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Abstract

In this paper, we concentrate on statistical inference for the regression model with skew normal
(SN) distributed error terms under type-1I censoring. Iteratively reweighting algorithm (IRA) is used
for computing maximum likelihood (ML) estimates of the model parameters, see Arslan (2009). We
also use the non-iterative modified maximum likelihood (MML) methodology to obtain the explicit
estimators of the model parameters, see Tiku (1967). Additionally, confidence intervals for the model
parameters are constructed based on the proposed estimators. Monte Carlo simulation study is used
to compare the efficiencies of the ML and MML estimators, and also the performances of the corre-
sponding confidence intervals.

Keywords: Reliability, modified maximum likelihood estimators, Monte Carlo simulation, skew-
ness, censored samples.

1. Introduction

In most of the studies in engineering, the aim is to get reliability information quickly see Escobar
and Meeker (2006). Test units of a products are subjected to higher levels of one or more accelerating
variables (such as temperature, voltage, pressure, vibration, loads or some combinations of them) than
the usual levels, see Nelson (1972, 1975), Kececioglu and Jacks (1984). The results of this procedures
are used to make prediction on life of units at use condition see Escobar and Meeker (2006).

A simple, commonly used model to define relationship between failure time and accelerating
variables is the regression see Newby (1988), Escobar and Meeker (2006) and Kalbfleisch and Pren-
tice (2011). This approach is very appealing because of its direct physical interpretation see Cox and
Oakes (1984) and Reid (1994).

Consider the following regression model

Y =6 + 01z + ¢, (1

where Y is the response variable related to accelerating variable x, y and 61 are unknown regression
parameters and € is the independent and identically distributed (iid) random error term with mean 0
and variance o2, see Rousseeuw and Leroy (2005) and Islam and Tiku (2010).

According to the type of accelerating variable, there are some widely used life-stress relationship
models. For example, Arrhenius and Eyring life-stress relationships are used when a single accelerat-
ing variable is temperature. Inverse power law (IPL) life-stress relationship is commonly used when
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the accelerating variable is a single, non-thermal stress (such as voltage, vibration, loading etc.) The
combination model is considered for testing combined effect of thermal and non-thermal stresses. For
instance, if both temperature and voltage are considered as accelerating variables, Arrhenius model
and the IPL model can be combined to obtain a new model, see Kececioglu and Jacks (1984) for more
details.

For an illustration, IPL relationship between the failure time 7 and accelerating variable V' is
defined by

T=A/VM 2)

where A and -, are positive parameters characteristic of the product, see Kececioglu and Jacks
(1984). IPL relationship is linearized using the logarithm of (2) as

In(r) = In(A) — v In(V), 3)

where Y = In(7), 2 = In(V) is an accelerating variable, 8y = In(A) and §; = 7, are the regression
model parameters see Chan et al.(2008) and Nelson (2009).

There exist several studies on modeling life time data using the regression model in the literature.
Wei (1992) reviewed some linear regression methods for analyzing failure time observations and
stated that this approach had a physical interpretation and could be useful alternative to the Cox
model in survival analysis. Lawless (1998) used parametric models to represent the distributions of
lifetimes, and their relationship to accelerating variables. Chan et al. (2008) proposed estimators for
regression parameters by using IPL relationship under type-II censoring when the failure time has a
Weibull distribution. They also obtained confidence intervals based on the proposed estimators.

In this paper, we obtain the estimators of regression parameters by using maximum likelihood
(ML) and modified maximum likelihood (MML) methodologies under type-II censoring when the
distribution of the error terms is Azzalini (1985)’s skew normal (SN). To the best of our knowledge,
this is the first study in estimating parameters of the regression model with SN distributed error terms
under type-II censoring.

To estimate parameters of the regression model, ML estimation method is widely used because
of its optimal properties under regularity conditions. However, ML equations cannot be solved an-
alytically when the distribution of the error terms is nonnormal. For this reason, iterative methods
are used to derive ML estimates of the unknown regression parameters. In our study, iteratively
reweighting algorithm (IRA) is used to obtain ML estimates of regression parameters. SN distribu-
tion is a skew scale mixture of normal distribution therefore IRA is equivalent to EM type algorithm
and its convergence is guarenteed, see Arrellano-Valle et al. (2005), Lachos et al. (2007), Xie et
al. (2009), Arslan (2009), Lachos et al. (2010) and Garay et al. (2014). Also, we obtain explicit
estimators of model parameters by using a non-iterative methodology known as modified maximum
likelihood (MML) as an alternative approach see Tiku (1967,1968) for more details. In the previous
works on the MML estimators, it is shown that they are asymptotically equivalent to ML estimators
and have high efficiencies even for small sample sizes, see Senoglu and Tiku (2001) and Tiku and
Suresh (1992).

In practice, failure time has often a skew distribution see Cox and Oakes (1984). For this reason,
using SN is convenient for modeling failure time data since it provides flexibility for modeling the data
according to different values of skewness parameter. Lachos et al.(2007) presented EM algorithms for
estimating parameters of SN regression model. Cancho et al. (2010) made inference on SN nonlinear
regression models following both a classical and Bayesian approach.

The rest of the paper is structured as follows. SN distribution is introduced in Section 2. In
Section 3, the ML and MML estimators of the regression model parameters are derived, respectively.
Confidence intervals based on the proposed estimators for the model parameters are presented in
Section 4. Performances of the proposed estimators are compared via Monte Carlo simulation study
in Section 5. Coverage probabilities and average lengths of the confidence intervals are also compared
in Section 5. Concluding remarks are given in Section 6.
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2. Skew-Normal Distribution

A random variable Z is said to have a SN distribution with skewness parameter ), if its proba-
bility density function (pdf) is given by

d(z;A) = 2¢(2)P(Az), —00 < 2 < 0 4)

where ¢(z) and ®(z) denote the pdf of the standard normal and the corresponding cumulative distri-
bution function (cdf), respectively. A random variable Z having SN distribution with parameter A is
denoted by Z ~ SN (\) see Azzalini (1985, 1986) for more details. The following Owen’s function
(T)

o rAs
(0= [ [ aldras )
z 0
is used to get the cdf of SN ()) as
F(z;0) = ®(\) — 2T (z; N). (6)

It may be noted that SN () reduces to the well known standard normal distribution N(0,1)
for A = 0. Also, it converges to the half-normal density function when A — oo. For fixed A,
SN (A) is strongly unimodal. It is right skewed and left skewed for positive and negative values of \,
respectively. SN (A) distribution has also the following properties:

i I Z ~ SN(A) then —Z ~ SN(-\)
ii. If Z ~ SN () then Z2 ~ 7 see Azzalini (2005).

The moment generating function (mgf) of the random variable Z ~ SN () is given by
t2
My(t) = E[e"*] = 2exp (2> O (dt). )

where § = —2—

V14A2©
By using the mgf of the random variable Z ~ SN ()), we get the expected value E(Z) and

variance V(Z) as

2 2
E(Z)=4/=5 and V(Z)=1- =4 )
™ m
Also, the measures of skewness (1) and kurtosis () are given by

1 ‘ )\2 3/2 )\2
n= g (o) e w29 () O

Azzalini (1985) states that the maximum values of v; and ~» are about 0.995 and 0.869, respectively.
Table 1 shows the coefficients of skewness and kurtosis for some representative values of \.

Table 1 The skewness and the kurtosis values of the SN () distribution.

A 00 1.0 2.0 3.0 4.0 5.0 10 20 00
v 000 0.14 045 067 078 0.85 096 0.99 0.995
v2 3.00 3.06 331 351 363 371 382 386 3.869

According to Table 1, it is obvious that the skewness and kurtosis values of the SN ()\) distribu-
tion increase as A increases. Skewness values given in Table 1 are calculated for positive values of \.
It should be noted that they take exactly the same values but with negative signs for the negative val-
ues of )\, see Celik et al. (2015). Some extensions of this distribution can be found in Martinez-Florez
et al. (2009) and Pereira et al. (2012).
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3. Estimation

In this section, we obtain the estimators of the regression parameters by using the ML and the
MML methodologies, see Gedik-Balay (2014).

