter, that is, the one that comes closest to the true parameter.

The bias of âmle is defined as E (âmle)− a. It is the distance between the average of collection
estimates and the single parameter being estimated. The bias also is the expected value of the error,
since E (âmle) − a = E (âmle − a). The ideal situation is to have an estimate, unbiased, with low
variance, and with few outliers.

2.2. Expectation and variance of âmle

We calculate expectation and variance of âmle.

Mean: knowing that âmle can be written as âmle = Z + a, where Z follows the law Exp(nθ ), we
deduce that

E(âmle) = EZ + a =
θ

n
+ a. (7)

It is therefore, obvious that âmle is a biased estimator of a. The bias of âmle is θ
n tends to 0

when n → ∞, we deduce that âmle is asymptotically unbiased.

Variance: the variance of âmle is simply the expected value of the squared sampling deviations; that
is,

V ar (âmle) = E (âmle − E (âmle))
2
=

θ2

n2
. (8)

The variance of âmle is θ2

n2 . The variance V ar(âmle) tends to 0 when n tends to ∞.

Every time a sample is taken, we lose some part of the information about the population. That
inevitably results in an error in the estimate. Therefore, if we want a very high level of precision, we
must take a sample of a size sufficient to extract sufficient information from the population to estimate
with the desired accuracy.
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2.3. The Mean squared error (MSE)
It is used to indicate how far, on average, the collection of estimates is from the single parameter

being estimated. If the MSE is relatively low, then the estimators are likely more highly clustered
(than highly dispersed) around the a.

MSE(âmle) = E (âmle − a)
2

= (biais (âmle))
2
+ V ar (âmle)

=

(
θ

n

)2

+
θ2

n2

=
2θ2

n2
→ 0 when n → ∞.

Note the difference between MSE and variance.
A consistent sequence of estimators is a sequence of estimators that converge in probability to

the quantity being estimated as the sample size grows without bound. In other words, increasing the
sample size increases the likelihood that the estimator is close to the population parameter. Mathe-
matically, a sequence of estimators {tn;n ≥ 0} is a consistent estimator for parameter a if and only
if, for all ε > 0, no matter how small we have

lim
n→∞

P (|tn − a| > ε) = 0. (9)

The consistency defined above may be called weak consistency. The sequence is strongly con-
sistent, if it converges almost surely to the true value.

Proposition 2 Let
y(1) = inf

1≤i≤n
(yi).

We have
√
n(y(1) − a)→0 in probability when n → ∞.

This shows the consistency of the estimator with

y(1) = âmle = tn

and |tn − a| = y(1) − a because y(1) > a. A convergent estimator deviates from the parameter with
a low probability, if the sample size is large enough.

Lemma 1 We prove that 1
logny(1) → θ in probability, n → ∞.

Let δ > 0, this amounts to showing that

P

(∣∣∣∣ 1

log n
y(1) − θ

∣∣∣∣ > δ

)
→0 when n → ∞. (10)

One of the principal uses of the idea of an asymptotic distribution is in providing approxima-
tions to the cumulative distribution functions of statistical estimators. An asymptotical distribution
estimator is a consistent estimator whose distribution around the real parameter âmle approaches
some distribution with standard deviation shrinking in proportion to n as the sample size n grows. In
the asymptotic analysis of the estimators, it is the main challenge is to find the asymptotic distribution
of the estimator. We obtain the asymptotic distribution of the maximum likelihood estimator.

The asymptotic distribution of âmle is given in the theorem below.

Theorem 1 The asymptotical distribution of âmle is given in terms of Gumbel’s distribution. We
have (

y(1) − θ log n
)
→Z in distribution (11)

when n → ∞, where the distrution of Z is defined by
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FZ(t) = 1− exp
(
−e−

t−a
θ

)
.

Thus the limiting distribution of the maximum likelihood estimator is linked with Gumbel’s dis-
tribution. Thus the limiting distribution of the maximum likelihood estimator is linked with Gumbel’s
distribution. We can use this distribution to understand the asymptotic behavior of the a. âmle.