3.1. Maximum likelihood estimation

We consider the regression model with type-II censoring extensively used to specify the acceler-
ating variable effects on failure time see Newby (1988) and Kalbfleisch and Prentice (2011). Suppose
that nj units are tested at a single accelerating variable xj, for K = 1,...,m and k denote the levels
of accelerating variable. Under type-II censoring, s; largest units are removed from the ordered val-
ues, in other words Y1.n, < Y2:n, < ... < YUny—si:ny, OUL Of 1, values are observed. The likelihood
function for the regression model with SN (\) distributed error terms under type-II censoring is given
by

m N —Sk
L= H { [1 - F(an—sk:nk [ H ¢ Zi: nk (Azznk)‘| } (10)
k=1
where z;.,, = M, Zng—spine = w and ¢(.) is the pdf of the standard

normal distribution, as mentloned before.
Then the corresponding log-likelihood (InL) function is obtained as shown below

L= selnfl = F (oo 4D S {m(z) ~In(0) — 5 In(2m) — 322, +In(® (Azimk))} ,

k=1 1i=1
1D
The ML estimators of the unknown parameters 6, 61 and o are obtained by differentiating the
InL function with respect to the parameters of interest and setting them equal to zero as follows:

8lnL 1 m MNk—Sk m Nk —Sk m
90 = - [Z Z Zing )\Z Z gl iy +Zsk92 Zng—sp: nk)‘| =0
0 S o k=1 i=1
alnL 1 m MNp—Sgk m MNp—Sk
LI [z SFETEE) D) SFVIEHRESD ST FURC
! S e k=1 i=1
and
alnL 1 m MNkp—Sk m Nk—Sk
py ; —n—i—z Z Z'Lnk_)\z Z Zznkgl Zznk Zskznk Skt nkQQ(an Skt nk)
k=1 1i=1 k=1 i=1

where g1(z) = g((’)\\?), g2(2) = 155()2) andn = Y ;" (ny — si). Since the terms as g1 (2;.,, ) and

92(2n,, —s,:n,, ) are intractable, then the equations given in (12) cannot be solved analytically. For this
reason, some iterative procedure must be employed. In this study, we provide IRA to compute the
ML estimates of the model parameters for the reason given in Section 1.
The steps of IRA
Step 1: Start with initial values 9(()0), 950), o for 6y, 6,, 0. In this study, we

use LS estimates of regression parameters as initial values.

Step 2: Use Gém), 9§m) and o™ form = 0, 1,2, 3, ..., to calculate the values of

gim) (Zznk) and ggm) (an—sk:nk )

Step 3: Solve the following equations

9(()m+1) =7 9§m)f . 0_(7;1)7 and 0§m+1) - K — D(m)o_(rn)
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to calculate the new estimates é(()m), é§m> and 6(™), Here,

K Yot ok (@ — T) (Yirm, — T) pim) — D (@ — f)(%(cm) —5m)
dohe1 2oimy (e —T)? 7 Z?:l(m’f - ) 7
onery B VBT ZAWO
U =

2A(m)
where
A(m) :TL*AZBSLT) Sking Z gl Zlnk)+zskgém)(2nk*5kink B£L7:> Sping Z Bf}T Skt ”k ’
— — k=1
m Mp—Ssg ( ng—Sk , nE—Sk (
B™ =AY 3" o™z ) AL, — stz (Zn—siomi) D Al + 2ZBW e 2 AL
k=1 =1 =1 i=1
ng—Sk
= Y (Al
i=1
Nk —Sk
and ’V(m) Z ggm)(zi:nk) - Skgém)('znk*smnk,)?
i=1
Ai:nk = (yznk - g) - K(LUk - f); Bnkfsk'nk = D(xk - f) + ’Y(m)a
y= L it yimk, T = Dz Xt and ¥ = 7221:1 Y
n n n

Step 4: Stop the iterations when the conditions |éém+1) - éém)| <e€,

6D — 40| < ¢ and |6(m*+D) — 5(m)| < ¢ are hold simultancously.
Here, € is a predetermined small constant.

3.2. Modified Maximum Likelihood Estimator

We use Tiku (1967)’s MML methodology to obtain the explicit solutions of the likelihood equa-
tions in (12), see Tiku (1967, 1968). Based on MML methodology, intractable terms g; (z;.,,, ) and
92(2n,, —s,:n,, ) are linearized by using the first two terms of Taylor series expansion around the ex-
pected values of the order statistics i.e., tin, = E(2im, ) and tn, —s,:n, = E(Zn,—spmy)s TESPEC-
tively. Linearized forms of the functions g; (z;.n, ) and g2(2zn,, —s,:n, ) are given below:

g1 (Zi:nk) =1 — Blizi:nk and 92(an—sk:nk) = Qig; — 62iznk—sk:nk- (13)
Here,
A2tznk¢()\tznk)¢(Atznk) A¢( 7: nk) (;b()‘tznk)
ﬂll - (I)()\tznk) ) Q4 = m + tz:nkﬁlu

! tng,—spn tng—sin 2 tng—sin
f( k—Sk: k) + f( k—Sk: k) Qg; = f( k—Sk* k) )]*tnk—sk:nkﬂm-

[1 - F(tnk_sk:nk)] [1 - F<tnk_5k5nk)]2’ [1 - F(tnk—Sk:nk

We obtain approximate values of ¢;.,,, and ¢, _,.n, by solving the following equations

Bai =

‘”k t”k*"‘ki"k
N — Sk
/ F(zim,) dz— and / F(zny—spimy) dz = n’“ka, (14)

respectively. The modified likelihood equations 8};},0’:*, ag;f* and alggL* are obtained by replacing

the intractable terms g1 (2;.n, ) and g2(zn, —s,:n, ) With the corresponding linear approximations in




552 Thailand Statistician, 2024; 22(3): 547-564

(13). Solutions of the modified likelihood equations with respect to the unknown parameters are the
following MML estimators of the regression parameters

A . —B+ VB2 —4AC
0p=a6+b, 6i=c6+d and 6= + oA (15)
where A = Z(nk — Sk)
k=1
m
B = Z{_Sk[ynk—sk:nk - (b + d-rk)][ank—sk:nk - ﬁnk—sk:nk (Cl + C.I?k)]
k=1
NEp—Sk
+ Z [yi:n;C —(b+ dxk)][)‘ai:nk + (1 + )‘ﬁi:nk)(a + ka)]}v
i=1
C=- Z[Skﬂnk—skink [y"k—sk:nk - (b + dxk)]Z
k=1
nE—Sk
+ Z (14 ABizn ) [Yizny, — (b + dmk)]z]'
i=1
Here,
o= Doy Yo D ohey Tha, — Doy TRYR D g Tiak b= Dohe1 Ak Do, zhay — Dher ThAR Dyl ThAk
Doney Trak >y ak — (Ol wrak)? Db Thak Doy ak — (3041, Trak)? 7

o= Doy @k Doy TRk — 30 Ap DL Tk d = Doy @k Doy TRVl — Dot Y DOt Thak

ohe Thak Doy ak — (0L mear)? Dok Thak >y ar — (304, Teak)?
and
Nk —Sk Nk —Sk

ap = SkﬂZi + Z (1 + )\6172)7 Yk = 3k52iynk75k:nk + Z (]- + )\Blz)yznw

i=1 i=1

Ng—Sk
Ak = SpQio; — A Z 1.

1=1

MML estimators are asymptotically equivalent to the ML estimators, therefore, under regularity
conditions, they are fully efficient. Also, a remarkable property of MML methodology is that it gives
highly efficient estimator even for small sample cases see Bhattacharyya (1985) and Vaughan and
Tiku (2000).

4. Confidence Intervals for the Regression Parameters

In this section, we construct confidence intervals (CIs) for the regression parameters ¢y and 6,
based on the ML and MML estimators. First, we need to evaluate the accuracy of the standard normal
N(0, 1) distribution to the percentage points of the following test statistics,

éOVJL[L él,]V[L
21 = T zZ9 = B N
Va?“(eoyML) VGT(HI,ML)
- fo.nmr __ Oimmr (16)

——, % =
Var(fo,mmr) Var(01 mmr)
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where éi’ M and él vy are the ML and MML estimators of the parameter 6;, (i = 0, 1), re-
spectively. Variances given in the denominator of the test statistics are computed via Monte Carlo
simulation study. In the computation of the simulated variances, following equality is used.

T n. A 2
Var(6) = —Zi:ﬁ‘l 2 a7

Here, é, is the estimate of the parameter 6 at the «th iteration and r is the number of Monte Carlo
runs. 6 denotes the mean of 6 and it is shown mathematically as follows:

j— Zi=l

r

(18)

We therefore simulate the values of the probabilities P{|z1| > 2z 2}, P{|22| > 2za/2}
P{|z3] > 2z4/2} and P{|z4| > 2,/2}. Here z,/5 is the 100(1 — «/2) percent point of the standard
normal N (0, 1) distribution. Simulation results are given in Tables 2-3. Type I errors of the test
statistics given in (16) are computed for A = 0.7 and k& = 2 just for an illustration.

Table 2 Simulated type I errors of 21 and z3, o = 0.050

S1 0 1 1 2 2 2 3 3 3 3

S2 0 0 1 0 1 2 0 1 2 3
ny = ng = 10

1) 0.053 0.055 0.053 0.054 0.051 0.050 0.050 0.050 0.050 0.053

(ii) 0.053 0.054 0.055 0.054 0.054 0.050 0.055 0.056 0.052 0.053
ny =ng =15

1) 0.049 0.050 0.051 0.050 0.049 0.056 0.049 0.049 0.049 0.048

(i1) 0.050 0.050 0.050 0.051 0.050 0.057 0.051 0.048 0.046 0.044
ny =ng = 20

1) 0.051 0.051 0.048 0.047 0.048 0.050 0.048 0.049 0.050 0.050

(ii) 0.051 0.051 0.050 0.051 0.049 0.051 0.049 0.050 0.051 0.051

(1) Simulated type I errors of z1
(i) Simulated type I errors of z3
Table 3 Simulated type I errors of 25 and z4, & = 0.050

S1 0 1 1 2 2 2 3 3 3 3

S2 0 0 1 0 1 2 0 1 2 3
ny = nNg = 10

1) 0.054 0.053 0.054 0.054 0.055 0.055 0.053 0.056 0.055 0.054

(ii) 0.054 0.052 0.055 0.055 0.057 0.058 0.051 0.055 0.055 0.056
ny =ng = 15

1) 0.051 0.049 0.048 0.050 0.050 0.048 0.049 0.049 0.048 0.048

(ii) 0.050 0.052 0.049 0.049 0.049 0.050 0.049 0.050 0.052 0.053
ny =ng =20

1) 0.049 0.048 0.048 0.048 0.045 0.047 0.048 0.046 0.047 0.046

(ii) 0.050 0.048 0.049 0.049 0.047 0.044 0.046 0.047 0.046 0.046

(i) Simulated type I errors of zo
(ii) Simulated type I errors of z4

Type I errors have been computed for some other A values (such as 0, 0.4 and 1) and have been
found very close to the nominal level & = 0.050. Therefore, we did not reproduce them for the
sake of brevity. So it is concluded from Tables 2-3 that test statistics based on the ML and the MML
estimators provide accurate approximations to the standard normal N (0, 1) distribution. Based on
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these findings, CIs for regression parameters 6y and 6; based on ML estimators are constructed as

follows:
CI(onz) = (Bo,arr — Zaj21/ Var(@o,nr), Oo,nr + Za/2\/ Var(fo,mr)). (19)
CI(0rprr) = (Brarr — Za/2\/ Var(0i, ), 01,00r + Za /2 Var(0i,mr)),

respectively. Corresponding Cls for 6 and 6, based on MML estimators are constructed in a similar

manner as shown below:
CIBomnir) = Bonimir — Za/21/ Var(Bo, ), Oo nvinrr + Za )2\ Var(fomar)), 20)
)

),
CI(01. ) = By arnir — Zaj21/ Var(y vr), 01 mnr + Za/21\/ Var(0y mr

respectively.

5. Monte Carlo Simulation Study

In this section, we carried out simulation study based on 10,000 Monte Carlo runs to evaluate
the performances of the ML and MML estimators. We consider different sample sizes as n = 10, 15
and 20. The skewness parameter was determined as A = 0,0.4,0.7 and 1. We set the simulations
with various different degrees of censoring as Chan et al. Chan et al. (2008) suggest. We use two
levels accelerating variable with ;1 = —1 and x5 = 1 for the sake of brevity. We take g = 0, 0; = 1
and o = 1 in simulation setup without loss of generality.

Bias, variance, mean squares error (MSE) and deficiency (Def) criteria are used in the com-
parisons. Means and variances for 90, 91 and ¢ are obtained using the equalities in (18) and (17),
respectively. Bias is defined for 6 as shown below:

Bias(0) = E(0) — 0. (21)

MSE is a well-known and widely-used criterion in the literature for comparing estimators with respect
to their efficiency. MSE for the estimator 6 is obtained by using following equality

MSE() = E(6 — 0)%. (22)

Def criteria is also used to compare the joint efficiencies of the estimators 6o, 61 and 6. It is formu-
lated as follows

Def = MSE(6y) + MSE(0,) + MSE(5). (23)

See Tables 4-7 for the simulated means, variances, MSEs and Def values for the ML and MML
estimators of the parameters 6, 6; and o.

As can be seen from Tables 4-7, the ML estimators show superior performance with smaller bias
than the corresponding MML estimators when the sample size is small. For the large sample sizes
and small proportion of censoring, the ML and MML estimators have more or less the same bias
in most of the cases. Besides, as we expected when the skewness parameter increases, biases of all
estimators increase as well. The ML estimators of the parameters 6, #; and ¢ are more efficient than
the MML estimators with small MSE values for A = 0 and n = 10, 15. However, efficiencies of the
ML and MML estimators are very close to each other when n = 20.

The MML estimator of 6, shows better performance than the corresponding ML estimator in
terms of the MSE criterion for A = 0.4 and A = 0.7. This statement is also true for A = 1 when the
proportion of censoring is (s1, s2) = (2,2),(3,2),(3,3) and n = 10, 15. For A = 1 and n = 20, the
MML estimator of 6y shows the best performance for all censoring schemes.
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Table 4 Means, vgriances andAMSEs for the AML and MMIAJ estimators Aof 0y, 641 andAa;
(A = 0); (i)Mean(0y), (i4)Var(by), (i1d) MSE(y),(iv)Mean(61), (v)Var(6:), (vi)MSE(6,),
(vii) Mean(5), (viii)Var(6), (ix) MSE(5), (z)Def

[6)) (i1) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

S1  S2 ny =n2 = 10
0 0 ML 0.0027 0.0506  0.0506 0.9960 0.0490 0.0491 0.9938 0.0271 0.0271 0.1268
MML 0.0027  0.0506  0.0506 0.9960 0.0490 0.0491 0.9938 0.0271 0.0271 0.1268
1 o ML -0.0715  0.0516  0.0568 1.0702  0.0505 0.0555 0.9472 0.0273 0.0301 0.1423
MML -0.0738  0.0515 0.0569 1.1534 0.0516 0.0751 09402 0.0268 0.0304 0.1624
L ML -0.1531  0.0530 0.0765 0.9924 0.0507 0.0508 0.8822 0.0253 0.0391 0.1664
MML -0.1537  0.0528 0.0765 0.9935 0.0533  0.0534 0.8689 0.0243  0.0415 0.1713
2 0 ML -0.1380  0.0536  0.0726  1.1212  0.0530 0.0677 0.9278  0.0290  0.0343  0.1745
MML -0.1495  0.0539 0.0763 1.3178 0.0554 0.1564 09103 0.0279 0.0360  0.2687
2 1 ML -0.2208  0.0541  0.1028 1.0489 0.0537 0.0561 0.8580 0.0269  0.0471  0.2060
MML -0.2262  0.0543  0.1055 1.1544 0.0560 0.0799 0.8335 0.0253 0.0531  0.2385
2 o ML -0.2765  0.0551  0.1315 0.9967 0.0556 0.0556 0.8348 0.0285 0.0558  0.2430
MML -0.2821  0.0558  0.1354  0.9966 0.0584  0.0584 0.7968 0.0260 0.0673  0.2611
30 ML -0.1567  0.0558  0.0804 1.1400 0.0563  0.0759 0.9445 0.0325 0.0356  0.1919
MML -0.1936  0.0571  0.0946 1.5043 0.0591 0.3135 09095 0.0305 0.0387 0.4468
3 ML -0.2453  0.0560 0.1162  1.0739 0.0574 0.0628 0.8692 0.0303  0.0474  0.2265
MML -0.2698  0.0573  0.1301  1.3290 0.0587 0.1669  0.8247 0.0274 0.0582  0.3552
3 9 ML -0.3024  0.0568  0.1483  1.0241  0.0593  0.0599 0.8447 0.0324  0.0565 0.2646
MML -0.3227  0.0588 0.1629  1.1661 0.0603  0.0879 0.7824  0.0280 0.0754  0.3263
3 3 ML -0.3261  0.0583  0.1647  0.9961 0.0623  0.0623 0.8582  0.0374 0.0576  0.2845
MML -0.3593  0.0620  0.1911  0.9960 0.0622  0.0622 0.7626  0.0301  0.0865  0.3399

$1 82 nmi1=mn2=15
0 0 ML 0.0031 0.0301  0.0301 0.9981 0.0326 0.0326 0.9890 0.0181 0.0182  0.0809
MML 0.0031  0.0301 0.0301 0.9981 0.0326 0.0326 0.9890 0.0181 0.0182  0.0809
1 o ML -0.0536  0.0304 0.0333 1.0549 0.0332 0.0362 09481 0.0179 0.0206  0.0900
MML -0.0543  0.0304 0.0333 1.1054 0.0339  0.0450 0.9444 0.0176  0.0207  0.0991
11 ML -0.1117  0.0310 0.0435 0.9983 0.0334 0.0334 0.9009 0.0172 0.0270 0.1038
MML -0.1115  0.0309  0.0433  0.9985 0.0346 0.0346  0.8941 0.0168  0.0280  0.1060
2 0 ML -0.0954  0.0309 0.0400 1.0966 0.0337 0.0430 0.9334 0.0185 0.0230 0.1059
MML -0.0986  0.0308 0.0405 1.2120 0.0351  0.0801 0.9243  0.0180  0.0238  0.1444
2] ML -0.1552  0.0314  0.0555 1.0411  0.0339 0.0355 0.8809 0.0176  0.0318  0.1228
MML -0.1559  0.0313  0.0556  1.1029 0.0356  0.0462 0.8689 0.0170  0.0342  0.1360
2 2 ML -0.2012  0.0321 0.0726  0.9972 0.0344 0.0344 0.8556 0.0178 0.0387 0.1456
MML -0.2009  0.0320 0.0723  0.9975 0.0365 0.0365 0.8382  0.0169  0.0431  0.1519
3 0 ML -0.1265 0.0316  0.0476 1.1278  0.0344 0.0508 09318 0.0197 0.0244  0.1228
MML -0.1363  0.0316  0.0502  1.3252 0.0364 0.1422 09151 0.0189 0.0261  0.2185
30 ML -0.1887  0.0321  0.0677 1.0743  0.0347 0.0402 0.8748 0.0187 0.0344 0.1423
MML -0.1938  0.0320 0.0696  1.2124 0.0367 0.0818 0.8552 0.0177 0.0386  0.1900
3 2 ML -0.2360  0.0327  0.0884 1.0313  0.0352 0.0362 0.8467 0.0188 0.0423  0.1669
MML -0.2381  0.0326  0.0893  1.1053  0.0374 0.0485 0.8212 0.0175 0.0494 0.1873
3 3 ML -0.2728 0.0334  0.1078  0.9963  0.0359 0.0360 0.8346  0.0198  0.0471 0.1909
MML -0.2751  0.0335 0.1092 0.9964 0.0380 0.0380 0.8001 0.0179 0.0578  0.2050