In hydrology, Gumbel’s law is used to analyze variables, such as monthly and annual, maximum
values of daily precipitation and river flow volumes, and also to describe droughts.

A second estimator is developed for comparison.

2.4. Ordinary least squares
In statistics, ordinary least squares (OLS) is a linear least-squares method for estimating the un-

known parameters in a linear regression model. OLS method chooses the parameters by minimizing
the sum of the squares of the differences between the observed dependent variable in the given data
set and those predicted by the linear function of the independent variable. The resulting estimator
can be expressed by a simple formula, especially in the case of simple linear regression. There are
several methods for constructing an estimator; among them, the least-squares method (OLS) and the
maximum likelihood method are the most used.

Proposition 3 Assume that θ is known, the OLS estimator âols of a is y−θ, where y is the empirical
mean of yi.

Remark 1 Note that the OLS estimator of a is different from the previously determined maximum
likelihood estimator.

There is a reason why we should not use OLS, because there is a violation of the usual assump-
tions. Indeed, OLS assumes that the mismatch between what is expected and observed is E(ui) = 0.
Alas in our case E(ui) = θ.

The error term accounts for the variation in the dependent variable that the independent variables
do not explain. For the model to be unbiased, the average value of the error term must equal zero.
The OLS estimator is identical to the maximum likelihood estimator (MLE) under the normality
assumption for the error terms.

That assumption is not necessaries for the validity of the OLS method. However, if we assume
that the normality assumption does not hold, then some properties must have to be added. In that
case, we can get an OLS estimator.

The least-squares estimators are point estimates of the linear regression model parameters. How-
ever, generally, we also want to know how close those estimates might be to the reals values of
parameters.

The expectation and variance of âols are

• E (âols) = a and

• V ar(âols) =
θ2

n .

It is therefore obvious that âols is an unbiased estimator of a. The bias being equal to zero, we
deduce the MSE:

MSE(âols) = V ar (âols) =
θ2

n
. (12)

The variance V ar(âols) tends to 0 when n tends to infinity. We conclude that âols is an efficient
estimator of a. Finally, the MSE obtained for âmle tends to 0 more fast than that obtained with the
estimator âols, we conclude that the estimator âmle is better than âols.

We have established that the constant in an OLS regression model has something to do with the
mean of the response variable. In particular, in intercept-only models, the intercept is almost equal
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to the average of the response variable. If the data errors are Gaussian and independent, the OLS
estimators will be maximum likelihood estimators and will be unbiased and of minimal variance.
However, if the noise is not Gaussian, the OLS adjustment will give parameter estimates that may
be biased. Even when normality does not hold, the Gauss-Markov theorem states that the best linear
unbiased estimator of regression coefficients is still yielded by OLS estimation, so long as the errors
have expectation zero, are uncorrelated, and have equal variance.

3. Simulation Study
This section is established with the intention of examining the performance quality of the esti-

mators under study over a finite sample size n.
The simulation is conducted for a certain value of the parameter to be estimated, namely a.

3.1. Design of simulation
We generate data that fits our model as follows:

• Generate n iid random variables {εi}ni=1 from Exp(θ−1)

• yi = a+ θ + εi for all i = 1, ..., n,

where the intercept a is chosen arbitrarily.

Remark 2 The intercept a and the scale parameter θ have been appropriately chosen in order to have
a good model. Actually, the intercept would be better to be moderately and the exponential parameter
small. This helps to have a better comparison.

The Mean Square Error (MSE) is chosen to be a criterion for quantifying the performance of
our estimators. The MSE of an estimator θ̂ with respect to an unknown parameter θ is defined as

MSE
(
θ̂
)
= Eθ

(
θ̂ − θ

)2
.

3.2. Consistency results
To give an overview of the influence of the sample size n on the quality of fit, the least square

(OLS) and maximum likelihood estimators (MLE) âOLS and âMLE respectively was implemented
from Model 1 which contaminated by exponential errors with θ = 0.25. See Figure 1.