81 82 ny =ng = 20
0 o ML 0.0067  0.0231  0.0231  0.9988 0.0210 0.0210 0.9914 0.0126  0.0127  0.0568
MML -0.0052  0.0232  0.0232  0.9989 0.0216  0.0216 1.0320 0.0137 0.0147  0.0595
1 o ML -0.0387  0.0264 0.0279  1.0447 0.0244 0.0264 09561 0.0125 0.0144  0.0687
MML -0.0390 0.0263  0.0278 1.0807 0.0248 0.0313 0.9537 0.0124 0.0145 0.0736
1 ML -0.0857  0.0265 0.0339 0.9986 0.0247 0.0247 09151 0.0118 0.0190  0.0775
MML -0.0855 0.0264 0.0337 0.9986 0.0254 0.0254 09108 0.0116 0.0195 0.0787
20 ML -0.0744  0.0265 0.0321 1.0804 0.0247 0.0312 09395 0.0130 0.0166  0.0799
MML -0.0758  0.0264  0.0322 1.1609  0.0254 0.0513 0.9337 0.0127 0.0171  0.1006
s ML -0.1224  0.0267 0.0417 1.0349 0.0250 0.0262 0.8949 0.0121 0.0231  0.0910
MML -0.1224  0.0265 0.0415 1.0777 0.0260 0.0320 0.8873 0.0118 0.0245  0.0980
2 2 ML -0.1601  0.0269  0.0525 0.9985 0.0253 0.0253 0.8717 0.0122  0.0286  0.1065
MML -0.1594  0.0268 0.0522 0.9986 0.0266 0.0266 0.8611 0.0117 0.0310 0.1098
30 ML -0.1036  0.0268  0.0375 1.1096  0.0252 0.0372 09326 0.0136  0.0182  0.0929
MML -0.1076  0.0267  0.0383 1.2433  0.0261 0.0853  0.9222 0.0132 0.0193 0.1429
30 ML -0.1528  0.0269  0.0503  1.0650 0.0254 0.0297 0.8848 0.0126  0.0259  0.1058
MML -0.1544  0.0268  0.0506 1.1582  0.0266 0.0517 0.8729 0.0121 0.0283  0.1306
3 9 ML -0.1913  0.0272 0.0638 1.0290  0.0258 0.0266  0.8593 0.0126  0.0324  0.1228
MML -0.1911  0.0270  0.0636 1.0783  0.0272 0.0333 0.8444 0.0120 0.0362  0.1331
3 3 ML -0.2234  0.0275 0.0774 0.9983  0.0262  0.0262 0.8450 0.0129  0.0369  0.1405

MML -0.2227  0.0274  0.0772  0.9982  0.0279 0.0279 0.8255 0.0121  0.0426  0.1476
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Table 5 Means, vaAriances and MSES for the ML and MMLA estimators Aof 0y, 641 andA o,
(A =0.4); (i1)Mean(0y), (i1)Var(6y), (itd) M SE(y),(iv)Mean(61), (v)Var(6y), (vi)MSE(6,),
(vii) Mean(5), (viii)Var(6), (ix) MSE(5), (z)Def

@) 1) (i) @v) W) i) (vii) (viii) (x) x)

81 82 ny =ng = 10
0 0 ML -0.0162  0.0449  0.0452 1.0049 0.0431 0.0431 1.0023  0.0298  0.0298  0.1181
MML -0.0280  0.0451  0.0459 1.0052 0.0444  0.0444 1.0411 0.0322 0.0339 0.1242
1 o ML -0.0652  0.0496  0.0539 1.0682 0.0436  0.0482 0.9773  0.0290 0.0296  0.1316
MML -0.0514  0.0483  0.0509 1.1033  0.0436  0.0543  0.9367 0.0257 0.0297  0.1349
1 ML -0.1210  0.0508  0.0655 0.9980 0.0440 0.0440 09154 0.0284 0.0355 0.1450
MML -0.1050  0.0489  0.0599 09712 0.0442 0.0450 0.8743  0.0244  0.0402  0.1452
2 0 ML -0.1077  0.0510 0.0626  1.1123  0.0451 0.0577 0.9716 0.0319 0.0327 0.1530
MML -0.0928  0.0486  0.0572  1.2072 0.0464 0.0893  0.9232  0.0273  0.0332  0.1797
5 ML -0.1644  0.0522  0.0792  1.0452 0.0457 0.0477 0.8992 0.0305 0.0406 0.1676
MML -0.1406  0.0491  0.0689  1.0723  0.0466  0.0518 0.8536  0.0254 0.0469  0.1676
5 9 ML -0.2086  0.0534  0.0970  0.9976  0.0471 0.0472  0.8757 0.0325 0.0480 0.1921
MML -0.2023  0.0476  0.0885 0.9516 0.0488 0.0512 0.8389  0.0295 0.0554  0.1952
30 ML -0.1287  0.0525 0.0691 1.1269 0.0475 0.0636  0.9266 0.0298  0.0352  0.1690
MML -0.1237  0.0493  0.0646  1.3137 0.0502 0.1486  0.9942  0.0363  0.0363  0.2485
3 ML -0.1890  0.0536  0.0893  1.0663 0.0484 0.0528 0.9138 0.0346  0.0420 0.1842
MML -0.1660  0.0495  0.0771  1.1736  0.0499  0.0800  0.8508  0.0276  0.0498  0.2069
3 9 ML -0.2339  0.0547  0.1094  1.0213  0.0499  0.0504 0.8867 0.0370  0.0499  0.2096
MML -0.2545  0.0515 0.1163  1.0201  0.0508 0.0512 0.9062 0.0427 0.0515 0.2191
3 3 ML -0.2570  0.0558  0.1219  0.9979 0.0522  0.0522 0.8985 0.0422 0.0525 0.2266
MML -0.2451  0.0480 0.1081  0.9237 0.0522 0.0580 0.8263  0.0348  0.0650 0.2312

S1  S2 ny =ng =15
0 0 ML 0.0028  0.0300 0.0300 1.0028 0.0295 0.0295 09882 0.0182 0.0184 0.0778
MML -0.0090 0.0301 0.0302 1.0028  0.0304 0.0304 1.0279 0.0197 0.0205  0.0811
1 o ML -0.0502  0.0306 0.0331 1.0556 0.0307 0.0338 0.9870 0.0194 0.0196 0.0864
MML -0.0368  0.0300 0.0313 1.0729 0.0304 0.0357 0.9467 0.0173  0.0201  0.0871
11 ML -0.0907  0.0311  0.0394 1.0028 0.0312 0.0312 09387 0.0186 0.0224  0.0929
MML -0.0765 0.0303  0.0362 0.9817 0.0311 0.0314 0.8988 0.0163  0.0265  0.0941
2 0 ML -0.0850  0.0311 0.0384 1.0947 0.0313 0.0402 09719 0.0200 0.0208  0.0994
MML -0.0687  0.0301 0.0348 1.1431 0.0316  0.0521  0.9291  0.0174  0.0225 0.1094
P ML -0.1255  0.0317  0.0475 1.0429 0.0318 0.0336 09175 0.0189 0.0257  0.1068
MML -0.1059  0.0304 0.0416  1.0509 0.0323  0.0349 0.8770 0.0161 0.0312  0.1077
2 2 ML -0.1607  0.0322  0.0581 1.0024  0.0324 0.0324 0.8915 0.0193 0.0310 0.1215
MML -0.1389  0.0306  0.0499  0.9657 0.0330 0.0342 0.8500 0.0162 0.0387  0.1228
30 ML -0.1131  0.0318  0.0446  1.1227 0.0320 0.0470 09724 0.0212 0.0220 0.1136
MML -0.0952  0.0303  0.0393 1.2126 0.0330 0.0782  0.9237 0.0180 0.0238  0.1413
301 ML -0.1545  0.0324  0.0563 1.0731 0.0325 0.0379 09129 0.0197 0.0273  0.1214
MML -0.1301  0.0306  0.0475 1.1186 0.0335 0.0475 0.8683  0.0165 0.0338  0.1288
3 2 ML -0.1959  0.0307 0.0691 1.0456 0.0290 0.0311 0.8922  0.0208 0.0324  0.1327
MML -0.1605  0.0307  0.0565 1.0327 0.0341  0.0351 0.8389 0.0164 0.0424  0.1340
3 3 ML -0.2266  0.0313  0.0827 1.0132 0.0301 0.0302 0.8800 0.0215 0.0359  0.1489
MML -0.1879  0.0308  0.0661  0.9491 0.0345 0.0371 0.8229 0.0169  0.0482  0.1515

81 82 ny =ng = 20
0 0 ML 0.0067  0.0231  0.0231  0.9988  0.0210 0.0210 0.9914 0.0126  0.0127  0.0568
MML -0.0052  0.0232  0.0232 0.9989 0.0216 0.0216 1.0320 0.0137 0.0147  0.0595
1 o ML -0.0376  0.0234  0.0249 1.0414 0.0219 0.0236  0.9964 0.0136  0.0136  0.0621
MML -0.0247  0.0231  0.0238 1.0517 0.0216 0.0242 0.9558 0.0121 0.0141  0.0621
11 ML -0.0697  0.0237  0.0286  0.9983  0.0222  0.0222 0.9545 0.0129 0.0149  0.0657
MML -0.0563  0.0232  0.0264 0.9810 0.0220 0.0223 09145 0.0113 0.0186  0.0673
20 ML -0.0661  0.0238  0.0281 1.0746 0.0223  0.0278 0.9800 0.0141  0.0145  0.0705
MML -0.0508  0.0231  0.0256  1.1041 0.0223  0.0331 0.9385 0.0123 0.0161 0.0749
P ML -0.0980  0.0240 0.0336  1.0320 0.0226  0.0236  0.9341  0.0132 0.0176  0.0748
MML -0.0809  0.0232  0.0298 1.0329 0.0227 0.0238 0.8945 0.0113 0.0225 0.0760
2 2 ML -0.1264  0.0243  0.0403  0.9980  0.0229  0.0229 0.9099 0.0132  0.0214  0.0845
MML -0.1081  0.0233  0.0350 0.9674 0.0231 0.0241 0.8701 0.0112  0.0281  0.0872
30 ML -0.0912  0.0241  0.0324 1.1014 0.0226  0.0329 0.9739 0.0149  0.0155  0.0809
MML -0.0735  0.0231  0.0285 1.1565 0.0231 0.0476  0.9297 0.0127 0.0176  0.0937
30 ML -0.1233  0.0244  0.0396  1.0599 0.0229  0.0265 0.9244 0.0138 0.0195  0.0856
MML -0.1023  0.0233  0.0337 1.0844 0.0234 0.0306 0.8834 0.0116  0.0252  0.0895
3 9 ML -0.1517  0.0246  0.0476  1.0262  0.0232  0.0239  0.8975 0.0138  0.0243  0.0958
MML -0.1281  0.0233  0.0399 1.0186 0.0238 0.0242 0.8573 0.0114 0.0318  0.0958
3 3 ML -0.1774  0.0249  0.0564 0.9976  0.0236  0.0236  0.8824  0.0141  0.0279  0.1078

MML -0.1520  0.0234  0.0465 0.9548 0.0241  0.0261 0.8410 0.0115 0.0367 0.1094
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Table 6 Means, vaAriances and MSES for the ML and MMLA estimators Aof 0y, 641 andAa;
(A=10.7); (i)Mean(6y), (it)Var(by), (iit) MSE(6y),(iv) Mean(0y), (v)Var(6y), (vi)MSE(6,),
(vit)Mean(5), (viii)Var(6), (ix) MSE(5), (x)Def

[6)) (i1) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

S1  S2 ny =n2 = 10
0 0 ML 0.0289 0.0407  0.0416  0.9997 0.0319 0.0319 09871 0.0270 0.0272  0.1006
MML 0.0598  0.0401  0.0437 1.0000 0.0373 0.0373 1.0770 0.0322 0.0381 0.1191
1 o ML -0.0095 0.0438  0.0439 1.0581 0.0337 0.0371 09423 0.0259 0.0292 0.1102
MML -0.0277  0.0444  0.0452 1.0614 0.0379 0.0417 1.0299 0.0334 0.0343 0.1212
L ML -0.0568  0.0441 0.0474 0.9436 0.0341 0.0373 0.9641 0.0330 0.0342 0.1189
MML -0.0358  0.0435 0.0448 0.9987 0.0383 0.0383 0.8813 0.0248 0.0389  0.1220
2 0 ML -0.0481  0.0447 0.0470  1.0993 0.0389 0.0487 0.9324 0.0278 0.0324  0.1282
MML -0.0446  0.0447 0.0466 1.1185 0.0361 0.0501 1.0271 0.0370 0.0378  0.1345
2 1 ML -0.0861  0.0509 0.0583 1.0031 0.0362 0.0363 0.9482 0.0358 0.0385 0.1362
MML -0.0708  0.0503  0.0554 1.0397 0.0394 0.0410 0.8651 0.0263 0.0445 0.1361
2 o ML -0.1236  0.0484  0.0637 0.9982  0.0407 0.0407 0.9215 0.0380 0.0442  0.1485
MML -0.0990 0.0473  0.0571 0.8991 0.0365 0.0467 0.8387 0.0272  0.0532  0.1569
30 ML -0.0745  0.0438  0.0493  1.1081 0.0405 0.0522 0.9384 0.0303 0.0341 0.1357
MML -0.0929  0.0440 0.0527 1.1766  0.0396 0.0707 1.0583  0.0422 0.0455 0.1689
3 ML -0.1180  0.0520 0.0659 1.0589 0.0394 0.0429 0.9681  0.0404 0.0414  0.1502
MML -0.1108  0.0516  0.0639  1.0551 0.0413 0.0443 0.8656 0.0286 0.0467  0.1548
3 9 ML -0.1527  0.0476  0.0709  0.9539 0.0394 0.0416 0.9346 0.0426  0.0469  0.1595
MML -0.1268  0.0464 0.0625 1.0165 0.0426 0.0428 0.8366  0.0296  0.0563  0.1615
3 3 ML -0.1812  0.0500  0.0829 0.9983 0.0444  0.0444 0.9440 0.0483 0.0515 0.1787
MML -0.1374  0.0482  0.0671 0.8564 0.0396 0.0603 0.8315 0.0321 0.0605 0.1878

$1 82 nmi1=mn2=15
0 0 ML -0.0056  0.0251 0.0251 1.0044 0.0175  0.0175 1.009  0.0182 0.0182  0.0609
MML 0.0407  0.0279 0.0295 1.0007 0.0217 0.0217 0.9887 0.0183 0.0184  0.0697
1 o ML 0.0154  0.0287 0.0289 1.0377 0.0224  0.0238 0.9497 0.0168 0.0194 0.0721
MML -0.0010  0.0290  0.0290 1.0479 0.0255 0.0278 1.0402 0.0217 0.0234  0.0801
11 ML -0.0502  0.0311 0.0336 1.0007  0.0258 0.0258  0.9900 0.0209 0.0210  0.0805
MML -0.0333  0.0307 0.0318 0.9581 0.0228  0.0246  0.9029 0.0158  0.0253  0.0817
2 0 ML -0.0326  0.0309 0.0319 1.0775  0.0231 0.0291 09354 0.0170 0.0212  0.0823
MML -0.0405  0.0312  0.0328 1.0822 0.0259 0.0326 1.0259 0.0225 0.0232  0.0886
2] ML -0.0747 0.0333  0.0389 1.0360  0.0262 0.0275 0.9688 0.0213  0.0222  0.0886
MML -0.0627  0.0330  0.0370  0.9977 0.0235 0.0235 0.8853  0.0158  0.0289  0.0894
2 2 ML -0.0960 0.0322 0.0414 1.0003  0.0266 0.0266 09416 0.0217 0.0251  0.0932
MML -0.0805 0.0319 0.0384 0.9245 0.0237 0.0294 0.8601 0.0158 0.0354  0.1031
3 0 ML -0.0644  0.0333  0.0375 1.1162  0.0243  0.0378 0.9323 0.0177 0.0223  0.0975
MML -0.0625  0.0333  0.0372  1.1058 0.0264 0.0376  1.0287  0.0239  0.0248  0.0996
30 ML -0.0853  0.0324  0.0397 1.0617  0.0268 0.0306 0.9653 0.0224 0.0236  0.0938
MML -0.0799  0.0321  0.0385 1.0357 0.0246  0.0259 0.8793 0.0163  0.0308  0.0953
3 2 ML -0.1262  0.0327  0.0486 1.0269  0.0272  0.0279 09335 0.0227 0.0271  0.1036
MML -0.1119  0.0323  0.0448  0.9624 0.0248 0.0262 0.8522 0.0162 0.0380  0.1090
3 3 ML -0.1446  0.0356  0.0565 0.9994  0.0277 0.0277 0.9202 0.0238 0.0302 0.1145
MML -0.1241  0.0351 0.0505 0.8925 0.0247 0.0363 0.8386 0.0166  0.0426  0.1294