To exhibit more comparison of the influence of the sample size n on the estimation fit, the
values of MSE and Bais are computed from Model 1 and summarized in Table 1. The first column
displayed for the different values of n, the second column displayed for the results(MSE and Bias) of
âols. While the last column is for âmle.

Table 1 Simulation results: the values of the MSE (for both OLS and MLE estimators) with the
corresponding Bias

Estimators
sample size n

OLS
MSE Bias

MLE
MSE Bias

50 4.1301×10−2 0.0132 3.3325×10−4 0.1454
200 2.4581×10−3 0.0059 6.7712×10−5 0.0131
500 2.2041×10−4 0.0011 2.3865×10−6 0.0027

1000 2.4891×10−4 0.0042 3.6711×10−7 -0.0085

Remark 3 From the simulation results in Table 1 and Figure 1, we can see that the quality of fit
depends directly on the estimation method and the sample size n. Actually, the larger the sample size,
the better the quality of performance will be. Furthermore, the quality of fit declines substantially for
the Ordinary Least Squares method compared to the Maximum likelihood method but it increases
with a sufficiently large sample size.
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Figure 1 Simulation results of estimation from Model 1 for θ = 0.25 and a = 2. The red line
corresponds to the true intercept, the blue line corresponds to estimation by the Last Square Error
method, the black line corresponds to the estimation by the Maximum Likelihood Method

3.3. Asymptotic normality
In this subsection, we examine the asymptotic normality of the understudy estimators throughout

normal-probability plots. For this aim, we only consider the estimation given by the Ordinary Least
Squares method. And for better comparison this estimator was implemented here for θ = 0.25,
m = 100 iterations, and n = 50, 200, 500 and 1000. The results of this numerical implementation
are summarized in Figure 2.

Standard Normal Quantiles

-3 -2 -1 0 1 2 3

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

2.03

2.04
QQ Plot of Sample Data versus Standard Normal

(a) n = 50

Standard Normal Quantiles

-3 -2 -1 0 1 2 3

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

1.98

1.985

1.99

1.995

2

2.005

2.01

2.015

2.02
QQ Plot of Sample Data versus Standard Normal
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(c) n = 500
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(d) n = 1000

Figure 2 The normal-probability plots of the ordinary least squares estimator for n = 50 n = 200,
500 and 1000, θ = 0.25%
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Remark 4 From graphs summarised in Figure 2, we can see that for the asymptotic normality, the
estimator provides good performance for a large sample size. That indicates that the convergence in
distribution becomes better more and more along with n.

4. Implementation to The Number of Lynx in Canada
We re-examine the annual trappings of the Canadian lynx over the years 1821-1934, which have

been reported and analyzed extensively. The ”data set” R package contains those data. Figure 1
presents the corresponding histogram; from which we think that we have an exponential distribution.
In fact, it has a decreasing tendency, furthermore, the observations are all positive.

Number of Lynx Caught per Year
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Figure 3 Histogram for data of the number of lynx caught per year in Canada from 1821 to 1934
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Figure 4 Boxplot of the number of lynx caught per year in Canada from 1821 to 1934

From the graph in Figure 4, we can see that the data might contain an invariable intercept. Hence,
our goal here is to compare the adjustment of our data under the two possible models, namely:

1. The presence of the intercept: In this situation, we suppose that the data are coming from the
following model

lynxi = a+ εi for all i = 1, ..., 114 (13)

2. Ignoring the intercept: We assume that the data are from

lynxi = εi for all i = 1, ..., 114 (14)
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where lynxi stands for a number of lynx caught in the i-th year between 1821 and 1934. The
random variables {εi}114i=1 are supposed to be iid and follow an exponential distribution of shape
parameter µ to be estimated.