81 82 ny =ng = 20
0 o ML 0.0128  0.0224 0.0225 1.0083 0.0197 0.0198 0.9666 0.0127 0.0138  0.0561
MML 0.0347 0.0222  0.0234 1.0087  0.0199 0.0199 0.9654 0.0126 0.0138 0.0571
1 o ML -0.0103  0.0230  0.0231 0.9699 0.0203 0.0213 09213 0.0131 0.0193  0.0637
MML 0.0051 0.0228  0.0228 0.9361 0.0206 0.0247 0.9238 0.0132  0.0190 0.0665
1 ML -0.0317  0.0224  0.0234 1.0020 0.0177 0.0177 1.0045 0.0145 0.0146  0.0556
MML -0.0157 0.0221  0.0223 1.0018 0.0178 0.0178 09152 0.0111 0.0183  0.0584
20 ML -0.0106  0.0217  0.0218 1.0564 0.0178 0.0209 09405 0.0118 0.0153  0.0581
MML -0.0203  0.0219  0.0223 1.0683  0.0201  0.0248 1.0314 0.0156 0.0166  0.0637
s ML -0.0477  0.0237  0.0260 0.9769  0.0209 0.0215 0.8690 0.0125 0.0297  0.0807
MML -0.0363  0.0234  0.0247 0.9410 0.0212 0.0247 0.8575 0.0122 0.0325 0.0783
2 2 ML -0.0669  0.0230  0.0275 1.0002 0.0205 0.0205 0.9586 0.0150 0.0168  0.0647
MML -0.0549  0.0228 0.0258 0.9380 0.0181 0.0220 0.8746 0.0110  0.0267  0.0745
30 ML -0.0395 0.0241  0.0256 1.0855 0.0184  0.0257 09341 0.0121 0.0165 0.0678
MML -0.0420  0.0242  0.0260 1.0914  0.0204  0.0288 1.0265 0.0164 0.0171 0.0718
30 ML -0.0682  0.0243  0.0289 0.9518 0.0194 0.0217 09746 0.0156 0.0162  0.0669
MML -0.0619  0.0241 0.0280 0.8807 0.0197 0.0340 0.8896 0.0114 0.0236  0.0855
3 9 ML -0.0899  0.0242 0.0323 09779 0.0224  0.0229 09463 0.0155 0.0184 0.0736
MML -0.0795 0.0241 0.0304 09412 0.0225 0.0259 0.8649 0.0112 0.0294  0.0858
3 3 ML -0.1155  0.0222  0.0356  0.9998  0.0210 0.0210 09305 0.0159 0.0207 0.0773

MML -0.1021  0.0220  0.0324 09124 0.0188 0.0264 0.8500 0.0112  0.0337  0.0926
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Table 7 Means, vgriances and AMSES for the AML and MMIAJ estimators Aof 0y, 641 andAa;
(A = 1); (i)Mean(0y), (19)Var(by), (itd) MSE(6y),(iv)Mean(61), (v)Var(6:), (vi)MSE(6,),
(vii) Mean(5), (viii)Var(6), (ix) MSE(5), (z)Def

@) 1) (i) @v) W) i) (vii) (viii) (x) x)

81 82 ny =ng = 10
0 0 ML 0.0514  0.0201 0.0227 1.0017 0.0157 0.0157 09751 0.0122  0.0128  0.0512
MML 0.0544  0.0200 0.0230 1.0015 0.0161 0.0161 0.8803 0.0100 0.0243  0.0634
1 o ML -0.0019  0.0436  0.0436  0.9696 0.0170  0.0179  0.9696 0.0170  0.0179  0.0794
MML -0.0191  0.0440 0.0444 09381 0.0171 0.0210 09455 0.0244 0.0274  0.0927
1 ML 0.0015  0.0378 0.0378 0.9947 0.0338 0.0339 1.0052 0.0348 0.0349  0.1065
MML 0.0049  0.0381 0.0381 0.9941 0.0343 0.0343 0.8849 0.0230 0.0363  0.1087
2 0 ML 0.0054  0.0412 0.0412 09205 0.0368 0.0431 1.0756 0.0401 0.0458 0.1301
MML -0.0122  0.0417  0.0418 0.7872  0.0386  0.0838  1.0837  0.0408 0.0478 0.1734
5 ML -0.0261  0.0442  0.0449  0.9633 0.0348 0.0361 0.9898 0.0381 0.0382 0.1192
MML -0.0279  0.0443  0.0451 0.8950 0.0357 0.0467 0.8728 0.0246  0.0408  0.1326
5 9 ML -0.1391  0.0425 0.0619 0.9946 0.0352 0.0353 0.9605 0.0395 0.0411 0.1382
MML -0.1384  0.0426  0.0617  0.8597 0.0251 0.0448 0.8480 0.0249  0.0480  0.1545
30 ML 0.0149  0.0188 0.0190 1.0697 0.0275 0.0324 0.8766  0.0285 0.0437  0.0951
MML 0.0220  0.0186  0.0191  1.0864 0.0351 0.0425 0.7882  0.0238  0.0686  0.1303
3 ML 0.0311  0.0200 0.0210 09734 0.0279 0.0286 0.8738  0.0270  0.0430  0.0926
MML 0.0385  0.0201 0.0216 1.0407 0.0357 0.0374 1.0137 0.0434 0.0436  0.1026
3 9 ML -0.0779  0.0419  0.0480 0.9898 0.0387 0.0388 0.9748 0.0447 0.0453 0.1321
MML -0.0669  0.0414  0.0459 0.9268 0.0379 0.0433  0.8463 0.0275 0.0511  0.1402
3 3 ML -0.0774  0.0407  0.0467 0.9898 0.0362 0.0363 0.8435 0.0295 0.0540  0.1371
MML -0.1056  0.0421 0.0532 0.9876 0.0380 0.0382 09816 0.0499 0.0502 0.1416

S1  S2 ny =ng =15
0 0 ML 0.0393 0.0249  0.0264 1.0011 0.0211  0.0211 0.8743 0.0138  0.0296  0.0788
MML -0.0302  0.0265 0.0275 1.0009 0.0219 0.0219 1.0760 0.0254 0.0312  0.0819
1 o ML 0.0626  0.0242  0.0281  0.9629  0.0230  0.0244  0.9994 0.0212 0.0212  0.0720
MML 0.0683  0.0240 0.0287 09199 0.0239  0.0304 0.9586 0.0188 0.0205 0.0774
11 ML -0.0245  0.0258  0.0264 1.0017  0.0458 0.0458 1.0320 0.0225 0.0235 0.1015
MML -0.0361  0.0252  0.0265 0.9750 0.0467 0.0473  0.9031 0.0150 0.0244  0.1101
2 0 ML -0.0795  0.0259 0.0322  1.1078 0.0264 0.0380 0.9837 0.0217 0.0219  0.1022
MML -0.0982  0.0288 0.0384 0.9750 0.0467 0.0473 0.9402 0.0188  0.0224  0.1135
P ML -0.1139  0.0293  0.0422  1.0548 0.0274 0.0304 1.0108 0.0229 0.0230  0.1009
MML -0.1202  0.0293  0.0438  1.0621  0.0277 0.0315 0.8887 0.0149  0.0273  0.1067
2 2 ML -0.1329  0.0298  0.0475 0.9989  0.0230  0.0230 09816 0.0233  0.0237  0.1003
MML -0.1344  0.0298  0.0479 0.8968 0.0162 0.0269 0.8641 0.0149 0.0334  0.1201
30 ML -0.1523  0.0304 0.0536  1.0900 0.0229 0.0310 0.9841 0.0225 0.0228  0.0824
MML -0.1703  0.0309  0.0599 1.1365 0.0271 0.0457 0.9351 0.0190 0.0232  0.1061
301 ML -0.0554  0.0256  0.0286  1.0858  0.0280 0.0354 1.0085 0.0241 0.0241  0.1528
MML -0.1054  0.0261  0.0372  1.1312 0.0284 0.0456  0.8854 0.0154 0.0286  0.1555
3 2 ML -0.2076  0.0502  0.0933  1.0202 0.0508 0.0512 09737 0.0243  0.0250  0.1695
MML -0.1849  0.0470  0.0812  1.0503  0.0506  0.0532 0.8592 0.0154 0.0352 0.1696
3 3 ML -0.2801  0.0533  0.1317 0.9944 0.0529 0.0529 0.8800 0.0215 0.0359  0.0888
MML -0.2451  0.0481  0.1082  0.9237 0.0522 0.0580 0.8462 0.0157 0.0394  0.1223

81 82 ny =ng = 20
0 0 ML -0.0029  0.0249  0.0249 0.9888 0.0222 0.0223 0.9896 0.0128 0.0130  0.0601
MML 0.0088  0.0248 0.0248 09891 0.0229 0.0230 1.0177 0.0130 0.0133  0.0612
1 o ML -0.0343  0.0253  0.0265 1.0303  0.0230 0.0239  0.9831 0.0129 0.0132  0.0637
MML -0.0215  0.0249  0.0254 1.0414  0.0227 0.0244 1.0833 0.0154 0.0224  0.0722
11 ML -0.0668  0.0255 0.0300 0.9853  0.0234  0.0236  0.9357 0.0118 0.0160  0.0696
MML -0.0534  0.0250 0.0278  0.9696 0.0231 0.0241 09168 0.0108 0.0177  0.0696
20 ML -0.0613  0.0258  0.0295 1.0612 0.0233  0.0271 0.9696 0.0136  0.0145  0.0711
MML -0.0465  0.0250 0.0271 1.0926  0.0236  0.0322 0.9435 0.0116 0.0148  0.0741
P ML -0.1034  0.0206  0.0313  1.0236  0.0201  0.0207 1.0144 0.0151 0.0153  0.0675
MML -0.0768  0.0250  0.0309  1.0202 0.0241  0.0245 0.9018 0.0107 0.0204 0.0758
2 2 ML -0.1177  0.0210  0.0348  0.9961  0.0203  0.0203 0.9834 0.0147 0.0150  0.0703
MML -0.0529  0.0189  0.0217 09156 0.0145 0.0217 0.8626  0.0097 0.0286  0.0721
30 ML -0.1070  0.0217  0.0332  1.0855 0.0235 0.0308 0.9661 0.0142 0.0153  0.0793
MML -0.0679  0.0251  0.0297 1.1435 0.0242 0.0449 0.9389 0.0119 0.0157  0.0902
30 ML -0.1172  0.0265 0.0402  1.0423  0.0239  0.0257 1.0200 0.0172  0.0176  0.0835
MML -0.1177  0.0220 0.0358  1.0700 0.0246  0.0295 0.8955 0.0110 0.0219  0.0873
3 9 ML -0.1462  0.0265 0.0479  1.0072  0.0240  0.0241 0.8789  0.0128  0.0274  0.0994
MML -0.1229  0.0251  0.0402  1.0031  0.0249 0.0249 0.8395 0.0107 0.0364 0.1016
3 3 ML -0.1720  0.0267  0.0563  0.9780  0.0242  0.0246  0.8616 0.0129 0.0320  0.1129

MML -0.1468  0.0252  0.0467 0.8831 0.0125 0.0262 0.8214 0.0107 0.0426  0.1155
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Table 8 Average Lengths and Coverage Probabilities of the %95 confidence intervals for the ML and
MML estimators of y and 6;; (A = 0).

Average Lengths Coverage Probabilities %
51 S2 o [ 0o 0,
ny =ne = 10
0 0 ML 0.8133 0.8724 92.96 96.98
MML 0.8133 0.8724 92.96 96.98
. o ML 0.8158 0.8785 92.96 95.98
MML 0.8143 0.8836 92.96 95.48
L1 ML 0.8255 0.8893 92.96 95.48
MML 0.8242 09112 92.96 95.98
2 0 ML 0.8896 0.8900 93.79 95.30
MML 0.8910 0.9047 93.69 95.10
s ML 0.8371 0.9016 92.96 95.48
MML 0.8372 09119 92.46 94.97
2 2 ML 0.8393 0.9195 92.96 95.98
MML 0.8438 0.9529 93.46 94.97
30 ML 0.9127 0.9145 94.39 94.89
MML 0.9207 0.9241 94.39 94.79
3 ML 0.9169 0.9248 94.59 95.10
MML 0.9246 0.9239 94.79 94.69
3 9 ML 0.9196 0.9416 94.59 94.99
MML 0.9338 0.9428 94.99 94.69
3 3 ML 0.9281 0.9682 94.29 95.30
MML 0.9544 0.9683 94.09 95.40
ny =ng =15
0 0 ML 0.6810 0.7084 94.80 95.05
MML 0.6810 0.7084 94.80 95.05
. o ML 0.6859 0.7170 94.75 95.20
MML 0.6852 0.7245 94.70 95.30
L1 ML 0.6954 0.7196 94.65 95.20
MML 0.6939 0.7328 94.65 95.35
2 0 ML 0.6902 0.7232 94.90 95.40
MML 0.6897 0.7388 94.90 95.40
2 1 ML 0.6994 0.7260 94.65 95.50
MML 0.6982 0.7446 94.75 95.30
2 9 ML 0.7097 0.7313 94.55 95.25
MML 0.7086 0.7543 94.55 95.55
30 ML 0.6966 0.7317 94.75 95.40
MML 0.6972 0.7520 94.70 95.30
301 ML 0.7052 0.7349 94.95 95.40
MML 0.7051 0.7552 94.95 95.30
3 9 ML 0.7148 0.7405 94.65 95.60
MML 0.7148 0.7627 94.45 95.50
303 ML 0.7235 0.7485 94.40 95.45
MML 0.7250 0.7683 94.30 95.35
ny =ng =20
0 0 ML 0.6235 0.5965 94.65 94.90
MML 0.6235 0.5965 94.65 94.90
. o ML 0.6229 0.5994 94.60 94.75
MML 0.6222 0.6032 94.60 94.75
L1 ML 0.6236 0.6032 94.95 94.75
MML 0.6223 0.6116 94.95 94.75
2 0 ML 0.6249 0.6034 94.75 94.65
MML 0.6238 0.6099 94.65 94.50
21 ML 0.6249 0.6075 94.70 94.70
MML 0.6234 0.6177 94.80 94.60
2 9 ML 0.6254 0.6128 94.70 94.75
MML 0.6240 0.6271 94.65 94.75
30 ML 0.6292 0.6099 94.55 94.80
MML 0.6280 0.6183 94.60 94.75
3 ML 0.6285 0.6141 94.45 94.70
MML 0.6270 0.6254 94.55 94.40
3 9 ML 0.6284 0.6196 94.45 94.85
MML 0.6270 0.6344 94.60 94.50
303 ML 0.6311 0.6261 94.50 94.90
MML 0.6301 0.6439 94.55 94.90
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Table 9 Average Lengths and Coverage Probabilities of the %95 confidence intervals for the ML and
MML estimators of § and 0;; (A = 0.4).

Average Lengths Coverage Probabilities %
51 S2 o [ 0o 0,
ny =ne =10
0 0 ML 0.8372 0.8322 94.05 96.20
MML 0.8357 0.8194 94.15 96.25
. o ML 0.8458 0.8382 94.10 96.45
MML 0.8350 0.8391 94.20 96.15
L1 ML 0.8570 0.8427 94.10 96.00
MML 0.8414 0.8474 94.25 96.10
2 0 ML 0.8575 0.8499 93.95 96.10
MML 0.8390 0.8612 94.20 96.20
2 ML 0.8685 0.8559 94.10 95.70
MML 0.8437 0.8655 94.15 95.80
2 2 ML 0.8784 0.8669 94.30 95.55
MML 0.8472 0.8751 94.15 95.70
30 ML 0.8705 0.8713 94.00 95.70
MML 0.8464 0.8908 93.90 95.80
3 ML 0.8808 0.8796 93.90 95.55
MML 0.8485 0.8902 94.00 95.75
3 9 ML 0.8888 0.8912 94.00 95.30
MML 0.8491 0.8964 94.10 95.60
3 3 ML 0.8988 0.9096 93.90 95.75
MML 0.8505 0.9082 94.25 95.80
ny =ng =15
0 0 ML 0.6761 0.6674 95.50 94.85
MML 0.6749 0.6573 95.50 94.75
. o ML 0.6816 0.6706 95.50 94.50
MML 0.6752 0.6683 95.55 94.55
L ML 0.6880 0.6777 95.40 94.85
MML 0.6791 0.6780 95.40 94.75
2 0 ML 0.6873 0.6757 95.45 94.40
MML 0.6763 0.6796 95.45 94.40
2 1 ML 0.6937 0.6826 95.50 94.70
MML 0.6798 0.6883 95.50 94.4
) ML 0.6992 0.6898 95.40 94.60
MML 0.6820 0.6969 95.65 94.55
30 ML 0.6944 0.6829 95.40 94.40
MML 0.6784 0.6926 95.55 94.25
3 ML 0.7008 0.6896 95.45 94.60
MML 0.6816 0.6995 95.65 94.65
3 9 ML 0.7061 0.6967 95.45 94.60
MML 0.6832 0.7067 95.65 94.65
3 3 ML 0.7109 0.7052 95.55 94.45
MML 0.6837 0.7116 95.55 94.70
ny =ng =20
0 0 ML 0.5551 0.5947 92.96 95.47
MML 0.5543 0.5847 92.96 95.97
. o ML 0.5580 0.5988 91.45 94.97
MML 0.5532 0.5945 91.45 95.47
L1 ML 0.5598 0.5993 91.45 95.97
MML 0.5537 0.5966 91.45 96.48
2 0 ML 0.5627 0.6020 91.95 95.47
MML 0.5534 0.6054 91.95 94.97
21 ML 0.5644 0.6027 91.95 94.97
MML 0.5541 0.6074 91.95 94.47
2 9 ML 0.5640 0.6020 91.95 94.97
MML 0.5529 0.6084 90.95 95.47
30 ML 0.5706 0.6050 91.95 95.48
MML 0.5565 0.6134 91.46 95.48
3 ML 0.5720 0.6058 91.96 94.97
MML 0.5570 0.6143 91.96 94.47
3 9 ML 0.5713 0.6052 91.45 95.47
MML 0.5556 0.6145 91.45 94.97
3 3 ML 0.5709 0.6075 91.95 95.98

MML 0.5546 0.6154 91.45 95.47
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Table 10 Average Lengths and Coverage Probabilities of the %95 confidence intervals for the ML
and MML estimators of 6 and 6;; (A = 0.7).