At this level, we are interested to estimate the exponential parameter θ and use this latter to
conclude the intercept estimator. In the situation where the intercept is considered, and from the
result in Corollary 1, we have

θ̂ :=
(
lynx− inf (lynxi)

)
= 0.00066710. (15)

While for the second model, we have

θ̂ := lynx = 0.00065018. (16)

Using the result in previous sections 2.1 and 2.2, we get

âols = 37.9919 (17)

and
âmle = 39. (18)

To provide a more clear comparison, we consider the following data

lynx′
i = lynxi − âmle for all i = 1, ..., 114. (19)

So, the aim now is to compare the adjustment of our new data and see which model explains more
clearly the number of lynx caught per year in Canada.

Quantile of the Exponential Distribution with mu=0.00066710
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Figure 5 The quantile-quantile plot of the quantiles of the sample data lynx2 versus the theoretical
quantile values from an exponential distribution with θ = 0.00066710

Remark 5 Figures 5-6 reveal that the data lynx′
i coincides better with an exponential model with an

intercept compared to a free-exponential model (ie without intercept). Hence, we can conclude that
the data set on the number of lynx caught per year in Canada on the period between 1821 and 1934
refers to an exponential model with intercept-only.

5. Conclusion
In regression, the intercept-only model has no independent variables. Thus, in the Gaussian

case, it predicts that the best estimate of the dependent variable is the overall mean. In this study,
we have considered that the distribution is not Gaussian but exponential. We have determined two
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Quantile of the Exponential Distribution with mu=0.00065018
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Figure 6 The quantile-quantile plot of the quantiles of the sample data lynx2 versus the theoretical
quantile values from an exponential distribution with θ = 0.00065018

estimators, namely the maximum likelihood estimator (MLE) and the ordinary least squares estimator
(OLS). Both techniques can be employed to construct consistent estimators. We have proved the
consistency of the two estimators and the asymptotic normality of the maximum likelihood estimator.
The second estimator was developed essentially for comparison. The estimated parameter differs
for the two methods. The advantage of the likelihood method proposed is significant, regarding its
rate of convergence. Estimation using ML in conjunction with an intercept-only model shows higher
accuracy than using an OLS estimate based on the same model. However, the implementation of
OLS method allows ease of calculation of the estimators. Even though both methods have limited
utility to estimate the parameter with high accuracy, they could be suitable for predictions. We have
illustrated the performance of the two estimators via numerical studies. The approach is implemented
to estimate the model of the number of lynx caught per year in Canada from a real data set.

References
Azais JM, Bardet JM. Le modle linaire par l’exemple: rgression, analyse de la variance et plans

d’expriences illustres avec R, SAS et Splus. Dunod; 2005.
Bangdiwala SI. Regression: simple linear. Int J Inj Control Sa. 2018; 25(1):113-115.
Djaballah-Djeddour K, Tazerouti M. Test for Linearity in Non-Parametric Regression Models. Aust

J Stat. 2015; 51(1):16-34.
Diaz-Garcia JA, Galea Rojas M, Leiva-Sanchez V. Influence diagnostics for elliptical multivariate

linear regression models. Commun Stat - Theor M. 2003; 32(3):625-641.
Ferreira JT, Steel FJ. A new class of skewed multivariate distributions with applications to regression

analysis. Stat Sinica. 2007; 505-529.
Galea M, Paula GA, Bolfarine H. Local influence in elliptical linear regression models. The Statisti-

cian. 1997; 46(1):71-79.
Gaso DV, Berger AG, Ciganda VS. Predicting wheat grain yield and spatial variability at field scale

using a simple regression or a crop model in conjunction with Landsat images. Comput Electron
Agr. 2019; 159(1): 75-83

Huber PJ. Robust Statistics. Wiley, New York. 1981.
Qamarul Islam M, Tiku ML. Multiple linear regression model under nonnormality. Commun Stat -

Theory M. 2004; 33(10):2443-2467.
Sazak HS. Regression analysis with a stochastic design variable. Int Stat Rev. 2006; 74(1): 77-88.
Sutradhar BC, Mir MA. Estimation of the parameters of a regression model with a multivariate t error

variable. Commun Stat - Theor M. 1986; 15(2):429-450.