Average Lengths Coverage Probabilities %
51 S2 o [ 0o 0,
ny =ne = 10
0 0 ML 0.8215 0.7761 94.45 95.20
MML 0.8139 0.7177 94.55 95.00
. o ML 0.8322 0.7809 94.15 95.30
MML 0.8081 0.7355 94.60 95.30
L1 ML 0.8424 0.7836 94.45 95.05
MML 0.8137 0.7395 94.60 95.00
2 0 ML 0.8437 0.7905 94.40 95.25
MML 0.8039 0.7588 94.75 95.05
2 ML 0.8540 0.7948 94.80 95.15
MML 0.8084 0.7604 94.60 94.75
2 2 ML 0.8656 0.8054 94.80 95.00
MML 0.8127 0.7626 94.85 94.65
30 ML 0.8544 0.8080 94.95 95.40
MML 0.8003 0.7915 94.55 95.35
3 ML 0.8644 0.8144 95.00 95.25
MML 0.8022 0.7898 94.70 94.80
3 9 ML 0.8747 0.8254 94.85 95.00
MML 0.8026 0.7902 94.75 94.90
3 3 ML 0.8826 0.8406 94.75 95.05
MML 0.7984 0.7927 94.75 95.05
ny =ng =15
0 0 ML 0.6658 0.6119 94.40 94.35
MML 0.6594 0.5653 94.45 94.60
. o ML 0.6713 0.6152 94.60 94.85
MML 0.6567 0.5754 94.60 94.70
L1 ML 0.6770 0.6189 94.80 94.90
MML 0.6598 0.5810 94.70 94.80
2 0 ML 0.6775 0.6192 94.70 94.95
MML 0.6544 0.5870 94.60 94.95
2 1 ML 0.6833 0.6231 94.75 94.85
MML 0.6575 0.5917 94.70 94.85
2 9 ML 0.6894 0.6276 94.65 95.10
MML 0.6601 0.5943 94.75 94.95
30 ML 0.6846 0.6250 94.70 94.90
MML 0.6526 0.6000 94.75 94.75
301 ML 0.6903 0.6290 94.65 95.05
MML 0.6555 0.6039 94.80 94.75
3 9 ML 0.6963 0.6335 94.70 94.80
MML 0.6577 0.6058 94.90 94.60
303 ML 0.7020 0.6389 94.65 94.75
MML 0.6582 0.6047 95.15 94.60
ny =ng =20
0 0 ML 0.5848 0.5548 94.95 95.30
MML 0.5793 0.5127 95.00 95.25
. o ML 0.5881 0.5573 94.95 95.40
MML 0.5768 0.5196 94.95 95.30
L1 ML 0.5927 0.5595 95.10 95.50
MML 0.5798 0.5233 95.05 95.15
2 0 ML 0.5928 0.5601 95.20 95.45
MML 0.5751 0.5276 95.10 95.40
21 ML 0.5973 0.5625 95.20 95.70
MML 0.5785 0.5312 95.25 95.50
2 9 ML 0.6011 0.5647 95.05 95.65
MML 0.5806 0.5330 95.15 95.70
30 ML 0.5980 0.5625 95.20 95.45
MML 0.5730 0.5371 95.15 95.55
3 ML 0.6025 0.5650 95.25 95.45
MML 0.5767 0.5405 95.20 95.65
3 9 ML 0.6062 0.5673 95.20 95.40
MML 0.5787 0.5420 95.15 95.55
303 ML 0.6094 0.5700 95.20 95.40

MML 0.5796 0.5420 95.20 95.55
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Table 11 Average Lengths and Coverage Probabilities of the %95 confidence intervals for the ML
and MML estimators of 6 and 61; (A = 1).

Average Lengths Coverage Probabilities %
51 S2 o [ 0o 0,
ny =ne =10
0 0 ML 0.7556 0.7202 94.65 95.15
MML 0.7423 0.5892 94.60 95.05
. o ML 0.7658 0.7248 94.75 94.80
MML 0.7327 0.6034 94.55 95.05
L1 ML 0.7750 0.7263 94.75 94.90
MML 0.7378 0.6105 94.90 95.00
2 0 ML 0.7763 0.7319 94.55 95.10
MML 0.7214 0.6200 94.85 95.10
2 ML 0.7851 0.7350 94.55 95.30
MML 0.7278 0.6256 94.90 95.40
2 2 ML 0.7959 0.7427 94.85 95.25
MML 0.7343 0.6269 94.85 95.40
30 ML 0.7853 0.7447 94.55 95.10
MML 0.7086 0.6544 94.35 94.90
3 ML 0.7941 0.7501 94.85 95.05
MML 0.7144 0.6576 94.75 95.05
3 9 ML 0.8044 0.7590 94.55 95.10
MML 0.7201 0.6584 94.85 94.95
3 3 ML 0.8111 0.7718 95.05 95.35
MML 0.7221 0.6569 94.70 95.20
ny =ng =15
0 0 ML 0.6545 0.5780 94.90 95.15
MML 0.6402 0.4734 94.90 95.00
. o ML 0.6608 0.5792 95.05 95.10
MML 0.6367 0.4807 94.75 94.70
L ML 0.6671 0.5820 95.15 95.25
MML 0.6401 0.4870 95.10 94.90
2 0 ML 0.6672 0.5813 95.15 94.95
MML 0.6321 0.4869 94.75 94.85
2 1 ML 0.6738 0.5843 95.35 95.25
MML 0.6365 0.4929 95.05 94.95
) ML 0.6803 0.5880 95.25 94.85
MML 0.6404 0.4958 95.10 95.30
30 ML 0.6739 0.5865 95.15 94.75
MML 0.6265 0.4895 94.65 94.70
301 ML 0.6802 0.5898 95.25 95.00
MML 0.6314 0.4951 94.95 95.25
3 9 ML 0.6867 0.5935 95.15 94.95
MML 0.6356 0.4972 94.90 95.35
3 3 ML 0.6926 0.5982 95.10 95.00
MML 0.6381 0.4948 95.10 95.30
ny =ng =20
0 0 ML 0.5578 0.5192 95.10 95.45
MML 0.5462 0.4228 95.05 95.25
. o ML 0.5607 0.5206 95.05 95.35
MML 0.5431 0.4282 95.00 95.35
L ML 0.5651 0.5228 95.25 95.35
MML 0.5455 0.4331 95.05 95.05
2 0 ML 0.5647 0.5217 94.90 95.35
MML 0.5403 0.4341 95.15 95.10
21 ML 0.5688 0.5241 95.25 95.30
MML 0.5430 0.4390 95.30 95.20
2 9 ML 0.5728 0.5268 95.10 95.30
MML 0.5450 0.4422 95.15 95.25
30 ML 0.5688 0.5226 95.05 95.20
MML 0.5369 0.4394 95.30 95.15
3 ML 0.5731 0.5252 95.20 95.25
MML 0.5399 0.4441 95.20 95.25
3 9 ML 0.5769 0.5280 95.25 95.10
MML 0.5420 0.4470 95.00 95.55
3 3 ML 0.5803 0.5301 95.15 94.90

MML 0.5439 0.4469 95.00 95.40
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The ML estimators of 87 and o outperform the corresponding MML estimators with respect to
the MSE criterion in all cases. Overall, it is observed that efficiencies of the ML and MML estimators
of #, and o are very similar to each other when the sample size is large and the proportion of censoring
is small.

Finally, we can conclude that the ML estimators show stronger performance than the corre-
sponding MML estimators with low deficiencies in all cases.

We also conducted a simulation study to compare performance of Cls based on the ML and
MML estimators. We presented average lengths and coverage probabilities of CIs based on the ML
and MML estimators given in (19) and (20), see Tables 8-11.

It is obvious from simulation results that the ML estimates produce a little bit wider CIs than the
MML estimators on the average. However, coverage probabilities of the CIs based on the ML and
MML estimators are not significantly different from each other.

6. Conclusion

In this study, we obtain the ML and MML estimates of the regression model parameters un-
der Type-II censoring when the distribution of the error terms is SN(\). We then compare the
performances of the ML estimators obtained using IRA with the MML estimators via Monte Carlo
simulation study. Simulation study shows that ML estimators are more efficient than the MML esti-
mators for most of the cases. Additionally, we construct CIs based on the proposed ML and MML
estimators and compare their converge probabilities and average lengths via Monte Carlo simulation
study. Average lengths of CIs based on the ML estimators are wider than the average lengths of
the corresponding CIs based on the MML estimators. Coverage probabilities of the ML and MML
estimators are almost same for all cases. It can also be concluded that the MML estimators are the
explicit functions of the sample observations and therefore they are easy to compute. If our concern is
to have efficient estimators together with the smaller CPU time needed for the computation process,
the MML estimators can also be preferred.
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