Bouchafaa Asma et al. 359

Tiku ML, Tan WY, Balakrishnan N. Robust Inference. New York Marcel Dekker. 1986.
Tiku ML, Qamarul Islam M, Sazak HS. Estimation in bivariate nonnormal distributions with stochas-

tic variance functions. Comput Stat Data An. 2008; 52(3): 1728-1745.
Tiku ML, Islam MQ, Selcuk AS. Non-normal regression.II.Symmetric distributions. Commun Stat -

Theor M. 2001; 30(1):1021-1045.
Zellner A. Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t

error terms. J Am Stat Assoc. 1976; 71(354):400-405.
Lim KS. Canadian lynx data. Encyclopedia of Mathematics. Available from:

http://encyclopediaofmath.org/index.php?title=Canadian lynx data&oldid=46191.

Appendix

Proof of Proposition 1
Given the assumed structural model (1) and the known error distribution, the conditional distri-

bution of y can be derived. We have ui ∼Exp(θ−1) which gives by definition fu(z) =
1
θ exp

(
− z

θ

)
1{z≥0}

and Fu(z) = 1− exp
(
− z

θ

)
. The distribution function of y is thus deduced as follows:

Fy(t) = P (y ≤ t) = P (a+ u ≤ t)

= 1− exp

(
− t− a

θ

)
with t− a ≥ 0. Therefore

fy(t) =
1

θ
exp

(
− t− a

θ

)
1{t≥a}. (20)

The log-likelihood is then written

L(y1, ..., yn, a, θ) =
∏

fy(yi)

=
1

θn
exp

(
−1

θ

n∑
i=1

(yi − a)

)
1{inf yi≥a}.

Let us note

g(a) = 1
θn exp

(
− 1

θ

∑n
i=1(yi − a)

)
for every fixed θ and with a ∈ ]−∞, inf1≤i≤n yi] . The derivative of g is

g
′
(a) = 1

θn+1 exp
(
− 1

θ

∑n
i=1(yi − a)

)
.

The derivative g
′
(a) is always positive ∀θ > 0. This implies that g is increasing from −∞ to

inf yi. Consequently, the maximum likelihood estimator of a is reached in:

âmle = inf
1≤i≤n

yi. (21)

Proof of Corollary 1
To search for the global max, it suffices to maximize the function L(y1, ..., yn, a, θ) or

logL(y1, ..., yn, a, θ) with respect to θ. We place ourselves outside the case (which is of zero proba-

bility whatever the value of the parameter) where
n∑

i=1

(xi − inf1≤i≤n(xi)) = 0 (which means that all

xi are equal). Suppose that a is fixed

logL(y1, ..., yn, a, θ) = −n log θ − 1

θ

n∑
i=1

(yi − a). (22)
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Condition necessary: d logL
dθ = 0. We have

d logL
dθ = −n

θ + 1
θ2

∑n
i=1(yi − a) =⇒ nθ̂ =

∑n
i=1 yi − na =⇒ θ̂ = y − a

a is unknown, we can replace it by its estimator:

θ̂ = y − inf
1≤i≤n

yi (23)

Then we check that the second derivative at this point is negative, which ensures that the critical
point is indeed a maximum. By calculating the second derivative, we get

d2 logL

dθ2
=

n

θ2
− 2

θ3

n∑
i=1

(yi − a) (24)

⇒

n

θ̂2
− 2

θ̂3

n∑
i=1

(yi − a) = −1

θ̂

[
−n

θ̂
+

1

θ̂2

n∑
i=1

(yi − a)

]
− 1

θ̂3

n∑
i=1

(yi − a)

= − 1

θ̂3

n∑
i=1

(yi − a).

Since θ > 0 and
∑n

i=1 yi > na because all yi > a ⇒ d2 logL
dθ2 < 0.

Proof of Proposition 2
We write
P (

√
n
∣∣y(1) − a

∣∣ > δ) = P
(
|inf1≤i≤n yi − a| > δ√

n

)
and inf1≤i≤n yi ≥ a.

Then we get

P (
√
n
∣∣y(1) − a

∣∣ > δ) = P

(
inf

1≤i≤n
yi >

δ√
n
+ a

)
= 1− P

(
inf

1≤i≤n
yi ≤

δ√
n
+ a

)
= 1− Fâmv

(
δ√
n
+ a

)
= e−

√
n
θ δ

then
lim

n→∞
P (

√
n
∣∣y(1) − a

∣∣ > ε) = 0. (25)

Proof of Lemma 1

We prove (10) by splitting the event into two events

• P
(

1
logny(1) ≤ θ − δ

)
→0 when n → ∞

• P
(

1
logny(1) ≥ θ + δ

)
→0 when n → ∞
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The first is rewritten as:

P

(
1

log n
y(1) ≤ θ − δ

)
= 1− P

(
1

log n
y(1) ≥ θ − δ

)
= 1− (P (y1 ≥ (θ − δ) log n))n

= 1− (1− P (y1 ≤ (θ − δ) log n))n

= 1−
(
e−

((θ−δ) log n−a)
θ

)n
.

We assume that δ < θ.
The second is rewritten as:

P

(
1

log n
y(1) ≥ δ + θ

)
= P

(
y(1) > (δ + θ) log n

)
≤ nP (y1 > (δ + θ) log n) .

This increase by sub-additivity of P is sufficient, and

nP (y1 > (δ + θ) log n) = n−
(
1− e−

(δ+θ) log n−a
θ

)
n

= ne−
(δ+θ) log n−a

θ = ne
a
θ e−

(δ+θ) log n
θ

= e
a
θ n− (δ+θ)

θ +1 = e
a
θ n− δ

θ .

Proof of Theorem 1
We can already predict that for n sufficiently large the expectation of âml will be close to a. This

needs to be clarified. We know that

limn→∞(1− e−a

n )n = e−e−a

.

The sequence of general term y(1) − θ log n converges in distribution towards a limit that one
seeks to determine.

P (y(1) − θ log n ≤ t) = P (y(1) ≤ t+ θ log n)

= 1− (P (y(1) ≥ t+ θ log n))n

= 1−
(
1− e−

(t+θ log n−a)
θ

)n
= 1−

(
1− e−

t−a
θ

n

)n

.

We know that

limn→∞

(
1− e−

t−a
θ

n

)n

= exp
(
−e−

t−a
θ

)
= G( t−a

θ ),

where G is the distribution function of Gumbel’s law.
The cumulative distribution function of the Gumbel distribution is :

FGumbel(x;µ, β) = exp

(
−e

(
µ− x

β

))
. (26)

The standard Gumbel distribution is the case where µ = 0 et β = 1. The Gumbel distribution is
used to model the distribution of the maximum (or the minimum) of a number of samples of various
distributions. We conclude that, when n → ∞

y(1) − θ log n→Z in distribution, (27)

where the distribution of Z is defined by
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P (Z ≥ t) = 1− FZ(t) = exp
(
−e−

t−a
θ

)
= FGumbel(a; t, θ).

Gumbel has shown that the maximum value in a sample of a random variable following an
exponential distribution minus the logarithm of the sample size approaches the Gumbel distribution
closer with increasing sample size.

Proof of Proposition 3
The error term accounts for the variation in the dependent variable that the independent variables

do not explain. For the model to be unbiased, the average value of the error term must equal zero.
Let yi = a+ui = a+ θ+ εi which implies Eεi = 0 and E (Yi) = a+ θ. Note y = 1

n

∑n
i=1 yi.

The OLS method consists of minimizing:

S(a) =

n∑
i=1

ε2i =

n∑
i=1

(yi − a− θ)2. (28)

The solution to the problem of minimization (28), denoted α̂ols, is given by

âols =
1

n

n∑
i=1

yi − θ. (29)

Let’s calculate the expectation and variance of âols

• E (âols) = E
(
1
n

∑n
i=1 yi − θ

)
= 1

n

∑n
i=1 Eyi − θ = a

• V ar(âols) = V ar(y) = θ2

n .
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